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Abstract In 1995, HyTech broke new ground as a poten-
tially powerful tool for verifying hybrid systems. But due to
practical and systematic limitations it is only applicable to
relatively simple systems. We address the main problems of
HyTech with PHAVer, a new tool for the exact verification of
safety properties of hybrid systems with piecewise constant
bounds on the derivatives, so-called linear hybrid automata.
Affine dynamics are handled by on-the-fly overapproxima-
tion and partitioning of the state space based on user-provided
constraints and the dynamics of the system. PHAVer features
exact arithmetic in a robust implementation that, based on the
Parma Polyhedra Library, supports arbitrarily large numbers.
To force termination and manage the complexity of the poly-
hedral computations, we propose methods to conservatively
limit the number of bits and constraints of polyhedra. Experi-
mental results for a navigation benchmark and a tunnel diode
circuit demonstrate the effectiveness of the approach.

Keywords Hybrid systems · Verification · Tools ·

Polyhedra

1 Introduction

Systems with interacting discrete as well as continuous
dynamics, so-called hybrid systems, are notoriously
complex to analyze. Their algorithmic verification remains a
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challenging problem, from a theoretical point of view
because of decidability problems, and from the implemen-
tation side because the slightest numerical errors can void
the results. We present PHAVer (Polyhedral Hybrid Autom-
aton Verifier), a verification tool that aims at overcoming the
limitations of predecessors such as as HyTech [1]. Although
PHAVer uses in principle the same algorithm as HyTech,
we not merely present a new implementation of known algo-
rithms, but propose heuristics to overcome inherent and
fundamental problems of reachability computations, namely
excessive complexity, lack of termination and loss of accu-
racy due to overapproximations. As a result, we are able to
analyze systems previously beyond the reach of verification
tools.

In this paper we consider the reachability problem, which
consists of computing the set of reachable states of a system
or a conservative overapproximation thereof. While reach-
ability is a relatively simple property, more complex safety or
bounded liveness properties can be formulated as reachabil-
ity problems by adding monitoring components to the sys-
tem [2]. Computations in PHAVer are based on linear hybrid
automata (LHA) [3], which are defined by linear predicates
and piecewise constant, convex, bounds on the derivatives.
They stand out from other classes of hybrid automata because
one knows how to compute the successor states of discrete
and timed transitions exactly [4]. PHAVer is based on such a
reachability algorithm for LHA, but can also compute con-
servative overapproximations for hybrid automata with more
complex dynamics thanks to an on-the-fly implementation of
phase-portrait approximation [5].

Our reachability computations face three fundamental
problems: excessive complexity, slow convergence, and
insufficient accuracy when overapproximations are used. In
addition to the state explosion problem, well-known from the
domain of discrete systems, one has to deal with expensive
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polyhedral computations whose complexity increases, often
exponentially, not only with the number of variables in the
system but also in each iteration of the analysis. Inevitably,
one has to resort to overapproximations for all but the most
simple problems. Termination is not guaranteed in general,
but it may be induced by overapproximation such as limiting
the number of bits per constraint, which we will introduce
later. However, convergence might be prohibitively slow, and
overapproximations may have a positive or negative effect
that is hard to predict. Overapproximations forcibly decrease
the accuracy of the results, so the obtained set of reachable
states might contain forbidden states that are not actually
reachable by the system.

In applications, complexity and convergence problems
manifest themselves in terms of computation time, memory
consumption and degradation of accuracy, and the challenge
is to find an acceptable trade-off between them. We propose
the following heuristic to enable such a trade-off: The com-
plexity of polyhedral computations is reduced by imposing
a limit on the number of bits and constraints in polyhedral
representations, overapproximating them in a manner that
is guaranteed to be conservative. These overapproximations
immediately imply termination, since only a finite number of
constraints exist for a given limit. However, they may lead to
severe convergence problems, which we attempt to counter
by applying them only above a certain threshold. Experimen-
tal results indicate that the proposed overapproximations are
sufficiently accurate in practice.

In addition to the reachability algorithm, PHAVer includes
a separate engine for computing simulation relations between
hybrid automata. It can be used to verify equivalence or
refinement between different models, and in assume-guaran-
tee-style proofs. The reader is referred to [6,7] for a descrip-
tion of the approach and some experimental results. Using
PHAVer, we successfully verified analog and mixed-signal
circuits that were previously beyond the reach of verification
tools, see [8,9]. PHAVer has been used by others to verify
safety properties of hybrid Chi specifications [10], and to
verify a type of stability in hybrid systems [11]. It was also
used in abstraction-refinement schemes based on rectangular
automata [12] and based on LHA [9]. A performance com-
parison between PHAVer and HSOLVER in [13] turned out
in PHAVer’s favor.

Hybrid automata. Our hybrid automata are based on the
classic model in [14]. We added a distinction between input
and output variables, comparability and compatability defi-
nitions from [15]. In addition, we adopted from [3] that the
set of variables may be different for each automaton in a
composition, and there is a set of initial states.

From HyTech to PHAVer. In 1995, Henzinger et al.
presented the tool HyTech [1]. It features a powerful input

language permitting to specify fixpoint algorithms based on
post- and pre-operators, but suffers from a major flaw: It
uses exact arithmetic with a data structure of limited digits,
which can quickly lead to overflow errors. It was successfully
used to analyze a number of relatively small examples [16–
21], but the overflow problem prohibits any application to
more complex systems. Nonetheless, the numerous valuable
experiences with HyTech have spawned important sugges-
tions for improvement [17], most of which we incorporated
in PHAVer. The basic operations in PHAVer, i.e., discrete
and timed post-operators based on polyhedral computations,
are identical to those in HyTech, and use exact arithmetic
with unlimited precision. Our implementation is immune
to overflow errors thanks to its use of the Parma Polyhedra
Library (PPL) [22] and the GNU Multiple Precision Arith-
metic Library (GMP) [23], which can handle computations
with hundreds of thousands of bits on a standard PC. The first
HyTech prototype was implemented in Mathematica and did
not have any numerical restrictions, but it was also 50–1000
times slower than the later version written in C++ [24].

Overapproximating dynamics. We use an on-the-fly
overapproximation that is a variation of the phase-portrait
approximation from [5]. It differs in that the invariants of
the partitioned locations do not have an open cover because
we split along hyperplanes and the invariants only over-
lap on the plane, which is valid for affine dynamics [12].
Similar variations of partitioning the state space are widely
used, e.g., in [25,26], although we’re not aware of any work
using the angular spread of the derivatives. Earlier attempts
to improve over HyTech include the use of interval arith-
metic [27], which can quickly lead to prohibitively large o-
verapproximations. Recently, interval arithmetic was com-
bined with abstraction refinement in a tool called HSOLV-
ER, which can deal conservatively with nonlinear dynamics
[28]. For a survey of verification tools for hybrid automata,
see [29].

Managing complexity. In the context of timed systems,
zones are rounded in [30] by dropping constraints or round-
ing to a constant lower bound. An algorithm specialized on
rectangular automata was proposed in [31] and implemented
based on the HyTech engine. It is able to use a limited num-
ber of bits through component-wise conservative rounding
of the coefficients. However, the rectangular overapproxima-
tion can become too inaccurate. An improvement was pro-
posed in [32] by allowing arbitrary convex polyhedra. It also
incorporates a strategy to reduce the number of bits by com-
ponent-wise overapproximation, but is based on a vertice
representation of polyhedra and its complexity is exponential
in the number of variables. For the simplification of polyhe-
dra it has been suggested to use bounding boxes or oriented
rectangular hulls [33]. Instead, we propose to simply drop
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the least significant of the constraints, as this seems a good
compromise in terms of accuracy and speed.

In the next section we introduce the hybrid automaton
model used in PHAVer. In Sect. 3 we present the reachabil-
ity analysis algorithm and its on-the-fly overapproximation
of affine dynamics. Experimental results are provided for a
navigation benchmark. Methods to manage the complexity
of polyhedra by limiting the bits and constraints are proposed
in Sect. 4, and illustrated with a tunnel diode circuit. We draw
some conclusions in Sect. 5.

2 Hybrid automata with controlled variables

Hybrid automata [34] are widely recognized as an intuitive
and expressive modeling paradigm for hybrid systems. Out
of several different definitions present in literature we choose
a slight variation of the hybrid automata in [14] because they
admit compositional reasoning. To reason about equivalence
between automata in a practical manner, we enrich them with
a distinction between input and output variables, as in [15],
although we forego such a distinction between synchroniza-
tion labels for the sake of simplicity.

Preliminaries. Given a set X = {x1, . . . , xn} of vari-
ables, a valuation is a function v : X → R. We use Ẋ to
denote the set {ẋ1, . . . , ẋn} of dotted variables, and X ′ to
denote the set {x ′

1, . . . , x ′
n} of primed variables. Let V (X)

denote the set of valuations over X. The projection of v is
v↓X̄= {x → v(x)|x ∈ X̄}. The embedding of a set U ⊆

V (X) into variables X̄ ⊇ X is U |X̄ = {v ∈ V (X̄)|v↓X∈ U }.
When a valuation u over X and a valuation v over X̄ agree,
i.e., u↓X∩X̄= v↓X∩X̄ , we use u ⊔v to denote the valuation w

defined by w↓X= u and w↓X̄= v. Arithmetic operations on
valuations are defined in the straightforward way. An activity

over X is a function f : R
≥0 → V (X). Let Acts(X) denote

the set of activities over X. The derivative ḟ of an activity f

is an activity over Ẋ , defined analogously to the derivative
in R

n . The extension of operators from valuations to activ-
ities is done pointwise. Let constX (Y ) = {(v, v′)|v, v′ ∈

V (X), v↓Y = v′↓Y }.

Definition 1 A hybrid automaton H =(Loc, (X,O,C), Lab,

Edg, Flow, Inv, Init) consists of the following:

• A set X = {x1, . . . , xn} of continuous, real-valued vari-

ables. They are divided into controlled variables C and
input variables I = X \ C , and a subset O of C is desig-
nated as the output variables.

• A set Loc of locations. A state is a pair (l, v) of a location
l and a valuation v, which attributes a value to each of the
variables.

• A set Lab of synchronization labels including the stutter

label τ .
• A set Edg of transitions that describe instantaneous

changes of location, in the course of which variables may
change their values. Each transition (l, a, µ, l ′) ∈ Edg

has a source location l, a target location l ′. It is associated
with a synchronization label a and with a jump relation

µ that relates values of variables before the transition
to values they take after the transition. The projection
of the jump relation to the variables before the transi-
tion describes for which variable values the transition is
enabled; this is often referred to as a guard. Each loca-
tion l has a self-loop stutter transition (l, τ, constX (C), l)

that lets the input variables change arbitrarily within the
invariant, while the controlled variables remain constant.

• A mapping Flow attributes to each location a set of val-
uations over the variables and their derivatives, which
determines how variables can change over time.

• A set of states Inv called invariant. All behavior is con-
strained to the invariant at all times. In this paper we
consider only invariants that are convex in each location.

• A set Ini of initial states, contained in the invariants, from
which all behavior of the automaton originates.

A linear constraint over a set of variables X has the form

∑

i

αi xi + β ⊲⊳ 0, (1)

where αi and β are integer constants and ⊲⊳ is a sign ⊲⊳ is
either < or ≤. A convex linear predicate is a conjunction
of linear constraints. We write Ẋ = {ẋ1, . . . , ẋn} to denote
derivatives, and using X ′ = {x ′

1, . . . , x ′
n} describe a relation

R ∈ X × X with a predicate over X ∪ X ′. In a Linear Hybrid

Automaton (LHA) [3], invariants and initial states are given
by linear predicates over X , flow predicates by convex linear
predicates over Ẋ , and jump relations by linear predicates
over X ∪ X ′. PHAVer can handle affine hybrid automata,
which are defined like LHA except that flows may be given
by linear constraints over X ∪ Ẋ . The use of inequalities
in flow predicates allows us to model dynamics of the form
ẋ = Ax +b with the elements of A and b given by intervals.1

Note that LHA can model discrete-time dynamics of the form
xk+1 = Axk +b by updating the variables in transitions with
a jump relation x ′

i =
∑

j ai j x j + bi .
Complex systems can be constructed in a modular fashion

using parallel composition. Our hybrid automata are compo-

sitional with respect to reachability properties [7,36], which
means that a state that is not reachable in a given automaton

1 In the literature, affine hybrid automata are sometimes also referred to
as a linear hybrid automata, e.g., in [35], which may lead to confusion
with LHA.
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(a) (b)

Fig. 1 Compositional model of timing based mutual-exclusion protocol in [4]

H will also not be reachable in a composition of H with
any other automaton. If a system is modeled as collection of
hybrid automata, then any non-reachability property of some
subset of these automata will also hold for the entire collec-
tion. We use the standard definition of parallel composition:

Definition 2 (Parallel composition) [14] Hybrid automata
H1, H2 are compatible if C1 ∩ C2 = ∅, X1 ∩ C2 ⊆ O2

and X2 ∩ C1 ⊆ O1. The parallel composition of compatible
hybrid automata H1, H2 is the hybrid automaton H with

• Loc = Loc1 × Loc2,
• X = X1 ∪ X2, C = C1 ∪ C2, O = O1 ∪ O2, Lab =

Lab1 ∪ Lab2

• ((l1, l2), a, µ, (l ′2, l ′2)) ∈ Edg iff
– (l1, a1, µ1, l ′1) ∈ Edg1 and (l2, a2, µ2, l ′2) ∈ Edg2

– either a = a1 = a2, or a = a1 /∈ Lab2 and a2 = τ , or
a1 = τ and a = a2 /∈ Lab1,

– µ = {(v, v′)|(v↓Xi
, v′↓Xi

) ∈ µi };

• Flow(l1, l2) = Flow1(l1)|
X∪Ẋ ∩ Flow2(l2)|

X∪Ẋ ;
• Inv(l1, l2) = Inv1(l1)|

X ∩ Inv2(l2)|
X ;

• Init(l1, l2) = Init1(l1)|
X ∩ Init2(l2)|

X .

Example 1 A model of a timing based mutual-exclusion
protocol, adapted from [4], is shown in Fig. 1. In every
location l of Pi , there is a transition (l, τ, µ, l) with µ =

{(v, v′)|v(xi ) = v′(xi ), v(k), v′(k) ∈ R} (omitted from the
figure). Variables stay constant in transitions unless there is
an explicit assignment shown. The system is considered safe

if there are never two or more processes in the critical sec-
tion at the same time. It is a compositional adaptation of the
model given in [4], and parameterized to n processes with
time constants ci and di that represent the minimal, respec-
tively maximal, skew of their clocks. The processes Pi have a
controlled variable xi to model their local clock and an input
variable k that models a semaphore. A separate automaton S

models write-access to k. S has k as a controlled variable and
fixes its derivative to zero. It gives the processes access to k

by synchronizing on transitions labeled with seti or releasei .

There are no restrictions on the jump relations of these tran-
sitions, so the processes can change k to an arbitrary value.

Semantics. The behavior of a hybrid automaton is based
on two types of transitions: Discrete transitions are mani-
festations of the transitions in Edg, and change the location
and variables instantaneously. Timed transitions describe the
change of the variables over time.

Definition 3 (Run, reachability) For a given hybrid autom-
aton H , there is a discrete transition

p
a
−→ p′

with source and target states p, p′ and label a ∈ Lab iff

p, p′ ∈ Inv and there is a transition loc(p)
a,µ
−−→H loc(p′)

with (val(p), val(p′)) ∈ µ. There is a timed transition

p
δ, f
−−→ p′

with δ ∈ R
≥0 and activity f over X iff p, p′ ∈ Inv, f is

differentiable, f (0) = val(p), and δ = 0 or ∀t, 0 ≤ t ≤

δ : f (t) ∈ Inv(loc(p)), f (t) ⊔ ḟ (t) ∈ Flow(l). A run of a
hybrid automaton H is a finite or infinite sequence

σ = p0
δ0, f0,a0
−−−−→ p1

δ1, f1,a1
−−−−→ · · ·

δn−1, fn−1,an−1
−−−−−−−−−→ pn

such that for all i ≥ 0

pi
δi , fi
−−→ (loc(pi ), fi (δi ))

ai
−→ pi+1.

A state p′ is reachable if there exists a run σ with p0 ∈ Init

and pn = p′.

3 Reachability analysis in PHAVer

We compute the set of reachable states as the fixpoint of
two Post-operators, which yield the image states of discrete,
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Fig. 2 Reachability algorithm in PHAVer

respectively timed, transitions. If the flow in a location is
affine, it is overapproximated with LHA-dynamics, i.e., with
constant bounds on the derivatives. The accuracy of this
overapproximation depends on the size of the invariant, so
locations are partitioned on the fly depending on several cri-
teria. We give an overview of our algorithm, and then provide
detailed descriptions of the operations involved.

The implementation in PHAVer processes a shared passed
and waiting list as shown in Fig. 2. First, the locations of the
initial states are partitioned, time elapse is applied, and they
are put on the passed and waiting list. In the main loop, a
set of states is taken from the waiting list, and the successor
states of discrete transitions are computed. Then the locations
of these successors are partitioned, and in each partition the
dynamics are overapproximated with LHA-dynamics. The
set of successors is subjected to complexity management,
which may overapproximate it with a set of lower complex-
ity. Time elapse is applied to this new set, and it is added
to the passed list. The new states, i.e., those that were not
previously on the passed list, are put onto the waiting list.
The loop repeats until the waiting list is empty.

Remark 1 Note that to be sound, time elapse must be applied
after any overapproximation, such as convex hull or com-
plexity management, unless the overapproximation is guar-
anteed to be invariant with respect to time elapse.

The basic algorithm, shown on the left side of Fig. 2, is
similar to the one used in HyTech, and summarized in the
next section. Partitioning, overapproximation and complex-
ity management are specific to PHAVer, and will be discussed
in detail in the remainder of the paper.

3.1 Reachability of LHA

We summarize the standard reachability algorithm from
[4,37] for LHA using polyhedra. To compute the set of

reachable states, one repeatedly computes the successors of
timed and discrete transitions. Given a set of states P , let

Postt (P) =

{

p′

∣

∣

∣

∣

∃δ, f, p ∈ P : p
δ, f
−−→ p′

}

be its timed successors and

Postd(P) =
{

p′
∣

∣

∣
∃a, p ∈ P : p

a
−→ p′

}

its discrete successors. The set of reachable states, denoted
by Reach, is the smallest fixpoint of the sequence given by
P0 = Init and

Pk+1 = Postd (Postt (Pk)) . (2)

We recall the basic definitions and operations on polyhe-
dra, and use them to define the post operators for LHA.

Definition 4 A convex polyhedron S is a set in R
n that can

be represented as the conjunction of a finite number of linear
constraints, i.e.,

S =

{

x

∣

∣

∣

∣

∣

∧

i

aT
i x ⊲⊳i bi

}

, (3)

where ai ∈ R
n , bi ∈ R and ⊲⊳i ∈ {<,≤}. This is referred

to as the constraint representation of the polyhedron. Strict
inequalities aT

i x < bi can be replaced with nonstrict inequal-
ities aT

i x +ε ≤ bi by introducing an auxiliary variable ε that
may take an arbitrary positive value [37]. In the following,
we will therefore only consider nonstrict inequalities, which
define closed polyhedra. Alternatively, a polyhedron can be
described by a generator representation (V, R) as the con-
vex hull of a finite set V ⊆ R

n of vertices and a finite set
R ⊆ R

n of rays, i.e.,

S =

⎧

⎨

⎩

∑

vi∈V

λivi +
∑

ri ∈R

µiri

∣

∣

∣

∣

∣

∣

λi , µi ≥ 0,
∑

i

λi = 1

⎫

⎬

⎭

. (4)

One may switch between constraint and generator represen-
tations, although at a potentially exponential cost. Some oper-
ations are easier in constraint form, e.g., intersection, while
others are easier in generator form, e.g., testing for emp-
tiness. Therefore modern polyhedral libraries, such as the
PPL, keep both represenations in what is referred to as the
double description method. Projection and embedding oper-
ators are easily implemented in constraint form by removing
elements or adding zeros to the vectors ai .

Recall that in a discrete transition (l, a, µ, l ′) ∈ Edg, the
jump relation µ is a predicate over X ∪ X ′, where the primed
variables specify the new values after the transition. The
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discrete successors of a set of states P are

Postd(P) =
⋃

(l,a,µ,l ′)∈Edg

l ′

×
((

P(l)|X∪X ′
∩ µ

)⏐

⏐

�

X ′→X
∩ Inv(l ′)

)

, (5)

where↓X ′→X denotes that we project onto the primed vari-
ables X ′, and rename the variables as unprimed. The timed
successor operator is slightly more involved. For LHA with
convex invariants there is an activity from one state in loca-
tion l to another iff they are connected by a straight line whose
derivative is in Flow(l) [4]. This allows one to replace the
passage of time by simple existential quantification as fol-
lows. Let S ր F be defined as

SրF =
{

v′
∣

∣

∣
∃δ∈R

≥0, w∈ F, v∈ S : v′ = v + wδ

}

. (6)

This operation is easily implemented using the generator rep-
resentation [37]. Let (V, R) be the generator representation
of S, and (V ′, R′) that of F . Then S ր F = (V, R∪V ′∪R′).
For convex invariants, the timed successors are then given by

Postt (P) =
⋃

l∈loc(P)

l × (P(l) ր Flow(l)) ∩ Inv(l). (7)

Example 2 Consider the mutual exclusion protocol from
Example 1 for two processes, with a = 3, c1 = c2 = 1,
d1 = 3, d2 = 2. We compute the time elapse for the set S =

{x1 = x2 = 0}, with both processes in location wait. The
flow in the location is given by F = Flow((wait, wait)) =

{1 ≤ ẋ1 ≤ 3 ∧ 1 ≤ ẋ2 ≤ 2}, which translates in generator
form to F = ({(1, 1), (3, 1), (3, 2), (1, 2)}, {}), see Fig. 3a.
To apply the time elapse, the vertices of F in the derivative
space are reinterpreted as rays in the state space, shown as
dashed arrows in Fig. 3b. These rays are added to the gener-
ator representation of S = ({(0, 0)}, {}) and we obtain

S ր F = ({(0, 0)} , {(1, 1), (3, 1), (3, 2), (1, 2)}).

Finally, one has to restrict the time elapse to the invariant
Inv((wait, wait)) = {x1 ≤ 3, x2 ≤ 3}. The resulting set
Postt ((wait, wait) × S) = (S ր F) ∩ Inv((wait, wait)) is
shown in Fig. 3b.

Remark 2 The time elapse operator implemented in the PPL
(v0.9) computes the smallest convex set containing S ր F .
Strictly speaking, this is an overapproximation as the actual
set may be nonconvex. Consider S = {x = 0 ∧ y = 0} and
F = {y > 0}. Then S ր F = {(x = 0 ∧ y = 0) ∨ y > 0},
while the PPL returns S րP P L F = {y ≥ 0}.

In the following example we compare the performance of
HyTech and PHAVer. The results indicate that the overhead

Derivatives(a) (b) States

Fig. 3 Time elapse for LHA

introduced by using a multiprecision number representation
is compensated by the efficiency of the PPL, and improve-
ments such as the shared passed and waiting list. The com-
parison is limited to simple parameters and systems to avoid
overflow problems with HyTech.

Example 3 Consider the mutual exclusion protocol from
Example 1 for n processes, with a = 1, b = 4, ci = 1,
di = 2. The experimental results are shown for MEX1 with
n = 1 to MEX5 with n = 5 in Table 1, as well as parametric
versions MEXP1–4 in which the allowed range of a and b is
computed. In these instances, PHAVer outperforms HyTech
for nontrivial systems. The downside is its memory consump-
tion, which is about twice that of HyTech. In the instance of a
parametric analysis of an audio protocol AUDSP from [38],
HyTech outperforms PHAVer. The experiments in this paper
were carried out on a Pentium IV, 3.2 GHz with 1 GB RAM
running Linux.

3.2 Overapproximation of dynamics

To deal with non-LHA dynamics, we apply a simple variant
of phase-portrait approximation [5]. This method utilizes
the fact that overapproximating any of the sets that define an
automaton, in particular Flow, results in an overapproxima-
tion of its behavior. We can therefore apply our reachability
algorithm to any hybrid automaton by overapproximating
it with LHA-style sets, and obtain a conservative overap-
proximation of its reachable states. Because the accuracy of
the overapproximation depends on the size of the invariant,
the locations are adequatly partitioned before applying this
transformation, as will be discussed in the next section.

Currently, this is implemented for affine dynamics, which
have the form Mẋ = Ax +b, or more precisely a relaxed ver-
sion thereof that may consist of inequalities. We describe two
methods for overapproximating them with LHA-dynamics,
i.e., for obtaining constant bounds on the derivatives in the
form of linear constraints. In the following, we consider Flow

to be given as relaxed affine dynamics, i.e., a conjunction of
constraints

aT
i ẋ + âT

i x ⊲⊳i bi , (8)
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Table 1 Tool performance, HyTech vs. PHAVer

Instance HyTech PHAVer Reachable Set

Time (s) Mem. (MB) Iter. Time (s) Mem. (MB) Iter. Loc. Poly.

MEX2 0.0 3.1 7 0.1 5.2 9 13 21

MEX3 0.7 6.0 17 1.0 10.3 15 39 139

MEX4 17.5 28.8 23 10.0 58.6 21 113 1169

MEX5 928.3 437.8 29 238.9 814.5 27 323 12001

MEX2P 0.1 4.5 12 0.2 5.9 9 16 37

MEX3P 10.5 27.4 23 2.9 17.9 19 64 564

MEX4P 2999.0 1660.6 34 114.0 443.1 29 256 12408

AUDSP 8.8 62.7 39 20.1 143.6 39 193 5849

where ai , âi ∈ Z
n , bi ∈ Z, ⊲⊳i∈ {<,≤,=}, i = 1, . . . , m.

Projection. Given a set of states S that constrains the pos-
sible values of x , we can obtain bounds on the derivatives by
intersecting Flow with S and projecting onto the derivatives:

Flowpr (S) =
(

Flow ∩ S|X∪Ẋ
)⏐

⏐

�

Ẋ
. (9)

We may always choose S = Inv, but further refinement is
possible, as discussed below. PHAVer’s default time elapse
operator is obtained by substituting (9) for the flow in (7):

Postt,pr (P) =
⋃

l∈loc(P)

l × (P(l) ր Flowpr (Inv(l)) ∩ Inv(l).

(10)

When Flow is given as a conjunction of constraints of the
form (8) and S is given by linear constraints, (9) involves
only standard operations on polyhedra in the space of X ∪ Ẋ ,
and is therefore straightforward to implement.

Constraint-based. Sometimes, Flowpr (S) is very com-
plex, e.g., when S is iteratively refined, as discussed below,
or in abstraction-refinement schemes such as the one in [9]. If
this is the case, the following solution may be advantageous.
Assume that equalities in (8) are modeled using conjuncts of
pairs of inequalities. We transform each constraint (8) into a
linear constraint over Ẋ by finding a lower bound on âT

i x .
If no such bound exists, we drop the constraint entirely. We
obtain the same number of constraints as Flow, independent
on how complex the invariant might be. On the downside,
the correlations between the constraints are lost, which may
result in gross overapproximations.

Given a set of states S that constrains the possible values
of x , let

p/q = inf
x∈S

âT
i x, p, q ∈ Z. (11)

If the infimum exists, the set of ẋ that satisfy (8) is contained
in the set defined by aT

i ẋ ⊲⊳i bi − p/q. Multiplying both
sides with q yields the LHA-style constraint

qaT
i ẋ ⊲⊳i qbi − p. (12)

Let Flowcon(S) be obtained from Flow(S) by replacing each
constraint of the form (8) by its corresponding constraint
(12) if the infimum in (11) exists, and otherwise removing
the constraint.

A one-to-one correspondence of the original and the LHA-
style constraints allows the user to specify the type of con-
straints he wishes to obtain on the dynamics. For example let
the dynamics be given by ẋ = f (x, y)∧ ẏ = g(x, y), f and g

being affine functions. Specifying the constraints in this form
in PHAVer results in rectangular LHA-style constraints, i.e.,
of the form ẋ ∈ [., .] ∧ ẏ ∈ [., .]. Octagonal constraints, i.e.,
of the form ẋ ∈ [., .]∧ ẏ ∈ [., .]∧ ẋ − ẏ ∈ [., .]∧ ẋ + ẏ ∈ [., .]

can be obtained by specifying ẋ = f (x, y) ∧ ẏ = g(x, y) ∧

ẋ − ẏ = f (x, y) − g(x, y) ∧ ẋ + ẏ = f (x, y) + g(x, y).
Octagonal constraints are useful because they preserve some
of the correlation between variables, and thus may lead to
drastically improved accuracy.

As the following example shows, the constraint based
overapproximation can be very inaccurate, and does not even
have to be tight, i.e., touch the original set.

Example 4 Let Inv(l) = {xl ≤ x ≤ xu} and Flow(l) =

{ẋ ≤ ax + bu, ẋ ≤ −ax + b, ẋ ≥ ax + bl} as shown in
Fig. 4. With projection we obtain Flowpr (l) = {axl + bl ≤

ẋ ≤ (b − bu)/(2a)}. In the constraint-based approach, we
compute the infimum for each constraint separately, obtain-
ing Flowcon(l) = {axl + bl ≤ ẋ ≤ −axl + b}. As Fig. 4
illustrates, the overapproximation of the constraint-based
approach can be considerable.

Iterative Refinement. The set of states S containing all
possible values of x is initially chosen to be the invariant.
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Fig. 4 Overapproximating affine dynamics with LHA dynamics

Flowpr (Inv), respectively Flowcon(Inv), then yields the set
of all derivatives possible inside this invariant, which is inde-
pendent from the set that is actually reachable. We can fur-
ther refine the set of derivatives—and the set of reachable
states—by restricting S to the set of states that are reachable
with Flowpr (Inv), possibly reiterating the process until con-
vergence. This yields the following fixpoint computation for
the operator Postt (P), where Post0

t,pr = P:

Postk+1
t,pr =

⋃

l∈loc(P)

l × (P(l) ր Flowpr (Postk
t,pr )) ∩ Inv(l).

(13)

Note that Post1
t,pr = Postt,pr (P). We denote the fixpoint

of the above sequence as Post∞t,pr (P), and the corresponding
result of the constraint-based operator with Post∞t,con(P). The
following example shall illustrate the qualitative difference
that a single iteration of (13) can make.

Example 5 2 Consider Flow(l) = {ẋ = y ∧ ẏ = 0} and
Inv‘(l) = {−1 ≤ y ≤ 1}. With Flowpr (Inv) = l × {ẋ ∈

[−1, 1], ẏ = 0}, the timed successors of a set of states P =

l × {x = 0 ∧ y = 1} are Postt,pr (P) = l × {y = 1}. The
overapproximation of Flow with Flowpr results in negative
values of x being reachable, even though ẋ = y = 1. Apply-
ing the fixpoint computation (13), we obtain using Post1

t,pr =

Postt,pr and Flowpr (Post1
t,pr ) = l × {ẋ = 1, ẏ = 0} the fix-

point Post2
t,pr (P) = l × {x ≥ 0 ∧ y = 1}, which is equal to

the actual reachable set Postt (P).

In our examples, only the first 2–3 iterations yield a signif-
icant improvement. Instead of computing a fixpoint, PHAVer
computes a fixed number of iterations given by the user.

3.3 Partitioning locations

When the dynamics are overapproximated as in the previ-
ous section, the error depends on the size of the invariant

2 Many thanks to R. J. M. Theunissen for inspiring the example.

of the location. We partition each invariant into sufficiently
small parts with a recursive splitting operator. Each splitting
cuts the invariant in two along a hyperplane, and replaces the
original location with two copies, each assigned a part of the
original invariant. The hyperplanes for splitting are chosen
from a user-defined set. The splitting recursion terminates
if the size of the invariant or the spread of the derivatives
fall below a given threshhold. By using small enough parti-
tions, one is able to approximate the behavior of the original
hybrid automaton arbitrarily close [5]. Note that this requires
the introduction of the derivatives as auxiliary variables, as
will be discussed at the end of this section.

The splitting of a location consists of duplicating the loca-
tion, including incoming and outgoing transitions as well as
flow, invariant and initial states. The invariants of the loca-
tion duplicates may be restricted to subsets as long as they
cover the original invariants. Formally, this corresponds to
the following operation:

Definition 5 (Invariant split) (modified from [5]3) A split S

for a hybrid automaton H maps each location l to a finite set
{Sl

1, . . . , Sl
k} of sets of valuations over X such that there exists

a finite cover Ol = {Ol
1, . . . , Ol

k} of Inv(l) with Sl
i = Inv(l)∩

Ol
i for i = 1, . . . , k. The split of H along S is the hybrid

automaton split(H,S) = (LocS , (X, C, O), Lab, EdgS ,

FlowS , InvS , InitS) with

• LocS = {(l, S) | l ∈ Loc, S ∈ S(l)},
• EdgS = {((l, S), a, µ, (l ′, S′)) | (l, a, µ, l ′) ∈ Edg},
• FlowS((l, S)) = Flow(l),
• InvS((l, S)) = Inv(l) ∩ S, and
• InitS((l, S)) = Init(l) ∩ S.

The behavior of the split automaton HS is identical, i.e.,
bisimilar, to the behavior of the original automaton if the
cover O is open [5], or the dynamics are affine [12].

Recall that a hyperplane h is defined by an equation aT
h x =

bh , where the normal vector ah determines its direction and
the inhomogeneous term bh its position. Let the slack of h in
a location l be defined by

∆(ah) = sup
x∈I nv(l)

aT
h x − inf

x∈I nv(l)
aT

h x .

In PHAVer, we recursively split one location l at a time along
a hyperplane aT

h x = bh , i.e., we apply an invariant split with
Sl

1 = {aT
h x ≤ bh}, Sl

2 = {aT
h x ≥ bh}. Note that only reach-

able locations are split. The user provides a list of candidate
normal vectors ah,i together with a minimum and maximum

3 We do not require the cover to be open.
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value for the slack of each hyperplane:

Cand = {(ah,1,∆min,1,∆max,1), . . . ,

(ah,m,∆min,m,∆max,m)}.

This allows the user to include expert knowledge by choos-
ing planes and location sizes suitable for the system. A trivial
choice for the hyperplanes are the directions of the axes. Let
P be the set of reachable states at the time of the splitting.
The position bh of the hyperplane is chosen to be the center
of the location, i.e.,

bh :=

(

sup
x∈I nv(l)

aT
h x + inf

x∈I nv(l)
aT

h x

)

/

2,

if both supremum and infimum exist. Otherwise, we intro-
duce a partition at distance ∆min to the reachable states by
setting

bh := ∆min + sup
x∈P

aT
h x, or bh := −∆min + inf

x∈P
aT

h x,

whichever lies inside the invariant. In related work, a method
for positioning of the hyperplane based on optimizing the set
of derivatives was proposed in [12].

In each split, the best hyperplane is chosen according to
a number of criteria. We provide an overview of the criteria,
followed by a detailed description of the selection process. In
principle, each location is split until the slack of every can-
didate hyperplane hi satisfies ∆(ah,i ) ≤ ∆min,i . We account
for the dynamics of the system using the spatial angle that is
spanned by the derivatives in a location. Let the spread of a
set of valuations X be

∢(X) = inf
x,y∈X

xT y

/

|x ||y|.

The spread of the derivatives in a location l, constrained to
the states S is then

∢deriv(l, S) = ∢((Flow(l) ∩ S|X∪Ẋ )↓Ẋ ).

The spread of the derivatives is used in two ways: The par-
titioning of a location is stopped once the spread is smaller
than a given minimum ∢min , and the constraints are sorted
according to the spread of the derivatives in the location after
the splitting. The slack ∆max,i may be specified to split at
least to that slack without regard to ∢min .

For each splitting, the candidate hyperplanes aT
h x = bh

are sorted according to the following criteria (smallest is
best):

1. slack

c1 =

{

−∆(ah)/∆min,h if ∆(ah) > ∆min,h,

∞ otherwise.

2. reachable states only on one side

c2 =

{

1 if ∃x, x ′ ∈ P : aT x < b ∧ aT x ′ > b

0 otherwise.

3. spread of the derivatives (discard constraint if a mini-
mum spread ∢min is reached and the slack is smaller
than ∆max,h)

c3 =

⎧

⎨

⎩

−∢deriv(l, I nv) if ∢deriv(l, I nv) ≥ ∢min

∨ ∆(ah) > ∆max,h,

∞ otherwise.

4. derivative spread after the constraint is applied

c4 = − max
{

∢deriv(l, {(l, x) ∈ I nv | aT
h x ≤ bh}),

∢deriv(l, {(l, x) ∈ I nv | aT
h x ≥ bh})

}

.

By default, the candidate hyperplanes are sorted by
evaluating the tuple (c1, c2, c3) lexicographically. The best
one is chosen that does not have a criterion evaluating to ∞. If
no such hyperplane exists, the splitting recursion terminates.
Note that c3 can be deactivated by specifying ∢min = 1.
When c4 is activated, the sorting is according to (c4, c1,

c2, c3).
According to [5], the overapproximation of a hybrid auto-

maton H with a linear hybrid automaton can be arbitrarily
close to the original if the partition size is chosen sufficiently
small. However, the splitting method in [5] relies on split-
ting not only the invariant, but also the flow predicate. This
is necessary to approximate the flow aribtrarily close (con-
sider a nonconvex flow). Any overapproximation by a convex
flow will contain the convex hull no matter how small the
invariant is partitioned, and can consequently not be arbi-
trarily close. When splitting the invariant is not sufficient,
one may introduce the derivatives as auxiliary variables to
implement the method of [5] by invariant split. Let Y =

{y1, . . . , yn} be the auxiliary variables representing the deriv-
atives. The transformed automaton is H ′ = (Loc, (X∪Y, C∪

Y, O), Lab, Edg′, Flow′, Inv′, Init′), where

• Edg′ = {(l, a, µ′, l ′) | (l, a, µ, l ′) ∈→, µ′

= µ|X∪Y∪X ′∪Y ′
},

• Flow′(l) = Flow(l)|X∪Ẋ∪Y∪Ẏ ∩ {
∧

i=1,...,n ẋi = yi },

• Inv′(l) = Inv(l)|X∪Y , and
• Init′(l) = Init(l)|X∪Y .

The auxiliary variables are not restricted in transitions, invar-
iants or initial states, and their derivatives are not restricted
in the flow. They do not modify the behavior of the hybrid
automaton except for the constraint ẋi = yi in the flow, which
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has no effect on ẋi since yi is unrestricted. However, split-
ting the invariant will now also split the derivatives, therefore
implementing the method in [5].

3.4 Example: navigation benchmark

We illustrate the reachability analysis of PHAVer with a nav-
igation benchmark proposed in [39]. It models an object
moving in a plane, and it must be shown that a set of bad
states is not reachable, and that a set of target states is even-
tually reached. It is a challenging four-dimensional system
because of two integrators (turning velocity into position),
whose marginal stability contributes to the accumulation of
errors.

The dynamics of the object is defined by “desired”, or
equilibrium, velocities that depend on its position in a plane.
A map M attributes to each unit square in the plane a value i ∈

{0, . . . , 7}, which determines the desired velocity vd(i) =

(sin(iπ/4), cos(iπ/4))T . A special symbol A denotes the set
of target states, and B denotes the set of forbidden states
for the object. We verified that the forbidden states are not
reachable for the instances shown in Fig. 5, whose maps are
given by

MNAV01−03 =

⎛

⎝

B 2 4
2 3 4
2 2 A

⎞

⎠ , MNAV04 =

⎛

⎝

B 2 4
2 2 4
1 1 A

⎞

⎠ .

The dynamics of the state vector (x1, x2, v1, v2)
T are given by

(

ẋ

v̇

)

=

(

0 I

0 A

)(

x

v

)

−

(

0
A

)(

0
vd(i)

)

,

A =

(

−1.2 0.1
0.1 −1.2

)

.

The initial states for for NAV01–NAV03 are defined by x0 ∈

[2, 3] × [1, 2], for NAV04 by x0 ∈ [0, 1] × [0, 1], and

v0,NAV01 ∈ [−0.3, 0.3] × [−0.3, 0],

v0,NAV02 ∈ [−0.3, 0.3] × [−0.3, 0.3],

v0,NAV03 ∈ [−0.4, 0.4] × [−0.4, 0.4],

v0,NAV04 ∈ [0.1, 0.5] × [0.05, 0.25].

As splitting constraints we use

Cand = {(v1, δ1,∞), (v2, δ2,∞)},

where appropriate δi were established by some trial-and-error
runs, and (c1) as splitting criterion. Note that x1, x2 need not
be partitioned, since they depend only on v. The other anal-
ysis parameters were left at their default setting. While we
need to specify bounds for the analysis region, we can han-
dle the unbounded case by checking that the reachable state
space is strictly contained in the analysis region. All instances
shown were obtained with a-priori bounds of [−2, 2] on

the velocities, and the reachable velocities remained within
an interval [−1.1, 1.1], which confirms our a-priori bounds
as valid. Figure 5 shows the set of reachable states com-
puted by PHAVer as a result. For the instances NAV01–
NAV04, the analysis was fairly straightforward, with δi = 1.
Higher instances require a much higher level of accuracy, and
lead to large numbers of polyhedra. Applying a convex hull
overapproximation would remedy this problem, but without
complexity management the analysis did not terminate. We
present results after introducing comlpexity mananagement
in the next section. In comparison, for a predicate abstraction
tool the following times were reported in [40]: For NAV01–
NAV03 34s, 153s (68MB) and 152s (180MB), respectively,
on a Sun Enterprise 3000 (4 × 250 MHz UltraSPARC) with
1 GB RAM. In [13] it is reported that HSOLVER was not
able to show safety of instances similar to NAV01–NAV03.

4 Managing the Complexity of Polyhedra

In exact fixpoint computations with polyhedra, the size of
numbers in the formula as well as the number of constraints
typically increases unless the structure of the hybrid sys-
tem imposes boundaries, for example with resets or invar-
iants. To keep the complexity manageable, we propose to
simplify polyhedra in a strictly conservative fashion by lim-
iting the number of bits, that is the size of coefficients, and the
number of constraints. While showing good performance in
practice, both methods have the disadvantage that the approx-
imation error may be unbounded, and is not localized. In
practice, both simplifications are applied when the number
of bits or constraints exceeds a given threshold that is sig-
nificantly higher than the reduction level. The resulting hys-
teresis between exact computations and overapproximations
gives cyclic dependencies time to stabilize.

4.1 Limiting the number of bits

We consider a convex polyhedron in constraint representa-
tion, i.e., given as the conjunction of constraints aT

i x ⊲⊳i bi ,
where ai is a vector of the coefficients ai j ∈ Z, i = 1, . . . , m,
j = 1, . . . , n, ⊲⊳i∈ {<,≤}, and inhomogeneous coeffi-
cients bi ∈ Z. We assume that the ai j and bi have no com-
mon factor and that there are no redundant constraints. Note
that we usually do not simplify equalities to preserve the
affine dimension, i.e., the inhabited subspace, of the polyhe-
dron, but they can be simplified by converting each equality
into the conjunction of two inequalities. The goal is to find,
with as little overapproximation as possible, a new constraint
αT

i x ⊲⊳i βi that contains all solutions of aT
i x ⊲⊳i bi , and

whose coefficients αi j , βi have less than z bits, i.e., |αi j |,

|βi | ≤ 2z − 1.
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Fig. 5 Reachable states in the
x1, x2-plane (initial states
darkest)
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Our approach is to scale down the ai j so they are all smaller
than 2z − 1, and then find a βi that makes the constraint con-
servative. Because the new coefficients need to be integers,
we need to account for rounding errors. We obtain an initial
estimate of a scaling factor f > 0, and reduce it if it results in
a βi that is too large. We can represent the new coefficients as

αi j = f ai j + ri j ,

βi = f bi + ri ,

with rounding errors ri j , |ri j | ≤ 0.5 and an unbounded error
ri for the inhomogeneous term. In this representation, our
goal is to find a scaling factor f that is close to 1 and results
in a small error ri . There is no a-priori bound on ri because
it depends on the new direction αi and the other constraints
that define the polyhedron.

We obtain an initial estimate of f based on the assumption
that βi is close to f bi , say the closest integer. Since βi must
be rounded upwards to guarantee conservativeness, we get
|ri | ≤ 1 as an optimistic estimate. This gives us the following

upper bounds for f :

f ≤ (2z − 3/2)/|ai j | and (14)

f ≤ (2z − 2)/|bi |. (15)

To predict the effects of rounding on the new coefficients
is difficult and would lead to a mixed integer linear pro-
gram. We employ a heuristic algorithm, shown in Fig. 6. Let
round(x) be a function that returns the next integer between
x and zero, and ceil(x) be a function that rounds to the next
larger integer. First, we estimate f based on (14) and (15),
then we compute a new βi using linear programming. If βi

has more than z bit, we decrease f and start over. The proce-
dure is repeated until all αi j = 0, in which case the problem
is infeasible. Note that even if it is feasible, the new poly-
hedron may not be bounded because the reduced constraints
may be parallel. Figure 7 illustrates the basic scheme. The
normal vector ai of the constraint, shown in (a), is approxi-
mated by αi , as shown in (b). Linear programming yields the
inhomogeneous term q that makes the constraint tangent to
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Fig. 6 Limiting the number of bits of a constraint

(a) (b)

(d)(c)

Fig. 7 Limiting the number of bits of a constraint

the polyhedron, as in (c). Rounding of q yields βi , and the
polyhedron outlined in (d).

4.2 Limiting the number of constraints

We use sets of convex polyhedra to describe the symbolic
states computed by the reachability algorithm. The number of
constraints of the polyhedra often increases with the number
of iterations of a fixpoint computation. We limit this number
to keep the analysis computationally feasible. Similar reduc-
tions have been proposed, for example bounding boxes [41],

or oriented rectangular hulls [33] keep the number of con-
straints fixed to 2n. Instead of computing an entirely new set
of constraints, we propose to simply drop the least signifi-
cant of the constraints. As with limiting the number of bits,
we usually chose to not limit equalities in order to preserve
the affine dimension of the polyhedron. If an equality is to
be limited, it is simply replaced by two inequalities, which
are then each limited.

We measure the significance of a constraint based on a
criterion crit that measures the the difference between the
polyhedron with and without the constraint. Let P be a set of
linear constraints describing a convex polyhedron, and P\i =

P \{aT
i x ⊲⊳i bi } be the polyhedron without its i th constraint.

Then the difference between the points contained in P and
P\i is the polyhedron P¬i = P\i ∪ {−aT

i x ⊲⊳i − bi }, where
(⊲⊳i , ⊲⊳i ) ∈ {(<,≤), (≤,<)}, obtained by simply replacing
the i th constraint with its complement. It has less non-redun-
dant constraints than P and is therefore preferable in the
formulations below. We consider three methods:

1. volumetric: Let V (P) be the volume of the points con-
tained in P . Then crit = V (P\i ) − V (P) = V (P¬i ).
Requires P¬i to be bounded.

2. slack: Let bmax = maxx aT
i x s.t. x ∈ P¬i . Then crit =

(bmax − bi )/||ai ||, i.e., the distance, measured in the
direction of the constraint, between the points farthest
apart in P¬i . Requires P¬i to be bounded in the direc-
tion of ai .

3. angle: crit = − max j �=i aT
j ai . Measures the negative

cosine of the closest angle between the normal vector of
the i th constraint and all others.

Our goal is to select the z most important out of m original
constraints. It would be expensive to examine all

(

m
z

)

pos-
sible combinations of constraints. Instead, we consider two
heuristics:

1. deconstruction: Starting from the entire set of constraints,
drop the m − z constraints with the least effect according
to crit.

2. reconstruction: Starting from an empty set of constraints,
add the z constraints with the greatest effect according
to crit.

The criteria based on volume and slack require the initial
polyhedron to be bounded, for which one could use, e.g., the
invariant of the location. The following example shall illus-
trate the difference between volumetric and angle criteria,
and its potential unboundedness.

Example 6 Consider the polyhedron shown in Fig. 8a. It
has 6 constraints A–F, whose angles with the neighbors are
noted in the graph. In a volume based deconstruction with
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Original with 6 constraints(a)

(b)

(c)

Reduced to 5 constraints

Reduced to 4 constraints

Fig. 8 Example for limiting the number of constraints by volumetric
deconstruction (hashed) and angle based reconstruction (shaded)

5 constraints, constraint A is removed since that causes the
smallest change in volume. The resulting polyhedron is
shown hashed in Fig. 8b. The angle based reconstruction
with 5 constraints results in the shaded polyhedron in Fig. 8b,
where the constraints are labeled in the order they are chosen:
First, an arbitrary initial constraint is chosen, say constraint
C. The second choice is the constraint that has the largest
angle with C, i.e., that is most opposed to it. In this case, this
is constraint F, since it has an angle of 180◦ with C. The third
choice is the one that is most opposed to both C and F, here
constraint B because it has an angle of 90◦ with both C and F.
The fourth constraint is A, with minimum angles of 45◦, and
the fifth is D with a minimum angle of 30◦. Figure 8c shows
the reduction to 4 constraints. Here the angle based method
results in an unbounded polyhedron because constraint D is
not chosen. An algorithm should take this possibility into
account and test for boundedness.

Fig. 9 Reconstructing a polyhedron with a limited number of
constraints by angle prioritization

The construction method with an angle criterion was the
fastest in our experiments. The angle calculations can be sped
up by using a look-up table α(i, j) that maps an angle to every
pair of constraints. This yields an algorithm of complexity
O(nm2 + m3), shown in Fig. 9, where C is the set of can-
didate constraints and H is the set of chosen constraints. It
includes a test that preserves the boundedness of P . H is
initialized with the set of equalities, which are not reduced
to preserve the affine dimension of the polyhedron, and an
arbitrary initial constraint. Here we choose the one with the
smallest coefficients. In a while-loop, the constraint is cho-
sen based on the best of the worst-cases, i.e., the smallest
angle with the constraints in H . Since aT

j ai is the cosine of
the angle, choosing the smallest angle translates into max-
imizing aT

j ai . The constraint is added to H and removed
from the candidates C , and the procedures is repeated until
|H | ≥ z and the boundedness of P implies boundedness of
H . This algorithm is in our implementation ∼1,000× faster
than a slack based deconstruction for limiting 400 constraints
down to 32 in 4 dimensions.

The following example shall illustrate that complexity
management is useful to induce termination, and that the con-
straint-based overapproximation of dynamics may be prefer-
able when a projection-based overapproximation leads to too
complex sets of states. Still, the relationship between overap-
proximation method, complexity and quick convergence is
not a trivial one.

Example 7 NAV01–NAV04 from Sect. 3.4 can be analyzed
without complexity management, but the computed reach-
able set consists of a large number of polyhedra. If we com-
pute the convex hull of the reachable states in each location,
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Table 2 PHAVer performance, navigation benchmark

Instance Time (s) Mem. (MB) Iter. Checks Automaton Reachable Set

Loc. Trans. Loc. Poly. Con. Bits

NAV01 8.7 29.0 11 386 72 1123 45 386 20 62

NAV02 14.5 38.2 10 803 72 1126 45 803 20 33

NAV03 14.4 38.0 10 795 72 1126 45 795 20 33

NAV04 13.6 47.6 8 562 122 2057 85 562 18 32

Table 3 PHAVer performance, navigation benchmark with convex hull overapproximations and complexity management

Instance Time (s) Mem. (MB) Iter. Checks Automaton Reachable Set

Loc. Trans. Loc. Poly. Con. Bits

Projection-based overapproximation of dynamics

NAV01 5.2 25.6 22 185 70 1090 43 43 30 308

NAV02 6.4 25.6 20 230 72 1126 45 45 42 282

NAV03 6.5 25.6 20 232 72 1126 45 45 48 290

NAV04 6.7 25.9 52 330 72 1116 54 54 18 32

Constraint-based overapproximation of dynamics

NAV01 4.6 24.0 7 135 72 1126 45 45 16 33

NAV02 4.7 26.2 6 137 72 1126 45 45 16 37

NAV03 4.8 26.2 6 137 72 1126 45 45 16 40

we only get only polyhedron per location but the algorithm
does not terminate. Limiting the number of bits remedies this
problem. Limiting to 24 bits with a triggering threshold of
300 and to 48 constraints with a threshold of 96 halves the
computation time and memory, see Table 3, compared to the
exact computations used in Table 2. Note that the resulting
number of bits and constraints may be larger than the thresh-
old because the time elapse operator must be applied after
limiting, see Remark 1. For constraint-based overapproxima-
tion NAV04 does not terminate within reasonable time due
to very slow convergence.

4.3 Example: tunnel-diode oscillator circuit

We present experimental results for a tunnel-diode oscillator
circuit taken from [26] with the parameters used in [42]. We
model the current IL through the inductor and the voltage
drop Vd of a tunnel diode in parallel with the capacitor of
a serial RLC circuit, which are in stable oscillation for the
given parameters. The state equations are given by

V̇d = 1/C(−Id(Vd) + IL), (16)

İL = 1/L(−Vd − 1/G · IL + Vin), (17)

where C = 1 pF , L = 1 µH , G = 5 m
−1, Vin = 0.3 V ,
and the diode current

Id =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

6.01V 3
d − 0.992V 2

d + 0.0545Vd

if Vd ≤ 0.055,

0.0692V 3
d − 0.0421V 2

d + 0.004Vd + 8.96 · 10−4

if 0.055 ≤ Vd ≤ 0.35,

0.263V 3
d − 0.277V 2

d + 0.0968Vd − 0.0112
if 0.35 ≤ Vd .

Following the procedure outlined in the previous section,
a piecewise affine envelope was constructed for the tunnel
diode characteristic Id(V ). We choose 32 intervals for the
range Vd ∈ [−0.1, 0.6] to yield sufficient accuracy and so
obtain a piecewise affine model for (16). It is modeled as a
hybrid automaton with Vd as an output- and IL as an input-
variable, and consists of 32 locations, one for each interval.
Equation (17) is affine, and is modeled as a hybrid automaton
with Vd as an input and a single location. Both models are
composed and analyzed in PHAVer. Figure 10a shows the
computed reachable states for initial states given by Vd ∈

[0.42V, 0.52V ], IL = 0.6m A. It also shows the invariants
(dashed) generated by the partitioning algorithm using the
constraints Cand = {(Vd , 0.7/128,∞), (IL , 1.5/128,∞)},
i.e., max. 128 partitions in both directions, and splitting cri-
terion (c3, c1) with ∢min = 0.99. The analysis with PHAVer
takes 17.1s and 68.0MB RAM, with the largest coefficient
taking up 2508 bits and at most 5 constraints per polyhedron.

We now obtain bounds on the cycle time of the oscillator
by composing the circuit model with a monitor automaton.
The cycle time is the maximum time it takes any state to
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Fig. 10 Reachable states of Tunnel Diode Circuit

cross the threshold I = 0.6µA, V > 0.25V twice. For the
clocked circuit, the number of bits and constraints grows rap-
idly and a more precise analysis, such as shown in Fig. 10b
is only possible with limits on both. We compare the unlim-
ited and limited analysis for constraint candidates Cand =

{(Vd , 0.7/64,∞), (IL , 1.5/64,∞)} and using convex hull
overapproximations for the flows. The bits are limited to 24
when a threshold of 300 bits is reached, and the constraints
to 32 with a threshold of 200. Figures 11a, b shows a poly-
nomial increase in the number of constraints, and an expo-
nential increase of the number of bits in the new polyhedra
found at each iteration. The analysis takes 1412 s (381 MB)
when unlimited, and 90 s (132 MB) when limited and yields
the reachable states shown in Fig. 10b. The bounds for on the

Number of bits(a)

(b) Number of constraints

Fig. 11 Clocked Tunnel Diode Circuit, exact (dashed) and with limits
on bits and constraints (solid)

cycle time are [12.75, 14.90] µs when unlimited. The relative
error of the limited analysis is 0.006% for the lower bound
and 0.08% for the upper bound. At a more than fifteenfold
increase in speed, the overapproximation is negligible and
results in a cycle time estimate that is practically identical.
Note that a comparison was only possible at the lowest level
of accuracy. Higher accuracy can not be achieved at all with-
out limiting due to an drastic increase in computation time.

In comparison with CheckMate [42], PHAVer is able to
analyze the circuit at higher accuracy, and obtains results for
parameters where CheckMate does not [8].

5 Conclusions

PHAVer, a new tool for verifying safety properties of lin-
ear hybrid automata, provides infinite precision arithmetic
in a robust implementation, on-the-fly overapproximation of
affine dynamics, and supports compositional and assume/
guarantee-reasoning. We propose heuristics to conservatively
overapproximate polyhedra by limiting the number of bits
and constraints, which often are indispensable for managing
the complexity of polyhedral computations. Experimental
results for a navigation benchmark and a tunnel diode circuit
indicate their effectiveness, and PHAVer outperforms other
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currently available verification tools. The results suggest that
the benefits of exact polyhedral computations, such as exact
testing for containment, can outweigh the costs incurred by
the indispensible complexity management. Future research
will focus on accelerating convergence and termination, e.g.,
using widening [37], and using the transition topology to
improve the search algorithm. PHAVer is available at http://
www-verimag.imag.fr/~frehse/.
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