
Phenix: Supporting Resilient Low-Diameter Peer-to-Peer Topologies
Rita H. Wouhaybi, and Andrew T. Campbell

Department of Electrical Engineering
Columbia University

New York, USA
{rita,campbell}@comet.columbia.edu

Abstract— Peer-to-peer networks are mainly unstructured,

where no specific topology is imposed on the network during its
operations. These networks offer a high degree of resilience
against network dynamics such as nodes joining and leaving the
network, node failure, and malicious behavior intent on
disrupting the network’s operation. Unstructured networks,
based on random connections are limited, however, in the
performance and node reachability they can offer to applications.
In contrast, structured networks impose predetermined
connectivity relationships between nodes in order to offer a
guarantee on the diameter between requesting nodes and the
requested objects. We observe that neither structured nor
unstructured networks can simultaneously offer both good
performance and resilience in a single algorithm. To address this
challenge, we propose Phenix, a peer-to-peer algorithm that can
construct low-diameter resilient topologies. Phenix supports low
diameter operations by creating a topology of nodes whose
degree distribution follows a power-law, while the
implementation of the underlying algorithm is fully distributed
requiring no central server, thus, eliminating the possibility of a
single point of failure in the system. We present the design and
evaluation of the algorithm and show through analysis,
simulation, and experimental results obtained from an
implementation on the PlanetLab testbed that Phenix is robust to
network dynamics such as joins/leaves, node failure and large-
scale network attacks, while maintaining low overhead when
implemented in an experimental network.

Keywords— Peer-to-Peer Networks, Resilient Networks, System
design, Simulations, Experimentation with Real Networks/Testbeds

I. INTRODUCTION
Over the past several years, we have witnessed the rapid

growth of peer-to-peer applications and the emergence of
overlay infrastructure for Internet, however, many challenges
remain as this new field matures. The work presented in this
paper addresses the outstanding problem of the construction of
resilient peer-to-peer networks and their efficient performance
in terms of faster response time and low-diameter operations
for user queries. Low-diameter networks are often desirable
because they offer a low average distance between nodes,
often in the order of ()O logN . The two classes of peer-to-
peer networks, found in the literature, either offer better
resilience to node dynamics such as joins/leaves, node failure
and service attacks, as in the case of unstructured networks
[13] [29], or, they offer better performance as in the case of
structured networks [26] [30] [33]. Because of the inherent
tradeoffs in the design space of these different classes of peer-
to-peer networks, it is difficult to simultaneously offer better
performance and resilience without having to reconsider some

of the fundamental design choices made to develop these
network systems. We take one such alternative approach and
propose a peer-to-peer algorithm that delivers both
performance and resilience. The proposed algorithm builds a
low-diameter resilient peer-to-peer network providing users
with a high probability of reaching a large number of nodes in
the system even under conditions such as node removal, node
failure, and malicious system attacks. The algorithm does not
impose structure on the network, rather, the established graph
of network connections has the goal of creating some order
from the total randomness found in resilient unstructured
networks, such as, Gnutella [13] and KaZaA [29].

Unstructured peer-to-peer networks, such as Gnutella,
offer no guarantee on the diameter because nodes interconnect
in a random manner, resulting in anything other than an
efficient topology. These unstructured systems are often
criticized for their lack of scalability [27], which can lead to
partitions in the network resulting in small islands of
interconnected nodes that cannot reach each other. However,
these same random connections offer the network a high
degree of resiliency where the operation of the resulting
network as a whole is tolerable to node removal and failure. In
contrast, structured peer-to-peer networks based on
Distributed Hashing Tables (DHTs), such as Chord [30] and
CAN [26] have been designed to provide a bound on the
diameter of the system, and as a result, on the response time
for nodes to perform queries. However, these systems impose
a relatively rigid structure on the overlay network, which is
often the cause of degraded performance during node
removals, requiring non-trivial node maintenance. This results
in certain vulnerabilities (e.g., weak points) that attackers can
target and exploit. Due to the design of DHTs, these structured
topologies are also limited in providing applications with the
flexibility of generic keyword searches because DHTs rely
extensively on hashing the keys associated with objects [2]
[9].

These observations motivate the work presented in this
paper. We propose Phenix, a scale-free algorithm that
constructs low-diameter P2P topologies offering fast response
times to users. Another important attribute of Phenix is its
built-in robustness and resilience to network dynamics, such
as, operational nodes joining and leaving overlays, node
failures, and importantly, malicious large-scale attacks on
overlay nodes. The main design goals of Phenix can be
summarized as follows:

• to construct low-diameter graphs that result in fast
response times for users, where most nodes in the
overlay network are within a small number of hops from
each other;

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

• to maintain low-diameter topologies under normal
operational conditions where nodes periodically join and
leave the network, and under malicious conditions where
nodes are systematically attacked and removed from the
network;

• to implement support for low-diameter topologies in a
fully distributed manner without the need of any central
authority that might become a single point of failure,
which would inevitably limit the robustness and
resilience of peer-to-peer networks; and

• to support connectivity between peer nodes in a general
and non-application specific manner so a wide-variety of
applications can utilize the network overlay
infrastructure.

An important property of Phenix is that it constructs
topologies based on power-law degree distributions with a
built-in mechanism that can achieve a high degree of
resilience for the entire network. We show that even in the
event of concerted and targeted attacks, nodes in a Phenix
network continue to communicate with a low diameter where
they efficiently and promptly rearrange their connectivity with
little overall cost and disruption to the operation of the
network as a whole. To the best of our knowledge Phenix
represents one of the first algorithms that builds resilient low-
diameter peer-to-peer topologies specifically targeted toward,
and derived from, popular unstructured P2P network
architectures, such as, Gnutella [13] and KaZaA [29].

In this paper, we present the design of the Phenix
algorithm and evaluate its performance using analysis,
simulation, and experimentation. We make a number of
observations and show the algorithm’s responsiveness to
various network dynamics including systematic and targeted
attacks on the overlay infrastructure. We also implement and
evaluate Phenix using the PlanetLab testbed [24].
Experimental results from the testbed implementation quantify
the algorithm’s overhead and responsiveness to network
dynamics for a number of PlanetLab nodes. The paper is
structured as follows. We discuss the related work in Section
II and then present the detailed design and operations of
Phenix in Section III. Section IV presents a detailed evaluation
of the algorithm’s operation, followed by Section V, which
presents experimental results from the implementation of
Phenix on the PlanetLab platform. Finally, we present some
concluding remarks in Section VI.

II. RELATED WORK
Traditionally, low diameter networks tend to appear in

social networks forming small-world topologies [4], while
power-law behavior is often seen in many natural systems as
well as man-made environments [1] [11] [16]. These
observations led to a body of work related to analyzing and
modeling of such networks [4] [8] [14] [19] [20]. The
contribution discussed in [7] on preferential attachment has
been influential in our thinking. However, the idea of
preferential attachment is used in Phenix as a basis to ensure
resiliency in a fully distributed, dynamic peer-to-peer
environment. The work on peer-to-peer networks presented in
[10] makes use of small-world algorithms based on the

proposition by Watts and Strogatz [32] on ‘rewiring’ the
network. In [10], the idea of rewiring is applied to a Chord
[30] overlay. Pandurangan et.al. [22] [23] create a low-
diameter peer-to-peer network but rely heavily on a central
server that is needed to coordinate the connections between
peers. This proposal creates a potential single point of failure
in the overlay network. The authors also do not address the
resilience of such a network in the event of targeted node
removal, various attacks, or misbehaving nodes. Under such
conditions the performance of the network would likely
degrade and deviate from the low-diameter design goal.

A family of structured peer-to-peer topologies relying on
DHTs, such as Chord [30], CAN [26] and Tapestry [33], has
attracted considerable attention in the P2P/overlay
community. However, such networks might be limited
because they unduly restrict the queries that the users can
initiate (e.g., keyword queries) due to the use of hashing tables
to store objects at overlay nodes. These networks also couple
the application to the underlying infrastructure layer, which
makes them attractive to specific applications, but the
infrastructure may need to be revised to support changing
needs of users. The idea of differentiating the rank of different
overlay nodes (e.g., a super node over a regular node) in a
peer-to-peer network has been used by a number of systems in
order to achieve better performance. For example, KaZaA [29]
uses the notion of ‘supernodes’, and Guntella v.0.6 [14] uses
‘ultrapeers’ [31] as supported by the Query Routing Protocol
(QRP) [25]. KaZaA creates supernodes among peers by
assigning an elevated ranking to nodes with a faster
connectivity such as broadband Internet access. However, the
implementation details of these popular P2P schemes are not
open or published, which makes it difficult to make a
comparative statement on the deployed algorithms. Ultrapeers
are a standard feature of Gnutella v.0.6, constituting an
essential element of QRP, as mentioned above. Ultrapeers
differ from what we propose in Phenix in a number of ways.
First, ultrapeers act as servers in a hierarchy that is widely
known by all other nodes in the network. As a result of this
predetermined hierarchy, ultrapeers create a number of
vulnerabilities in the system. If ultrapeers were forcefully
removed from the network by an attacker, the system would
suffer considerably; potentially fragmenting the remaining
nodes into disconnected smaller network partitions. Another
vulnerability arises when malicious nodes assume the role of
ultrapeers and mislead other overlay nodes into relying on
them for services. An ultrapeer does not use lower level nodes
(also called leaves) to relay traffic to other ultrapeers in the
network, rather, ultrapeers interact directly with each other.
Such reliance could create disconnected groups of nodes in the
event that ultrapeers unexpectedly drop out of the network in
an uncontrolled manner due to node failure or forceful
removal. Each ultrapeer also keeps state information related to
the data held by leaf nodes that are connected to it. Creating
such a hierarchy that is closely tied to the application level
may call for a complete redesign in the event that the
application’s needs change or new applications need to be
efficiently supported.

In our work, we make a distinction between the type of
information carried by packets and the routing decisions that

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

are made. RON [6] and i3 [3] have already been designed
based on this approach, where a generic topology is proposed
that is independent of the application that makes use of it.
Such a topology would be an asset for smart search algorithms
[2] [9] that direct queries instead of flooding the entire
neighborhood of the requesting node. Finally, in the context of
security, secure peer-to-peer and overlay networks have been
proposed as policies to protect individual nodes against denial
of service (DOS) attacks in the SOS [18] and Mayday [5]
systems, but not in the context of an overall resilient P2P
network architecture. Phenix addresses the resilience of the
entire network and not the individual nodes.

III. PHENIX PEER-TO-PEER NETWORKS

A. Power-Law Properties
The signature of a power-law or a scale-free network lies

in its degree distribution, which is of the form presented in
Equation (1).

 ()p K K γ−
� (1)

Many networks tend to have an exponent γ close to 2, for
example, the Internet backbone connectivity distribution is a
power law with an exponent 2.2 0.1γ = ± [11].

As a result of this distribution some nodes are highly
connected and can act as hubs for the rest of the nodes. These
nodes and their position in the network contribute to a highly
desirable characteristic of these graphs: a low “almost
constant” diameter, defined as, the average shortest path
between two nodes in the graph. This graph is capable of
growing while maintaining a low diameter hence the name
scale-free networks. Typically, peer-to-peer networks suffer
from a large diameter, which often causes the generation of
more network traffic. This is inefficient because it requires
nodes to either increase the radius of a search for an object, or
opt for a low radius search, which would limit the probability
of finding less popular objects in the network. These design
trade offs result in increased signaling or degraded
performance.

In the light of these observations, it seems natural to
construct a peer-to-peer topology that conforms to a power-
law for its node degree distribution. However, for a proposed
algorithm to be feasible, it must adhere to a number of design
restrictions. First, the algorithm should be easy to implement
and make few assumptions about the underlying network.
Despite the problems associated with Gnutella, its deployment
is widespread as a result of the simplicity of the underlying
protocol [13] [14]. Next, the algorithm should be fully
distributed based on local control information, and not include
any centralization of control, which might become a
bottleneck or a target for attacks. Finally, the algorithm should
be robust to node removal whether random or targeted. This
means that the network should not be easily partitioned into
smaller sub-networks and should be capable of maintaining a
high level of resiliency and low diameter in the face of node
removal.

The main motivation behind Phenix is to allow nodes in
the network to ‘organically’ emerge as special nodes (called
preferred nodes) with a degree of connectivity higher than the

average, so that a scale-free topology can be formed. In other
words, we do not dictate special nodes or hierarchies in
advance for the topology to emerge or the network to function.
As shown in [7], such networks appear in nature due to
preferential attachment, where newcomers tend to prefer
connecting to nodes that already have a strong presence
characterized by their high degree, and the dynamic nature of
such networks involving growth.

By examining social networks, we can observe the
following; if someone joins a new social network, the first
network of “friends” is pretty much random. However, most
people, after seeing that a specific person has more
acquaintances and is better connected to a larger number of
members in that specific network, tend to acquire a connection
to that person in order to gain better visibility. In fact, [7]
shows that if a new node has knowledge of the states of all the
existing nodes in the network and their interconnections, it can
connect to the nodes with the highest degree giving it the
highest visibility and putting it in a place where it is a few
hops away from the rest of the network. This will guarantee
that the resulting network has a degree distribution
conforming to a power-law resulting in a low diameter.
However, in a peer-to-peer network having such a global view
is practically impossible, since most nodes typically can only
see a small fraction of the network, and have to make
decisions based solely on local information. After presenting
the detail design of the Phenix algorithm in the next section,
we show through analysis that Phenix encourages the
emergence of preferred nodes that follow power-laws in
Section III.D. We reinforce this observation through
simulation and experimental results in Sections IV and V,
respectively.

B. Phenix Algorithm Design
In what follows, we describe the Phenix algorithm for the

simple case where nodes join the network. A node i obtains a
list of addresses using a rendezvous mechanism by either
contacting a host cache server [12] or consulting its own cache
from a previous session in a fashion similar to an initial
connection, as described in Guntella v0.6 [14]. However,
instead of establishing connections to “live” nodes from the
returned list, the joining node divides these addresses into two
subsets, as expressed in Equation (2): that is, random
neighbors and friends that will be contacted in the next step.

 , , ,,host i random i friends iG G G =   (2)
Then i initiates a request called a ‘ping message’ to the

nodes in the list ,friends iG , sending a message of the form:
0 , , 1, 0M source i type ping TTL hops= = = = = (3)

Each recipient node constructs a ‘pong message’ as a reply
containing the list of its own neighbors, increments the hops
counter, decrements the TTL, and forwards a new ping
message to its own neighbors, as follows:
 1 , , 0, 1M source i type ping TTL hops= = = = = (4)

Each node j receiving such a message will send no pong
message in reply, but instead add the node i to a special list
called jΓ for a period of time denoted by .τ

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Following this procedure, the node i obtains a new list of
all the neighbors of nodes contained in ,friends iG and constructs
a new list denoted by ,candidates iG . Then i sorts this new set of
nodes using the frequency of appearance in descending order,
and uses the topmost nodes to create a new set that we denote
as ,preferred iG , where , ,preferred i candidates iG G⊆ . Thus, the resulting
set of neighbors to which i creates connections is given by:

 [], ,,i random i preferred iG G G= (5)
Node i opens a servent (server-client), connection to a

node m (m is in the list ,preferred iG) where the word servent is a
term denoting a peer-to-peer node, which is typically a server
and a client at the same time as it accepts connections as well
as initiates them. Then node m checks whether i is in its mΓ
list, and if this is the case, increments an internal counter mc
and compares it against a constant γ . If mc γ≥ , then

m mc c γ= − , a connection is created to node i , which we call
a ‘backward connection’, and the set of neighbors added as
backward edges is updated, as follows:

 { }, ,backward m backward mG G i= U (6)
This backward connection creates an undirected edge

between the two nodes i and m (i m↔) from the initial
directed edge, as i m→ . In addition, γ ensures that a node
does not add more connections than ,in md γ where ,in md is the
in-degree for node m , or the number of its incoming
connections.

When node i receives a backward connection from node
m it will consider its choice of node m as a good one, and
accordingly update its neighbors lists:

{ }

{ }
, ,

_ , _ ,

preferred i preferred i

highly preferred i highly preferred i

G G m

G G m

= −

= +
 (7)

Therefore, the final list of neighbors for a node i is given
by:

 , , _ , ,, , ,i random i preferred i highly preferred i backward iG G G G G =   (8)

A summary of this algorithm is presented in Figure 1, and
an example of the creation of iG is presented in Figure 2 for
illustration purposes. In this particular scenario, the existing
overlay network is depicted in Figure 2(a) where the
interconnections between nodes are shown with arrows, with
the bold arrows representing connections that were created by
preferential and backward formation. In the scenario, Node 8,
wants to join the network and goes through the process shown
in Figure 2(b). Node 8 starts by obtaining a list of hosts that
are present in the network and then divides this list into two
sub-lists where []1,3randomG = and []5,6friendsG = . Then it
contacts the nodes contained in friendsG to obtain their lists of
neighbors and constructs the following list

[]7,2, 4,7candidatesG = . Sorting the nodes in descending order
using their frequency of appearance yields []7, 2preferredG = .
Then Node 8 constructs the final list

[]7,2,1,3preferred randomG G G= =U and connects to these nodes.
Note, that as Node 8 starts its servent sessions with the
resulting nodes in G then one or more of them might choose
to create a backward connection to Node 8 depending on the
values of their respective counters c .

C. Network Resiliency
According to the Webster Dictionary [21], the word

resilience is defined as ‘an ability to recover from or adjust
easily to misfortune or change.’ Networks with power-law
degree distributions are often criticized in the literature for
collapsing under targeted attacks. Under such conditions if a
small fraction of the nodes with high degrees is removed from
the network then the whole network suffers and often becomes
disconnected into smaller partitioned fragments, also referred
to as “islands” in the literature [7]. Phenix attempts to make
connections resilient, protecting the well being of the entire
network. We achieve this goal by following a set of guidelines
that can be summarized, as follows. First, we attempt to hide
the identity of highly connected nodes as much as possible,
making the task of obtaining a comprehensive list that
contains these nodes practically impossible. The second
deterrent deals with neighbor updates, or what we call ‘node
maintenance’ (discussed below), where a network under attack
can recover when existing nodes rearrange their connections
and maintain connectivity. Note, that we assume that an
attacker is powerful enough to force a node to drop out of the
network, whether by denial of service attacks or by any other
mechanism available, once an attacker acquires the IP address
of such a node. In Phenix networks, resiliency implicitly
means: the resilience of the whole network consisting of all
“live” nodes where their connections form edges in a graph
that is as close to a strongly connected graph as is possible, as
we will show in Section IV.

obtain hostG from web cache;

divide hostG into randomG and ;friendsG

let s be the size of friendsG ;

candidatesG = ∅ ;

for (x=0; x<s; x++)

 send 0M ; where []()0 , ,1,0friendsM ping i G x=

 [];candidatescandidates candidates G xG G G= U

()1 2, ,..., ;preferred p candidatesG g g g sorted G = ⊆ 

connect to all nodes in ;random preferredG G G= U

if ((j connects back to i) && (preferredj G∈))

 { };preferred preferredG G j= −

 { }_ _ ;highly preferred highly preferredG G j= +

Figure 1 Algorithm for connect_to_network(i)

1

76

54

32

8
1
3
5
6

1
3
7
27

2
7
2
4
7

5
6

1
3

(a) The Existing Network (b) Node 8 Arrives

Figure 2. Examples of Phenix Overlay Construction

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

1) Hiding Node Identities
In order to limit the likelihood of a malicious user

obtaining a global view of the whole overlay graph (formed by
the live nodes) of the network, Phenix supports three
important mechanisms.

First, a node receiving a ping message 0M will respond
with a pong message, and forward a ping message 1M to its
neighbors. All nodes receiving 1M will add the originator to a
list denoted by jΓ . This list supports the notion of either
‘temporary blocking’ or ‘black listing’, where if the same
originating node sends a ping message with the intent of
“crawling” the network to capture global or partial graph state
information, such a message will be silently dropped with no
answer/response sent back to the originating node. Black lists
can be shared with higher layer protocols to isolate such
malicious practices and can serve to isolate such nodes. These
mechanisms are outside the initial scope of this paper but will
be a topic for further work. A mechanism that detects a node
crawling the network and silently discards queries will not
stop a malicious user, but rather, slow its progress because the
malicious node needs to obtain a new node ID (e.g., this
would be similar to the Gnutella ID) to continue the crawl of
the overlay, or wait for enough time for nodes to purge their
black lists jΓ . Peer-to-peer networks such as Guntella [13]
have proposed including the MAC address as part of the node
ID, making it even more difficult for an attacker to obtain a
new and distinctly different node ID at a rate fast enough to
continue the crawl. It is worth noting that if joins/leaves of an
overlay network are dynamic enough then crawling at slower
time scales will not yield an accurate view of the network state
and topology. Even though such a scheme helps limit the
impact that malicious nodes can have, it still does not fully
eradicate potential attacks on the network.

Next, Phenix also employs the policy of silently dropping
any ping message, similar to the one shown in Equation (3),
whose TTL value is greater than 1. A non-confirming node
with malicious intent might generate such a message. Nodes
drop these messages without responding to the originator or
forwarding such a message to neighbors. This has the effect of
eliminating crawling even if the originating node is not on the
list jΓ of the receiving node, in contrast to Gnutella where
crawling is often practiced.

Third, a node that establishes backward connections to
other nodes in the network will not return these connections
when it receives a ping in any of its pong reply messages. This
policy is not meant to protect the node’s backwardG sub-list of
neighbors. Rather, it protects the identity of the node itself and
any possible preferential status that the node may have, from
an attacking node. If an attacker were to receive a long
neighbors list from a node, it can infer that such a node is a
highly connected node from the size of its neighbors’ list.
Thus, a node will only return the subset _outside worldG defined
by Equation (9) in a pong message. In this case, this node does
not need to forward 1M to all of its neighbors. Rather, it only
forwards 1M to nodes in its _outside worldG subset since these are
the nodes that might risk exposure to an attacker, where,

 []_ _, ,outside world random preferred highly preferredG G G G= (9)

2) Node Maintenance Mechanism
In the event of an attack, the network needs to be

responsive and able to rearrange connectivity in order to
maintain strong connections between its nodes. In what
follows, we propose a state probing mechanism that makes
Phenix responsive to failed nodes or nodes that drop out of the
overlay because of attacks.

The number of neighbors of a node i , represented by ih ,
is defined as the summation of the number of neighbors
obtained through random, preferred and backward
attachments; in other words, the out-degree of the node
defined as the total number of outgoing connection for a node
i . This total number is expressed in Equation (10), where

0b
ih = , if []i preferred nodes∉ . r

ih , p
ih , and b

ih represent
the number of random, preferential (standard and highly), and
backward neighbors, respectively.
 r p b

i i i ih h h h= + + (10)
Nodes examine their neighbors’ table in order to make

sure that they are not disconnected from the network due to
node departures, failures, or denial of service attacks. If the
Inequality presented in (11) is satisfied, signaling a drop, then
node i runs a node maintenance procedure, as described
below.
 r p

i ih h threshold+ < (11)
If a node on the i ’s neighbors’ list leaves the network

gracefully, then it informs all the nodes connecting to it by
closing the connections. However, if a node is forcefully
removed or fails then node i will be informed of this fact only
through probing where a message is sent to its neighbors, as
follows: 2 , , 0, 0M source i type ping TTL hops= = = = = . In
the case where no answer is received after a timeout (which is
discussed in Section V) then the neighboring node is declared
down.

The number of neighbors before node maintenance can be
expressed as follows:
 1() () () () ()r p b

i n i n i n i n i nh t h t d t d t d t−
−= − − − (12)

where, ()i nh t− : current number of nodes (prior to the last
maintenance run), and ()r

i nd t , ()p
i nd t , ()b

i nd t : the number of
neighbors (random, preferential, and backward, respectively)
lost since the last node maintenance. Following the node
maintenance, we have:

() ()
(),

()
() () (),

i n
b

i n i n i n

p r
i n i n i n

thresholdh t
h t h t h t max

h t u t u t otherwise

−

−

−

<
= − ≤
 + +

 (13)

where, ()i nh t : the number of nodes after the node
maintenance and ()p

i nu t , ()r
i nu t : the number of new nodes

added preferentially and randomly, respectively.
The ratio of preferential and random neighbors for a node

i is presented in Equation (14).

() ()() , () 1, ,
() max ()

r r
i n i n

i n i np r
i n i n

h t h tt and t i n
h t h t

α α= ≤ ≤ ∀
−

 (14)

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

and the initial value of α is expressed by: 0() 1, i t iα = ∀ .
The updates of neighbors is then performed according to

Equations (15) and (16).
 () ()r r

i n i nu t d t= (15)

 1

() , () 0
() ()

0, () 0

p
i n p

i np
i n i n

p
i n

t d t
u t t

d t

τ µ
α −

 − > =  
 =

 (16)

where,
1

() ()
n

p
i n i k

k n l
t d t lτ

= − +

= ∑ .

()r
i ntτ is the average number of preferential neighbors that

dropped out over the last l node maintenance cycles,
measured at time nt , pµ is the expected value of the number
of neighbors that disappeared in one node maintenance cycle.
The symbol    rounds up the value to the next highest
integer. Therefore, the final number of neighbors is:

0 0(), () () ()
() () (), () max () ()

max (),

p p p p
i i n i i n

p p p p p r
i n i n i n i n i n i n

r
i n

h t u t h t h t
h t h t u t u t h t h t

h t otherwise

−

− −

 < −
= + < − −
 −

 (17)

For preferred nodes, we already have the following
approximation:

 ib
i

nh γ
γ

 −=  
 

where in is the number of nodes pointing to node i . The
preferred node updates its ic counter, as follows:

()()b
i i i nc c d tγ= + × , while no nodes are added in the

backward set during the node maintenance process.
Analysis of the effect of α on the network’s behavior,

particularly when faced with large-scale attacks is discussed in
Section IV.

D. Preferential Nodes
We now show through analysis that Phenix encourages the

emergence of nodes whose degree is higher than the average
across the entire network, even if we initially start out with a
completely random set of connections among nodes present in
the overlay network. In what follows, we analyze the
emergence of nodes with a degree deviating from that of the
average of the network. We call such nodes preferred nodes.
Let us assume that we initially have a network of N nodes
interconnected randomly. A new node i, running the Phenix
algorithm wishes to connect to this network. So, i acquires a
list of friends using a rendezvous mechanism similar to the
one used by many P2P systems. As described earlier, node i
contacts these friends asking for their respective lists of
neighbors. The summation of all answers constitutes the list of
candidates. It follows that after node i acquires the list of

,candidates iG , the probability of connecting to a node on the list is
directly proportional to the frequency of appearance of that
node; that is to say, it is equal to the probability that a node
will appear more than once in its list of candidates.

Let, µ be the average number of neighbors and N the
number of nodes in the network. A new node i will connect to

2µ nodes randomly in ,random iG , since 0() 1, i t iα = ∀ , and
will contact 2µ nodes requesting a list of their neighbors,
which will become ,candidates iG . Thus, the resulting number of
nodes on this latter list is an average of 2 2µ nodes.

Since we are interested in nodes appearing more than once
on this list (which translates to a higher probability in
initiating a connection to one of them), we calculate the
probability of a node j appearing at least twice, which is
expressed as the summation of the probabilities that j appears
2, 3, 4, …, m times, where 2m µ= . This upper bound of m
comes from the fact that a node can appear at most once in
each list returned by one node of the sub-list ,candidates iG . Thus
the probability of a node appearing twice becomes the
probability that it is on two of the lists of nodes in ,candidates iG ,
and similarly, three appearances signifies the presence on
three lists, and so on until m. The values of these probabilities
are approximated by ()2Nµ , ()3Nµ , …, ()mNµ ,
respectively. Therefore, the probability that a node appears at
least twice, encouraging a preferential attachment in a Phenix
setup is given by the following equation:

 () ()
2

2

2 ...
mm

i
P X P X i

N N
µ µ

=

   ≥ = = = + +   
   

∑ (18)

since 1Nµ < , it follows:

 () () 11
2 1

1

mN
P X

N N
µ µ

µ

+−
≥ = − −

−
 (19)

Now that we know the value of the probability of a
preferential attachment, we are interested in analyzing how
fast such an attachment will take place (as the network grows)
assuring the evolution of the network graph from a random
network to one based on power-laws. Figure 3 plots the
probability derived in Equation (19) versus the average
number of neighbors for different values of N, the initial
random network. We can observe that it is desirable for the
initial network to be small so that preferential attachments
start to form as early as possible; for example, given an initial
Phenix network of 20 nodes, the probability of preferential
attachment is around 0.117. This means that with the 9th node
joining the network, at least one preferential attachment is
formed. It follows that after one preferential attachment forms,
the probability of a second preferential attachment increases
since the probability of this node appearing more than the
others is already biased. Note that N is not the total number of

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

of
 P

re
fe

re
nt

ia
l

Average Number of Neigbors

N=10
N=15
N=20
N=25

Figure 3. Probability that a Preferred Node Appears

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

nodes in the final overlay, but only the first initial nodes that
come together in the network. Clearly, the overlay network
can grow to encompass a much larger number of nodes, and at
that time Equation (9) no longer holds because the
connections among nodes is not random, but biased, forming a
power-law, as we have just shown in this section.

IV. SIMULATION
In what follows, we discuss the results obtained from

implementing the Phenix algorithm in a simulation
environment based on Java software. We start by examining
the emergence of a power-law where nodes enjoy a low-
diameter. We then study different types of attacks on an
overlay network using the Phenix algorithm to measure the
network’s degree of resilience.

A. Power-Law Analysis
Degree distributions following power-laws tend to appear

in very large networks found in nature [7] [8]. However, we
would like to have an algorithm where such a distribution will
be present in networks of modest size. Such an algorithm
might be useful in different situations for various applications
where an assurance of a large number of nodes might not be
feasible. We studied the effect of creating a network of pure
joins in order to be guaranteed of the emergence of a power-
law in such a simple scenario. The nodes join the network
following a normal distribution at simulation intervals, by
acquiring neighbors’ connections based on the Phenix
algorithm. Plotting the degree distribution for the resulting
network of a 1000-node on a log-log scale shows a power-law
emerging in Figure 4(a). This property is more clearly
observed for a network of 100,000 nodes, as observed in
Figure 4(b).

B. Attack Analysis
Next, we study more sophisticated networks where nodes

join and leave the network using different scenarios. The next
simulations included an implementation of the Phenix
algorithm with all of its features, ensuring responsiveness to
slow as well as abrupt changes in the overall structure. The
attacks analyzed in this section are aggressive and to some
extent extreme requiring additions of nodes to the network
that probably would not be typical of an attacker in a practical
network. However, we chose to include such an analysis in
order to test the limit at which the Phenix algorithm is capable
of adapting, and the point beyond which the network does not
serve its purpose anymore of interconnecting participants to
each other.

We consider a number of attack scenarios where an
attacker can perform one of three different types of distinct
attacks on the network, or a combination of such attack
scenarios. The first attack scenario consists of a user that
acquires host cache information like a legitimate node might.
The attacker contacts these acquired nodes with a 0M
message, getting the respective lists of their neighbors, and
building his candidate’s list, as a result. However, once the
attacker has this information it will then attack the nodes
appearing in this list more than once, removing them from the
network. Such an attacker is limited in its capabilities and
resources when compared to the two other scenarios discussed
next, because the attacker attempts to target nodes that might
have a node degree higher than the average without
participating in the overall structure. However, such an
attacker has a level of sophistication because it is not
removing nodes randomly. Rather, the attacker attempts to
cause much disruption as possible by maximizing the damage
to the network in creating targeted attacks toward nodes that
are important to the network performance, with as little
investment as possible. The other two types of attacks are
more organized from the attacker’s perspective and require
adding a large number of nodes to the network. Such an attack
option is possible due to the fact that the network is open and
welcomes any connection with no prior authentication or
authorization. (Clearly, network support for authentication and
authorization of nodes while outside of the scope of our initial
research would provide much stronger security and limit these
malicious attacks. We intend to study such mechanisms as part
of our future work). The first of these two additional attacks
we denote as a ‘Group Type I’ attack. This attack requires an
attacker to add a number of nodes to the network that only
point to each other, thus, increasing the probability that they
will emerge as preferred nodes in the overlay network. The
last type of attack, which we denote as a ‘Group Type II’
attack, consists of adding a number of nodes to the network
that would behave like normal nodes do. These last two types
of attacks attempt to create anomalies in the network by
introducing ‘false’ nodes that remain connected for a
prolonged period of time. Such a regime would ensure that
other ‘true’ nodes come to rely on these false malicious nodes
due to the length of time that the false nodes are available in
the network. Under such attack scenarios, these false nodes
suddenly disconnect from the overlay network all at the same
time with the intention of disconnecting and fragmenting the
network into small islands of nodes. We also consider a hybrid
attack scenario where the strategy dictates that some of the
malicious nodes use the strategy of “Group Type I” and the

1

10

100

1000

1 10 100 1000 1

10

100

1000

10000

100000

1 10 100 1000 10000 100000
Figure 4(a) Degree Distribution for 1000 Nodes on a log-log scale Figure 4(b) Degree Distribution for 100,000 Nodes on a log-log scale

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

others use “Group Type II” attacks.
The following simulation results are for an overlay

network composed of 2000 nodes. Each node chooses a
number of neighbors between 5 and 8, which represents small
numbers of nodes, if compared to Gnutella [14], denoted,
respectively, by min and max, with equal probability while
maintaining 0() 1, i t iα ≤ ∀ , resulting in an average of

()()0 41 48iE tα = for the whole network. However, this
initial state for α will change as nodes join and, most
importantly, leave the network, as we will discuss later. At
each simulation time interval, the number of nodes joining the
network is based on a normal distribution. For the case of
nodes leaving the network, we consider three different cases:
(i) the departure pattern is based on a normal distribution with
a mean λ where nodes leaving are randomly selected from
the overlay network. This scenario is equivalent to the case
where the system faces no attacks, as shown in Figure 5; (ii)
the departure pattern is based on a normal distribution,
however, the nodes are removed by sending ping messages
creating a sorted list of candidates, and removing preferred
nodes from the network (this corresponds to the “modest
attacker”); and (iii) represents group attacks as in the case of
Group Type I, Group Type II, and hybrid of Group Type
I/Group Type II attacks. In this case, a percentage of the nodes
(note that different values of this percentage are studied
extensively later in this section) represent malicious nodes that
conspire together to create the maximum possible damage to
the whole structure of the network. The attack proceeds by
having nodes at each interval leave the system as if there is no
attack scenario until the malicious nodes suddenly drop out of
the system, as described earlier. In each case of nodes leaving
the system, we compare the performance of the network with

a pure random network having the same average number of
neighbors across all nodes, taking into consideration the min,
max values, and backward connectivity from preferred nodes
in a fashion similar to a topology created in the Gnutella
network [14].

In all simulations, we start with a small number of nodes
20initn = that are interconnected randomly to each other with

each node maintaining a number of neighbors
imin h max≤ ≤ . The average rate of nodes arriving (i.e.,

issuing joins) is greater than the average departure rate,
allowing the network to grow to the total number of nodes we
would like to examine. In the case of Type I, Type II or hybrid
group attacks, the process with which the network is formed
starts by adding 50% of the legitimate or ‘true’ nodes in
incremental steps. At each step, the number of nodes added is
drawn from a normal distribution, in a fashion similar to what
would happen in a real P2P network. Following this, the
malicious nodes are introduced in a single step giving them
enough time to establish a strong presence in the network. We
then add the next 50% of the legitimate nodes also in
incremental steps. During all the steps, nodes continue to
leave the network under a “no attack” situation. Eventually,
we remove the malicious nodes, and study the effect on the
remaining live nodes.

The metric measured for these networks consists of the
percentage of unique reachable nodes in the network vs. the
number of hops that we also denote by TTL. This
measurement will give us an understanding of how many
nodes can be reached when an application issues a query on
top of the Phenix topology. Also note, that the same can be
denoted as a radius because it starts with a node as the center
and proceeds to try to cover as much of the network as

0

20

40

60

80

100

2 3 4 5 6 7 8

R
ea

ch
ib

ilit
y

%

TTL

Random
No Attack

Modest Attacker

0

20

40

60

80

100

2 3 4 5 6 7 8

R
ea

ch
ib

ilit
y

%

TTL

No attacks
Type II 30%
Type I 30%

Hybrid: 20% type II - 10% type I
Hybrid: 10% type II - 20% type I

Figure 5(a) Modest Attacker Figure 5(b) Comparison of Group Attacks

0

20

40

60

80

100

2 3 4 5 6 7 8

R
ea

ch
ib

ilit
y

%

TTL

random
No attacks
Type I 10%
Type I 20%
Type I 50%
Type I 90%

0

20

40

60

80

100

2 3 4 5 6 7 8

R
ea

ch
ib

ilit
y

%

TTL

random
No attacks

Type II 10%
Type II 20%
Type II 50%
Type II 90%

Figure 5(c) Type I Attacks Figure 5(d) Type II Attacks

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

possible. The figures represent this reachability metric in
terms of the percentage of the total number of “live” nodes in
the network. We compare the Phenix network under attack to
a purely random network (as implemented by the Gnutella
v0.6 [14]) because a random topology network is often cited
to be the most tolerable to attacks [8]. Also, it is worth noting
that the response of the network to various attacks is shown
before the nodes run their node maintenance procedure (as
described in Section III.C.2) because the performance of a
Phenix network will return back to the case of ‘no attacks’
after a single neighbors maintenance is performed on each
node.

Each experiment ran 10 times to ensure that the results
stem from the structure and properties of the Phenix
algorithm. We then sampled 10% of the nodes and measured
the reachability of each of the sampled nodes and calculated
the averages for each result. All measurements deviated only a
little from the averages presented, proving that the behavior of
the distributed algorithm is indeed predictable and reliable.

Figure 5(a) shows a comparison of the first type of
targeted attack discussed above, which we denote on the plot
as the modest attacker, versus the ‘no attack’ and random
network. We can see that in response to the targeted node
removals, the performance of the network degrades but the
loss is quite tolerable and still offers a gain over the random
topology. Thus, in this scenario, Phenix has the potential of
offering the participating nodes a more efficient overall
performance where a node can be reached even with a smaller
TTL value.

Figure 5(b) shows four different attacks: 30% of both
Group Type I and Group Type II attacks, and two hybrid
combinations each resulting in a total of 30% malicious nodes
in the overlay. In studying such a comparison we were
interested in seeing which strategy might be more damaging in
fragmenting the network and disconnecting the live nodes. We
observed that Group Type I attacks create a larger fragments
in the network when introduced as a small percentage, than
the same number of nodes running in the Group Type II attack
mode. In addition, when we have a smaller percentage of
Group Type I nodes backed up by more nodes as Group Type
II, the performance of the network degrades the most as the
maximum number of nodes reachable drops, as shown in
Figure 5(b). This is due to the fact that nodes in Group Type I
attacks, point to each other, which means that if we increase
their number beyond a certain threshold the probability that
they will be chosen by legitimate users as preferential drops.
However, Figure 5(b) also shows us that across all attack
scenarios, the network does not collapse into small islands. A
promising result shows the giant component, indicated by the
maximum reachability, not dropping below 70% of the
remaining “live” nodes under all attack conditions.

Figures 5(c) and 5(d) show the effect of Group Type I and
Group Type II attacks on a Phenix network where the
percentage of malicious nodes shown is actually the
percentage from the final network. This means that if we have
10% malicious nodes in a 2000-node network then the number
of legitimate nodes is 1800. This result implies that for an
attacker to launch a 50% attack, he/she has to have the
capability of introducing a number of malicious equal to the

number of existing nodes in the network that he/she wishes to
partition or harm.

In Figures 5(c) and 5(d), we can observe that a network
under an attack of 50% malicious nodes scenario seems to
provide a performance that is better than the 20% malicious
nodes attack. This result seems counter-intuitive at first.
However, it occurs because the number of nodes in the
network becomes half the initial size, as the other half were
malicious nodes that dropped out of the network, while the
measured reachability is represented as a percentage of the
total number of live nodes. Similarly, a network undergoing a
90% malicious node attack seems to reach a constant plateau
with a lower TTL value than the initial network for the no
attacks scenario, as shown in the figure. This is due to the fact
that the structure of the network carries the signature of a
power-law like distribution, offering a diameter in the order of

()O logN where N is the total number of nodes participating
in the network. As N drops to 10% of its initial size, the
diameter follows by decreasing as well.

We ran the same set of simulations where the total number
of nodes is 20,000 instead of the 2,000 keeping all other
parameters identical. In Figure 6, we present a summary for
the hybrid attack discussed earlier. The behavior is very
similar to that of the previous set of experiments showing that
Phenix can provide a high degree of resiliency to the network
independent of the total number of nodes in the network.
Figure 6 also shows another signature of a power-law like
distribution. A 20,000 node network reaches almost a stable
plateau with a TTL larger by 1 than the 2000-node network,
even though the total number of nodes is 10 times greater.

These plots indicate that increasing the TTL beyond a
certain limit does not provide any significant benefit, as can be
seen in Figure 5(b) and Figure 6. In fact, the number of
reachable nodes seems to reach a maximum value beyond
which increasing the TTL does not offer a wider variety of
nodes reached. For example, it can be seen from Figure 5(c)
that increasing the TTL from 4 to 5 in a 2000-node network
with 10% malicious nodes of Group Type I will increase the
reachability from 88.29% to 88.44%. This is a characteristic
that can be exploited by applications where a query carrying a
large TTL might have its hop decremented by more than 1 at a
node receiving it because the gain of a larger TTL is not that
significant. Such structure is beneficial in the sense that a
reply can be returned to the originating node in a faster period
of time because the number of hops is smaller than the random

0

20

40

60

80

100

2 3 4 5 6 7 8

R
ea

ch
ib

ilit
y

%

TTL

20000 Nodes: 10% type II - 20% type I
20000 Nodes: 20% type II - 10% type I

2000 Nodes: 10% type II - 20% type I
2000 Nodes: 20% type II - 10% type I

Figure 6. Hybrid Attacks in 2,000 and 20,000-node Networks

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

counterpart. An application sitting on top of such a topology
might consider not to flood all of its neighbors limiting the
generated traffic. Rather, it can direct the search using a smart
policy such as GIA [9], for example.

Measuring the giant component, which is the largest
portion of the network that remains strongly connected, under
different group attack scenarios is shown in Figure 7. If we
consider, for example, the 20% attack for both Group Type I
and Group Type II modes, we can observe that the giant
component still amounts to around 80% of the total nodes of
the network. At the same time, an 80% attack results in a giant
component composed of 60% of the nodes. One can conclude
that in order for a malicious attacker to divide a network of
400 nodes into half, then as many as 1600 nodes have to be
introduced into the network for a considerable amount of time.
This is a high price to pay to break such a network in two parts
as the attacker is adding a number of nodes equal to 400% of
the number of nodes in the initial targeted network. Add to
this that the network recovers to a giant component in the
order of 90% of the total number of nodes after performing
one node maintenance interaction. This result looks very
promising in terms of Phenix’s ability to respond to such
attacks.

The α parameter introduced in Section III.C.2 contributes
to a fast recovery because most nodes will become quite
aggressive in creating highly connected nodes after losing
their preferred neighbors. This encourages the promotion of
existing nodes to become highly connected nodes and assume
the role of preferred nodes. We show the behavior of α in
Figure 8.

In this experiment, we use a hybrid attack of 10% Group
Type I and 20% Group Type II. We can observe in Figure 8,
that the initial value of the average of α across the entire
network is close to 0.7 before introducing malicious nodes.
However, when these nodes are added to the network they
create a false sense of stability that can be seen in an increase
and almost constant α despite the normal operation of the
rest of the network where nodes are joining and leaving.
Following the disappearance of the malicious nodes, we
observe a sudden drop in α across the entire network, as a
sudden change is experienced by most legitimate live nodes.
However, as the network goes back to normal operations, α
starts to increase again, indicating that the network is in a
stable state again. The choice of the α update influenced by
Equations (15) and (16) ensures aggressiveness in decreasing
it in order to respond as fast as possible to an attack, while the
process of increasing it again is more conservative.

We assumed any node can handle any traffic offered to it
in the work presented, however, in practice this might not be
the case and some nodes might refuse to have a higher in-
degree than the average. The effect of such cases will be
studied as part of our future work.

V. EXPERIMENTAL TESTBED RESULTS
We implemented Phenix in a real Internet-wide overlay

environment running on the PlanetLab experimental testbed
[24] for the purpose of measuring the overhead of the
algorithm in the face of aggressive node removal scenarios.
The code is built on the Open Source Jtella software system
[17], a Java API for implementing the Gnutella protocol. We
present some early results from an implementation and
experiment that ran on 81 PlanetLab nodes. We also measured
the time needed for the network to recover from an attack
targeted at highly connected nodes in the Phenix overlay
running on PlanetLab. We hope in the future to extend our
experimental results beyond this initial but interesting set of
results.

A. Implementation
Each node in our implementation has two layers. The first

layer being the Phenix algorithm composed of a servent
(server and client) daemon responsible for incoming as well as
outgoing connections. The node opens a socket connection
waiting for incoming connections from other nodes either
sending an 0M (as described in Equation (2)), or nodes
wishing to add this node to their neighbors’ list. In terms of
the graph, this connection receives and services all the
incoming edges pointing to this node. The second type of
connection constitutes all the connections that a node opens to
other nodes, or the outgoing connections. As for the second
layer, it is purely for experimental purposes, and opens a
listening socket interacting with a central control server. The
purpose of this latter layer is to be able to monitor the
connections of a node in order to observe the progress of the
network formation as well as the emerging topology. In
addition, the control server can send a stop signal to this layer
asking it to remove the node from the overlay network; thus,
emulating targeted node removal.

The implementation is performed by modifying the JTella
API which is a Java module based on Gnutella v0.6 [14]. The
modifications are mainly in acquiring hosts and creating
outgoing connections, making it conform to the Phenix
algorithm, presented in Section III, instead of the random
Gnutella topology.

0

20

40

60

80

100

0 20 40 60 80 100

S
iz

e
of

 G
ia

nt
 C

om
po

ne
nt

 (%
)

% Malicious Nodes

Type I Attacks
Type II Attacks

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

av
er

ge
 a

lp
ha

Time

add malicious remove malicious

Figure 7. Giant Component Figure 8. α

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

B. Degree Distributions Experiments
The Phenix overlay ran on the 81 PlanetLab nodes spread

over 43 sites across 8 countries (Australia, Canada, Germany,
Hong Kong, Sweden, Taiwan, UK, and US). The network
started with 10initn = nodes interconnected randomly, in order
to boot up the process of network formation. After that, nodes
started joining at the rate of 2 nodes every 5 seconds by
contacting the control server, which acts as a bootstrap server
and provides the rendezvous mechanism by giving each node
a list of 4 nodes that it can connect to. The generated list of
nodes, given as a response for each request, is drawn
randomly from nodes that have already joined the system with
no bias given towards node location or proximity. Taking
response times among nodes as well as node proximity into
consideration, while choosing neighbors is the subject of
future work. Such parameters could contribute to the
probability of picking a node as a neighbor.

Thus, each starting node contacted the control server to get
the initial hostG list, and applied the Phenix algorithm in
making its decisions. In the following experiment, we chose
the values of 3 and 4 for min and max (lower and upper
bounds on the number of initial neighbors for a node,
respectively), since the number of nodes (81 nodes) is a small
number as compared to the growth of peer-to-peer systems in
today’s networks. Choosing higher values for min and max
would create a network that is closer to a mesh while lower
values can easily result in situations where a node might find
itself completely disconnected from the rest of the network
with the removal of few nodes.

Following the complete formation of the network and
connections of all nodes, we took a snapshot of the resulting
graph by examining their neighbors’ list. Figure 9 presents the
out-degree distribution (or number of formed outgoing
connections) for the entire Phenix overlay network. The
purpose behind this metric is to examine the number of nodes
that emerged as preferential nodes and their respective
degrees, as they acquired backward connections, thus,
becoming hubs in the overlay network. We can see from the
figure that the majority of nodes have between 3 and 4
neighbors, with the exception of 3 nodes with 5, 10, and 18
connections respectively.

C. Targeted Attacks Experiments
After acquiring the global view of the network from the

control layer of each node, we targeted the 3 nodes with an
out-degree that deviated from the rest by removing them from
the system. We measured how long it took the network to

recover from such an attack where each affected node
performed node maintenance.

Before sending these 3 nodes the command to close their
incoming and outgoing connections, we measured the rtt
(round trip time) from the control server to every node in the
network in order to see the diversity of the connections. Figure
10 shows the distribution of rtt for the overlay nodes. We can
observe that although the majority of the nodes are within less
than 100 msec reach from the control server, some offered a
diversity in the network where their rtt reached higher values
up to 350 msec, thus, offering a degree of heterogeneity for
the experiment.

In this experiment we sent the 3 highly connected nodes
(with 5, 10, and 18 connections) a stop signal through their
control layer forcing them to close all of their connections. We
then waited for the reaction of the rest of the nodes in the
Phenix overlay, and measured how long it took them to
rearrange their connections and send their new state to the
control server. Several factors enter into play when obtaining
these results as can be seen in the following equation:

 2 2i j i i i it rtt rtt rttς η= + + + + (20)

The total time needed for a node i to inform the control
server that it performed the node maintenance, denoted by

i
t ,

is the summation of five terms described as follows. The first
term presented in Equation (20) is the time needed for the stop
message to travel from the control server to the node to stop j,
denoted by 2jrtt . The second term is the time needed for the
node i, in the case it is connected to node j, to realize that node
j is no longer available (or the timeout of the connection, in
this case we chose the value to be 1000 msec), denoted by

i
ς .

The third term
i

rtt is the time needed for node i to contact the
control server requesting the address of one or more nodes that
it can connect to, denoted by

i
rtt . The fourth term, denoted by

i
η , is the time needed to run the Phenix algorithm, which

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400

N
od

e
D

is
tri

bu
tio

n

rtt from Control Server (msec)
0

5

10

15

20

0 500 1000 1500 2000

N
od

e
D

is
tri

bu
tio

n

Time needed to acquire new neighbors (msec)
Figure 10. Round Trip Time (rtt) Distribution of Nodes in the Testbed Figure 11. Node Maintenance Duration

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Number of Neighbors

N
od

e
D

ist
rib

ut
io

n

Initial Network
Final Network

Figure 9. Out-Degree (number of neighbors) Distribution

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

might involve contacting a friend node in the case of acquiring
a preferential node. Finally, the fifth term 2

i
rtt is the time

required to send the node maintenance outcome for the control
server informing it of the change in the neighbors list.

The distribution of time for each of the affected nodes to
run this node maintenance mechanism is shown in Figure 11.
We can observe that most nodes returned to a stable state
where they have created new connections in less than 1
second. Finally, Figure 9 shows a comparison of the resulting
connectivity with the initial overlay graph, where we can
observe that 4 new highly connected nodes emerged ensuring
the fast recovery of the Phenix overlay with a low-diameter
topology. Our intention is to conduct more extensive
experiments on PlanetLab for a variety of attack conditions in
the future.

VI. CONCLUSION
We have presented a fully distributed algorithm called

Phenix that creates low-diameter resilient peer-to-peer overlay
networks. To the best of our knowledge Phenix represents one
of the first contributions that simultaneously supports high
performance in terms of low-diameter and fast response times,
and is robust to attacks and resilient to various overlay
dynamics and node failure scenarios. In this paper, we have
shown through analysis, simulation, and from results from an
experimental implementation on the PlanetLab overlay that
Phenix results in efficient connectivity, offering tolerance to
various network dynamics including join/leaves and a wide
variety of simple and more sophisticated node attacks.
Because of the rise in number of security attacks and the
growing creativity of attackers, the need for resilient overlays
that can offer both performance and resilient properties will
become necessary particularly for commercial reliable
overlays. Phenix supports low diameter performance and
resilience without sacrificing flexibility.

VII. REFERENCES
[1] L. A. Adamic. “The small world web,” Proceedings of the 3rd European

Conf. On Digital Libraries, vol. 1696 of Lecture notes in Computer
Science, Springer, 1999, pp. 443-452.

[2] L. A. Adamic, R. M. Lukose, and B. A. Huberman, “Local search in
unstructured networks,” Review chapter to appear in Handbook of
Graphs and Networks: From the Genome to the Internet, S. Bornholdt
and H.G. Schuster (eds.), Wiley-VCH, Berlin, 2003.

[3] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica, "Towards a
more functional and secure network infrastructure," UCB Technical
Report No. UCB/CSD-03-1242.

[4] L. A. N. Amaral, A. Scala, M. Barthelemy, and M. Stanley, "Classes of
small-world networks," Proceedings of the National Academy of
Sciences, vol. 97, no. 21, October 2000.

[5] D. G. Andersen, “Mayday: distributed filtering for Internet services,”
Proceedings of 4th Usenix Symposium on Internet Technologies and
Systems, Seattle, WA, 2003.

[6] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP), 2001.

[7] A-L Barabási, and R. Albert, “Emergence of scaling in random networks,”
Science, 286:509, 1999.

[8] A-L Barabási, and R. Albert, “Statistical mechanics of complex networks,”
Center for Self-Organizing Networks, University of Notre Dame, Notre
Dame, Indiana.

[9] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making Gnutella-like P2P systems scalable,” Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols
for computer communications (ACM Sigcomm 2003), pp. 407-418,
2003.

[10] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi, “Efficient broadcast
in structured P2P networks,” 2nd International Workshop on Peer-to-
Peer Systems (IPTPS '03), Berkeley, CA, February 2003.

[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos, "On power-law
relationships of the Internet topology", Proceedings of the 1999
conference on Applications, technologies, architectures, and protocols
for computer communications (ACM Sigcomm 1999), pp. 251-262,
1999.

[12] Gnucleus. The Gnutella Web Caching System.
http://gnucleus.sourceforge.net/.

[13] Guntella Development Group. http://groups.yahoo.com/group/gnutella-
dev/.

[14] The Gnutella RFC. http://rfc-gnutella.sourceforge.net/.
[15] B. A. Huberman, and L. A. Adamic, “Growth dynamics of the world

wide web,” Nature, 401:131, 1999.
[16] M. Jovanovic, Modeling Large-scale Peer-to-Peer Networks and a Case

Study of Gnutella. Master's thesis, University of Cincinnati, 2001.
[17] JTella. http://jtella.sourceforge.net/
[18] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: secure overlay

services,” Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications
(ACM Sigcomm 2002), pp. 61-72, 2002.

[19] B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong “Path finding strategies
in scale-free networks,” Phys. Rev. E., 65:027103, 2002.

[20] P. L. Krapivsky, G. J. Rodgers, and S. Redner, “Degree distributions of
growing random networks,” Phys. Rev. Lett., 86:5401, 2001.

[21] Merriam-Webster online. http://www.m-w.com/cgi-
bin/dictionary?book=Dictionary&va=resilience

[22] G. Pandurangan, P. Raghavan, and E. Upfal, “Building low-diameter
P2P networks,” IEEE Journal on Selected Areas in Communications,
Vol. 21, pp. 995-1002, Aug. 2003.

[23] G. Pandurangan, P. Raghavan, and E. Upfal, “Building P2P networks
with good topological properties,” Technical Report, 2001.

[24] PlanetLab. http://www.planet-lab.org/
[25] Query Routing for the Gnutella Network, Version 1.0,

http://www.limewire.com/developer/query_routing/keyword%20routing
.htm

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols
for computer communications (ACM Sigcomm 2001), pp. 161-172,
2001.

[27] J. Ritter, “Why gnutella can't scale. no, really,”
http://www.darkridge.com/~jpr5/doc/gnutella.html, 2001.

[28] S. Sen, and J. Wang, “Analyzing peer-to-peer traffic across large
networks,” Proceedings of the second ACM SIGCOMM Workshop on
Internet measurement workshop, Marseille, France, pp. 137-150, 2002.

[29] Sharman Networks LTD. KaZaA Media Desktop.
http://www.kazaa.com/.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: a scalable peer-to-peer lookup service for internet applications,”
Proceedings of the 2001 conference on applications, technologies,
architectures, and protocols for computer communications (ACM
Sigcomm 2001), pp. 149-160, 2001.

[31] Ultrapeers: Another Step Towards Gnutella Scalability.
http://groups.yahoo.com/group/the_gdf/files/Proposals/Ultrapeer/Ultrap
eers_1.0.htm

[32] D. J. Watts, and S. H. Strogatz, “Collective dynamics of `small-world'
networks,” Nature 393, 440-442, 1998.

[33] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: an
infrastructure for fault-tolerant wide-area location and routing,” UCB
Tech. Report UCB/CSD-01-1141, 2001.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

