
0-89791-993-9/97 $10.00  1997 IEEE

*PHDD: An Efficient Graph Representation for Floating Point Circuit Verification y

Yirng-An Chen Randal E. Bryant
yachen@cs.cmu.edu Randy.Bryant@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract
Data structures such as *BMDs, HDDs, and K*BMDs provide

compact representations for functions which map Boolean vectors
into integer values, but not floating point values. In this paper, we
propose a new data structure, called Multiplicative Power Hybrid
Decision Diagrams (*PHDDs), to provide a compact representation
for functions that map Boolean vectors into integer or floating point
values. The size of the graph to represent the IEEE floating point
encoding is linear with the word size. The complexity of floating
point multiplication grows linearly with the word size. The com-
plexity of floating point addition grows exponentially with the size
of the exponent part, but linearly with the size of the mantissa part.
We applied *PHDDs to verify integer multipliers and floating point
multipliers before the rounding stage, based on a hierarchical ver-
ification approach. For integer multipliers, our results are at least
6 times faster than *BMDs. Previous attempts at verifying floating
point multipliers required manual intervention. We verified floating
point multipliers before the rounding stage automatically.

1 Introduction
Binary Moment Diagrams (BMDs) [3] have proved successful for

representing and manipulating functions mapping Boolean vectors to
integer values symbolically. They have been used in the verification
of arithmetic circuits [4]. Clarke, et al. [7] extended BMDs to a form
they call Hybrid Decision Diagrams (HDDs), where a function may
be decomposed with respect to each variable in one of six ways, but
without edge weights. Drechsler, et al. [10] extended Multiplicative
BMDs (*BMDs) to a form called K*BMDs, where a function may
be decomposed with respect to each variable in one of three ways,
and with both additive and multiplicative edge weights. None of
these diagrams can represent functions which map Boolean vectors
to floating point values, unless rational numbers are introduced into
the representation [2]. But using rational numbers in the represen-
tation requires more space to store the numerator and denominator
separately, and more computation to extract the rational numbers.

Verification of floating point arithmetic circuits using any of these
three diagrams requires the circuits to be divided into several sub-
circuits for which specifications can be expressed in terms of integer
functions and their operations [4, 6, 8]. The correctness of the over-
all circuit must be proved by users from the specifications of the
verified sub-circuits. For instance, the floating point multiplier was
divided into the circuits for the mantissa multiplication, the exponent
addition, and the rounding in [6]. The verification of these three sub-
circuits was performed automatically by word-level SMV [8], but the
correctness of the entire multiplier must be proved by users from the
verified specifications of these three sub-circuits. To avoid partition-
ing floating point arithmetic circuits for verification, it is necessary to
have decision diagrams that represent and manipulate floating point
functions efficiently.

yThis research is sponsored by the Defense Advanced Research Projects Agency
(DARPA) under contract number DABT63-96-C-0071.

In this paper, we propose a new representation, called Multiplica-
tive PowerHybrid Decision Diagrams (*PHDDs), which improves on
previous diagrams in representing floating point functions. *PHDDs
can represent functions having Boolean variables as arguments and
floating point values as results. This structure is similar to that of
HDDs [7], except that they are based on powers-of-2 edge weights
and complement edges for negation. We show that the size of floating
point multiplication grows linearly with the word size. For floating
point addition, we show that the complexity grows linearly with the
mantissa size, but exponentially with the exponent size. It is still
practical for formats up to IEEE double precision.

Based on a hierarchical verification methodology [3, 4], we have
applied *PHDDs to verify different sizes and types of integer multi-
pliers. Compared with *BMDs, *PHDDs are consistently six times
faster and use less memory. We have also applied *PHDDs to ver-
ify different sizes and types of floating point multipliers before the
rounding stage, which have never before been verified symbolically
and automatically. Our results show that the verification of floating
point multipliers requires minimal effort beyond integer multipliers.
Our next step is to look into the rounding stage and entire floating
point adders. Earlier results using HDDs [6] show that the rounding
stage itself can be handled.

2 BMDs, *BMDs and HDDs
For expressing functions Boolean variables into integer values,

BMDs[3] use the moment decomposition of a function:

f = (1 � x) � fx + x � fx

= fx + x � (fx � fx)

= fx + x � f�x (1)

where �,+ and � denote multiplication, addition and subtraction,
respectively. Term fx (fx) denotes the positive (negative) cofactor
of f with respect to variable x, i.e., the function resulting when
constant 1 (0) is substituted for x. By rearranging the terms, we
obtained the third line of Equation 1. Here, f�x = fx � fx is
called the linear moment of f with respect to x. This terminology
arises by viewing f as being a linear function with respect to its
variables, and thus f�x is the partial derivative of f with respect to
x. The negative cofactor fx will be termed the constant moment,
i.e., it denotes the portion of function f that remains constant with
respect to x. This decomposition is also called positive Davio in
K*BMDs [10]. Each vertex of a BMD describes a function in terms
of its moment decomposition with respect to the variable labeling
the vertex. The two outgoing arcs denote the constant and linear
moments of the function with respect to the variable.

Clarke, et al. [7] extended BMDs to a form they call Hybrid
Decision Diagrams (HDDs), where a function may be decomposed
with respect to each variable in one of six decomposition types. In our
experiencewith HDDs, we found that three of their six decomposition
types are useful in the verification of arithmetic circuits. These

1

three decomposition types are Shannon,Positive Davio, and Negative
Davio. Therefore, Equation 1 is generalized to the following three
equations according the variable’s decomposition type:

f =

(
(1 � x) � fx + x � fx (Shannon)

fx + x � f�x (Positive Davio)

fx + (1 � x) � f�x (Negative Davio)

(2)

Here, f�x = fx � fx is the partial derivative of f with respect to
x. The BMD representation is a subset of HDDs. In other word, the
HDD graph is the same as the BMD graph, if all of the variables use
positive Davio decomposition.

x y f
0 0 1
0 1 2
1 0 4
1 1 8

(a)

1 3

x

y y

f

(b)

1

x

y

f

3

(c)

1 4

x

y y

2 8

f

(d)

Figure 1: An integer function with Boolean variables, f = 1 +
y + 3x + 3xy, is represented by (a) Truth table, (b) BMDs, (c)
*BMDs, (d) HDDs with Shannon decompositions. The dashed-
edges are 0-branches and the solid-edges are the 1-branches. The
variables with Shannon and positive Davio decomposition types are
drawn in vertices with thin and thick lines, respectively.

As an example, Figure 1 show an integer function f with Boolean
variables x and y represented by a truth table, BMDs, *BMDs, and
HDDs with Shannon decompositions (also called MTBDD [9]). In
our drawing, the variables with Shannon and positive Davio decom-
position types are drawn in vertices with thin and thick lines, respec-
tively. The dashed (solid) line from a vertex with variable x points
to the vertex represented function fx , fx, and fx (fx, f�x and f�x)
for Shannon, positive Davio and negative Davio decompositions, re-
spectively. Figure 1.b shows the BMD representation. To construct
this graph, we apply Equation 1 to function f recursively. First, with
respect to variable x, we can get fx = 1+ y, represented as the graph
of the dashed-edge of vertex x, and f�x = 3+ 3y, represented by the
solid branch of vertex x. Observe that f�x can be expressed by 3 �
fx. By extracting the factor 3 from f�x, the graph became Figure 1.c.
This graph is called a Multiplicative BMD (*BMD) which extracts
the greatest common divisor (GCD) from both branches. The edge
weights combine multiplicatively. The HDD with Shannon decom-
positions can be constructed from the truth table. The dashed branch
of vertex x is constructed from the first two entries of the table, and
the solid branch of vertex x is constructed from the last two entries
of the table.

Observe that if variables x and y are viewed as bits forming 2-bit
binary number,X=y+2x, then the function f can be rewritten as f =

2(y+2x) = 2X . Observe that HDDs with Shannon decompositions
and BMDs grow exponentially for this type of functions. *BMDs can
represent them efficiently, due to the edge weights. However, *BMDs
and HDDs cannot represent the functions as f = 2X�B , where B is
a constant, because they can only represent integer functions.

3 The *PHDD Data Structure
In this section, we introduce a new data structure, Multiplicative

Power Hybrid Decision Diagrams (*PHDDs), to represent functions
that map Boolean vectors to integer or floating point values. This

structure is similar to that of HDDs, except that they use power-of-2
edge weights and negation edges. The power-of-2 edge weights allow
us to represent and manipulate functions mapping Boolean vectors
to floating point values. Negation edges can further reduce graph
size by as much as a factor of 2. We assume that there is a total
ordering of the variables such that the variables are tested according
to this ordering along any path from the root to a leaf. Each variable
is associated with its own decomposition type and all nodes of that
variable use the corresponding decomposition.

3.1 Edge Weights
*PHDDs use three of HDD’s six decompositions as expressed

in Equation 2. Similar to *BMDs, we adapt the concept of edge
weights to *PHDDs. Unlike *BMD edge weights, we restrict our
edge weights to be powers of a constant c. Thus, Equation 2 is
rewritten as:

hw; fi =

(
cw � (((1 � x) � fx + x � fx) (Shannon)

cw � (fx + x � f�x) (Positive Davio)

cw � (fx + (1 � x) � f�x) (Negative Davio)

where hw; fi denotes cw � f . In general, the constant c can be any
positive integer. Since the base value of the exponent part of the
IEEE floating point format is 2, we will consider only c = 2 for the
remainder of the paper. Observe that w can be negative, i.e., we
can represent rational numbers. The power edge weights enable us
to represent functions mapping Boolean variables to floating point
values without using rational numbers in our representation.

f0

w0

f1

w1

x

f0 f1

w0-w1

x

w0

f0 f1

x

w0

f0 f1

x

w1

Or Or

w0>w1 w0=w1 w0<w1

w1-w0

Figure 2: Normalizing the edge weights.

In addition to the HDD reduction rules [7], we apply several
edge weight manipulating rules to maintain the canonical form of the
resulting graph. Let w0 and w1 denote the weights at branch 0 and
1 respectively, and f0 and f1 denotes the functions represented by
branch 0 and 1. To normalize the edge weights, we chose to extract
the minimum of the edge weightw0 and w1. This is a much simpler
computation than the GCD of integer *BMDs or the reciprocal of
rational *BMDs [2]. Figure 2 illustrates the manipulation of edge
weights to maintain a canonical form. The first step is to extract the
minimum of w0 and w1. Then, the new edge weights are adjusted
by subtracting the minimum from w0 and w1 respectively. A node
is created with the index of the variable, the new edge weights, and
pointers to f0 and f1. Base on the relation ofw0 andw1, the resulting
graph is one of three graphs in Figure 2. Note that at least one branch
has zero weight. In addition, the manipulation rule of the edge weight
is the same for all of the three decomposition types. In other words,
the representation is normalized if and only if the following holds:

� The leaf nodes can only have odd integers or 0.

� At most one branch has non-zero weight.

� The edge weights are greater than or equal to 0, except the top
one.

3.2 Negation Edge
Negation edgesare commonly used in BDDs [1] and KFDDs [11],

but not in *BMDs, HDDs and K*BMDs. Since our edge weights ex-
tract powers-of-2 which are always positive, negationedges are added
to *PHDDs to increase sharing among the diagrams. In *PHDDs, the
negation edge of function f represents the negation of f . Note that
�f is different from f for Boolean functions.

Negation edges allow greater sharing and make negation a con-
stant computation. In *PHDD data structure, we use the low order
bit the pointers to denote negation, as is done with the complement
edge of BDDs. To maintain a canonical form, we must constrain the
use of negation edges. Unlike KFDDs [11], where Shannon decom-
positions use a different method from positive and negative Davio
decompositions, *PHDDs use the same method for manipulating the
negation edge for all three decomposition types. *PHDDs must fol-
low these rules: the zero edge of every node must be a regular edge,
the negation of leaf 0 is still leaf 0, and leaves must be nonnegative.
These guarantee the canonical form for *PHDDs.

4 Representation of Numeric Functions
*PHDDs can effectively represent numeric functions that map

Boolean vectors into integer or floating point values. We first show
that *PHDDs can represent integer functions with comparable sizes
to *BMDs. Then, we show the *PHDD representation for floating
point numbers.
4.1 Representation of Integers

Sign-Magnitude

0 1

x0

x1

x2

x3

1

2

0 1

x0

x1

x2

y0

y1

y2

2

1

X+Y

0 1

x0

x1

x2

x3

1

2

3

Two’s Complement

0 1

x0

x1

x2

1

2

y0

y1

y2

1

2

X*Y

1

Figure 3: *PHDD Representations of Integers and Integer opera-
tions. Each variable uses positive Davio decomposition. The graphs
grow linearly with word size.

*PHDDs, similar to *BMDs, can provide a concise representation
of functions which map Boolean vectors to integer values. Let ~x
represent a vector of Boolean variables: xn�1, . . ., x1, x0. These
variables can be considered to represent an integer X according to
some encoding, e.g., unsigned binary or two’s complement. Figure 3
illustrates the *PHDD representations of several common encodings
for integers. In our drawing of *PHDDs, we indicate the edge weight
and leaf node in square boxes with thick and thin lines, respectively.
Edge weight i represents 2i and Unlabeled edges have weight 0 (20).
An unsigned number is encoded as a sum of weighted bits. The
*PHDD representation has a simple linear structure where the leaf
values are formed by the corresponding edge weight and leaf 1 or
0. For representing signed numbers, we assume xn�1 is the sign
bit. The two’s complement encoding has a *PHDD representation
similar to that of unsigned integers, but with bit xn�1 having weight
�2n�1 represented by the edge weight n� 1 and the negation edge.
Sign-magnitude integers also have *PHDD representations of lin-
ear complexity, but with the constant moment with respect to xn�1

scaling the remaining unsigned number by 1, and the linear moment
scaling the number by�2 represented by edge weight 1 and the nega-
tion edge. In evaluating the function for xn�1 = 1, we would add
these two moments, effectively scaling the number by �1. Note that
it is more logical to use Shannon decomposition for the sign bit.

Figure 3 also illustrates the *PHDD representations of several
common arithmetic operations on integer data. Observe that the
sizes of the graphs grow only linearly with the word size n. Integer
addition can be viewed as summing a set of weighted bits, where bits
xi and yi both have weight 2i represented by edge weight i. Integer
multiplication can be viewed as summing a set of partial products of
the form xi2iY . In summary, while representing the integer func-
tions, *PHDDs with positive Davio decompositions usually will get
the most compact representation among these three decompositions.
4.2 Representation of Floating Point Numbers

Let us consider the representation of floating point numbers by
IEEE standard 754. For example, the double-precision numbers are
stored in 64 bits: 1 bit for the sign (Sx), 11 bits for the exponent
(EX), and 52 bits for the mantissa (X). The exponent is a signed
number represented with a bias (B) 1023. The mantissa represents
a number less than 1. Based on the value of the exponent, the IEEE
floating point format can be divided into four cases:8><
>:

(�1)Sx � 1:X � 2EX�B If 0 < EX < All 1 (normal)

(�1)Sx � 0:X � 21�B If EX = 0 (denormal)

NaN If EX = All 1 & X 6= 0
(�1)Sx �1 If EX = All 1 & X = 0

Currently, *PHDDs cannot handle infinity and NaN (not a number)
cases in the floating point representation. Instead, assume they are
normal numbers.

(a) 2 with Davio PositiveEX

1 3 15 45

ex1 ex1

ex2

ex0ex0
ex0

ex0

(b) 2 with Shannon
EX

(c) 2 with Shannon
EX-B

-B

1

ex0

1

2

ex1

4

ex2

1

ex0

1

2

ex1

4

ex2

Figure 4: *PHDD Representations of 2EX and 2EX�B . The graph
grows linearly in the word size with Shannon, butgrows exponentially
with positive Davio.

Figure 4 shows *PHDD representations for 2EX and 2EX�B us-
ing different decompositions. To represent function cEX (in this case
c = 2), *PHDDs express the function as a product of factors of the
form c2iexi = (c2i)exi . In the graph with Shannon decompositions,
a vertex labeled by variable exi has outgoing edges with weights 0

and c2i both leading to a common vertex denoting the product of the
remaining factors. But in the graph with positive Davio decomposi-
tions, there is no sharing except for the vertices on the layer just above
the leaf nodes. Observe that the size of *PHDDs with positive Davio
decomposition grows exponentially in the word size while the size of
*PHDDs with Shannon grows linearly. Interestingly, *BMDs have
a linear growth for this type of function, while *PHDDs with posi-
tive Davio decompositions grow exponentially. To represent floating
point functions symbolically, it is necessary to represent 2EX�B ef-
ficiently, where B is a constant. *PHDD can represent this type of

functions, but *BMDs, HDDs and K*BMDs cannot represent them
without using rational numbers.

-2

(b) 2 with Shannon(a) Sign: (-1)
Sx

Sx

1

(c) Mantissa: 0.X

1

x0

x1

x2

1

2

-3

(d) Mantissa: 1.X

1

x0

x1

x2

1

2

3

-3

0

3

ex2

EX-3

(e) Floating Point Encoding

1

x0

x1

x2

1

2

0

-5

Sx

ex1

1

1

x0

x1

x2

1

2

3

1

ex0
ex0

ex1

2

ex2

3
denormal1

ex1

1

ex0

2

ex1

1

1

ex
0

Figure 5: Representations of floating point encodings.

Figure 5 shows the *PHDD representations for the floating point
encoding, whereEX has 3 bits,X has 4 bits and the biasB is 3. The
signSx and ~ex variables use Shannon decomposition,while variables
~x use positive Davio. Figure 5.a shows the *PHDD representation for
the sign bit (�1)Sx . WhenSx is 0, the value is 1; otherwise, the value
is �1 represented by the negation edge and leaf node 1. Figure 5.b
shows the *PHDD representation for the exponent part 2EX�3. The
graph is more complicated than Figure 4.c, because, in the floating
point encoding, when EX = 0, the value of the exponent is 1 �B,
instead of �B. Observe that each exponent variable, except the top
variable ex2, has two nodes: one to represent the denormal number
case and another to represent normal number case. Figure 5.c shows
the representation for the mantissa part 0:X obtained by dividing
X by 2�3. Again, the division by powers of 2 is just adding the
edge weight on top of the original graph. Figure 5.d shows the
representation for the mantissa part 1:X which is the sum of 0:X
and 1. The weight (2�3) of the least significant bit is extracted to the
top and the leading bit 1 is represented by the path with all variables
set to 0. Finally, Figure 5.e shows the *PHDD representation for the
complete floating point encoding. Observe that negationedges reduce
the graph size by half. The outlined region in the figure denotes the
representation for denormalnumbers. The rest of the graph represents
normal numbers. Assume the exponent is n bits and the mantissa
is m bits. Note that the edge weights are encoded into the node
structure in our implementation, but the top edge weight requires an
extra node. It can be shown that the total number of *PHDD nodes
for the floating point encoding is 2(n+m) + 3. Therefore, the size
of the graph grows linearly with word size. In our experience, it is
best to use Shannon decompositions for the sign and exponent bits,

and positive Davio decompositions for the mantissa bits.
4.3 Floating Point Multiplication and Addition

y
0

y
1

y2

3

1

2

1

x
0

x1

x2

1

2

x0

x1

x2

3

1

2

x
0

x1

x2

1

2

x0

x1

x2

1

2

-6

Sx

ex0

ey
0 ey

0

1

ey
1

1

ex1

1

Sy

ey
0

1

ey
0

ex0

1

ey
1

1

y0

y1

y2

1

2

10

y0

y1

y2

1

2

1

y0

y1

y2

3

1

2

1

F * FX Y

3

00

Figure 6: Representation of floating point multiplication.

This section presents floating point multiplication and addition
based on *PHDDs. Here, we show the representations of these
operations before rounding. In other words, the resulting *PHDDs
represent the precise results of the floating point operations. For
floating point multiplication, the size of the resulting graph grows
linearly with the word size. For floating point addition, the size of
the resulting graph grows exponentially with the size of the exponent
part.

Let FX = (�1)Sx � vx:X � 2EX�B and FY = (�1)Sy �
vy:X � 2EY�B , where vx (vy) is 0 if EX (EY) = 0, otherwise,
vx (vy) is 1. EX and EY are n bits, and X and Y are m bits. Let
the variable ordering be the sign variables, followed by the exponent
variables and then the mantissa variables. Based on the values of
EX and EY , FX � FY can be written as: (�1)Sx�Sy � 2�2B�8><
>:

21 � 21 � (0:X � 0:Y) Case 0 : EX = 0 EY = 0
21 � 2EY � (0:X � 1:Y) Case 1 : EX = 0 EY 6= 0
2EX � 21 � (1:X � 0:Y) Case 2 : EX 6= 0 EY = 0
2EX � 2EY � (1:X � 1:Y) Case 3 : EX 6= 0 EY 6= 0

Figure 6 illustrates the *PHDD representation for floating point mul-
tiplication. Observe that two negation edges reduce the graph size to
one half of the original size. WhenEX = 0, the subgraph represents
the function 0:X� vy:Y � 2EY . When EX 6= 0, the subgraph rep-
resents the function 1:X� vy:Y � 2EY . The size of exponent nodes
grows linearly with the word size of the exponent part. The lower
part of the resulting graph shows four mantissa products(from left to
right): X�Y , X� (23 +Y), (23 +X)�Y , (23 +X)� (23 +Y).
The first and third mantissa products share the common sub-function

Sx

0.X
+0.Y

0.X+
1.Y

1.X
+0.Y

1.X
+1.Y

0.X+
2*1.Y

0.X+
4*1.Y

2*1.X
+1.Y

1.X+
2*1.Y

2*1.X
+0.Y

1.X+
2*1.Y

4*1.X
+0.Y

2*1.X
+1.Y

1.X
+1.Y

1.X+
4*1.Y

4*1.X
+1.Y

1.X
+1.Y

True Addition

0.X
-0.Y

0.X-
1.Y

1.X
-0.Y

0.X
-0.Y

0.X-
2*1.Y

0.X-
4*1.Y

2*1.X
-1.Y

1.X-
2*1.Y

2*1.X
-0.Y

1.X-
2*1.Y

4*1.X
-0.Y

2*1.X
-1.Y

0.X
-0.Y

1.X-
4*1.Y

4*1.X
-1.Y

0.X
-0.Y

SySy

1 2

True Subtraction

1 1

ex
0

ey
0ey

0

ex1 ex1
ex1ex1

ey
1

ey
1

ey
1

ey
1

ey
1 ey

1
ey

1
ey

1

1 21 1

ex
0

ey
0ey

0

ex1 ex1
ex1ex1

ey
1

ey
1

ey
1

ey
1

ey
1 ey

1
ey

1
ey

1

Figure 7: Representation of floating point addition. For simplicity, the graph only shows sign bits, exponent bits and the possible
combinations of mantissa sums.

Y shown by the solid rectangles in Figure 6. The second and fourth
products share the common sub-function 23

+Y shown by the dashed
rectangles in Figure 6. In [5], we have proved that the size of the
resulting graph of floating point multiplication is 6(n+m) + 3 with
the variable ordering given in in Figure 6, where n and m are the
number of bits in the exponent and mantissa parts.

For floating point addition, the size of the resulting graph grows
exponentially with the size of the exponent part. In [5], we have
proved that the number of distinct mantissa sums of FX + FY is
2n+3�10, wheren is the number of bits in the exponentpart. Figure 7
illustrates the *PHDD representation of floating point addition with
two exponent bits for each floating point operand. Observe that the
negation edge reduces the graph size by half. According to the sign
bits of two words, the graphs can be divided into two sub-graphs:
true addition and true subtraction which represent the addition and
subtraction of two words, respectively. There is no sharing among the
sub-graphs for true addition and true subtraction. In true subtraction,
1:X � 1:Y has the same representation as 0:X � 0:Y . Therefore,
all 1:X � 1:Y entries are replaced by 0:X � 0:Y . Since the number
of distinct mantissa sums grows exponentially with the number of
exponent bits, it can be shown that the total number of nodes grows
exponentially with the size of exponent bits and grows linearly with
the size of the mantissa part. Readers can refer to [5] for a detailed
discussion of floating point addition. Floating point subtraction can
be performed by the negation and addition operations. Therefore, it
has the same complexity as addition.

In our experience, the sizes of the resulting graphs for multiplica-
tion and addition are hardly sensitive to the variables ordering of the
exponent variables. They exhibit a linear growth for multiplication
and exponential growth for addition for almost all possible ordering
of the exponent variables. It is more logical to put the variables with
Shannon decompositions on the top of the variables with the other
decompositions.

5 Experimental Results
We have implemented *PHDD with basic BDD functions and

applied it to verify arithmetic circuits. Integer multiplier circuits
and *BMD package can be obtained from Yirng-An Chen’s WWW
page1. The circuit structure for four different types of multipliers
are manually encoded in a C program which calls the BDD and
*BMD operations. We also integrated our *PHDD package with the

1http://www.cs.cmu.edu/�yachen/home.html.

C program. Our measurements are obtained on Sun Sparc 10 with
256 MB memory.
5.1 Integer Multipliers

Circuits CPU Time (Sec.) Memory(MB)
16 64 256 16 64 256

Add-Step *BMD 1.40 15.38 354.38 0.67 0.77 1.12
*PHDD 0.20 2.24 39.96 0.11 0.18 0.64

Ratio 7.0 6.8 8.9 6.0 4.3 1.8
CSA *BMD 1.61 26.91 591.70 0.67 0.80 2.09

*PHDD 0.25 3.45 50.72 0.14 0.30 0.88
Ratio 6.4 7.8 11.7 4.8 2.7 2.4

Booth *BMD 2.05 34.09 782.20 0.70 0.86 1.84
*PHDD 0.21 2.97 62.56 0.14 0.30 1.26

Ratio 9.7 11.5 12.5 5.0 2.9 1.5
Bit-Pair *BMD 1.21 17.35 378.64 0.70 0.86 2.34

*PHDD 0.20 2.17 36.10 0.15 0.33 1.33
Ratio 6.0 8.0 10.5 4.7 2.6 1.8

Table 1: Performance comparison between *BMD and *PHDD
for different integer multipliers. Results are shown for three dif-
ferent words. The ratio is obtained by dividing the result of *BMD
by that of *PHDD.

Table 1 shows the performance comparison between *BMD and
*PHDD for different integer multipliers with different word sizes.
For the CPU time, the complexity of *PHDDs for the multipliers still
grows quadratically with the word size. Compared with *BMDs,
*PHDDs are at least 6 times faster, since the edge weight manipula-
tion of *PHDDs only requires integer addition and subtraction, but
*BMDs require a multiple precision representation for integers and
perform costly multiple precision multiplication, division, and GCD
operations. While increasing the word size, the *PHDD’s speedup
is increasing, because *BMDs requires more time to perform mul-
tiple precision multiplication and division operations. Interestingly,
*PHDDs also use less memory than *BMDs, since the edge weights
in *BMDs are explicitly represented by extra nodes, while *PHDDs
embed edge weights into the node structure. The node sizes for both
packages are 20 bytes.
5.2 Floating Point Multipliers

To perform floating point multiplication operations before the
rounding stage, we introduced an adder to perform the exponent ad-
dition and logic to perform the sign operation in the C program.
Table 2 shows CPU times and memory requirements for verifying
floating point multipliers with fixed exponent size 11. Observe that

Circuits CPU Time (Sec.) Memory(MB)
16 64 256 16 64 256

Add-Step 0.24 2.29 39.77 0.13 0.18 0.65
CSA 0.29 3.08 53.98 0.14 0.30 0.88
Booth 0.25 3.85 67.38 0.16 0.30 1.26

Bit-Pair 0.21 2.10 38.54 0.15 0.33 1.33

Table 2: Performance for different floating point multipliers.
Results are shown for three different mantissa word size with fixed
exponent size 11.
the complexity of verifying the floating point multiplier before round-
ing still grows quadratically. In addition, the computation time is very
close to the time of verifying integer multipliers, since the verification
time of an 11-bit adder and the composition and verification times of
a floating point multiplier from integer mantissa multiplier and expo-
nent adder are negligible. The memory requirement is also similar to
that of the integer multiplier.
5.3 Floating Point Addition

Exponent No. of Nodes CPU Time (Sec.) Memory(MB)
Bits 23 52 23 52 23 52

4 4961 10877 0.2 0.7 0.4 0.7
5 10449 22861 0.7 1.3 0.7 1.1
6 21441 46845 1.1 3.5 1.1 2.0
7 43441 94829 2.7 6.9 1.9 3.8
8 87457 190813 7.2 16.8 3.6 7.5
9 175505 382797 15.0 41.3 7.2 14.8
10 351617 766781 33.4 103.2 14.3 29.5
11 703857 1534765 72.8 262.4 26.5 54.9
12 1408353 3070749 163.2 573.7 54.1 110.9
13 2817361 6142733 398.3 1303.8 112.5 226.0

Table 3: Performance for floating point additions. Results are
shown for three different exponent word size with fixed mantissa size
23 and 52 bits.

Table 3 shows the performance measurements of precise floating
point addition operations with different exponent bits and fixed man-
tissa sizes of 23 and 52 bits, respectively. Both the number of nodes
and the required memory double, while increasing one extra exponent
bit. For the same number of exponent bits, the measurements for the
52-bit mantissa are approximately twice the corresponding measure-
ments for the 23-bit mantissa. In other words, the complexity grows
linearly with the mantissa’s word size. Due to the cache behavior,
the CPU time is not doubling (sometimes, around triple), while in-
creasing one extra exponent bit. For the double precision of IEEE
standard 754 (the numbers of exponent and mantissa bits are 11 and
52 respectively), it only requires 54.9MB and 262.4 seconds. These
values indicate the possibility of the verification of an entire floating
point adder for IEEE double precision. For IEEE extended precision,
floating point addition will require at least 226.4 � 8 = 1811.2MB
memory. In order to verify IEEE extended precision addition, it is
necessary to avoid the exponential growth of floating point addition.

6 Future Work
To verify circuit designs automatically, we would like to integrate

the *PHDD package into word-level SMV [8] and extend word-
level SMV, if needed, to handle the floating point arithmetic circuits.
Then, we will look into the rounding stage and entire floating-point
adders. Earlier results [6] show that the rounding stage itself can be
handled with HDDs and therefore with *PHDDs. To verify entire
floating point adders, we need to develop some techniques to avoid
the exponentialgrowth. Our representation for floating point addition
represents the precise values of all possible combinations, but in the
actual circuit design, there are only about 200 interesting mantissa

sums. Based on this knowledge, we will develop a technique to avoid
the exponential growth of floating point addition. As mentioned in
previous sections, we will further pursue handling infinite and NaN
cases. We need to develop some techniques or introduce special
symbols to handle these cases.

Acknowledgement
We thank Xudong Zhao for valuable discussions on HDDs and

verification of arithmetic circuits. We also thank Manish Pandey,
Alok Jain, Shipra Panda and Bwolen Yang for proofreading this
paper.

References
[1] BRACE, K., RUDELL, R., AND BRYANT, R. E. Efficient im-

plementation of a BDD package. In Proceedings of the
27th ACM/IEEE Design Automation Conference (June 1990),
pp. 40–45.

[2] BRYANT, R. E., AND CHEN, Y.-A. Verification of arithmetic
functions with binary moment diagrams. Tech. Rep. CMU-CS-
94-160, School of Computer Science, Carnegie Mellon Univer-
sity, 1994.

[3] BRYANT, R. E., AND CHEN, Y.-A. Verification of arithmetic cir-
cuits with binary moment diagrams. In Proceedings of the 32nd
ACM/IEEE Design Automation Conference (1995), pp. 535–
541.

[4] CHEN, Y.-A., AND BRYANT, R. E. ACV: An arithmetic circuit
verifier. In Proceedings of the International Conference on
Computer-Aided Design (November 1996), pp. 361–365.

[5] CHEN, Y.-A., AND BRYANT, R. E. *PBHD: An efficient graph
representation for floating point circuit verification. Tech. Rep.
CMU-CS-97-134, School of Computer Science, Carnegie Mel-
lon University, 1997.

[6] CHEN, Y.-A., CLARKE, E. M., HO, P.-H., HOSKOTE, Y., KAM,
T., KHAIRA, M., O’LEARY, J., AND ZHAO, X. Verification of all
circuits in a floating-point unit using word-level model check-
ing. In Proceedings of the Formal Methods on Computer-Aided
Design (November 1996), pp. 19–33.

[7] CLARKE, E. M., FUJITA, M., AND ZHAO, X. Hybrid decision
diagrams overcoming the limitations of MTBDDs and BMDs.
In Proceedings of the International Conference on Computer-
Aided Design (November 1995), pp. 159–163.

[8] CLARKE, E. M., KHAIRA, M., AND ZHAO, X. Word level model
checking – Avoiding the Pentium FDIV error. In Proceedings
of the 33rd ACM/IEEE Design Automation Conference (June
1996), pp. 645–648.

[9] CLARKE, E. M., MCMILLAN, K., ZHAO, X., FUJITA, M., AND

YANG, J. Spectral transforms for large boolean functions with
applications to technology mapping. In Proceedings of the
30th ACM/IEEE Design Automation Conference (June 1993),
pp. 54–60.

[10] DRECHSLER, R., BECKER, B., AND RUPPERTZ, S. K*BMDs: a
new data struction for verification. In Proceedings of European
Design and Test Conference (March 1996), pp. 2–8.

[11] DRECHSLER, R., SARABI, A., THEOBALD, M., BECKER, B., AND

PERKOWSKI, M. A. Efficient representation and manipulation of
switching functions based on ordered Kronecker functional de-
cision diagrams. In Proceedings of the 31st ACM/IEEE Design
Automation Conference (June 1994), pp. 415–419.

