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Abstract

Motivation: Phenomics is essential for understanding the mechanisms that regulate or influence

growth, fitness, and development. Techniques have been developed to conduct high-throughput

large-scale phenotyping on animals, plants and humans, aiming to bridge the gap between gen-

omics, gene functions and traits. Although new developments in phenotyping techniques are excit-

ing, we are limited by the tools to analyze fully the massive phenotype data, especially the dynamic

relationships between phenotypes and environments.

Results: We present a new algorithm called PhenoCurve, a knowledge-based curve fitting algo-

rithm, aiming to identify the complex relationships between phenotypes and environments, thus

studying both values and trends of phenomics data. The results on both real and simulated data

showed that PhenoCurve has the best performance among all the six tested methods. Its applica-

tion to photosynthesis hysteresis pattern identification reveals new functions of core genes that

control photosynthetic efficiency in response to varying environmental conditions, which are crit-

ical for understanding plant energy storage and improving crop productivity.

Availability and Implementation: Software is available at phenomics.uky.edu/PhenoCurve

Contact: chen.jin@uky.edu or kramerd8@cns.msu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plants have a truly remarkable ability to harness energy from the

sun to produce food. That is called photosynthesis. Understanding

how plants optimize or regulate photosynthesis in response to a con-

tinuously changing environment is essential towards developing

strategies to improve crop yields (Kramer and Evans, 2011). Recent

development of high-throughput photosynthetic phenotyping

platforms allows continuous measurements of various photosyn-

thetic parameters over developmental time scales (days to weeks)

and under dynamically changing conditions (e.g. light intensity and

temperature), providing rich data sets for phenotype characteriza-

tion (see details in Fig. 1) (Baker et al., 2007; Cruz et al., 2016;

Houle et al., 2010; Rascher et al., 2011; Subramanian et al., 2013).

From the large volume of phenotype data biologists expect to iden-

tify genes ancillary to optimizing photosynthetic performance,
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growth and yield under dynamic growth conditions, especially those

related to abiotic or biotic stress, and to design more focused experi-

ments to fully define their functions.

Machine learning and computer vision algorithms have been re-

cently developed for phenotype information retrieval, data quality

control, and knowledge discovery (Gao et al., 2016; Green et al.,

2012; Tessmer et al., 2013; Xu et al., 2015; Yin et al., 2014a,b). For

example, computational tools are available to identify temporal pat-

terns from phenomics data (Yang and Leskovec, 2011), to group

traits by phenotypes existing (Gao et al., 2016), and to predict un-

known gene functions (Vlasblom et al., 2015). Ideally, these tools

would be useful for predicting which genotypes will perform the

best in specific real world growth environments.

Nevertheless, new tools are required to precisely model the influ-

ence of environment (e.g. abrupt changes in light intensity or tem-

perature) on phenotype (e.g. excessive losses in photosynthetic

efficiency and/or increases in photodamage). As has been empha-

sized in the literature, it is crucial to simultaneously measure and

correlate both phenotypes and environmental factors to arrive at a

holistic characterization of plant performance (Großkinsky et al.,

2015; Kutsukake et al., 2012; Walter et al., 2015; Wong et al.,

2012). In plants, photosynthesis must respond to changing environ-

ment to provide the optimal amount of energy to meet the needs of

the organism, in the correct forms, without producing toxic byprod-

ucts. In this context, photosynthesis can be viewed as a set of inte-

grated modules that form a self-regulating network that is sensitive

to changes in both environmental parameters (e.g. light intensity)

and metabolic or physiological factors (Kramer and Evans, 2011).

Studying the complex relationships between phenotypes and en-

vironments that define the interacting photosynthetic modules poses

several computational challenges. First, phenotype–environment re-

lationships are usually learned using data-driven approaches such as

linear regression or curve fitting. However, (i) it is difficult to choose

the best fitting function (Serôdio and Lavaud, 2011); (ii) it is diffi-

cult to incorporate biological knowledge needed to adequately de-

scribe the complex responses involved; (iii) purely data-driven

approaches may be significantly affected by bias and noise in phe-

nomics data (Osborne and Overbay, 2004).

Second, if a phenotype–environment relationship has already been

well studied, researchers tend to apply the known biological model

directly (Eilers and Peeters, 1988). However, biological models are

usually simple and static, while the phenotype–environment relation-

ships in the real world are often complex and dynamic. For example,

when light intensity is low, photosynthesis activity is positively

correlated with light, but such relationships can be reversed if the light

intensity is so large that it causes photoinhibition (see Fig. 2). It is

thus inappropriate to directly apply a theoretical model to the real

data that vary constantly over time and condition (Xu et al., 2015).

Third, the photosynthesis phenotypes are often measured under dy-

namic environmental conditions, over a relatively long period, and on

many plants with vastly different genetic backgrounds. This broad

range of data variation adds another level of complexity to the prob-

lem. In summary, novel algorithms are required to explore complex

phenotype–environment relationships that enable researchers to model

phenotypes, environments and genetic diversity simultaneously.

In this article, we present PhenoCurve to explore dynamic

phenotype–environment relationships with three major advantages

over existing approaches:

i. Although phenotype and environment are measured separately

with different techniques, they are biologically correlated. Studying

the complex relationships between them may reveal patterns that

cannot be discovered by only using phenotype data.

ii. PhenoCurve divides the whole dataset into reliable and unreli-

able parts, and then optimizes the phenotype–environment rela-

tionships on the unreliable part.

iii. In contrast to purely data-driven approaches, PhenoCurve can

effectively incorporate biological knowledge thus significantly

improving its performance.

In the following content, we demonstrate the effectiveness of

PhenoCurve by identifying the dynamic relationships between a key

photosynthesis phenotype UII (steady state quantum yield of photo-

system II) and light intensity. PhenoCurve can be easily extended for

other phenotype data with a simple modification.

2 Related work

In this section we introduce the biological background for modeling

the relationships between light and photosynthesis using the

photosynthesis-irradiance (PI) curve, as well as the existing compu-

tational approaches on curve fitting and regression.

2.1 PI curve
The PI curve is a graphical representation of the empirical relation-

ship between light and photosynthesis (MacIntyre et al., 2002). As a

derivation of the Michaelis-Menten kinetics, one of the best-known

models of enzyme kinetics, PI is modeled as a hyperbolic curve as

shown in Figure 2 (Chou and TaLaLay, 1981; Dowd and Riggs,

Fig. 1. Workflow of high-throughput plant photosynthesis phenotyping.

Environmental factors measured in the real world (A) or synthesized (B) are

played back in specially-designed chambers (C) outfitted with arrays of

sophisticated lighting and imaging sensors, to produce false-color fluores-

cence images of plants (D), which are then converted into matrices of photo-

synthesis parameters (E). In a matrix, each row i is a plant, each column j is a

time point that is associated with a specific environmental condition, and

each value is a photosynthesis phenotype of plant i at time point j Fig. 2. Hyperbolic PI curve
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1965; Menten and Michaelis, 1913), indicating that there is a gener-

ally positive correlation between light intensity and photosynthetic

rate. The PI curve has been applied successfully to photosynthesis

phenotype data under limited sets of conditions, e.g. to explain

ocean-dwelling phytoplankton photosynthetic response to changes

in light intensity (Jassby and Platt, 1976).

Let P be the photosynthetic rate at a given light intensity ½I� (or

denoted as i), the PI function is given by Equation (1):

P ¼ ½I� � Pmax

i1=2 þ ½I�
(1)

where Pmax is the maximum potential photosynthetic rate per individ-

ual, and i1=2 is half-saturation parameter representing the amount of

light to produce half of maximum photosynthesis. Note that Equation

(1) only models the positive correlation part of the PI curve.

By describing the photosynthetic rate P using linear electron

flow, i.e. P ¼ UII � i, we can rewrite UII with respect to time t:

UIIðt; i1=2Þ ¼
maxðUIIÞ

1þ iðtÞ
i1=2

(2)

where t is a time point, UIIðt; i1=2Þ and i(t) represent the steady state

quantum yield of photosystems II and light intensity at t, respect-

ively, and maxðUIIÞ is the maximal UII within the whole day. In gen-

eral, UII decreases as i increases, reflecting a combination metabolic

congestion as the electron transfer reactions exceeds the capacity of

downstream biochemistry, and feedback down regulation. See de-

tails in Xu et al. (2015).

Over a brief time periods, i1=2 remains constant. However, it may

change gradually and smoothly over a long time period with the grad-

ual changes of multiple environmental factors such as light intensity,

temperature, concentrations of CO2 and O2 or acclimation process

such as gene expression and developmental factors, aging or the accu-

mulation of damage (Cruz et al., 2016). Such phenotypic plasticity in-

dicates an organism can express a range of phenotypes when exposed

to different environments (Nicotra et al., 2010; Price et al., 2003).

2.2 Sliding window-based curve fitting methods
Under gradually varying environments, i1=2 is assumed to change

continuously. A sliding window approach may be appropriate to

apply. Using a sliding window approach, we can divide the whole

phenotype data ðt; iðtÞ;UIIðtÞÞ into overlapped temporal windows

along t, and then employ a curve fitting or regression method to com-

pute a local i1=2 value for each window. i1=2 at time t is determined

by the data in the window centered around t. Finally, all the local

i1=2 values are merged to capture the global phenotype–environment

relationship. Note that there is no explicit boundary between curve

fitting and regression; while the former pertains to the fitting opti-

mization itself, the latter focuses more on statistical inference

(Motulsky and Christopoulos, 2004).

Curve fitting is a commonly used method to model the relation-

ships among two or more variables (Motulsky and Christopoulos,

2004). Mathematically, it is a process to tune the parameters of a

known mathematical function f to achieve the best fit to a series of

data points, where in our case f is a function to describe the underly-

ing biological relationship between phenotype and environment.

The Levenberg-Marquardt algorithm (LMA), aka the damped least-

squares method, has been widely used for nonlinear least squares

calculations for solving generic curve-fitting problems (Levenberg,

1944). LMA interpolates between the Gauss-Newton algorithm and

the method of gradient descent, aiming to find a local minimum

(Bates and Watts, 1988; Holland and Welsch, 1977). If the fitting

function f is unknown, some nonparametric smoothing techniques

such as robust regression like robust locally weighted regression

(LOWESS) (Cleveland, 1979) and kernel smoother models like lo-

cally linear regression (LLR) (Gupta et al., 2008), are often used for

estimating a smooth curve from observations. In this way, non-

linear relationships between phenotypes and environmental factors

can be learned purely from data.

2.3 Bayesian linear model with normal inverse

gamma prior
Although sliding window-based curve fitting methods optimize local

fitting, they simply ignore the global continuity of i1=2. Thus, they

may be sensitive to noise in raw phenotype data in local windows,

resulting in inaccurate phenotype–environment relationships.

Performance improvement may be achieved by using the Bayesian

linear model with normal inverse gamma (NIG) prior (Gelman,

2006).

Given phenomics data in window Wj ¼ fðtk;UII;k; ikÞ :

8k 2 ½j; jþ n�g, where n þ 1 is the window width, we first transfer

Equation (2) to its linear form for easier representation:

maxðUIIÞ
UII;k

� 1 ¼ 1

i1=2
ik þ ek (3)

where UII;k, ik are UII and light intensity at tk, and �k is the error

term associated with tk distributed as normal distribution Nð0; r2Þ.
Second, similar to Section 2.2, we adopt a sliding window ap-

proach to estimate i1=2 and r2 for each temporal window using lin-

ear regression methods (Freedman, 2009). Given a threshold of the

linear regression reliability R2 (Holland and Welsch, 1977), we can

classify all windows D ¼ fWj : 1 � j � Ng into two groups, i.e. re-

liable data DðrÞ and unreliable data DðuÞ, where ðrÞ and ðuÞ stand for

‘reliable’ and ‘unreliable’; N is the number of windows;

DðrÞ [DðuÞ ¼ D; and DðrÞ \DðuÞ ¼1.

Third, in order to derive î1=2 in each unreliable window, we as-

sume that the prior ði1=2; r2Þ> follows the NIG distribution, i.e.

i1=2; r2 � NIGðl;V; a;bÞ, where l;V; a; b is the set of hyper param-

eters of NIG. Subsequently i1=2; r2jDðuÞ is also distributed as NIG

yet with different parameters ðl�;V�; a�; b�Þ. Assuming that the pri-

ors of parameters for both DðrÞ and DðuÞ follow the same single

mode NIG distribution with ðl;V; a; bÞ, we estimate the hyper par-

ameters ðl̂; V̂ ; â; b̂Þ using DðrÞ and apply them on DðuÞ. Finally, i1=2

of each temporal unreliable window can be obtained by using the

following steps, 1) obtaining ðl̂�; V̂ �; â�; b̂
�
Þ by both the shared

hyper parameters ðl̂; V̂ ; â; b̂Þ and local data DðuÞ in each window, 2)

obtaining the marginal posterior distribution Prði1=2jDðuÞÞ by inte-

grating out r2, 3) maximizing the marginal posterior distribution to

obtain the estimates î1=2. See more details at Gelman (2006) and

Bolstad (2013).

In this model, the global continuity of i1=2 is guaranteed due to

the single mode of the NIG distribution (Bolstad, 2013). However,

assumptions about constant hyperparameters could be too rigid, be-

cause the parameters for DðrÞ and DðuÞ may be under different prior

distributions due to different environmental stresses.

3 Materials and Methods

To explore the dynamic phenotype–environment relationships with-

out the technical limitations in curve fitting and Bayesian NIG
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methods, we present PhenoCurve based on regularized polynomial

regression.

PhenoCurve has four components, as showed in Figure 3.

First, it splits the raw phenotype and environment data into highly

overlapped temporal windows using a sliding window approach,

obtaining D and allowing for modeling the gradual change of i1=2.

Second, it employs a non-linear curve fitting method to com-

pute i1=2 for each temporal window, and classifies D into two

groups by the results, i.e. reliable one DðrÞ and unreliable one DðuÞ,

based on each R2. Third, using DðrÞ, it estimates i1=2 for each unre-

liable window with regularized polynomial regression. Finally, it

optimizes the i1=2 values for all unreliable windows using local

data in that window, resulting in increased reliability in curve

fitting.

We introduce all the four steps in the following content. In

addition, an illustrative example in Figure 4 is used to demon-

strate the key steps in PhenoCurve. Some of the sampled UII

are far from the ground truth because of unavoidable noise

during measurement (see the corresponding light intensities in

Supplementary Fig. S1). Using this simple case, we demonstrate

how PhenoCurve optimizes both the local fitting of UII and

the global trend of i1=2 thus recovering the real UII values under

dynamic environmental conditions. Note the ground truth is

hidden from the program and is only used for performance

evaluation.

3.1 Data separation with sliding window
Due to biological constraints, the sampling rate of the phenotype is

usually much lower than that of the environmental factors (Cruz

et al., 2016). Subsequently, we split the raw data into highly over-

lapped temporal windows solely based on the phenotype data, re-

sulting in window set D ¼ fWj : 1 � j � Ng, where each temporal

window Wj ¼ fðtk;UII;k; ikÞ : 8k 2 ½j; jþ n�g has n pairs of pheno-

type and environment values, and the values in each pair are meas-

ured at exactly the same time (or are close enough to each other).

Each temporal window shares n � 1 values with the previous and

the next window. The window width satisfies two conditions: (i)

i1=2 remains relatively constant within each temporal window, and

(ii) there are enough data in each temporal window for inferring the

value of i1=2.

3.2 Local curve fitting
The next step is to infer the half light parameter i1=2;j in each win-

dow Wj. The value of i1=2;j can be estimated using the least square

curve fitting (Freedman, 2009). The general idea is to identify

parameters in a fitting function to minimize the sum of all the
Fig. 3. The workflow of PhenoCurve. The gray boxes are data types, and the

white boxes are processes

Fig. 4. An illustrative example of PhenoCurve. It demonstrates that PhenoCurve optimizes both the local fitting and the global trend of i1=2 thus recovering the real

UII values under dynamic environmental conditions
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square of errors between the predicted and the observed values.

Given all the n phenotype–environment pairs in Wj, we estimate

i1=2;j by:

î1=2;j ¼ argmin
i1=22R

Xjþn

k¼j

UII;k �
maxðUIIÞ

1þ ik
i1=2

0
@

1
A2

(4)

The fitting procedure also yields a R2 score, indicating the level

of reliability of the fitting. Based on R2, we can divide all win-

dows D ¼ fWj : 1 � j � Ng into two groups, i.e. the reliable

windows DðrÞ ¼ fWðrÞ
j : 1 � j � NðrÞg and the unreliable windows

DðuÞ ¼ fWðuÞ
j : 1 � j � NðuÞg, where DðrÞ [DðuÞ ¼ D; DðrÞ \DðuÞ

¼1, and NðrÞ þNðuÞ ¼ N.

Figure 4B shows the curve fitting results on one of the reliable

temporal windows in our running example, where the fitted curve

(grey solid line) matches well with the ground truth (dotted line).

However, the fitted curve (black solid line) on one of the unreliable

temporal windows, as shown in Figure 4C, is far from the ground

truth (dotted line).

3.3 Regularized polynomial linear regression model
Using the half light parameter in the reliable temporal windows,

denoted as î
ðrÞ
1=2;j; 1 � j � NðrÞ, we build a regularized polynomial

linear regression model, aiming to generate a l-degree polynomial

smooth curve of i1=2, where l is the given degree of polynomial

(Thrampoulidis et al., 2015). In a regularized polynomial linear re-

gression model, the degree of one represents a linear model, the

order of two represents a quadratic form, and the order of three and

above works for arbitrary shapes. Note using higher-degree polyno-

mial would risk in over-fitting (Bishop, 2006).

Given all reliable windows W
ðrÞ
j ¼ fðt

ðrÞ
k ; i

ðrÞ
k ;UðrÞII;kÞ : 8k 2 ½j; j

þn�g; 1 � j � NðrÞ, we adopt the l-degree polynomial linear regres-

sion model to generate the smooth curve of i1=2. The procedure is

described as follows.

Let X
ðrÞ
j ¼ ð1; t

ðrÞ
j ; i

ðrÞ
j ;UðrÞII;j; t

ðrÞ2
j ; i

ðrÞ2
j ;UðrÞ2II;j ; . . . ; t

ðrÞl
k ; i

ðrÞl
j ;UðrÞlII;j Þ

denote the j-th row of data matrix XðrÞ ¼ ðXðrÞ1 ; . . . ;X
ðrÞ
NðrÞ
Þ>, and let yðrÞ

denote the vector of all î
ðrÞ
1=2;j in the reliable windows, 1 � j � NðrÞ,

the regression model is given by:

yðrÞ ¼ XðrÞbþ g (5)

where g is distributed as a standard multivariate normal distribution.

To solve Equation 5 while avoiding overfitting, a sparsity model

is required (Tibshirani, 1996). To this end, Lasso or its generaliza-

tion form called elastic net is often considered (Zou and Hastie,

2005). Since elastic net is more flexible than Lasso, we consider elas-

tic net regularization for the above polynomial linear regression

model as following:

b̂ ¼ argmin
b2R3lþ1

jjyðrÞ �XðrÞbjj2 þ k1jjbjj1 þ k2jjbjj2 (6)

where both k1 and k2 are tuning parameter, jj:jj1 and jj:jj are L1 and

L2 norms of vector, respectively. By Lagrangian duality, the model

with elastic net penalty is suggested to be given by:

b̂ ¼ argmin
b2R3lþ1

jjyðrÞ �XðrÞbjj2 subject to JðbÞ � s (7)

where s is a user-specified parameter, JðbÞ ¼ ð1� aÞjjbjj1 þ ajjbjj2

and weight a ¼ k2

k1þk2
.

Usually, tuning parameters a 2 ½0;1� and s � 0 can be chosen via

well-established methods like cross-validation (Hastie et al., 2005).

When a ¼ 0, the elastic net penalty becomes lasso penalty (Tibshirani,

1996), which selects at most minfdimðbÞ;NðrÞg variables. If l increases

and NðrÞ decreases, the number of selected variable is bounded by NðrÞ.

When a 2 ð0; 1Þ, it is the elastic net penalty. Although it can select vari-

ables without limitation on the lower bound and encourages group ef-

fects, the solution is yielded via a stage-wise LARS-EN algorithm (Zou

and Hastie, 2005) rather than in a closed form formula. When a ¼ 1,

the elastic net penalty becomes bridge regression model (Fu, 1998),

which fits any variable selection situation because of general penalty

form (Park and Yoon, 2011). On the other hand, bridge regression

model yields the closed form solution b̂ ¼ ðXðrÞ>XðrÞ þ k2IÞ�1XðrÞ>yðrÞ

where I is the unit matrix of size 3l þ 1.

Applying biðrÞ1=2 ¼ XðrÞb̂ to data in unreliable windows, we

obtain a predicted half-saturation parameter for both reli-

able and unreliable windows, denoted as bi1=2 ¼ ðbiðrÞ>1=2 ;
biðuÞ>1=2 Þ

> ¼

ðîðrÞ1=2;1; . . . ; î
ðrÞ
1=2;NðrÞ ; î

ðuÞ
1=2;1; . . . ; î

ðuÞ
1=2;NðuÞ Þ

>. bi1=2 ensures smooth hid-

den state variables under dynamic environments.

The lower solid (blue) line in Figure 4C shows the results on one

of the unreliable temporal windows. In this window, several

sampled UII values are far from the ground truth (blue dots), which

results in biased local curve fitting results (gray line) with

R2 ¼ 0:70. The polynomial regularization (blue solid line), on the

contrary, is independent of the local data, which suggests the actual

curve should be lower than the locally fitted curve.

3.4 Maximum posterior estimations
Given the phenotype data in the jth unreliable temporal window, we

re-estimate its local half light parameter î
ðuÞ�
1=2;j. Our aim is to identify

the half light parameter that fit best with both the local data in the

jth unreliable temporal window and the estimated half light value

î
ðuÞ
1=2;j learned from the regularized polynomial linear model in the

previous step.

Mathematically, for the fixed jth unreliable window, we rewrite

Equation (2) with error terms as

UðuÞII;k ¼
maxðUIIÞ

1þ i
ðuÞ
k =i

ðuÞ�
1=2;j

þ eðuÞk (8)

for j � k � nþ j, where eðuÞk follows Nð0;r2
1Þ. It yields

pðUðuÞII;kji
ðuÞ
k ; i

ðuÞ�
1=2;jÞ / exp � 1

2r2
1

UðuÞII;k �
maxðUIIÞ

1þ i
ðuÞ
k =i

ðuÞ�
1=2;j

0
@

1
A22

4
3
5 (9)

Assume i
ðuÞ�
1=2;j have a normal prior with hypoparameters î

ðuÞ
1=2;j and

r2
2, that is,

pðiðuÞ�1=2;jÞ / exp � 1

2r2
2

i
ðuÞ�
1=2;j � î

ðuÞ
1=2;j

� �2
� �

(10)

The posterior of i
ðuÞ�
1=2;j is given by

pðiðuÞ�1=2;jjW
ðuÞ
j Þ ¼

pðiðuÞ�1=2;j;W
ðuÞ
j Þ

pðWðuÞ
j Þ

/ pðiðuÞ�1=2;j;W
ðuÞ
j Þ

¼ pðiðuÞ�1=2;jÞpðW
ðuÞ
j ji

ðuÞ�
1=2;jÞ ¼ pðiðuÞ�1=2;jÞ

Ynþj

k¼j

pðUðuÞII;kji
ðuÞ
k ; i

ðuÞ�
1=2;jÞ

(11)

1374 Y.Yang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/9/1370/2920816 by guest on 21 August 2022

Deleted Text: -
Deleted Text: P
Deleted Text: L
Deleted Text: R
Deleted Text: M
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: P
Deleted Text: E
Deleted Text: -
Deleted Text: -
Deleted Text: -


where pðWðuÞ
j ji

ðuÞ�
1=2;jÞ is the joint likelihood function. Thus,

log pðiðuÞ�1=2;jjW
ðuÞ
j Þ / log pðiðuÞ�1=2;jÞ þ log

Ynþj

k¼j

pðUðuÞII;kji
ðuÞ
k ; i

ðuÞ�
1=2;jÞ

¼ �
i
ðuÞ�
1=2;j � î

ðuÞ
1=2;j

� �2

2r2
2

�
Xnþj

k¼j

UðuÞII;k �
maxðUIIÞ

1þi
ðuÞ
k
=i
ðuÞ�
1=2;j

� �2

2r2
1

(12)

The final equation that can be solved by maximizing the poster-

ior estimation is given by:

î
ðuÞ�
1=2;j ¼ argmin

i1=22R

ði1=2 � î
ðuÞ
1=2;jÞ

2

2r2
2

þ
Xjþn

k¼j

UðuÞII;k �
maxðUIIÞ

1þi
ðuÞ
k
=i1=2

� �2

2r2
1

0
BBB@

1
CCCA (13)

One of the drawbacks of the sliding window approach is the

fixed window width. If the majority data in a window happen to be

noisy, the fitted curve will not be reliable no matter what model is

used. Hence, we develop a simple procedure to expand each unreli-

able window by adding the closest phenotype–environment pair

located in a reliable window, thus increasing the reliability of curve

fitting.

In the example in Figure 4C, the middle solid (red) curve shows

the results of maximizing the posteriori estimation on one of the unre-

liable temporal windows. By taking into consideration both the local

UII data and the global trend of i1=2, the optimized curve is the closest

to the ground truth. Besides, phenoCurve significantly increases the

curve reliability R2 by extending the scope of window to include the

closest UII value (orange dot) that is located in a reliable window.

Figure 4D shows the results of PhenoCurve on the complete dataset.

For comparison, the results of global and local fitting are also

included. Clearly PhenoCurve (red line) is the closest to the ground

truth while the global/local fitting (two gray lines) are significantly af-

fected by the noisy inputs. See details in Supplementary Table S1.

4 Experimental results

We evaluate the performance of PhenoCurve on both the real

and simulated phenotype data regarding fitting performance and

fitting reliability. We also compare PhenoCurve with six exist-

ing methods, i.e. (i) the direct computation with PI function, (ii)

the one-window curve fitting (ONE), (iii) the sliding-window

based curve fitting (WIN), (iv) the kernel smoothing method

using LLR, (v) the Bayesian linear model with NIG prior and

(vi) robust LOWESS, all introduced in the Related Work

Section.

4.1 Experimental data
We first test the performance of PhenoCurve using the real plant

photosynthetic phenotype data consisting of 331 Arabidopsis thali-

ana plants (330 confirmed T-DNA insertion mutants and wild-type

(Col-0) used as a reference, each with at least four biological repli-

cates) (Ajjawi et al., 2010; Alonso et al., 2003). In the biological ex-

periment, all the plants are evenly sampled at 32 time-points during

16 h. All the environmental factors except light are constant.

Following a sinusoidal curve, light intensity changes gradually from

39 to 500 lmol m�2 s�1 then goes back to 39 lmol m�2 s�1 (details

in Supplementary Fig. S1). The photosynthetic phenotype values

vary dramatically across plants, reflecting potential differences in

development, stress responses or regulation of processes such as

stomatal conductance, photodamage, and storage of photosynthate

(Cruz et al., 2016). In PhenoCurve, we set three window sizes to in-

clude 6, 12 or 18 measurements, respectively. A window with 18

measurements is viewed approximately as half day, a window with

12 measurements is viewed approximately as a quarter of a day, and

a window with 6 measurements is viewed approximately as a period

of 3 h.

Second, we test the performance of PhenoCurve using synthetic

data, which are generated in three steps. First, we randomly generate

a vector of i1=2 that changes gradually over time. Second, we recon-

struct the UII phenotype data using the vector of i1=2, the same vec-

tor of light as the real data, and the PI function (MacIntyre et al.,

2002). Third, we randomly add noise (levels vary from 5 to 15%) to

the phenotype data. This process has been repeated 2000 times to

generate the synthetic data (see Supplementary Table S2).

Threshold R2 ¼ 0:9 is used on both the real and the synthetic

datasets to define the reliable and unreliable windows. The highest

order of polynomial term is set to two by using cross-validation.

4.2 Evaluation criteria
We define four criteria for systematic performance evaluation. We

apply all of them to data in unreliable windows, data in reliable win-

dows, and data in the whole windows.

First, coefficient of determination, denoted as R2, is often used

as the main criteria for measuring whether a curve fitting is adequate

(Cameron and Windmeijer, 1997; Holland and Welsch, 1977). In

our case, for window Wj, R2 is defined as:

R2 ¼ 1�

Pjþn

k¼j

ðUII;k � ÛII;kÞ2

Pjþn

k¼j

ðUII;k � �UII;j Þ2
(14)

where ÛII;k is the fitted UII;k at time tk, and �UII;j is the averaged ÛII;k

in temporal window Wj. In Equation (14), R2 measures the fraction

of the total variation in the phenotype data that can be explained by

the curve. Higher values indicate that the curve fits the data better.

If R2 ¼ 1:0, all points lie exactly on the curve with no scatter.

Second, we compute the smoothness of i1=2 of each window. For

a continuous curve, smoothness can be measured using high order of

derivatives. For discrete values (which is our case), we measure all

the angles formed by adjacent temporal windows:

smoothnessði1=2Þ ¼
1

N

XN�1

j¼2

½aj � Ta� (15)

where aj ¼ jarctanðî�1=2;jþ1 � î
�
1=2;jÞ � arctanðî�1=2;j � î

�
1=2;j�1Þj repre-

sents the angle difference centered around all windows, Ta is a user

given angle threshold, and ½X� ¼ 1 if the condition X is satisfied,

otherwise ½X� ¼ 0. In our experiment, Ta ¼ 30
	
. A higher value indi-

cates that the curve is smoother.

Finally, for synthetic data, we compute both DUII and Di1=2 and

use both of them as evaluation criteria. DUII is the sum of all the ab-

solute differences between every ground truth phenotype value and

its corresponding value on the fitted curve. Di1=2 is defined as the

sum of all the absolute differences between every ground truth i1=2
value and its corresponding parameter of the fitted PI curve. Both of

the criteria are the smaller, the better. Note that the last two criteria

are only applicable to the synthetic data for which the ground truth

is known. Similarly, not all the evaluation criteria are applicable for

all the methods to compare. Please refer to details in Supplementary

Section 1.
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4.3 Experimental results on real data
We run PhenoCurve on the real photosynthesis phenotype data

using three different window sizes: 6, 12 and 18. The highest degree

of polynomial term was set to two via using cross-validation. We

compare the performance of PhenoCurve with the existing methods

using the same parameters.

The experimental results indicate that PhenoCurve has more reli-

able results than the existing methods. Figure 5a shows that for the

unreliable windows, the averaged coefficient of determination (R2)

increases 32% from 0.65 to 0.97, compared with WIN and NIG.

With the increase of window size, the R2 values of all the existing

methods are steadily increased from 0.65 to 0.79 but are still lower

than the R2 of PhenoCurve (0.84).

With the increase of window size from 6 to 18, the curve

smoothness of all the existing methods decreases significantly from

0.74 to 0.47, while the smoothness of PhenoCurve (varying between

0.63 and 0.75) is insensitive to window size (see Fig. 5b).

On the complete dataset (see Supplementary Fig. S3a and b), which

includes both data in the reliable and the unreliable windows, the same

trend remains, except that the results of WIN and NIG are smoother

than PhenoCurve when the window size is small. Directly using the PI

results in the least smooth curve, because PI is sensitive to noise.

4.4 Experimental results on synthetic data
We compare the performance of PhenoCurve and the five existing

methods on the synthetic phenotype data using three different win-

dow sizes. The synthetic data is introduced in Section 4.1. The re-

sults of PhenoCurve are in Supplementary Table S3.

The experimental results indicate that PhenoCurve is more reli-

able than the compared methods. Figure 5c shows that on the unreli-

able windows, the R2 values of WIN and NIG are negative because

of the noisy synthetic phenotype data, and PhenoCurve significantly

increases the R2 value from �0.26 to 0.65 (91% improvement). On

the whole synthetic data (see Supplementary Fig. S4a), PhenoCurve

also increases the R2 value from 0.32 to 0.74 (42% improvement).

Regarding the smoothness test, all the tested algorithms (except PI)

have similar performance (see Fig. 5d and Supplementary Fig. S4b).

Figure 5c and Supplementary Figure S5a and b show that in all

the tests PhenoCurve has overall smaller residues than PI, WIN and

NIG, indicating the UII curve generated by PhenoCurve is the closest

to the ground truth, as demonstrated in Supplementary Figure S4D.

The results show that PhenoCurve is overall the best except that

when the window size is large (18) all the methods (except PI) have

the similar performance.

We also compared PhenoCurve with the nonparametric smooth-

ing technique LOWESS on all the unreliable windows of the syn-

thetic data. The results in Table 1 show that although LOWESS has

a higher R2 than that of PhenoCurve, it always yields higher errors

of i1=2 than PhenoCurve does due to the lack of the ability to adopt

a knowledge model to reduce the number of parameters.

4.5 Robustness test
In order to test the robustness of PhenoCurve, we run PhenoCurve on

a synthetic dataset with three different levels of noise (5, 10 and

15%). Table 2 includes the performance improvement at each noise

rate by comparing PhenoCurve and the local curve fitting method

(WIN), the most commonly used model. It shows that PhenoCurve

can constantly improve performance, especially the curve reliability

(R2). It also indicates that PhenoCurve is more robust than the local

curve fitting method with the increase of the noise rate. Since both D

UII and Di1=2 are the smaller, the better, the negative ratios in Table 2

indicate the results of PhenoCurve is closer to the ground truth than

WIN at all the settings.

Table 1. Coefficient of determination R2 and Di1=2 on the unreliable

windows of synthetic phenotype data

Window Size 8 12 18

Di1=2 PhenoCurve 0.02 0.03 0.03

LOWESS 0.05 0.05 0.05

R2 PhenoCurve 0.65 0.67 0.60

LOWESS 0.75 0.67 0.69

Di1=2 is the smaller the better.

Table 2. The robustness test of PhenoCurve with multiple noise

and bias rates

Noise rates 5% 10% 15%

Unreliable windows R2 67.07% 86.57% 118.37%

smoothness 7.14% 7.35% 3.28%

DUII �83.33% �53.85% �45.95%

Di1=2 �35.29% �50.00% �41.67%

All the windows R2 24.42% 36.49% 45.76%

smoothness 20.00% 4.88% 5.13%

DUII �33.33% �31.82% �27.27%

Di1=2 �15.07% �25.37% �21.74%

The values are the performance improvements by comparing PhenoCurve

with the local curve fitting method (WIN).

Fig. 5. Coefficient of determination R2 and smoothness of i1=2 on all the unreli-

able windows of the real data (a,b) and the synthetic data (c,d). DUII and Di1=2

on the synthetic data (e,f) (Color version of this figure is available at

Bioinformatics online.)
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4.6 Biological application
Diurnal hysteresis in photosynthesis is a phenomenon where the

photosynthetic performance of an organism is asymmetric (e.g.

lower in the afternoon than in the morning or vice versa) even at

symmetric environmental conditions. This phenomenon has been

widely observed in phytoplankton, macroalgae, and higher plants

(Levy et al., 2004). Mutant lines in which the photosynthetic hyster-

esis changes may indicate that a loss of function impacts photosyn-

thesis by influencing the rate of photodamage, rate of repair, sink

capacity, and so on. However, photosynthetic hysteresis is difficult

to quantify especially under dynamic conditions.

By identifying the key parameter i1=2 governing the photosynthe-

sis phenotype–environment relationship, we test whether employing

PhenoCurve can solve the problem. The rationale is that i1=2 is an in-

dicator of how sensitively photosynthetic rate responds to light in-

tensity (Equation 1)—a smaller i1=2 means that photosynthesis

saturates at lower light intensity. This level of control is exerted pri-

marily by modulation of UII (Equation 2). Decreases in i1=2 yields a

relative decreases in UII, assuming max UII is relatively constant.

Given all the i1=2 values of all the 330 Arabidopsis mutant lines

obtained in Section 4.3, we compute their relative i1=2 values by

comparing each i1=2 value with the corresponding value of wild-type

plants (Col-0) in the same flat (a flat is a set of plants phenotyped

together). And then we compute the trend of the relative i1=2 for

each mutant using linear regression.

From the data, we identify two types of hysteresis patterns, i.e.

class 1 and class 2 shown in Figure 6a and c, respectively. In both fig-

ures, each line represents a serial of relative i1=2 values of a mutant

line. Clearly, classes 1 and 2 have the opposite trend. One of the mu-

tant lines in class 1 is shown in Figure 6b, where each line represents

the UII of a biological replicate. It shows that the phenotype measures

are highly reproducible, and the photosynthetic efficiency recovers in

the afternoon, indicating the mutant line can efficiently repair any

photodamage caused by high light during mid-day, or in the previous

day. In class 2, a case study (Fig. 6d) shows low UII in the afternoon,

suggesting photoinhibition caused by strong light at noon. See

Supplementary Figure S2 for the hysteresis patterns.

In order to verify the discovery, we conduct a biological experi-

ment to measure qI (photoinhibition) of the same mutants under the

same conditions. Figure 6f shows the logged fold change of qI, and

it indicates that the plants in class 2 have significantly higher photo-

inhibition than those in class 1. For example, the logged fold change

of qI of the mutants in Figure 6B and E are 0.12 and 1.57, respect-

ively. Another case study in class 2 (Fig. 6e), on the contrary, has in-

significant qI (0.3) but is hysteresis, suggesting either congestion of

linear electron flow or PSI damage.

In summary, learning the phenotype–environment relationships

with PhenoCurve simplifies hysteresis pattern detection, thus ena-

bling biologists to discover the mechanisms that regulate responses

to dynamic environments. Although the experiment is conducted

using smooth and symmetric light conditions for easy visualization

and validation, the model can be easily extended for experiments

with rapid environmental perturbations.

5 Conclusion

In plants, photosynthesis is the primary energy source for metabol-

ism and growth. With the large volume of photosynthesis phenotype

data that has been collected, normalized and cleaned, biologists ex-

pect to immediately identify mutant lines with efficient photosyn-

thetic machinery, and quickly generate and test biological

hypotheses that may lead to a new breakthrough in bio-energy re-

search. To meet the growing needs, we develop a new tool called

PhenoCurve to study the dynamic relationships between phenotypes

and environments using biological knowledge. PhenoCurve splits

the whole phenotype and environment data into highly overlapped

temporal windows, employs the PI curve and non-linear curve fitting

methods to calculate i1=2 for the reliable windows, and then opti-

mizes the i1=2 for the unreliable windows using regularized polyno-

mial regression and maximum posterior estimations. The results on

both the real and the synthetic data show that PhenoCurve is signifi-

cantly better than the existing methods. We also demonstrate that

PhenoCurve can be directly used for hysteresis pattern detection. We

will extend PhenoCurve to model multiple phenotypes. A technical

challenge is that with more data types, the number of parameters

rapidly increases. We will also generalize PhenoCurve for broader

applications including growth prediction and early disease detection

without relying on the PI function.

Funding

This research was supported by the National Science Foundation (1458556),

the US Department of Energy (DE-FG02-91ER20021) and MSU Center for

Advanced Algal and Plant Phenotyping.

Fig. 6. Trend analysis of i1=2 reveals two types of hysteresis patterns in UII ,

which have a strong correlation with photoinhibition qI
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