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Summary: We analyzed the electrical activity of the basolateral amygdala (BLA), 
anterior and posterior regions of the cingulate gyrus (A-CG and P-CG) , the dorsal 
hippocampus (DH) , the anterior ventral thalamic nucleus (AVTN), and the sensory 
motor cortex during the rapid eye movements and ponto-geniculo-occipital (PGO) 
activity of REM sleep in cats in chronic preparation. Polygraphic recordings and 
computational peri event averages using the phasic contractions of the lateral rectus 
muscle (LR) of the eyeball as the triggering signal of the analysis were performed. 
We observed biphasic potentials (200--300 ms) of variable amplitude, related to 
the phasic phenomena of REM sleep, in the BLA, A-CG, P-CG, DH, and AVTN. 
The latencies of the potentials of these regions were always greater than those of 
the geniculate PGO activities. We propose that the recorded limbic potentials 
resulted from propagation of PGO activity and that this phenomenon may reflect 
the limbic structure of the hallucinatory, vegetative, and emotional components 
of REM sleep. Key Words: Sleep--Amygdala-Hippocampus-Gyrus cin
guli-REM sleep--Ponto-geniculo-occipital activity. 

Jouvet and Michel (1) demonstrated the existence of monophasic spikes in cats at the 
level of the pons during REM sleep. This electrical activity is propagated from the pontine 
region (2,3) to the cortical and subcortical structures of the visual system (4--6). Jeannerod 
et al. (7) were the first to call the phenomenon ponto-geniculo-occipital (PGO) activity. 
Ponto-geniculo-occipital activity has been studied thoroughly in the oculomotor system (8-
12). 

In man emotional changes, mnestic phenomena of a personal and conceptual type and 
vegetative changes accompany the rapid eye movements of REM sleep. Jouvet et al. (13), 
Snyder et al. (14), Baust and Bohenert (15), Welch and Richardson (16), and Fernandez
Guardiola et al. (17) have described variations in the frequency of both cardiac and res
piratory rates related to rapid eye movements. 

The functions related to emotional and vegetative changes are integrated in the limbic 
system and in the hypothalamus. Electrical stimulation of these structures elicits emotional 
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and vegetative changes in the cat (18-21) and in the monkey (22). In man, in addition to 
these changes, hallucinatory and reminiscent phenomena are also provoked (23-28). It may 
be thought that during REM sleep PGO activity stimulates the limbic system to elicit these 
changes. Robson (29) has demonstrated PGO-related potentials in various thalamic areas 
anatomically related to this system. The object of the present work was to test this hypothesis 
in cats by recording the bioelectrical activity of the basolateral amygdala (BLA) , the 
cingulate gyrus, and the hippocampus during periods of PGO activity in REM sleep using 
a computational system of perievent analysis of the REM-sleep phasic phenomena. 

METHODS 

Eight adult male cats in chronic preparation were used. Bipolar concentric stainless steel 
enameled electrodes (cannula gauge, 0.7 mm; Teflon-insulated wire gauge, 0.17 mm; tip 
separation, 0.7-1.0 mm) were stereotaxically (30) implanted into the lateral geniculate 
body (LGB), the pontine reticular formation (PRF), the BLA, the anterior and posterior 
regions of the cingulate gyrus (A-CG and P-CG, respectively; coordinates: A: 17.0, L: 1.4, 
H: + 10.7; and A: 3.0, L: 0.8, H: + 11.0), the anterior ventral thalamic nucleus (AVTN), 
the dorsal hippocampus (DR), and the sensory motor cortex (SMC). Stainless steel elec
trodes, placed epidurally, were used to obtain the electrocorticogram of the visual cortex 
(VC). Electrodes were also placed to record the electromyogram (EMG) of the nuchal 
muscles and the electrooculogram (EOG). Fish hooks were used in recording the EMG of 
the lateral rectus muscle (LR) of both eyeballs (12). 

After surgery conducted under sodium pentobarbital (33 mg/kg) anesthesia, the animals 
recovered for 15 days. Each cat was placed in a soundproof recording chamber under the 
same conditions as those used in the experiments for 8 habituation days. After habituation, 
sleep recordings were performed daily from 1000 to 1800 h. 

The electrophysiological activities were amplified and polygraphically recorded. These 
signals were also recorded on magnetic tapes and were analyzed on-line. Perievent averages 
of 200 ms before and 800 ms after a phasic contraction of the LR during REM sleep were 
analyzed. Thirty averages of 256 activations of the LR and of the concomitant activity of 
the VC, PRF, LGB, AVTN, A-CG, P-CG, DR, BLA, and SMC were performed. 

A total of 7,680 phasic events during REM sleep were computed. Four to five stages of 
REM sleep were necessary to complete the 256 phasic activation averages. Therefore, 120 
to 150 REM stages over approximately 20 successive days were studied in each animal. 

The latencies were calculated at the first negative (downward) component (N I) of each 
potential, taking the NI of the PRF-PGO potential as reference. The Student's t test was 
used to evaluate the statistical significance of the differences between latency average 
differences. 

At the end of the experiments, the animals were sacrificed by an overdose of pentobarbital, 
and a 10 rnA DC current of 5 s duration was passed through the electrodes to mark the 
location of the tip. The brains were perfused with 20% formol and serial histological 
sections (80 /-Lm) were made to verify the location of the electrodes. 

RESULTS 

During REM sleep, biphasic potentials of variable amplitude (50--150 /-LV) and shape 
interrupted the basal electrographic activity of the BLA. The biphasic potentials were 
related to phasic contractions of both LRs and PGO activity (Fig. 1). The A-Ca, P-CG, 
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FIG. 1. Polygraphic recording during REM sleep. Note the appearance of slow potentials of variable shape 
and amplitude in the basolateral amygdala (BLA) related to the phasic contractions of the lateral rectus muscles 
of each eyeball (R-LR and L-LR, respectively) and to the ponto-geniculo-occipital potentials of the pontine 
reticular formation (PRF). EMG, electromyogram of the nuchal muscles; EGG, electrooculogram. 
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FIG. 2. Average of 256 ponto-geniculo-occipital and related 
subcortical potentials during REM stage. A-CG, anterior cingulate 
gyrus; BLA, basolateral amygdala; LGB, lateral geniculate body; 
LR, lateral rectus muscle of the eyeball; PRF, pontine reticular 
formation; VC, visual cortex. Note the presence of slow biphasic 
potentials in A-CG and BLA. 

and DR also exhibited PGO activity related to biphasic potentials. In the SMC, potentials 
related to the REM phasic phenomena were not observed. 

The perievent averages of BLA and A-CG activities indicated a relationship between the 
limbic potentials and PGO activity, revealing slow biphasic potentials (200-300 ms) of an 
amplitude between 150 and 200 f1. V (Fig. 2). 

To test the existence of a relay structure in the propagation of PGO activity from the 
LGB to the cingulate gyrus, perievent averages of the AVTN together with the activity of 
the LGB and A-CG were made. The results in the AVTN showed slow biphasic potentials 
related to PGO activity. The PGO potentials of LGB were always the first to appear and 
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were followed successively by the potentials recorded in the VC, AVTN, A-CG, and BLA 
(Fig. 3) 

The activity of the DH and P-CG was analyzed concurrently to elucidate the shape, 
amplitude, duration, and latencies of the PGO-related potentials in these areas. The averages 
demonstrated the presence of slow biphasic potentials (200-300 ms) with an amplitude of 
between 150 and 200 I.l V in the P-CG and DH. These were related to the A-CG and VC
PGO potentials (Fig. 4). The amplitude of the DH potentials was greatest when the cannula 
was in the CA 2 area and the wire tip in the fascia dentata. Analysis of the SMC did not 
demonstrate the presence of PGO-related potentials. 

When quantifying the temporal distribution of the potentials, we observed that the 
latencies of the beginning of each potential varied greatly and occasionally were difficult 
to determine accurately, whereas the NJ peak latencies of all the potentials were more 
constant. We therefore determined the temporal relation between the potentials using the 
latencies of their N J peak, taking the PGO potential of the PRF as a point of reference. 
Figure 5 shows the average latencies and the standard deviation of the potentials recorded 
in each structure. As can be seen, the P-CG potential preceded that of the A-CG. There 
was also a delay between the hippocampal and the amygdaloid PGO-related potentials. 
The latencies of the potentials recorded from VC, AVTN, P-CG, A-CG, DH, and BLA 
were significantly longer (p < 0.001) than the latency of the LGB-PGO potential. 

The latency of the BLA potential was also significantly longer (p < 0.001) than the 
latencies of DH, A-CG, P-CG, AVTN, and VC potentials. The latency of the DH potential 
was significantly longer than those of the A-CG (p < 0.005), P-CG (p < 0.005), and 
AVTN (p < 0.001). There were no significant differences between the latencies of the 
potentials of AVTN, P-CG, and A-CG. Table 1 shows the latency values ± SD in each 
animal. 

FIG. 3. Ponto-geniculo-occipital propa
gation to thalamic and limbic structures. Ex
panded sweep allows the appreciation of 
latency differences. AVTN, anterior ventral 
thalamic nucleus; for other abbreviations see 
Fig. 2. Note that A-CG and BLA display 
the longest latencies. 
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FIG. 4. Average of the hippocampal and cingular po
tentials during REM phasic phenomena. DR, dorsal hip
pocampus; P-CG, posterior cingulate gyrus; for other 
abbreviations see Fig. 2. Note the presence of slow bi
phasic potentials in DR and P-CG related to the VC-PGO 
and to the A-CG potential. 

I so 

* P-<OOOI 

* 

P-CG 
(n=241) 

* 

A-CG 
(n=234) 

* 

OH 
(n=186) 

• 

BLA 
(n=233) 

FIG. 5. The Nt mean latency of PGO and related potentials, taking PRF-PGO as reference. The mean latencies 
of all the structures were compared with LGB mean latency. Statistical analysis was carried out with the Student's 
t test. See previous figures for abbreviations. 

DISCUSSION 

The appearance of potentials in the BLA, DH, A-CG, P-CG, and AVTN, related to 
PGO activity and LR phasic contractions, confirmed that these limbic and thalamic struc
tures are phasically influenced during REM sleep. 

In addition to receiving somesthesic, auditory, and visceral information, the BLA receives 
visual information, probably through the thalamic relay nuclei and, among them, the LGB 
(31-35). Impulses from the reticular formation of the brain stem (36) also arrive at the 
amygdala. The hippocampus, the cingulate gyrus, and the amygdala also receive polysensory 
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TABLE 1. First negative component peak (N]) latencies in ms (x ± SD) measured 
from the PRF-PGO potential in each cat 

Cat no. LGB VC AVTN P-CG A-CG DH BLA 

17.0 ± 2.2 25.2 ± 2.6 30.2 ± 3.3 39.0 ± 2.9 52.5 ± 3.2 
(30) (49) (48) (48) (48) 

2 8.1 ± 2.2 20.2 ± 2.9 27.1 ± 3.5 22.5 ± 3.7 37.1 ± 3.5 
(40) (40) (47) (50) (45) 

3 20.1 ± 2.7 25.2 ± 2.1 24.0 ± 4.2 50.0 ± 4.5 
(30) (47) (46) (45) 

4 10.0 ± 1.9 16.0 ± 1.6 29.1 ± 3.3 31.1 ± 3.0 42.5 ± 3.6 
(40) (40) (45) (47) (47) 

5 7.2 ± 2.0 15.1 ± 2.6 24.0 ± 3.3 26.1 ± 3.6 
(30) (30) (45) (45) 

6 11.2 ± 2.3 17.0 ± 2.2 19.1 ± 2.4 27.1 ± 3.1 48.0 ± 3.5 
(35) (35) (47) (50) (50) 

7 8.0 ± 2.2 21.0 ± 3.0 23.0 ± 3.4 30.0 ± 3.3 43.0 ± 3.6 
(33) (33) (45) (48) (43) 

8 10.1 ± 2.8 19.2 ± 2.2 24.3 ± 2.4 23.1 ± 3.1 
(35) (35) (46) (50) 

A-CG, anterior cingulate gyrus; AVTN, anterior ventral thalamic nucleus; BLA, basolateral amygdala; DH, 
dorsal hippocampus; LGB, lateral geniculate body; P-CG, posterior cingulate gyrus; PGO, ponto-geniculo-
occipital activity; PRF, pontine reticular formation; VC, visual cortex. 

Number in parentheses is number of latencies. 

information through the thalamus (37,38) and through fibers from the pontine region, the 
locus coeruleus, the parabrachial nucleus, and the raphe nuclei (38-41). 

Because the latencies of the potentials recorded in the BLA, P-CG, A-CG, DR, and 
AVTN are much greater than those of the PGO potentials, the activation of these limbic 
and thalamic structures may be the result of the propagation of PGO activity starting in 
the pons or in the thalamus (LGB) in a multi synaptic manner. The temporal difference 
between these potentials and the phasic contractions of the LR eliminates the possibility 
that they are due to an electrotonic propagation of the muscle contraction. 

A possible propagation pathway may be through the fibers of the supraoptical decussation 
to the contralateral LGB (10). These fibers send collaterals to the supraoptical and tuberal 
regions of the hypothalamus, which are connected to the mammillary body, which in turn 
sends fibers to the AVTN through the mammillary-thalamic bundle. The AVTN sends fibers 
to the cingulate gyrus (38,42,43), which is in turn connected to the amygdaloid nuclei. 
Starting in the thalamus, the propagation of the PGO activity to the amygdala, the cingulate 
gyrus, and the hippocampus may take diverse pathways. In fact, Robson (29) recorded 
PGO-related potentials in several thalamic nuclei. 

Another possible mechanism of propagation may be the pontine-limbic system described 
by Nauta and Kuypers (44). The ascending fibers originate in the mesencephalic limbic 
area and run through two systems: the ascending component of the dorsal longitudinal 
fascicle of Shutz and the mammillary peduncle, which terminates in the hypothalamus. 
Some of these fibers reach the amygdala. From this circuit, impulses are sent to the 
intralaminary nuclei of the thalamus and then to the cingulate gyrus. Fuxe et al. (45) 
demonstrated the presence of catecholaminergic and indolaminergic fibers that connect the 
pontine nuclei (locus coeruleus and raphe nuclei) to the amygdaloid nuclei complex. Kuhar 
(46), Jones and Moore (47), Ottersen and Ben-Ari (48), and Cedarbaum and Aghajanian 
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(49) have demonstrated the existence of fibers that connect the BLA and the hippocampus 
to the pontine regions and the locus coeruleus. 

White and Jacobs (50) reported that the cells of the lateral amygdaloid nucleus exhibit 
bursts of increased discharge frequency during slow wave sleep and REM sleep. Never
theless, these authors did not find any relation between the amygdaloid bursts and the rapid 
eye movements of REM sleep. This may be due to their method of analyzing electrical 
activity or because the activity of the lateral, as opposed to the basal, amygdaloid nucleus 
does not reveal changes during rapid eye movements. Ravagnati et al. (51) reported that 
in man the unit activities of the hippocampus gyrus and of the amygdala show an increase 
in their discharge frequency during REM sleep, these frequencies being greater than those 
observed during slow wave sleep or wakefulness. Velluti and Monti (52) found that in the 
cat there was a direct relation between the activity of the reticularis pontis caudalis nucleus 
and that of the basal nucleus of the amygdala during the rapid eye movements of REM 
when they recorded the changes in P02 in those structures. The electrical stimulation of 
the temporal lobe amygdala, the cingulate gyrus, and the hippocampus elicits changes in 
some vegetative functions. Likewise, visual and auditory hallucinatory phenomena and 
mnestic phenomena, including those of the sexual type, have been elicited. These hallu
cinatory, mnestic, and vegetative phenomena have also been described during REM sleep 
(14,53-58). In addition, electrical stimulation of the amygdala, hippocampus, and cingulate 
gyrus of man evokes the sensation of dreaming (24,26,28,59,60). 

In the cat elaborated hallucinatory or oneiric behavior (orientation, predatory and ag
gressive attack, rage and flight) during atonia-suppressed REM sleep has been demonstrated 
(61-64). The ascending PGO activity impinging on the visual system has been involved in 
visual phenomena, but no explanation has been found for the other components of oneiric 
behavior. Penfield and Rasmussen (65) and Penfield and Jasper (66) showed that electrical 
stimulation of the primary visual cortex of conscious patients produces only gross light, 
shadows, outline, and color sensations. Responses to stimulation in the auditory area are 
also elementary (clicking, humming, etc.). No elaborated visual phenomena are produced 
from these areas at any time. Since the activation of visual areas produces only elementary 
sensations, the emotional and elaborated sensory phenomena of REM sleep could be better 
explained by the PGO propagation to the limbic areas evidenced in the present study. 
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