

Phastlane: A Rapid Transit Optical Routing Network

Mark Cianchetti, Joseph Kerekes, and David Albonesi Computer Systems Laboratory Cornell University

The Interconnect Bottleneck

O/F

Translation

- Future processors: tens to hundreds of cores
- Dire need for fast and power efficient on-chip interconnect
- Nanophotonics

11101010101001110101010001110

- Ultra-fast signal propagation
- High bandwidth density

Limitations of Nanophotonics

- Lack of fundamental building blocks
 - Logic gates
 - Memory structures
- Single routing layer
 - Power loss of waveguide crossings

Traditional Approach To Exploiting Photonics

Respecting the Limitations...

Cornell Ring Architecture

Columbia Architecture

Corona Architecture

FireFly Architecture

- Previous proposals largely bus-based
- Direct photonic links between source and destination
- Data blasted in a single optical transmission

Overview of Previous Work

Feature	Cornell Ring	Corona	Columbia	Phastlane	
Network Topology	Ring-bus	Snake XBAR	Torus	Mesh	
Network Operation	Snoopy Bus	Fully Connected XBAR	Electrical Setup	Packet Switched	
Shared Resources	None	Destination Bus	Router Channels	Router Channels	
Shared Resource Arb.	WDM	Token Per Hop		Per Hop	
Unit of Data Transfer	Cache Line	Cache Line	>> Cache Line	Cache Line	

Phastlane Contributions

- Novel nanophotonic router architecture
- Hybrid optical/electrical packet-switched, mesh network

Phastlane Architecture

- Minimally impede flow of light from source to destination
 - Simplified routing, arbitration
- Dual die configuration

Optical Node Operation

Electrical Node Operation

Electrical Node

- Blocked packets are buffered locally
 - Per port buffers, single processor buffer
- Output multiplexers connect to output port optical transmitters

Simplified Packet Routing

- Packets are dimension-order, source routed
 - Portion of packet holds pre-computed routing bits
- Per hop control bits enable near-instant switch traversal

Per Hop Control Bits

Hop Number	R6	R5	R4	R3	R2	R1
Direction	10000	01000	01000	01000	00100	01000
Encoding	<i>Local</i>	Straight	Straight	Straight	<i>Left</i>	Straight

- Per hop control groups set switch resonators
 - Left, right, straight, local, broadcast
- Frequency translation
 - Enables hop oblivious routing

Per Hop Control Bits Continued

- Control waveguide split into C0 and C1
 - WDM limitations
- Frequency and physical translation
 - Enables hop oblivious routing

Competing Packets: Resolution

- Packet collisions avoided by packet blocking
- Collision resolution performed "on the fly"

High-Speed Drop Network

- Drop path gradually formed as packet passes through network
- Packet dropped if downstream buffer full
- Drop signal travels opposite data packet

Router Design Space Exploration

Evaluation Methodology

Routing Function	Dimension-Order
Number of VCs per Port	10
Number of Entries per VC	1
Wait for Tail Credit	YES
VC_Allocator	ISLIP
SW_Allocator	ISLIP
Total Router Delay	2 or 3 cycles

Baseline Configuration

- 64 node, 8x8 mesh network topology
- Low latency, high bandwidth electrical network baseline
 - Multi-port receive for destination packets
- Packet size: 80 bytes, single flit
- Synthetic and Splash benchmarks

Synthetic Benchmark Results

Splash Performance Analysis

2X speedup across all benchmarks

Splash Power Analysis

■ 80% reduction in power across all benchmarks

Conclusions

- Novel nanophotonic router architecture
- Packet-switched, hybrid optical/electrical mesh network
- Up to 8X performance improvement for synthetic workloads
- Up to 4X performance improvement, 80% power reduction, for Splash
- Future work
 - Lower power broadcast scheme
 - Improved allocation and flow control