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We present a fast and model-free 2D and 3D single-molecule localization algorithm that allows more

than 3 × 106 localizations per second to be calculated on a standard multi-core central processing

unit with localization accuracies in line with the most accurate algorithms currently available. Our

algorithm converts the region of interest around a point spread function to two phase vectors (phasors)

by calculating the first Fourier coefficients in both the x- and y-direction. The angles of these phasors

are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the

two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction).

Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as

a first estimator for more time consuming iterative algorithms. ➞ 2017 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5005899

INTRODUCTION

Single-molecule localization microscopy (SMLM) has

become a widely used technique in the biomolecular sci-

ences since seminal contributions successfully demonstrated

a roughly ten-fold improvement in spatial resolution over con-

ventional fluorescence microscopy.1–3 The key concept of

SMLM is that the position of a single fluorescent emitter

can be determined with an accuracy exceeding the diffrac-

tion limit as long as the emission of different molecules is

sufficiently separated in time and space.4–6 To localize the

individual particles with sub-diffraction accuracy in two or

three dimensions, a number of approaches have been devel-

oped.7 Frequently employed localization algorithms involve

the use of two-dimensional Gaussian functions to fit the inten-

sity profile of individual emitters with high precision. These

approaches, however, tend to be slow due to their iterative

nature,8,9 albeit data analysis in real time using graphics pro-

cessing units (GPUs) has been successfully demonstrated.10

Faster localization algorithms using, for example, center of

mass (CoM) calculations11 or radial symmetry12,13 tend to

have lower localization accuracy or lack the ability to assess

3D information at >105 localisations per second.14 Although

a Fourier domain localization scheme for non-iterative 2D

localization has been demonstrated theoretically, that method

has not been widely adopted as it did not offer significant

a)Author to whom correspondence should be addressed: Johannes.Hohlbein@
wur.nl. Tel.: +31 317 482 635. Fax: +31 317 482 725.

improvements in either localization speed or accuracy com-

pared to iterative algorithms.15

Here, we introduce a simple and non-iterative localization

algorithm with minimal computation time and high local-

ization accuracy for both 2D and 3D SMLM. Our approach

is based on the phasor approach for spectral imaging.16 In

pSMLM-3D, we calculate the location and astigmatism of two-

dimensional point spread functions (PSFs) of emitters. The real

and imaginary parts of the first coefficients in the horizontal

and vertical direction of the discrete Fourier transformation

represent coordinates of the x- and y-phasor in a phasor plot.

The associated angles provide information on the x- and y-

position, while the ratio of their magnitudes is a measure for

astigmatism that can be used to determine the z-position of

the emitter after introducing a cylindrical lens in the detec-

tion pathway of the microscope.17,18 Our analysis of simulated

PSFs with different photon counts indicates that phasor-based

localization achieves localization rates in the MHz range, using

only the central processing unit (CPU) rather than requir-

ing a GPU implementation, with similar localization accu-

racy as Gaussian-based iterative methods. Next to this, we

localized microtubules in dendritic cells in three dimensions

obtaining similar results with pSMLM-3D as with an itera-

tive Gaussian-based algorithm. Finally, we implemented our

algorithm both as a stand-alone MATLAB script and into

the freely available ImageJ19 plug-in ThunderSTORM20 to

which we further added the possibility to calculate inten-

sity and background levels of emitters based on aperture

photometry.21
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METHODS

Data analysis in SMLM consists of the following steps:

Identifying potential molecules and selecting regions of inter-

ests (ROIs) around their approximate localization, sub-pixel

localization within the ROI, and visualization of results

[Fig. 1(a)]. Here, we will only focus on the sub-pixel local-

ization step. We simulated the intensity pattern of a point

source emitter using a full vectorial model of the PSF as

described previously22 and depict it pixelated and with shot

noise, mimicking a typical camera acquisition under exper-

imental conditions [Fig. 1(b)]. As our algorithm is able to

utilize astigmatism commonly introduced by placing a cylin-

drical lens in the emission path for localization in three

dimensions,17,18 we simulated the full-width at half-maximum

(FWHM) of the PSF in the y-direction to be larger than the

in x-direction. We then calculated the first Fourier coeffi-

cients in the x- and y-direction by isolating them from the full

two-dimensional discrete Fourier transformation of the ROI

(see also the supplementary material, Sec. S1). Although

the coefficients can be calculated without computing the

complete Fourier transformation, this did not improve the

localization speed in the MATLAB environment. The real and

imaginary parts of each first Fourier coefficient are the coor-

dinates of a phasor, which are both fully described by their

phase angles (Θx and Θy) and magnitudes (rx and ry), repre-

senting the relative position of the emitter in real space and

values for the PSF ellipticity, respectively [Fig. 1(c)]. To aid

the reader, we calculated the inverse Fourier transformation

using only the isolated first Fourier coefficients to show the

data that are used for the calculation of the emitter’s posi-

tion and relative widths in real-space [Fig. 1(d)]. We also

show the localized position as determined from the phasor plot

[Fig. 1(d), green cross] and the ground-truth position [Fig. 1(d),

pink cross]. The two elements represented in the phasor plot

[Fig. 1(c)] have different distances to the origin. These magni-

tudes are inversely proportional to the FWHM of the original

PSF: ry < rx, leading to FWHMy > FWHMx, in agreement

with the simulated data. The ratio of the PSF width in x-

and y-direction can be used to calculate unknown z-positions

of emitters in sample data after recording of calibration

data.

FIG. 1. Illustration of sub-pixel localization using the phasor approach. (a) Standard workflow in single-molecule localization microscopy: (1) Acquisition of

raw image data; (2) image filtering; (3) approximate localization of emitters: obtaining ROIs; (4) sub-pixel localization. (b) Strongly pixelated image (7 × 7 pixel)

including noise representing standard conditions using camera-based detection of a simulated ellipsoidal point spread function with the ground-truth localization

indicated by a pink cross. (c) Phasor plot representation of the two first Fourier coefficients of the image data. By plotting their real versus the imaginary part,

the angles Θx and Θy represent the position (phase) of the molecule in real image space as the markings on the straight circle in the Fourier domain indicate the

normalized 1D position of the true center. Furthermore, the magnitudes rx and ry are reciprocally related to the PSF width in x and y in real-space, respectively.

Dotted lines are added for visual guidance. (d) Inverse Fourier transformation of the first two Fourier coefficients with the cumulated discrete intensity profile

plotted in the x- and y-direction and fitted with a sinusoid for visual guidance. From the angles Θx and Θy obtained from (c) and plotted in (d), we obtain

the position of the molecule in the image domain using y1 and x1 marked by a green cross, with the pink cross from the ground-truth position shown for

comparison.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-013898
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RESULTS

To assess the performance of the phasor algorithm, we

analyzed simulated data with a background level of 10 pho-

tons/pixels and a varying degree of total photon counts from

the emitter ranging from 80 to 50 000 photons using images

of 15 × 15 pixels. We compared the localization speed and

accuracy of pSMLM-3D with other well established localiza-

tion algorithms (for details see the supplementary material,

Sec. S2): Gaussian-maximum likelihood estimation (Gauss-

MLE),10 Gaussian-least squares fit (Gauss-LS),23 radial sym-

metry12 (RS), and centroid11,23 (Fig. 2). We further included

the Cramer-Rao Lower Bound (CRLB) to indicate the theo-

retically achievable resolution where relevant.24

In terms of localization speed, pSMLM-3D achieved more

than 3 × 106 localizations per second (3 MHz) when using

ROIs with 7 × 7 pixels [Fig. 2(a)]. This localization rate is at

least an order of magnitude faster than our adapted implemen-

tations of other CPU-based algorithms and even significantly

faster than GPU-enabled Gauss-MLE. Moreover, we found

that the localization speed of GPU-based algorithms depends

on the amount of data transferred to the GPU: Whereas a stack

of 5000 7 × 7 pixel images was analyzed at a rate of 30 kHz,

a stack of 500 000 images (representing 49 MB of trans-

ferred data to the GPU) could be analyzed at 600 kHz. For

CPU-based algorithms, this dependency is absent, allowing

fast analysis of small PSF-containing image stacks, indica-

tive that CPU-based methods are well suited for real-time

analysis.

To assess the localization accuracy of the different local-

ization algorithms, we cropped the area around each simulated

PSF (15× 15 pixels) to create ROIs of 7× 7 pixels (in line with

the “rule of thumb” fitting region size of 2 · 3σPSF + 1)10 for

analysis by all methods, except for phasor where we used ROIs

of either 5 × 5 (for simulated photon counts <103 photons) or

7 × 7 (≥103 photons). We note that determining the optimal

ROI size is often challenging for all localization algorithms:

albeit working with larger ROIs can potentially increase the

localization accuracy as more information from the PSF is

extracted, larger contributions from background and near-by

other emitters can have a diametric effect. Moreover, these

effects depend on the photon count of the PSF and the type

of the localization algorithm used for analysis (see also the

supplementary material, Sec. S3).

The comparison showed that for PSFs consisting of 80

photon counts, the localization accuracy is around 0.3 unit pix-

els for Gauss-MLE, Gauss-LS, RS, and phasor and reduces to

0.005 unit pixels at 50 000 photon counts in line with the theo-

retically expected improvement of the localization accuracy

being proportional to the square root of the photon num-

ber25 [Fig. 2(b), Fig. S10A in Sec. S8 of the supplementary

material]. Between these outer limits, pSMLM-3D shows on

average a small 3.7% decrease in accuracy compared to Gauss-

MLE. We further note that the computationally inexpensive

centroid-based localization algorithm has a substantially worse

localization accuracy, in line with earlier results.12 We repeated

all simulations at reduced background levels of 1 or 5 photons

per pixel showing that the localization accuracies of all meth-

ods improve with lower background levels (supplementary

material, Sec. S4).

So far, we limited our analysis to localizations in two

dimensions. As our algorithm allows using the ratio of the rel-

ative widths of the PSF in the x- and y-direction introduced

by astigmatism, the position of an emitter in three dimen-

sions can be determined after performing a calibration routine

in which photostable fluorescent emitters (e.g., latex beads)

are imaged at different focus positions. Compared to non-

astigmatic PSFs, we used larger ROIs (11 × 11 pixels for

phasor, and 13 × 13 pixels for other methods, see Fig. S4 in

Sec. S5 of the supplementary material for details) to account

for the larger PSF footprint. Comparison of phasor with

other algorithms on simulated astigmatic PSFs showed that

FIG. 2. Comparison of computation speed and localization accuracy of phasor with other localization algorithms (Gaussian-MLE,10 Gaussian-LS,23 radial

symmetry,12 and centroid11,23). (a) Speed of localization after loading the raw data in the memory in MATLAB. 7 × 7 pixel ROIs are used; the amount of PSFs

at once supplied to the method is varied. (b) Accuracy comparison of phasor localization with other localization algorithms, comparing simulated PSFs with

different total photon counts on a 10 photon/pixel background. Accuracy in the horizontal direction of all methods together with the Cramer-Rao lower bound24

is shown. ROI size is 5 × 5 (<103 photons) or 7 × 7 (>103 photons) pixels for the phasor algorithm and 7 × 7 pixels for all other algorithms.
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FIG. 3. Analysis of a superresolved microtubule network of fixed HELA cells. (a) Visualization of superresolution data after ThunderSTORM analysis using

phasor (top, 7 × 7 pixel ROI) or Gauss-MLE (bottom, 11 × 11 pixel ROI) as a sub-pixel localization algorithm. Axial position is color-coded between ☞350 nm

and +350 nm. Note that this does not encompass all localized fluorophores. (b) Lateral resolving power of phasor (red bars) and Gaussian-MLE (blue line).

Shown here are three microtubules spaced below the diffraction limit taken from panel (b) in (a). (c) Axial resolving power of phasor (top) and Gaussian-MLE

(bottom). Each subpanel shows localized fluorophores in a 100 nm window. (d) Localization speed of complete analysis (image filtering, approximate localization,

and sub-pixel localization) using ThunderSTORM without sub-pixel localization (top), ThunderSTORM-Phasor (middle), and ThunderSTORM-Gauss-MLE

(bottom). Error bars represent standard deviations of at least three repeats.

phasor remained the fastest tested algorithm whilst provid-

ing a lateral localization accuracy close to that of Gauss-MLE

and better than Gauss-LS and Centroid (Fig. S5 in Sec. S5

of the supplementary material, Fig. S10B in Sec. S8 of the

supplementary material). Although RS is capable of determin-

ing the ellipticity of PSFs,14 localisation rates did not exceed

105 Hz and the localisation accuracy did not match that of

Gauss-MLE.

With Gaussian-based methods, the PSF FWHM can be

elucidated directly from the Gaussian fit; in our algorithm,

the phasor magnitudes depend not only on the PSF FWHM

in the respective directions but also on the background. This

dependency can introduce a bias if the background of the cal-

ibration series differs from that of the actual data. However,

the ratio of the phasor magnitude in x versus in y remained

unaltered (supplementary material, Sec. S6), indicating that

calibration of the ratio between the magnitudes versus z-depth

should be performed. We calculated the axial localization

accuracies using phasor and Gauss-MLE both of which pro-

vide similar accuracies decreasing from around 200 nm at

very low photon counts (<500 per PSF) to under 20 nm at

high photon counts (>10 000 per PSF) (Sec. S7 of the supple-

mentary material, Fig. S10C in Sec. S8 of the supplementary

material).

To demonstrate the effectiveness of pSMLM-3D, we per-

formed a standard 3D-STORM measurement of fixed imma-

ture dendritic cells with fluorescently labeled microtubules. In

total, we recorded 50 000 frames (256 × 256 pixels), resulting

in 6.1 GB of raw data containing roughly 2.7 × 106 localized

molecules. We analyzed these data with the ThunderSTORM20

plugin for ImageJ19 both with phasor and Gaussian-MLE

[Fig. 3(a)]. The limited signal-to-noise ratio required chang-

ing the size of the ROIs for phasor and Gauss-MLE to 7 × 7

and 11 × 11 pixels, respectively. The lateral [Fig. 3(b)] and

axial [Fig. 3(c)] resolving power of phasor is in line with that

of Gauss-MLE. The complete analysis time using multi-core

computing, including the filtering of the image to find poten-

tial single molecules and excluding the loading of the data in

the computer’s memory, was over 5 h for Gauss-MLE, while

it took only around 90 s for pSMLM-3D. Entirely omitting

sub-pixel localization shortened the computation time by only

∼5 s, which means that around 95% of the 90 s computation

time is spend on image filtering and obtaining the approximate

localization. Complete SMLM analysis with phasor under

these conditions is at over 500 frames per second, indica-

tive that it is fast enough for real-time analysis applications

[Fig. 3(d)].

DISCUSSION AND CONCLUSION

The presented pSMLM-3D combines excellent localiza-

tion accuracies in three dimensions with exceptional localiza-

tion speed achievable on standard PCs. In-depth analysis of

synthetic point spread functions with different photon counts

and background levels indicated that pSMLM-3D achieves

a localization accuracy matching that of Gaussian-based

maximum likelihood estimation even at low signal-to-noise

ratios. Moreover, we demonstrated localization rates above

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-013898
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3 MHz, which are at least one order of magnitude higher than

with other CPU-based algorithms. In fact, even compared to

GPU implementations of Gaussian-based localization algo-

rithms,26 our algorithm is faster, thus significantly reducing

the computational barrier and costs to analyze experimental

SMLM data. Porting the phasor approach to a GPU envi-

ronment is likely to achieve only marginal improvements in

speed as the bandwidth of transferring raw data is becom-

ing a limiting factor. However, implementations using field

programmable gate arrays (FPGAs) directly connected to the

camera chip are feasible, with real-time SMLM analysis with

Gaussian methods shown before.27

Subpixel localization rates in the MHz range satisfy even

the most demanding applications as frame rates of cameras

suitable for single-molecule detection are currently not above

100 Hz (full frame), indicating that phasor localization could

be used in real-time environments. Moreover, some iterative

localization algorithms currently use the centroid-based local-

ization as a first estimation.10 We believe that in that setting,

the phasor approach can replace the initial step as it shows a

speed as well as an accuracy improvement. We note that all

necessary functions for performing the phasor algorithm are

trivial, which allows for an easy upgrade of existing SMLM

software packages. In computational environments in which a

fast Fourier transformation function is not inherently present, a

minimal algorithm to compute only the first Fourier coefficient

can be written to minimize computation times, as we did for

our JAVA implementation of phasor (supplementary material,

Sec. S9).

Compared to MLE, subpixel localization is possible in

smaller areas around each emitter with good localization accu-

racy, allowing us to use effectively a higher concentration

of fluorescently active emitters. This is especially apparent

with astigmatism, where an 11 × 11 pixel size in the phasor

approach gives similar localization accuracy as 13 × 13 pixel

size in the Gauss-MLE approach. This directly results in a

possible increase of 40% in fluorophore density with the same

chance of having partial emitter overlap. However, we note that

our current phasor implementation does not provide means of

resolving molecules whose emission partially overlap.

Like most localization algorithms currently available,

pSMLM-3D assumes well-behaved PSFs with symmetrical

emission profiles. Therefore, the algorithm depends on emit-

ters having sufficient rotational mobility as emission profiles

deviating from symmetrical PSFs can result in significant

localization errors as has been discussed.28–31

In summary, we believe that pSMLM-3D holds great

promise to replace or complement commonly used localization

algorithms, as the combination of high localization speeds and

high localization accuracy has not been shown to this extent

before.

MATERIAL AND METHODS

PSF simulations

PSF simulations have been performed as described ear-

lier22 with NA = 1.25, emission light at 500 nm, 100 nm/pixel

camera acquisition, and image sizes set to 15 × 15 pix-

els. The centre of the PSF is within ±1 pixel of the centre

of the image, and in the case of simulated astigmatic PSFs,

the astigmatism has a FWHM ratio between 0.33 and 3.0.

We used a full vectorial model of the PSF needed to

describe the high NA case typically used in fluorescent super-

resolution imaging. We accounted for the fact that in fluores-

cent super-resolution imaging, the emitter can rotate freely

during the excited state lifetime (∼ns), so for many excitation-

emission cycles, an average over randomly distributed emis-

sion dipole orientations will be observed in one camera

frame (∼ms).

Computer and software specifications

All computational work was performed on a 64-bit Win-

dows 7 computer with an Intel Core i7 6800K CPU @

3.40 GHz (6 cores, 12 threads), NVIDIA GTX1060 GPU

(1280 CUDA cores, 8 GHz memory speed, 6 GB GDDR5

frame buffer, driver version 376.51), and 64 GB of DDR4

RAM on a ASUSTeK X99-E WS motherboard.

We used two software packages in this work: MATLAB

(MathWorks, UK) version 2016b and FIJI.32 FIJI is based on

ImageJ19 version 1.51n, using JAVA version 1.8.0 66.

Software scripts used

Unless specified otherwise, we used variants of the pha-

sor script implemented in MATLAB (supplementary mate-

rial, Sec. S9). JAVA-implementation of the phasor approach

is based around a minimal discrete Fourier transformation

(supplementary material, Sec. S10) and includes a aperture

photometry-based method to estimate PSF intensity and back-

ground (also see the supplementary material, Sec. S11).21

Gauss-MLE, Gauss-RS, radial symmetry, center-of-mass, and

Cremer-Rao lower bound algorithms were adapted from ear-

lier use.10,12 For Gauss-MLE, 15 iterations were used;10

Gauss-LS had 400 maximum iterations, with a tolerance

of 10☞6.

Chemicals

All chemicals were purchased from Sigma-Aldrich and

used without further purification, unless specified differently.

Labeling of in vivo microtubules

Microtubules were fluorescently labeled via a double anti-

body labeling; primary antibody was a mouse-anti-βtubulin,

clone E7, isotype mouse IgG1; the secondary antibody was

labeled with Alexa 647 (goat anti-mouse IgG (H+L) Super-

clonal secondary antibody, Alexa Fluor 647, ThermoFischer).

HELA cells cultured on glass coverslips were fixed for

5 min with methanol at ☞20 ◦C, followed by 25 min fixation

by 4% paraformaldehyde (PFA) in PBS. Next, a blocking step

to prevent unspecific adsorption was performed by adding 3%

bovine serum albumin in PBS pH 7.2 + 20 mM glycine (MP

Biomedicals) and incubated for 1 h. Primary antibody was

added and incubated for 1 h. After washing with PBS, the

secondary antibody was added and incubated for 45 min. After

a final washing step, the cells were post-fixed with 2% PFA in

PBS for 15 min at RT and stored in PBS with 0.05% NaN3,

with the final cells being stable for imaging for several days

in PBS.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-013898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-013898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-013898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-013898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-013898


123311-6 Martens et al. J. Chem. Phys. 148, 123311 (2018)

During imaging, a Gloxy buffer33 containing 35 mM

β-mercaptoethanol was added to boost blinking of the fluo-

rophores. This blinking buffer was freshly prepared on the day

of imaging.

Single-molecule microscopy

We used a home-built microscope for imaging similar to

a microscope described in more detail elsewhere.34 Briefly,

our microscope is equipped with a laser engine (Omicron,

Germany), a 100× oil immersion SR/HP objective with NA

= 1.49 (Nikon, Japan), and a Zyla 4.2 plus sCMOS cam-

era for image acquisition (Andor, UK). 2 × 2 binning was

used during acquisition, which resulted in a pixel size of 128

× 128 nm. A cylindrical lens with 1000 mm focal distance was

placed in the emission path at 51 mm from the camera chip to

enable astigmatic measurements; alignment of the lens’ opti-

cal axis was performed to ensure PSF elongation in the x- or

y-direction.

Microtubule imaging and analysis

Fully labeled cells with added blinking buffer were

imaged for 50.000 frames (256 × 256 pixels) at 10 ms frame

time. A 642 nm laser at 70 mW in Hilo was used for imag-

ing of the fluorophores, a 405 nm laser at increasing power

throughout the measurement was used to activate fluorophores.

Analysis was performed via the ThunderSTORM20 plugin for

ImageJ,19 with phasor added as sub-pixel localization option

(supplementary material, Sec. S10). ThunderSTORM param-

eters for image filtering and approximate localization were

kept constant for phasor and Gauss-MLE localization: a β-

spline wavelet filter with order 3 and scale 3 was used, and

approximate localization was done via an 8-neighbourhood

connected local maximum, with a peak intensity threshold

equal to the standard deviation of F1 of the wavelet filter.

These settings are the default ThunderSTORM settings; the

only difference was a β-spline wavelet filter scale of 2 rather

than 3.

Sub-pixel localization was performed with either ellip-

tical Gauss-MLE (11 × 11 pixels, 1.6 pixels initial sigma)

or phasor (7 × 7 pixels). Localizations for pSMLM-3D and

Gauss-MLE in the acquired datasets were filtered as follows:

intensity/background >2; background standard deviation <

offset/2 (note that these are raw sCMOS counts rather than

photon numbers). Calibration files were recorded under sim-

ilar circumstances with immobilized fluorescent latex beads

(560 nm emission, 50 nm diameter) and moving the piezo z-

stage from ☞1000 nm to +1000 nm. These calibration files

were used during the sub-pixel localization to calculate the

z-position of the fluorophores.

Visualization of the superresolution data was done via

the average shifted histogram options, with a magnification

of 3 [Figs. 3(a) and 3(c)] or 5 [Fig. 3(b)]. No lateral or axial

shifts were added. 3D was enabled and visualized colored, after

which a composite image was formed in FIJI [Fig. 3(a)].

SUPPLEMENTARY MATERIAL

See supplementary material for additional information

and figures. For the latest implementation of pSMLM-3D into

ThunderSTORM, please see https://github.com/kjamartens/

thunderstorm/tree/phasor-intensity-1 and look for the folder

“Compiled plugin.”
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