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Abstract— Peer-to-peer networks are mainly unstructured, 

where no specific topology is imposed on the network during its 
operations. These networks offer a high degree of resilience 
against network dynamics such as nodes joining and leaving the 
network, node failure, and malicious behavior intent on 
disrupting the network’s operation. Unstructured networks, 
based on random connections are limited, however, in the 
performance and node reachability they can offer to applications. 
In contrast, structured networks impose predetermined 
connectivity relationships between nodes in order to offer a 
guarantee on the diameter between requesting nodes and the 
requested objects. We observe that neither structured nor 
unstructured networks can simultaneously offer both good 
performance and resilience in a single algorithm. To address this 
challenge, we propose Phenix, a peer-to-peer algorithm that can 
construct low-diameter resilient topologies. Phenix supports low 
diameter operations by creating a topology of nodes whose 
degree distribution follows a power-law, while the 
implementation of the underlying algorithm is fully distributed 
requiring no central server, thus, eliminating the possibility of a 
single point of failure in the system. We present the design and 
evaluation of the algorithm and show through analysis, 
simulation, and experimental results obtained from an 
implementation on the PlanetLab testbed that Phenix is robust to 
network dynamics such as joins/leaves, node failure and large-
scale network attacks, while maintaining low overhead when 
implemented in an experimental network.  

Keywords— Peer-to-Peer Networks, Resilient Networks, System 
design, Simulations, Experimentation with Real Networks/Testbeds 

I. INTRODUCTION  
Over the past several years, we have witnessed the rapid 

growth of peer-to-peer applications and the emergence of 
overlay infrastructure for Internet, however, many challenges 
remain as this new field matures.  The work presented in this 
paper addresses the outstanding problem of the construction of 
resilient peer-to-peer networks and their efficient performance 
in terms of faster response time and low-diameter operations 
for user queries. Low-diameter networks are often desirable 
because they offer a low average distance between nodes, 
often in the order of ( )O logN . The two classes of peer-to-
peer networks, found in the literature, either offer better 
resilience to node dynamics such as joins/leaves, node failure 
and service attacks, as in the case of unstructured networks 
[13] [29], or, they offer better performance as in the case of 
structured networks [26] [30] [33]. Because of the inherent 
tradeoffs in the design space of these different classes of peer-
to-peer networks, it is difficult to simultaneously offer better 
performance and resilience without having to reconsider some 

of the fundamental design choices made to develop these 
network systems. We take one such alternative approach and 
propose a peer-to-peer algorithm that delivers both 
performance and resilience. The proposed algorithm builds a 
low-diameter resilient peer-to-peer network providing users 
with a high probability of reaching a large number of nodes in 
the system even under conditions such as node removal, node 
failure, and malicious system attacks. The algorithm does not 
impose structure on the network, rather, the established graph 
of network connections has the goal of creating some order 
from the total randomness found in resilient unstructured 
networks, such as, Gnutella [13] and KaZaA [29].   

Unstructured peer-to-peer networks, such as Gnutella, 
offer no guarantee on the diameter because nodes interconnect 
in a random manner, resulting in anything other than an 
efficient topology. These unstructured systems are often 
criticized for their lack of scalability [27], which can lead to 
partitions in the network resulting in small islands of 
interconnected nodes that cannot reach each other. However, 
these same random connections offer the network a high 
degree of resiliency where the operation of the resulting 
network as a whole is tolerable to node removal and failure. In 
contrast, structured peer-to-peer networks based on 
Distributed Hashing Tables (DHTs), such as Chord [30] and 
CAN [26] have been designed to provide a bound on the 
diameter of the system, and as a result, on the response time 
for nodes to perform queries. However, these systems impose 
a relatively rigid structure on the overlay network, which is 
often the cause of degraded performance during node 
removals, requiring non-trivial node maintenance. This results 
in certain vulnerabilities (e.g., weak points) that attackers can 
target and exploit. Due to the design of DHTs, these structured 
topologies are also limited in providing applications with the 
flexibility of generic keyword searches because DHTs rely 
extensively on hashing the keys associated with objects [2] 
[9]. 

These observations motivate the work presented in this 
paper. We propose Phenix, a scale-free algorithm that 
constructs low-diameter P2P topologies offering fast response 
times to users. Another important attribute of Phenix is its 
built-in robustness and resilience to network dynamics, such 
as, operational nodes joining and leaving overlays, node 
failures, and importantly, malicious large-scale attacks on 
overlay nodes. The main design goals of Phenix can be 
summarized as follows:   

• to construct low-diameter graphs that result in fast 
response times for users, where most nodes in the 
overlay network are within a small number of hops from 
each other;   
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• to maintain low-diameter topologies under normal 
operational conditions where nodes periodically join and 
leave the network, and under malicious conditions where 
nodes are systematically attacked and removed from the 
network;  

• to implement support for low-diameter topologies in a 
fully distributed manner without the need of any central 
authority that might become a single point of failure, 
which would inevitably limit the robustness and 
resilience of peer-to-peer networks; and 

• to support connectivity between peer nodes in a general 
and non-application specific manner so a wide-variety of 
applications can utilize the network overlay 
infrastructure.  

An important property of Phenix is that it constructs 
topologies based on power-law degree distributions with a 
built-in mechanism that can achieve a high degree of 
resilience for the entire network. We show that even in the 
event of concerted and targeted attacks, nodes in a Phenix 
network continue to communicate with a low diameter where 
they efficiently and promptly rearrange their connectivity with 
little overall cost and disruption to the operation of the 
network as a whole.  To the best of our knowledge Phenix 
represents one of the first algorithms that builds resilient low-
diameter peer-to-peer topologies specifically targeted toward, 
and derived from, popular unstructured P2P network 
architectures, such as, Gnutella [13] and KaZaA [29].   

In this paper, we present the design of the Phenix 
algorithm and evaluate its performance using analysis, 
simulation, and experimentation. We make a number of 
observations and show the algorithm’s responsiveness to 
various network dynamics including systematic and targeted 
attacks on the overlay infrastructure. We also implement and 
evaluate Phenix using the PlanetLab testbed [24]. 
Experimental results from the testbed implementation quantify 
the algorithm’s overhead and responsiveness to network 
dynamics for a number of PlanetLab nodes. The paper is 
structured as follows. We discuss the related work in Section 
II and then present the detailed design and operations of 
Phenix in Section III. Section IV presents a detailed evaluation 
of the algorithm’s operation, followed by Section V, which 
presents experimental results from the implementation of 
Phenix on the PlanetLab platform. Finally, we present some 
concluding remarks in Section VI.   

II. RELATED WORK 
Traditionally, low diameter networks tend to appear in 

social networks forming small-world topologies [4], while 
power-law behavior is often seen in many natural systems as 
well as man-made environments [1] [11] [16]. These 
observations led to a body of work related to analyzing and 
modeling of such networks [4] [8] [14] [19] [20]. The 
contribution discussed in [7] on preferential attachment has 
been influential in our thinking. However, the idea of 
preferential attachment is used in Phenix as a basis to ensure 
resiliency in a fully distributed, dynamic peer-to-peer 
environment. The work on peer-to-peer networks presented in 
[10] makes use of small-world algorithms based on the 

proposition by Watts and Strogatz [32] on ‘rewiring’ the 
network. In [10], the idea of rewiring is applied to a Chord 
[30] overlay. Pandurangan et.al. [22] [23] create a low-
diameter peer-to-peer network but rely heavily on a central 
server that is needed to coordinate the connections between 
peers. This proposal creates a potential single point of failure 
in the overlay network. The authors also do not address the 
resilience of such a network in the event of targeted node 
removal, various attacks, or misbehaving nodes. Under such 
conditions the performance of the network would likely 
degrade and deviate from the low-diameter design goal. 

A family of structured peer-to-peer topologies relying on 
DHTs, such as Chord [30], CAN [26] and Tapestry [33], has 
attracted considerable attention in the P2P/overlay 
community. However, such networks might be limited 
because they unduly restrict the queries that the users can 
initiate (e.g., keyword queries) due to the use of hashing tables 
to store objects at overlay nodes. These networks also couple 
the application to the underlying infrastructure layer, which 
makes them attractive to specific applications, but the 
infrastructure may need to be revised to support changing 
needs of users. The idea of differentiating the rank of different 
overlay nodes (e.g., a super node over a regular node) in a 
peer-to-peer network has been used by a number of systems in 
order to achieve better performance. For example, KaZaA [29] 
uses the notion of ‘supernodes’, and Guntella v.0.6 [14] uses 
‘ultrapeers’ [31] as supported by the Query Routing Protocol 
(QRP) [25]. KaZaA creates supernodes among peers by 
assigning an elevated ranking to nodes with a faster 
connectivity such as broadband Internet access. However, the 
implementation details of these popular P2P schemes are not 
open or published, which makes it difficult to make a 
comparative statement on the deployed algorithms. Ultrapeers 
are a standard feature of Gnutella v.0.6, constituting an 
essential element of QRP, as mentioned above. Ultrapeers 
differ from what we propose in Phenix in a number of ways. 
First, ultrapeers act as servers in a hierarchy that is widely 
known by all other nodes in the network. As a result of this 
predetermined hierarchy, ultrapeers create a number of 
vulnerabilities in the system. If ultrapeers were forcefully 
removed from the network by an attacker, the system would 
suffer considerably; potentially fragmenting the remaining 
nodes into disconnected smaller network partitions. Another 
vulnerability arises when malicious nodes assume the role of 
ultrapeers and mislead other overlay nodes into relying on 
them for services. An ultrapeer does not use lower level nodes 
(also called leaves) to relay traffic to other ultrapeers in the 
network, rather, ultrapeers interact directly with each other. 
Such reliance could create disconnected groups of nodes in the 
event that ultrapeers unexpectedly drop out of the network in 
an uncontrolled manner due to node failure or forceful 
removal. Each ultrapeer also keeps state information related to 
the data held by leaf nodes that are connected to it. Creating 
such a hierarchy that is closely tied to the application level 
may call for a complete redesign in the event that the 
application’s needs change or new applications need to be 
efficiently supported.  

In our work, we make a distinction between the type of 
information carried by packets and the routing decisions that 
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are made. RON [6] and i3 [3] have already been designed 
based on this approach, where a generic topology is proposed 
that is independent of the application that makes use of it. 
Such a topology would be an asset for smart search algorithms 
[2] [9] that direct queries instead of flooding the entire 
neighborhood of the requesting node. Finally, in the context of 
security, secure peer-to-peer and overlay networks have been 
proposed as policies to protect individual nodes against denial 
of service (DOS) attacks in the SOS [18] and Mayday [5] 
systems, but not in the context of an overall resilient P2P 
network architecture. Phenix addresses the resilience of the 
entire network and not the individual nodes. 

III. PHENIX PEER-TO-PEER NETWORKS 

A. Power-Law Properties 
The signature of a power-law or a scale-free network lies 

in its degree distribution, which is of the form presented in 
Equation (1). 

 ( )p K K γ−
�  (1) 

Many networks tend to have an exponent γ  close to 2, for 
example, the Internet backbone connectivity distribution is a 
power law with an exponent 2.2 0.1γ = ±  [11]. 

As a result of this distribution some nodes are highly 
connected and can act as hubs for the rest of the nodes. These 
nodes and their position in the network contribute to a highly 
desirable characteristic of these graphs: a low “almost 
constant” diameter, defined as, the average shortest path 
between two nodes in the graph. This graph is capable of 
growing while maintaining a low diameter hence the name 
scale-free networks. Typically, peer-to-peer networks suffer 
from a large diameter, which often causes the generation of 
more network traffic. This is inefficient because it requires 
nodes to either increase the radius of a search for an object, or 
opt for a low radius search, which would limit the probability 
of finding less popular objects in the network. These design 
trade offs result in increased signaling or degraded 
performance. 

In the light of these observations, it seems natural to 
construct a peer-to-peer topology that conforms to a power-
law for its node degree distribution. However, for a proposed 
algorithm to be feasible, it must adhere to a number of design 
restrictions. First, the algorithm should be easy to implement 
and make few assumptions about the underlying network. 
Despite the problems associated with Gnutella, its deployment 
is widespread as a result of the simplicity of the underlying 
protocol [13] [14]. Next, the algorithm should be fully 
distributed based on local control information, and not include 
any centralization of control, which might become a 
bottleneck or a target for attacks. Finally, the algorithm should 
be robust to node removal whether random or targeted. This 
means that the network should not be easily partitioned into 
smaller sub-networks and should be capable of maintaining a 
high level of resiliency and low diameter in the face of node 
removal.  

The main motivation behind Phenix is to allow nodes in 
the network to ‘organically’ emerge as special nodes (called 
preferred nodes) with a degree of connectivity higher than the 

average, so that a scale-free topology can be formed. In other 
words, we do not dictate special nodes or hierarchies in 
advance for the topology to emerge or the network to function. 
As shown in [7], such networks appear in nature due to 
preferential attachment, where newcomers tend to prefer 
connecting to nodes that already have a strong presence 
characterized by their high degree, and the dynamic nature of 
such networks involving growth.  

By examining social networks, we can observe the 
following; if someone joins a new social network, the first 
network of “friends” is pretty much random. However, most 
people, after seeing that a specific person has more 
acquaintances and is better connected to a larger number of 
members in that specific network, tend to acquire a connection 
to that person in order to gain better visibility. In fact, [7] 
shows that if a new node has knowledge of the states of all the 
existing nodes in the network and their interconnections, it can 
connect to the nodes with the highest degree giving it the 
highest visibility and putting it in a place where it is a few 
hops away from the rest of the network. This will guarantee 
that the resulting network has a degree distribution 
conforming to a power-law resulting in a low diameter. 
However, in a peer-to-peer network having such a global view 
is practically impossible, since most nodes typically can only 
see a small fraction of the network, and have to make 
decisions based solely on local information. After presenting 
the detail design of the Phenix algorithm in the next section, 
we show through analysis that Phenix encourages the 
emergence of preferred nodes that follow power-laws in 
Section III.D. We reinforce this observation through 
simulation and experimental results in Sections IV and V, 
respectively. 

B. Phenix Algorithm Design 
In what follows, we describe the Phenix algorithm for the 

simple case where nodes join the network. A node i obtains a 
list of addresses using a rendezvous mechanism by either 
contacting a host cache server [12] or consulting its own cache 
from a previous session in a fashion similar to an initial 
connection, as described in Guntella v0.6 [14]. However, 
instead of establishing connections to “live” nodes from the 
returned list, the joining node divides these addresses into two 
subsets, as expressed in Equation (2): that is, random 
neighbors and friends that will be contacted in the next step. 

 , , ,,host i random i friends iG G G =    (2) 
Then i initiates a request called a ‘ping message’ to the 

nodes in the list ,friends iG , sending a message of the form: 
0 , , 1, 0M source i type ping TTL hops= = = = =  (3) 

Each recipient node constructs a ‘pong message’ as a reply 
containing the list of its own neighbors, increments the hops 
counter, decrements the TTL, and forwards a new ping 
message to its own neighbors, as follows:  
 1 , , 0, 1M source i type ping TTL hops= = = = =  (4) 

Each node j  receiving such a message will send no pong 
message in reply, but instead add the node i to a special list 
called jΓ  for a period of time denoted by .τ   
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Following this procedure, the node i obtains a new list of 
all the neighbors of nodes contained in ,friends iG and constructs 
a new list denoted by ,candidates iG . Then i sorts this new set of 
nodes using the frequency of appearance in descending order, 
and uses the topmost nodes to create a new set that we denote 
as ,preferred iG , where , ,preferred i candidates iG G⊆ . Thus, the resulting 
set of neighbors to which i creates connections is given by:  

 [ ], ,,i random i preferred iG G G=  (5) 
Node i opens a servent (server-client), connection to a 

node m ( m  is in the list ,preferred iG ) where the word servent is a 
term denoting a peer-to-peer node, which is typically a server 
and a client at the same time as it accepts connections as well 
as initiates them. Then node m  checks whether i  is in its mΓ  
list, and if this is the case, increments an internal counter mc  
and compares it against a constant γ . If mc γ≥ , then 

m mc c γ= − , a connection is created to node i , which we call 
a ‘backward connection’, and the set of neighbors added as 
backward edges is updated, as follows: 

 { }, ,backward m backward mG G i= U  (6) 
This backward connection creates an undirected edge 

between the two nodes i and m  ( i m↔ ) from the initial 
directed edge, as i m→ . In addition, γ  ensures that a node 
does not add more connections than ,in md γ  where ,in md is the 
in-degree for node m , or the number of its incoming 
connections.  

When node i receives a backward connection from node 
m it will consider its choice of node m as a good one, and 
accordingly update its neighbors lists: 

 
{ }

{ }
, ,

_ , _ ,

preferred i preferred i

highly preferred i highly preferred i

G G m

G G m

= −

= +
 (7)

 

Therefore, the final list of neighbors for a node i is given 
by: 

 , , _ , ,, , ,i random i preferred i highly preferred i backward iG G G G G =    (8) 

A summary of this algorithm is presented in Figure 1, and 
an example of the creation of iG  is presented in Figure 2 for 
illustration purposes. In this particular scenario, the existing 
overlay network is depicted in Figure 2(a) where the 
interconnections between nodes are shown with arrows, with 
the bold arrows representing connections that were created by 
preferential and backward formation. In the scenario, Node 8, 
wants to join the network and goes through the process shown 
in Figure 2(b). Node 8 starts by obtaining a list of hosts that 
are present in the network and then divides this list into two 
sub-lists where [ ]1,3randomG =  and [ ]5,6friendsG = . Then it 
contacts the nodes contained in friendsG to obtain their lists of 
neighbors and constructs the following list 

[ ]7,2, 4,7candidatesG = . Sorting the nodes in descending order 
using their frequency of appearance yields [ ]7, 2preferredG = . 
Then Node 8 constructs the final list 

[ ]7,2,1,3preferred randomG G G= =U  and connects to these nodes. 
Note, that as Node 8 starts its servent sessions with the 
resulting nodes in G  then one or more of them might choose 
to create a backward connection to Node 8 depending on the 
values of their respective counters c . 

C. Network Resiliency  
According to the Webster Dictionary [21], the word 

resilience is defined as ‘an ability to recover from or adjust 
easily to misfortune or change.’ Networks with power-law 
degree distributions are often criticized in the literature for 
collapsing under targeted attacks. Under such conditions if a 
small fraction of the nodes with high degrees is removed from 
the network then the whole network suffers and often becomes 
disconnected into smaller partitioned fragments, also referred 
to as “islands” in the literature [7]. Phenix attempts to make 
connections resilient, protecting the well being of the entire 
network. We achieve this goal by following a set of guidelines 
that can be summarized, as follows. First, we attempt to hide 
the identity of highly connected nodes as much as possible, 
making the task of obtaining a comprehensive list that 
contains these nodes practically impossible. The second 
deterrent deals with neighbor updates, or what we call ‘node 
maintenance’ (discussed below), where a network under attack 
can recover when existing nodes rearrange their connections 
and maintain connectivity. Note, that we assume that an 
attacker is powerful enough to force a node to drop out of the 
network, whether by denial of service attacks or by any other 
mechanism available, once an attacker acquires the IP address 
of such a node. In Phenix networks, resiliency implicitly 
means: the resilience of the whole network consisting of all 
“live” nodes where their connections form edges in a graph 
that is as close to a strongly connected graph as is possible, as 
we will show in Section IV. 

obtain hostG  from web cache;  

divide hostG  into randomG  and ;friendsG  

let s be the size of friendsG ; 

candidatesG = ∅ ; 

for (x=0; x<s; x++) 

      send 0M ; where [ ]( )0 , ,1,0friendsM ping i G x=  

      [ ];candidatescandidates candidates G xG G G= U  

( )1 2, ,..., ;preferred p candidatesG g g g sorted G = ⊆   

connect to all nodes in ;random preferredG G G= U  

if (( j  connects back to i ) && ( preferredj G∈ )) 

      { };preferred preferredG G j= −  

      { }_ _ ;highly preferred highly preferredG G j= +  

Figure 1 Algorithm for connect_to_network(i) 
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(a) The Existing Network (b) Node 8 Arrives 

Figure 2. Examples of Phenix Overlay Construction 
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1) Hiding Node Identities 
In order to limit the likelihood of a malicious user 

obtaining a global view of the whole overlay graph (formed by 
the live nodes) of the network, Phenix supports three 
important mechanisms.  

First, a node receiving a ping message 0M will respond 
with a pong message, and forward a ping message 1M to its 
neighbors. All nodes receiving 1M will add the originator to a 
list denoted by jΓ . This list supports the notion of either 
‘temporary blocking’ or ‘black listing’, where if the same 
originating node sends a ping message with the intent of 
“crawling” the network to capture global or partial graph state 
information, such a message will be silently dropped with no 
answer/response sent back to the originating node. Black lists 
can be shared with higher layer protocols to isolate such 
malicious practices and can serve to isolate such nodes.  These 
mechanisms are outside the initial scope of this paper but will 
be a topic for further work. A mechanism that detects a node 
crawling the network and silently discards queries will not 
stop a malicious user, but rather, slow its progress because the 
malicious node needs to obtain a new node ID (e.g., this 
would be similar to the Gnutella ID) to continue the crawl of 
the overlay, or wait for enough time for nodes to purge their 
black lists jΓ . Peer-to-peer networks such as Guntella [13] 
have proposed including the MAC address as part of the node 
ID, making it even more difficult for an attacker to obtain a 
new and distinctly different node ID at a rate fast enough to 
continue the crawl. It is worth noting that if joins/leaves of an 
overlay network are dynamic enough then crawling at slower 
time scales will not yield an accurate view of the network state 
and topology. Even though such a scheme helps limit the 
impact that malicious nodes can have, it still does not fully 
eradicate potential attacks on the network.  

Next, Phenix also employs the policy of silently dropping 
any ping message, similar to the one shown in Equation (3), 
whose TTL value is greater than 1. A non-confirming node 
with malicious intent might generate such a message. Nodes 
drop these messages without responding to the originator or 
forwarding such a message to neighbors. This has the effect of 
eliminating crawling even if the originating node is not on the 
list jΓ of the receiving node, in contrast to Gnutella where 
crawling is often practiced. 

Third, a node that establishes backward connections to 
other nodes in the network will not return these connections 
when it receives a ping in any of its pong reply messages. This 
policy is not meant to protect the node’s backwardG  sub-list of 
neighbors. Rather, it protects the identity of the node itself and 
any possible preferential status that the node may have, from 
an attacking node. If an attacker were to receive a long 
neighbors list from a node, it can infer that such a node is a 
highly connected node from the size of its neighbors’ list. 
Thus, a node will only return the subset _outside worldG  defined 
by Equation (9) in a pong message. In this case, this node does 
not need to forward 1M  to all of its neighbors. Rather, it only 
forwards 1M  to nodes in its _outside worldG  subset since these are 
the   nodes  that  might  risk  exposure  to  an  attacker,  where, 

 [ ]_ _, ,outside world random preferred highly preferredG G G G=  (9) 

2) Node Maintenance Mechanism 
In the event of an attack, the network needs to be 

responsive and able to rearrange connectivity in order to 
maintain strong connections between its nodes. In what 
follows, we propose a state probing mechanism that makes 
Phenix responsive to failed nodes or nodes that drop out of the 
overlay because of attacks. 

The number of neighbors of a node i , represented by ih , 
is defined as the summation of the number of neighbors 
obtained through random, preferred and backward 
attachments; in other words, the out-degree of the node 
defined as the total number of outgoing connection for a node 
i . This total number is expressed in Equation (10), where 

0b
ih = , if [  ]i preferred nodes∉ . r

ih , p
ih , and b

ih  represent 
the number of random, preferential (standard and highly), and 
backward neighbors, respectively. 
 r p b

i i i ih h h h= + +   (10) 
Nodes examine their neighbors’ table in order to make 

sure that they are not disconnected from the network due to 
node departures, failures, or denial of service attacks. If the 
Inequality presented in (11) is satisfied, signaling a drop, then 
node i runs a node maintenance procedure, as described 
below.  
 r p

i ih h threshold+ <  (11) 
If a node on the i ’s neighbors’ list leaves the network 

gracefully, then it informs all the nodes connecting to it by 
closing the connections. However, if a node is forcefully 
removed or fails then node i  will be informed of this fact only 
through probing where a message is sent to its neighbors, as 
follows: 2 , , 0, 0M source i type ping TTL hops= = = = = . In 
the case where no answer is received after a timeout (which is 
discussed in Section V) then the neighboring node is declared 
down. 

The number of neighbors before node maintenance can be 
expressed as follows: 
 1( ) ( ) ( ) ( ) ( )r p b

i n i n i n i n i nh t h t d t d t d t−
−= − − −   (12) 

where, ( )i nh t− : current number of nodes (prior to the last 
maintenance run), and ( )r

i nd t , ( )p
i nd t , ( )b

i nd t : the number of 
neighbors (random, preferential, and backward, respectively) 
lost since the last node maintenance. Following the node 
maintenance, we have: 

 

( ) ( )
( ),

( )
( ) ( ) ( ),

i n
b

i n i n i n

p r
i n i n i n

thresholdh t
h t h t h t max          

h t u t u t otherwise

−

−

−

<
= − ≤
 + +

 (13) 

where, ( )i nh t : the number of nodes after the node 
maintenance and ( )p

i nu t , ( )r
i nu t : the number of new nodes 

added preferentially and randomly, respectively. 
The ratio of preferential and random neighbors for a node 

i  is presented in Equation (14). 

( ) ( )( ) ,   ( ) 1,    ,
( ) max ( )

r r
i n i n

i n i np r
i n i n

h t h tt and t i n
h t h t

α α= ≤ ≤ ∀
−

 (14) 
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and the initial value of α is expressed by: 0( ) 1,  i t iα = ∀ . 
The updates of neighbors is then performed according to 

Equations (15) and (16). 
 ( ) ( )r r

i n i nu t d t=  (15) 
 

 1

( ) , ( ) 0
( ) ( )

0, ( ) 0

p
i n p

i np
i n i n

p
i n

t d t
u t t

d t

τ µ
α −

 − > =  
 =

 (16) 

where,    
1

( ) ( )
n

p
i n i k

k n l
t d t lτ

= − +

= ∑  . 

( )r
i ntτ  is the average number of preferential neighbors that 

dropped out over the last l  node maintenance cycles, 
measured at time nt , pµ is the expected value of the number 
of neighbors that disappeared in one node maintenance cycle. 
The symbol     rounds up the value to the next highest 
integer. Therefore, the final number of neighbors is: 

0 0( ), ( ) ( ) ( )
( ) ( ) ( ), ( ) max ( ) ( )

max ( ),

p p p p
i i n i i n

p p p p p r
i n i n i n i n i n i n

r
i n

h t u t h t h t
h t h t u t u t h t h t

h t otherwise

−

− −

 < −
= + < − −
 −

 (17) 

For preferred nodes, we already have the following 
approximation: 

 ib
i

nh γ
γ

 −=  
 

  

where in  is the number of nodes pointing to node i . The 
preferred node updates its ic  counter, as follows: 

( )( )b
i i i nc c d tγ= + × , while no nodes are added in the 

backward set during the node maintenance process.  
Analysis of the effect of α  on the network’s behavior, 

particularly when faced with large-scale attacks is discussed in 
Section IV. 

D. Preferential Nodes 
We now show through analysis that Phenix encourages the 

emergence of nodes whose degree is higher than the average 
across the entire network, even if we initially start out with a 
completely random set of connections among nodes present in 
the overlay network. In what follows, we analyze the 
emergence of nodes with a degree deviating from that of the 
average of the network. We call such nodes preferred nodes. 
Let us assume that we initially have a network of N nodes 
interconnected randomly. A new node i, running the Phenix 
algorithm wishes to connect to this network. So, i acquires a 
list of friends using a rendezvous mechanism similar to the 
one used by many P2P systems. As described earlier, node i 
contacts these friends asking for their respective lists of 
neighbors. The summation of all answers constitutes the list of 
candidates. It follows that after node i acquires the list of 

,candidates iG , the probability of connecting to a node on the list is 
directly proportional to the frequency of appearance of that 
node; that is to say, it is equal to the probability that a node 
will appear more than once in its list of candidates.  

Let, µ be the average number of neighbors and N the 
number of nodes in the network. A new node i will connect to 

2µ  nodes randomly in ,random iG , since 0( ) 1,  i t iα = ∀ , and 
will contact 2µ  nodes requesting a list of their neighbors, 
which will become ,candidates iG . Thus, the resulting number of 
nodes on this latter list is an average of 2 2µ  nodes. 

Since we are interested in nodes appearing more than once 
on this list (which translates to a higher probability in 
initiating a connection to one of them), we calculate the 
probability of a node j appearing at least twice, which is 
expressed as the summation of the probabilities that j appears 
2, 3, 4, …, m times, where 2m µ= . This upper bound of m 
comes from the fact that a node can appear at most once in 
each list returned by one node of the sub-list ,candidates iG . Thus 
the probability of a node appearing twice becomes the 
probability that it is on two of the lists of nodes in ,candidates iG , 
and similarly, three appearances signifies the presence on 
three lists, and so on until m. The values of these probabilities 
are approximated by ( )2Nµ , ( )3Nµ , …, ( )mNµ , 
respectively. Therefore, the probability that a node appears at 
least twice, encouraging a preferential attachment in a Phenix 
setup is given by the following equation: 

 ( ) ( )
2

2

2 ...
mm

i
P X P X i

N N
µ µ

=

   ≥ = = = + +   
   

∑  (18) 

since   1Nµ < , it follows: 

 ( ) ( ) 11
2 1

1

mN
P X

N N
µ µ

µ

+−
≥ = − −

−
 (19) 

Now that we know the value of the probability of a 
preferential attachment, we are interested in analyzing how 
fast such an attachment will take place (as the network grows) 
assuring the evolution of the network graph from a random 
network to one based on power-laws. Figure 3 plots the 
probability derived in Equation (19) versus the average 
number of neighbors for different values of N, the initial 
random network. We can observe that it is desirable for the 
initial network to be small so that preferential attachments 
start to form as early as possible; for example, given an initial 
Phenix network of 20 nodes, the probability of preferential 
attachment is around 0.117. This means that with the 9th node 
joining the network, at least one preferential attachment is 
formed. It follows that after one preferential attachment forms, 
the probability of a second preferential attachment increases 
since the probability of this node appearing more than the 
others is already biased. Note that N is not the total number of 
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nodes in the final overlay, but only the first initial nodes that 
come together in the network. Clearly, the overlay network 
can grow to encompass a much larger number of nodes, and at 
that time Equation (9) no longer holds because the 
connections among nodes is not random, but biased, forming a 
power-law, as we have just shown in this section. 

IV. SIMULATION 
In what follows, we discuss the results obtained from 

implementing the Phenix algorithm in a simulation 
environment based on Java software. We start by examining 
the emergence of a power-law where nodes enjoy a low-
diameter. We then study different types of attacks on an 
overlay network using the Phenix algorithm to measure the 
network’s degree of resilience. 

A. Power-Law Analysis  
Degree distributions following power-laws tend to appear 

in very large networks found in nature [7] [8]. However, we 
would like to have an algorithm where such a distribution will 
be present in networks of modest size. Such an algorithm 
might be useful in different situations for various applications 
where an assurance of a large number of nodes might not be 
feasible. We studied the effect of creating a network of pure 
joins in order to be guaranteed of the emergence of a power-
law in such a simple scenario. The nodes join the network 
following a normal distribution at simulation intervals, by 
acquiring neighbors’ connections based on the Phenix 
algorithm. Plotting the degree distribution for the resulting 
network of a 1000-node on a log-log scale shows a power-law 
emerging in Figure 4(a). This property is more clearly 
observed for a network of 100,000 nodes, as observed in 
Figure 4(b).  

B. Attack Analysis 
Next, we study more sophisticated networks where nodes 

join and leave the network using different scenarios. The next 
simulations included an implementation of the Phenix 
algorithm with all of its features, ensuring responsiveness to 
slow as well as abrupt changes in the overall structure. The 
attacks analyzed in this section are aggressive and to some 
extent extreme requiring additions of nodes to the network 
that probably would not be typical of an attacker in a practical 
network. However, we chose to include such an analysis in 
order to test the limit at which the Phenix algorithm is capable 
of adapting, and the point beyond which the network does not 
serve its purpose anymore of interconnecting participants to 
each other.  

We consider a number of attack scenarios where an 
attacker can perform one of three different types of distinct 
attacks on the network, or a combination of such attack 
scenarios. The first attack scenario consists of a user that 
acquires host cache information like a legitimate node might. 
The attacker contacts these acquired nodes with a 0M  
message, getting the respective lists of their neighbors, and 
building his candidate’s list, as a result. However, once the 
attacker has this information it will then attack the nodes 
appearing in this list more than once, removing them from the 
network.  Such an attacker is limited in its capabilities and 
resources when compared to the two other scenarios discussed 
next, because the attacker attempts to target nodes that might 
have a node degree higher than the average without 
participating in the overall structure. However, such an 
attacker has a level of sophistication because it is not 
removing nodes randomly. Rather, the attacker attempts to 
cause much disruption as possible by maximizing the damage 
to the network in creating targeted attacks toward nodes that 
are important to the network performance, with as little 
investment as possible. The other two types of attacks are 
more organized from the attacker’s perspective and require 
adding a large number of nodes to the network. Such an attack 
option is possible due to the fact that the network is open and 
welcomes any connection with no prior authentication or 
authorization. (Clearly, network support for authentication and 
authorization of nodes while outside of the scope of our initial 
research would provide much stronger security and limit these 
malicious attacks. We intend to study such mechanisms as part 
of our future work). The first of these two additional attacks 
we denote as a ‘Group Type I’ attack. This attack requires an 
attacker to add a number of nodes to the network that only 
point to each other, thus, increasing the probability that they 
will emerge as preferred nodes in the overlay network. The 
last type of attack, which we denote as  a ‘Group Type II’ 
attack, consists of adding a number of nodes to the network 
that would behave like normal nodes do. These last two types 
of attacks attempt to create anomalies in the network by 
introducing ‘false’ nodes that remain connected for a 
prolonged period of time. Such a regime would ensure that 
other ‘true’ nodes come to rely on these false malicious nodes 
due to the length of time that the false nodes are available in 
the network. Under such attack scenarios, these false nodes 
suddenly disconnect from the overlay network all at the same 
time with the intention of disconnecting and fragmenting the 
network into small islands of nodes. We also consider a hybrid 
attack scenario where the strategy dictates that some of the 
malicious nodes use the strategy of “Group Type I” and the 
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others use “Group Type II” attacks. 
The following simulation results are for an overlay 

network composed of 2000 nodes. Each node chooses a 
number of neighbors between 5 and 8, which represents small 
numbers of nodes, if compared to Gnutella [14], denoted, 
respectively, by min and max, with equal probability while 
maintaining 0( ) 1,  i t iα ≤ ∀ , resulting in an average of 

( )( )0 41 48iE tα = for the whole network. However, this 
initial state for α will change as nodes join and, most 
importantly, leave the network, as we will discuss later. At 
each simulation time interval, the number of nodes joining the 
network is based on a normal distribution. For the case of 
nodes leaving the network, we consider three different cases: 
(i) the departure pattern is based on a normal distribution with 
a mean λ  where nodes leaving are randomly selected from 
the overlay network. This scenario is equivalent to the case 
where the system faces no attacks, as shown in Figure 5; (ii) 
the departure pattern is based on a normal distribution, 
however, the nodes are removed by sending ping messages 
creating a sorted list of candidates, and removing preferred 
nodes from the network (this corresponds to the “modest 
attacker”); and (iii) represents group attacks as in the case of 
Group Type I, Group Type II, and hybrid of Group Type 
I/Group Type II attacks. In this case, a percentage of the nodes 
(note that different values of this percentage are studied 
extensively later in this section) represent malicious nodes that 
conspire together to create the maximum possible damage to 
the whole structure of the network. The attack proceeds by 
having nodes at each interval leave the system as if there is no 
attack scenario until the malicious nodes suddenly drop out of 
the system, as described earlier. In each case of nodes leaving 
the system, we compare the performance of the network with 

a pure random network having the same average number of 
neighbors across all nodes, taking into consideration the min, 
max values, and backward connectivity from preferred nodes 
in a fashion similar to a topology created in the Gnutella 
network [14].  

In all simulations, we start with a small number of nodes 
20initn =  that are interconnected randomly to each other with 

each node maintaining a number of neighbors 
imin h max≤ ≤ . The average rate of nodes arriving (i.e., 

issuing joins) is greater than the average departure rate, 
allowing the network to grow to the total number of nodes we 
would like to examine. In the case of Type I, Type II or hybrid 
group attacks, the process with which the network is formed 
starts by adding 50% of the legitimate or ‘true’ nodes in 
incremental steps. At each step, the number of nodes added is 
drawn from a normal distribution, in a fashion similar to what 
would happen in a real P2P network. Following this, the 
malicious nodes are introduced in a single step giving them 
enough time to establish a strong presence in the network. We 
then add the next 50% of the legitimate nodes also in 
incremental steps. During all the steps, nodes continue to 
leave the network under a “no attack” situation. Eventually, 
we remove the malicious nodes, and study the effect on the 
remaining live nodes.  

The metric measured for these networks consists of the 
percentage of unique reachable nodes in the network vs. the 
number of hops that we also denote by TTL. This 
measurement will give us an understanding of how many 
nodes can be reached when an application issues a query on 
top of the Phenix topology. Also note, that the same can be 
denoted as a radius because it starts with a node as the center 
and proceeds to try to cover as much of the network as 
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possible. The figures represent this reachability metric in 
terms of the percentage of the total number of “live” nodes in 
the network. We compare the Phenix network under attack to 
a purely random network (as implemented by the Gnutella 
v0.6 [14]) because a random topology network is often cited 
to be the most tolerable to attacks [8].  Also, it is worth noting 
that the response of the network to various attacks is shown 
before the nodes run their node maintenance procedure (as 
described in Section III.C.2) because the performance of a 
Phenix network will return back to the case of ‘no attacks’ 
after a single neighbors maintenance is performed on each 
node. 

Each experiment ran 10 times to ensure that the results 
stem from the structure and properties of the Phenix 
algorithm. We then sampled 10% of the nodes and measured 
the reachability of each of the sampled nodes and calculated 
the averages for each result. All measurements deviated only a 
little from the averages presented, proving that the behavior of 
the distributed algorithm is indeed predictable and reliable.  

Figure 5(a) shows a comparison of the first type of 
targeted attack discussed above, which we denote on the plot 
as the modest attacker, versus the ‘no attack’ and random 
network. We can see that in response to the targeted node 
removals, the performance of the network degrades but the 
loss is quite tolerable and still offers a gain over the random 
topology. Thus, in this scenario, Phenix has the potential of 
offering the participating nodes a more efficient overall 
performance where a node can be reached even with a smaller 
TTL value. 

Figure 5(b) shows four different attacks: 30% of both 
Group Type I and Group Type II attacks, and two hybrid 
combinations each resulting in a total of 30% malicious nodes 
in the overlay. In studying such a comparison we were 
interested in seeing which strategy might be more damaging in 
fragmenting the network and disconnecting the live nodes. We 
observed that Group Type I attacks create a larger fragments 
in the network when introduced as a small percentage, than 
the same number of nodes running in the Group Type II attack 
mode. In addition, when we have a smaller percentage of 
Group Type I nodes backed up by more nodes as Group Type 
II, the performance of the network degrades the most as the 
maximum number of nodes reachable drops, as shown in 
Figure 5(b). This is due to the fact that nodes in Group Type I 
attacks, point to each other, which means that if we increase 
their number beyond a certain threshold the probability that 
they will be chosen by legitimate users as preferential drops. 
However, Figure 5(b) also shows us that across all attack 
scenarios, the network does not collapse into small islands. A 
promising result shows the giant component, indicated by the 
maximum reachability, not dropping below 70% of the 
remaining “live” nodes under all attack conditions. 

Figures 5(c) and 5(d) show the effect of Group Type I and 
Group Type II attacks on a Phenix network where the 
percentage of malicious nodes shown is actually the 
percentage from the final network. This means that if we have 
10% malicious nodes in a 2000-node network then the number 
of legitimate nodes is 1800. This result implies that for an 
attacker to launch a 50% attack, he/she has to have the 
capability of introducing a number of malicious equal to the 

number of existing nodes in the network that he/she wishes to 
partition or harm. 

In Figures 5(c) and 5(d), we can observe that a network 
under an attack of 50% malicious nodes scenario seems to 
provide a performance that is better than the 20% malicious 
nodes attack. This result seems counter-intuitive at first.  
However, it occurs because the number of nodes in the 
network becomes half the initial size, as the other half were 
malicious nodes that dropped out of the network, while the 
measured reachability is represented as a percentage of the 
total number of live nodes. Similarly, a network undergoing a 
90% malicious node attack seems to reach a constant plateau 
with a lower TTL value than the initial network for the no 
attacks scenario, as shown in the figure. This is due to the fact 
that the structure of the network carries the signature of a 
power-law like distribution, offering a diameter in the order of 

( )O logN  where N is the total number of nodes participating 
in the network. As N drops to 10% of its initial size, the 
diameter follows by decreasing as well. 

We ran the same set of simulations where the total number 
of nodes is 20,000 instead of the 2,000 keeping all other 
parameters identical. In Figure 6, we present a summary for 
the hybrid attack discussed earlier. The behavior is very 
similar to that of the previous set of experiments showing that 
Phenix can provide a high degree of resiliency to the network 
independent of the total number of nodes in the network. 
Figure 6 also shows another signature of a power-law like 
distribution. A 20,000 node network reaches almost a stable 
plateau with a TTL larger by 1 than the 2000-node network, 
even though the total number of nodes is 10 times greater. 

These plots indicate that increasing the TTL beyond a 
certain limit does not provide any significant benefit, as can be 
seen in Figure 5(b) and Figure 6. In fact, the number of 
reachable nodes seems to reach a maximum value beyond 
which increasing the TTL does not offer a wider variety of 
nodes reached. For example, it can be seen from Figure 5(c) 
that increasing the TTL from 4 to 5 in a 2000-node network 
with 10% malicious nodes of Group Type I will increase the 
reachability from 88.29% to 88.44%. This is a characteristic 
that can be exploited by applications where a query carrying a 
large TTL might have its hop decremented by more than 1 at a 
node receiving it because the gain of a larger TTL is not that 
significant. Such structure is beneficial in the sense that a 
reply can be returned to the originating node in a faster period 
of time because the number of hops is smaller than the random 
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counterpart. An application sitting on top of such a topology 
might consider not to flood all of its neighbors limiting the 
generated traffic. Rather, it can direct the search using a smart 
policy such as GIA [9], for example. 

Measuring the giant component, which is the largest 
portion of the network that remains strongly connected, under 
different group attack scenarios is shown in Figure 7. If we 
consider, for example, the 20% attack for both Group Type I 
and Group Type II modes, we can observe that the giant 
component still amounts to around 80% of the total nodes of 
the network. At the same time, an 80% attack results in a giant 
component composed of 60% of the nodes. One can conclude 
that in order for a malicious attacker to divide a network of 
400 nodes into half, then as many as 1600 nodes have to be 
introduced into the network for a considerable amount of time. 
This is a high price to pay to break such a network in two parts 
as the attacker is adding a number of nodes equal to 400% of 
the number of nodes in the initial targeted network. Add to 
this that the network recovers to a giant component in the 
order of 90% of the total number of nodes after performing 
one node maintenance interaction. This result looks very 
promising in terms of Phenix’s ability to respond to such 
attacks. 

The α  parameter introduced in Section III.C.2 contributes 
to a fast recovery because most nodes will become quite 
aggressive in creating highly connected nodes after losing 
their preferred neighbors. This encourages the promotion of 
existing nodes to become highly connected nodes and assume 
the role of preferred nodes. We show the behavior of α  in 
Figure 8.   

In this experiment, we use a hybrid attack of 10% Group 
Type I and 20% Group Type II. We can observe in Figure 8, 
that the initial value of the average of α  across the entire 
network is close to 0.7 before introducing malicious nodes. 
However, when these nodes are added to the network they 
create a false sense of stability that can be seen in an increase 
and almost constant α  despite the normal operation of the 
rest of the network where nodes are joining and leaving. 
Following the disappearance of the malicious nodes, we 
observe a sudden drop in α  across the entire network, as a 
sudden change is experienced by most legitimate live nodes. 
However, as the network goes back to normal operations, α  
starts to increase again, indicating that the network is in a 
stable state again. The choice of the α  update influenced by 
Equations (15) and (16) ensures aggressiveness in decreasing 
it in order to respond as fast as possible to an attack, while the 
process of increasing it again is more conservative. 

We assumed any node can handle any traffic offered to it 
in the work presented, however, in practice this might not be 
the case and some nodes might refuse to have a higher in-
degree than the average. The effect of such cases will be 
studied as part of our future work. 

V. EXPERIMENTAL TESTBED RESULTS 
We implemented Phenix in a real Internet-wide overlay 

environment running on the PlanetLab experimental testbed 
[24] for the purpose of measuring the overhead of the 
algorithm in the face of aggressive node removal scenarios. 
The code is built on the Open Source Jtella software system 
[17], a Java API for implementing the Gnutella protocol. We 
present some early results from an implementation and 
experiment that ran on 81 PlanetLab nodes. We also measured 
the time needed for the network to recover from an attack 
targeted at highly connected nodes in the Phenix overlay 
running on PlanetLab. We hope in the future to extend our 
experimental results beyond this initial but interesting set of 
results. 

A. Implementation 
Each node in our implementation has two layers. The first 

layer being the Phenix algorithm composed of a servent 
(server and client) daemon responsible for incoming as well as 
outgoing connections. The node opens a socket connection 
waiting for incoming connections from other nodes either 
sending an 0M (as described in Equation (2)), or nodes 
wishing to add this node to their neighbors’ list. In terms of 
the graph, this connection receives and services all the 
incoming edges pointing to this node. The second type of 
connection constitutes all the connections that a node opens to 
other nodes, or the outgoing connections. As for the second 
layer, it is purely for experimental purposes, and opens a 
listening socket interacting with a central control server. The 
purpose of this latter layer is to be able to monitor the 
connections of a node in order to observe the progress of the 
network formation as well as the emerging topology. In 
addition, the control server can send a stop signal to this layer 
asking it to remove the node from the overlay network; thus, 
emulating targeted node removal.  

The implementation is performed by modifying the JTella 
API which is a Java module based on Gnutella v0.6 [14]. The 
modifications are mainly in acquiring hosts and creating 
outgoing connections, making it conform to the Phenix 
algorithm, presented in Section III, instead of the random 
Gnutella topology. 
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B. Degree Distributions Experiments 
The Phenix overlay ran on the 81 PlanetLab nodes spread 

over 43 sites across 8 countries (Australia, Canada, Germany, 
Hong Kong, Sweden, Taiwan, UK, and US). The network 
started with 10initn =  nodes interconnected randomly, in order 
to boot up the process of network formation. After that, nodes 
started joining at the rate of 2 nodes every 5 seconds by 
contacting the control server, which acts as a bootstrap server 
and provides the rendezvous mechanism by giving each node 
a list of 4 nodes that it can connect to. The generated list of 
nodes, given as a response for each request, is drawn 
randomly from nodes that have already joined the system with 
no bias given towards node location or proximity. Taking 
response times among nodes as well as node proximity into 
consideration, while choosing neighbors is the subject of 
future work. Such parameters could contribute to the 
probability of picking a node as a neighbor.  

Thus, each starting node contacted the control server to get 
the initial hostG  list, and applied the Phenix algorithm in 
making its decisions. In the following experiment, we chose 
the values of 3 and 4 for min and max (lower and upper 
bounds on the number of initial neighbors for a node, 
respectively), since the number of nodes (81 nodes) is a small 
number as compared to the growth of peer-to-peer systems in 
today’s networks. Choosing higher values for min and max 
would create a network that is closer to a mesh while lower 
values can easily result in situations where a node might find 
itself completely disconnected from the rest of the network 
with the removal of few nodes.  

Following the complete formation of the network and 
connections of all nodes, we took a snapshot of the resulting 
graph by examining their neighbors’ list. Figure 9 presents the 
out-degree distribution (or number of formed outgoing 
connections) for the entire Phenix overlay network. The 
purpose behind this metric is to examine the number of nodes 
that emerged as preferential nodes and their respective 
degrees, as they acquired backward connections, thus, 
becoming hubs in the overlay network. We can see from the 
figure that the majority of nodes have between 3 and 4 
neighbors, with the exception of 3 nodes with 5, 10, and 18 
connections respectively. 

C. Targeted Attacks Experiments 
After acquiring the global view of the network from the 

control layer of each node, we targeted the 3 nodes with an 
out-degree that deviated from the rest by removing them from 
the system. We measured how long it took the network to 

recover from such an attack where each affected node 
performed node maintenance.  

Before sending these 3 nodes the command to close their 
incoming and outgoing connections, we measured the rtt 
(round trip time) from the control server to every node in the 
network in order to see the diversity of the connections. Figure 
10 shows the distribution of rtt for the overlay nodes. We can 
observe that although the majority of the nodes are within less 
than 100 msec reach from the control server, some offered a 
diversity in the network where their rtt reached higher values 
up to 350 msec, thus, offering a degree of heterogeneity for 
the experiment.  

In this experiment we sent the 3 highly connected nodes 
(with 5, 10, and 18 connections) a stop signal through their 
control layer forcing them to close all of their connections. We 
then waited for the reaction of the rest of the nodes in the 
Phenix overlay, and measured how long it took them to 
rearrange their connections and send their new state to the 
control server. Several factors enter into play when obtaining 
these results as can be seen in the following equation: 

 2 2i j i i i it rtt rtt rttς η= + + + +  (20) 

The total time needed for a node i to inform the control 
server that it performed the node maintenance, denoted by 

i
t , 

is the summation of five terms described as follows. The first 
term presented in Equation (20) is the time needed for the stop 
message to travel from the control server to the node to stop j, 
denoted by 2jrtt . The second term is the time needed for the 
node i, in the case it is connected to node j, to realize that node 
j is no longer available (or the timeout of the connection, in 
this case we chose the value to be 1000 msec), denoted by 

i
ς . 

The third term 
i

rtt is the time needed for node i to contact the 
control server requesting the address of one or more nodes that 
it can connect to, denoted by 

i
rtt . The fourth term, denoted by 

i
η , is the time needed to run the Phenix algorithm, which 
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might involve contacting a friend node in the case of acquiring 
a preferential node. Finally, the fifth term 2

i
rtt  is the time 

required to send the node maintenance outcome for the control 
server informing it of the change in the neighbors list.  

The distribution of time for each of the affected nodes to 
run this node maintenance mechanism is shown in Figure 11. 
We can observe that most nodes returned to a stable state 
where they have created new connections in less than 1 
second. Finally, Figure 9 shows a comparison of the resulting 
connectivity with the initial overlay graph, where we can 
observe that 4 new highly connected nodes emerged ensuring 
the fast recovery of the Phenix overlay with a low-diameter 
topology. Our intention is to conduct more extensive 
experiments on PlanetLab for a variety of attack conditions in 
the future. 

VI. CONCLUSION 
We have presented a fully distributed algorithm called 

Phenix that creates low-diameter resilient peer-to-peer overlay 
networks. To the best of our knowledge Phenix represents one 
of the first contributions that simultaneously supports high 
performance in terms of low-diameter and fast response times, 
and is robust to attacks and resilient to various overlay 
dynamics and node failure scenarios.  In this paper, we have 
shown through analysis, simulation, and from results from an 
experimental implementation on the PlanetLab overlay that 
Phenix results in efficient connectivity, offering tolerance to 
various network dynamics including join/leaves and a wide 
variety of simple and more sophisticated node attacks. 
Because of the rise in number of security attacks and the 
growing creativity of attackers, the need for resilient overlays 
that can offer both performance and resilient properties will 
become necessary particularly for commercial reliable 
overlays. Phenix supports low diameter performance and 
resilience without sacrificing flexibility. 
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