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Abstract 

 

The objective of this work was to study the phenolic profile and composition in relation to antioxidant 
activity of fifteen samples of commercial red, rosé and white wines originating from six native grape varieties 
and produced in important wine regions from Romania. The profile and quantification of major phenolic 
compounds were performed by direct injection of wines in the LC-MS system, using DAD and ESI (+) MS 
techniques, in parallel with the total phenolic content (TPC) measured by spectrometry and the free radical 
scavenging activity, against 2,2-diphenyl-1-picrylhydrazyl (DPPH). There were identified 38 polyphenols in 
wines, including 3 flavan-3-ols, 17 flavonols, 12 anthocyanins and 6 stilbenes. The red wines had significant 
higher phenolic content and antioxidant capacity, followed by rosé and white wines. The richest phenolic 
content and antioxidant activity was obtained for ‘Feteasca Neagra’ (Tohani) among red wines and for 
‘Feteasca Regala’ (Jidvei) among white wines. TPC values were positively correlated with the antioxidant 
capacity in all white wines and only for the red ‘Feteasca Neagra’ assortment, while for the ‘Babeasca Neagra’ 
assortment negative correlations were obtained. From the 38 variables, flavan-3-ols have exerted the greatest 
influence on wine differentiation, based on their colour (red, rosé and white). The study also revealed 
significant differences between cultivars, both qualitative and quantitative, in terms of their polyphenolic 
composition, that could be important in the cultivar authentication of wines from these varieties.  

 

Keywords: antioxidants; HPLC-DAD-ESI(+)MS; multivariate data analysis; native Romanian wines; 
phenolics 

 
 
Introduction 

 
The consumption of wine is a common and ancient practice in Romania, our country being one of the 

main producers and consumers of wine. The European Union (EU) has a leading position on the world wine 
market, accounting for approximately 60% of global production. In 2013 Romania was the sixth wine producer 
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in EU, after Italy, Spain, France, Germany and Portugal, while in 2015 was ranked the same position in EU in 
terms of wine quantity, after Italy, France, Spain, Germany and Portugal (OIV, 2015). 

Wines have been shown to be a significant source of dietary polyphenolic antioxidants, including 
benzoic and cinnamic acid derivatives, flavan-3-ols, flavonols, stilbenes and anthocyanins (Alén-Ruiz et al., 
2009; Haseeb et al., 2019). The health benefits of regular, moderate wine consumption have been studied in 
depth and have been associated with the reduction of the incidence of many diseases such as cancer, 
cardiovascular diseases, atherosclerosis, hypertension, type 2 diabetes, neurological disorders, and metabolic 
syndrome (Artero et al., 2015; Haseeb et al., 2019) and these health-protective effects of wines are due to their 
antioxidant properties and their ability to scavenge free radicals. Also, the regular intake of wine, and especially 
red wine, has been associated with the so-called effect the “French Paradox”, that means the reduction of 
mortality by cardiovascular diseases (Renaud and De Lorgeril, 1992). 

The chemical composition of wines underlies their quality and authenticity. The polyphenolic profile 
of a given cultivar reflects to a great extent its genetic potential and, therefore, may be used as a tool to 
differentiate the various cultivars (Muccillo et al., 2014; Budić-Leto et al., 2017). Phenolic grape and wine 
compounds can be divided into two groups: non-flavonoid (hydroxybenzoic and hydroxycinnamic acids and 
stilbenes) and flavonoid compounds (anthocyanins, flavan-3-ols and flavonols) (Gomez-Alonso et al., 2007). 

Many different methods, including high-performance liquid chromatography (HPLC) and capillary 
electrophoresis (CE) in combination with different detectors, UV-Vis, photo diode array (PDA), mass 
spectrometry (MS), and electrochemical (EC) detectors, have been used to investigate the polyphenolic 
content and chemical composition of wine. Mass spectrometry (MS), especially, is responsible for great progress 
in the identification and characterization of polyphenols in wine (Šeruga et al., 2011). Characterization of 
wines, based on the phenolic profile, has been reported by numerous researchers from several countries and 
included the analysis of: flavan-3-ols, with catechin being the most important flavanol found in wines 
(Tinttunen and Lehtonen, 2001; Monagas et al., 2005; Gomez-Alonso et al., 2007; Budić-Leto et al., 2017); 
flavonols (Rastija et al., 2009; Vrček et al., 2011; Pereira et al., 2013; Budić-Leto et al., 2017), hydroxybenzoic 
and hydroxycinnamic acids (Alén-Ruiz et al., 2009; Budić-Leto et al., 2017); anthocyanins (Kelebek et al., 
2010; Li et al., 2011; Bai et al., 2013; Figueiredo-González et al., 2014) and stilbenes, with resveratrol being the 
most important representative (Abril et al., 2005; Stervbo et al., 2007; Rodríguez-Cabo et al., 2014; Budić-Leto 
et al., 2017). 

In our country, no detailed phenolic composition was reported for wines obtained from indigenous 
grape varieties. In this respect, until now, little attention has been paid to characterization of native Romanian 
wines, looking specifically to their phenolics’ profile and composition. Thus, some wine samples, originating 
from autochthonous grape cultivars, were studied only for a few compounds, like catechin, epicatechin, 
resveratrol and phenolic acids (Geana et al., 2011; Geana et al., 2014a). Instead, for Romanian wines made from 
grape varieties of foreign origin, Ionete et al. (2019) reported the presence of hydroxybenzoic and 
hydroxycinnamic acids, flavonoids and stilbenes, in wines obtained  from  grapes  of three different varieties, 
like Chardonnay, Muscat Ottonel and Pinot Noir.  

The aim of this study is to characterize commercial samples of Romanian red, rosé and white wines from 
six local grape cultivars, ‘Feteasca Alba’ (FA), ‘Feteasca Regala’ (FR), ‘Babeasca Rose’ (BR), ‘Busuioaca de 
Bohotin’ (BB), ‘Babeasca Neagra’ (BN), ‘Feteasca Neagra’ (FN) and produced in six different regions of 
Romania (Patic, 2006). To estimate the phenolic profile and composition it was developed a fast HPLC 
method coupled with diode array (DAD) and electrospray ionization (ESI) - mass spectrometry detection. The 
total polyphenol content of all wines, performed by the standardized Folin-Ciocalteu (FC) method, aimed to 
be correlated with the antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging technique.  
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Materials and Methods 

 

Wine samples 

Fifteen Romanian wines, including red, rosé and white varieties of six different cultivars were used in 
this study. The samples used were produced during the 2010, 2011 and 2012 harvests from vineyards located 
in six important Romanian wine regions: Moldavia (wine no. 1, 5, 6, 7, 8, 11, 12), Transylvania plateau (wine 
no. 2, 3), Banat (wine no. 4), Dobrogea (wine no. 9, 15), South of the country (wine no. 10) and Muntenia and 
Oltenia (wine no. 13, 14) (Table 1). The wines were bottled after 1 or 2 years.  The main criterion for the 
selection of wines was the one related to the native origin of the grape varieties. For this reason, it was necessary 
to purchase different wine types, with different sweetness index, to cover a sufficient number of indigenous 
varieties. The wines were commercialized in glass bottles, purchased from local supermarkets and stored at 
room temperature until analysed. The wines were examined shortly after bottling. Before analysis, wine samples 
were filtered through 0.45 µm polytetrafluoroethylene (PTFE) filters.  
 

Table 1. List of wines investigated, based on cultivar type and wine producer, production year, wine colour 
and sweetness index. These Abbreviations are used in the text 

Wine 
no. 

Wine sample 
(abbreviation) 

Name, producer Year 
Wine type, sweetness 

index 
1 FACot2011 Feteasca Alba, Coteşti 2011 White, Half-dry 
2 FAJid2011 Feteasca Alba, Jidvei 2011 White, Dry 
3 FRJid2011 Feteasca Regala, Jidvei 2011 White, Half-dry 
4 FRRec2012 Feteasca Regala, Recas 2012 White, Half-dry 
5 BRPan2012 Babeasca Rose, Panciu 2012 Rosé, Half-dry 
6 BBHus2011 Busuioaca de Bohotin, Husi 2011 Rosé, Half-sweet 
7 BNPan2011 Babeasca Neagra, Panciu 2011 Red, Half-dry 
8 BNHus2010 Babeasca Neagra, Husi 2010 Red, Dry 
9 BNSN2011 Babeasca Neagra, Sarica-Niculitel 2011 Red, Dry 

10 BNSC2010 Babeasca Neagra, Sadova Corabia 2010 Red, Dry 
11 FNCot2010 Feteasca Neagra, Cotesti 2010 Red, Half-sweet 
12 FNPan2011 Feteasca Neagra, Panciu 2011 Red, Half-dry 
13 FNCep2012 Feteasca Neagra, Ceptura 2012 Red, Dry 
14 FNToh2010 Feteasca Neagra, Tohani 2010 Red, Half-dry 
15 FNMur2011 Feteasca Neagra, Murfatlar 2011 Red, Half-sweet 

 
Reagents and chemicals  

All reagents used in the analysis were of analytical grade. For the determination of total phenolic content 
were used Folin Ciocalteu’s phenol reagent, anhydrous sodium carbonate, Gallic acid and 40% ethanol 
analytical grade. Radical scavenging assay reagents used were: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 6-
hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Solvents used for the determination of 
polyphenolic content by HPLC were of chromatographic grade: acetic acid, acetonitrile. HPLC grade purified 
water was obtained from a Milli-Q water purification system. Commercial standards used for flavonoids and 
stilbenes were quercetin dihydrate, (+)-catechin and trans-resveratrol and commercial standards used for 
phenolic compounds were gallic acid, cyanidin chloride. 

 
HPLC-DAD-ESI/MS analysis 

The HPLC separation, identification and quantification of wine phenolic compounds were performed 
on an Agilent 1200 HPLC Series system (Agilent, Santa Clara, CA, USA), equipped with a Diode Array 
Detector (G1315D) coupled with a MS system equipped with Electrospray Ionisation (ESI) source operated 
in the positive-ion mode and an Agilent Technologies 6110 Single Quadrupole mass spectrometer. The 
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chromatographic data were processed using ChemStation and DataAnalysis software from Agilent, USA. 
Compounds were separated on a reversed-phase column Zorbax Eclipse XDB-C18 (4.6 x 150 mm; 5 µm 
particle; Agilent), which was maintained at 25 °C. The mobile phase consisted of 10% acetonitrile and 0.1% 
acetic acid in aqueous solution (A) and 0.1% acetic acid in acetonitrile (B). The linear gradient for solvent B 
was as follows: 0 min, 5%; 2 min, 5%; 18 min, 40%; 20 min, 90%; 24 min, 90%; 25 min, 5%; 30 min, 5%. The 
flow rate was 0.5 mL min-1, the injection volume was 5 µL and data were collected at 280, 340 and 520 nm. For 
identification, ESI-MS was used, setting the following parameters: positive ion mode; dry gas, N2, flow rate, 8 
L min-1; drying temperature, 350 °C, nebulizer pressure 65 psi, capillary voltage, 3000 V, scan range, m/z 150-
1000.  

 
Identification and quantification of phenolics 

Some of the phenolic compounds analysed were identified previously according to their order of elution, 
retention times and UV-Vis spectra of pure compounds ((+)-catechin, quercetin, trans-resveratrol and 
cyanidin) and the characteristics of the UV-Vis spectra published in different studies (Monagas et al., 2005). 
For the rest of individual polyphenols, the identification was performed by correlating the absorbance and mass 
spectra obtained with those previously reported in the literature and by study of their fragmentation patterns 
(Mazzuca et al., 2005; Monagas et al., 2005; Castillo-Muñoz et al., 2007). The quantification of phenolic 
compounds was carried out by using the DAD chromatograms obtained at wavelengths that show more 
sensitivity to each phenolic group: 280 nm for the flavanols and stilbenes; 340 nm for the flavonols; and 520 
nm for the anthocyanins, by means of external standard calibration curves. The three replicated experiments 
were carried out for each variety of wine. Samples of each of the wine varieties were taken from three separate 
bottles. The concentration of the most representative compound for each group was measured after 
calibrations made with pure compounds analyzed in the same conditions and linear regression coefficients 
obtained were between 0.9935 and 0.9994. In general, more than one linear regression was performed for each 
compound, at different concentration levels. Calibration of a similar compound was used when the pure 
reference standard was not available: cyanidin was used for anthocyanidin 3-glucosides, quercetin for flavonol 
3-glycosides and their free aglycones, (+)-catechin for flavan-3-ols and trans-resveratrol for stilbenes. 

 
Determination of total phenolic compounds content 

The total phenolic concentration was determined by spectrophotometry, according to the Folin-
Ciocalteu (FC) method, using Gallic acid as reference standard (Singleton et al., 1999). A standard curve of 
gallic acid (ranging from 0 to 10 mg L-1) was prepared and the results, determined from a regression equation: 

Phenolic Concentration = 0.9443 x absorbance + 0.0608, 
R2 : 0.9945, 

were expressed as mg gallic acid equivalents per liter of wine (mg GAE L-1). Absorbance measurements were 
performed on a BIO-TEK Synergy HT multi-detection microplate reader (Biotek,Winooski, USA). 

 
DPPH radical-scavenging assay  

The antioxidant activity of wines was determined by DPPH radical-scavenging activity assay, a modified 
version of Brand-Williams et al. (1995). Free radical DPPH· (2,2-diphenyl-1-picrylhydrazyl) reacts with an 
antioxidant compound, which can donate hydrogen, and reduce DPPH·. The changes in colour (from purple 
to a residual pale-yellow colour) were measured at 515 nm on a spectrophotometer after 30 min of incubation. 
The decrease of radical absorbance is proportional to the concentration and activity of the sample analyzed. 
Absorbance measurements are transformed to antioxidant activity using as reference Trolox (6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid), which is a commercial water-soluble analog of vitamin E that 
is used to standardize the results from different studies dealing with food antioxidant capacity. To this end, 
quantification of antioxidant capacity was made by calibration curve obtained from methanolic solutions of 
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Trolox, in a range of 0-500 µmol L-1. The DPPH· stock solution (80 µM DPPH· in methanol) was prepared 
fresh daily, sonicated 15 min and kept in the dark at room temperature. The working protocol consisted of 
adding 250 μL of wine and 1750 µL of DPPH radical methanolic solution (8 × 10-5 mol L-1) on the microplate, 
and, after 30 min, measuring the percentage of absorbance decrease at 515 nm. For the blank, 250 μL wine 
sample was replaced with 250 μL methanol. The capability of each wine sample to scavenge DPPH· was 
expressed as a percentage and calculated by using the formula: 

DPPH radical scavenging activity (%) = [(Acontrol - Asample) / (Acontrol)] x 100, 
where Acontrol is the absorbance of DPPH radical + methanol (containing all reagents except the sample) and 
Asample is the absorbance of DPPH radical + wine sample / standard. Using Trolox as a standard, the total 
antioxidant activity (TAA) was expressed as milimoles of Trolox equivalents (TE) per L of wine (Brand-
Williams et al., 1995; De la Cruz et al., 2013). Absorbance measurements were recorded on a BIO-TEK 
Synergy HT multi-detection spectrophotometer. Operating conditions were set at 25 °C. 
 

Statistical analysis 

All the samples were analyzed in triplicate; the average and the relative SD were calculated using the 
Excel software package. Data were subjected to one-way analysis of variance (ANOVA) and comparison 
between means was determined according to Duncan’s test. Significant differences were accepted at p ≤ 0.05. 
Pearson correlation coefficient between total phenolic content and scavenging activity was calculated using 
Microsoft Excel software package. Principal Component Analysis (PCA) was performed using Unscrambler 
Software, version 9.7 (CAMO Software AS, Norway).   

 
 
Results and Discussion 

 
Phenolics’ profiling and quantification by HPLC-DAD-ESI (+) MS 

A fast, direct injection HPLC-DAD-ESI(+)MS technique, optimized in the laboratory for phenolics 
analysis was applied and specific fingerprints were obtained for each wine sample. Figure 1 shows representative 
HPLC-DAD chromatograms of wines, recorded at 280 nm for the flavan-3-ols and stilbenes detection, e.g. 
‘Feteasca Regala’, Jidvei (FRJid2011) white wine (Figure 1A), recorded at 340 nm for flavonols profile, as detected 
in ‘Feteasca Neagra’, Cotesti (FNCot2010) red wine (Figure 1B) and recorded at 520 nm for the anthocyanins 
detected in ‘Feteasca Neagra’, Ceptura (FNCep2012) red wine (Figure 1C). 
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Figure 1. HPLC/DAD chromatogram recorded at: (A) 280 nm, showing the flavan-3-ols and stilbenes 
detected in FRJid2011 white wine; (B) 340 nm, showing the flavonols detected in FNCot2010 red wine; (C) 520 
nm showing the anthocyanins detected in FNCep2012 red wine 
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A total number of 38 peaks corresponding to different phenolic classes were identified by comparison 
with pure standards and by mass spectrometry (molecular ion and fragmentation features) as presented in 
Tables 2, 3, 4. 

Four classes of individual phenolic compounds were identified: flavan-3-ols (as monomers), flavonols 
(as glycosides and aglycones), stilbenes (monomeric aglycones, glycosides and dimers) and anthocyanins 
(monomeric anthocyanins). Based on the calibrated peak areas, the concentration of each individual phenol 
derivative was calculated and presented in Table 5. The total content of the four different groups of phenolic 
derivatives was then obtained from the sum of the individual concentration, expressed in mg L-1 of wine. 
 

Table 2. HPLC-ESI(+)MS data used to identify flavan-3-ols and stilbenes in all wines after separation and 
DAD detection at 280 nm 

Peak no Identified compound 
Retention time 

(min) 
[M-H]+ 

(m/z) 
Fragment ion 

(m/z) 
1 Resveratrol-5-O-glc 3.1 391 229 
2 Resveratrol-3-O-glc 3.5 391 229 
3 Non identified 5.6 213  
4 Resveratrol 8.7 229  
5 Gallocatechin 11.1 307 202 
6 Catechin 12.3 291 202 
7 Pallidol 13.7 455 213 
8 Epicatechin gallate 16.2 443 202 
9 Pterostilbene 19.1 257 229 

10 Piceatannol 23.5 245 229 
Notes: glc: glucoside 

 
Table 3. HPLC-ESI(+)MS data used to identify flavonols in all wines after separation and DAD detection 
at 340 nm 

Peak no Identified compound 
Retention time 

(min) 
[M-H]+ 

(m/z) 
Fragment ion 

(m/z) 
1 Myricetin-3-O-gal 3.1 481 319 
2 Myricetin-3-O-glc 3.5 481 319 
3 Quercetin-3-O-gal 4.2 465 303 
4 Quercetin-3-O-glc 5.1 465 303 
5 Isorhamnetin-3-O-gal 6.5 479 317 
6 Isorhamnetin-3-O-glc 8.1 479 317 
7 Laricitrin-3-O-glc 10.6 495 333 
8 Quercetin-3-O-gluc 11.5 479 303 
9 Laricitrin-3-O-(6-acetyl)-glc 12.8 537 333 

10 Kaempferol-3-O-glc 13.5 449 287 
11 Syringetin-3-O-glc 15.6 509 347 
12 Syringetin-3-O-(6-acetyl)-glc 18.7 551 347 
13 Myricetin 20.1 319  
14 Quercetin 21.3 303  
15 Isorhamnetin 22.5 317  
16 Laricitrin 23.7 333  
17 Kaempferol 24.5 287  

Notes: glc: glucoside; gal: galactoside; gluc: glucuronide 

 
 
 



Banc R et al. (2020). Not Bot Horti Agrobo 48(2):716-734 

 

722 
 

 

 

 

 

Table 4. HPLC-ESI(+)MS data used to identify anthocyanins in rosé and red wines, after separation and 
DAD detection at 520 nm 

Peak no Identified Compound 
Retention time 

(min) 
[M-H]+ 

(m/z) 
Fragment ion 

(m/z) 
1 Cyanidin-3-O-glc 10.9 449 287 
2 Petunidin-3-O-glc 11.4 479 317 
3 Delfinidin-3-O-glc 12.0 465 303 
4 Peonidin-3-O-glc 12.3 463 301 
5 Cyanidin-3-O-(6-acetyl)-glc 12.6 491 287 
6 Petunidin-3-O-(6-acetyl)-glc 13.5 521 317 
7 Delfinidin-3-O-(6-acetyl)-glc 13.7 507 303 
8 Peonidin-3-O-(6-acetyl)-glc 14.3 505 301 
9 Delfinidin-3-O-(6-coumaryl)-glc 14.6 611 303 

10 Malvidin-3-O-glc 15.8 493 331 
11 Malvidin-3-O-(6-acetyl)-glc 16.5 535 331 
12 Malvidin-3-O-(6-coumaryl)-glc 16.9 639 331 

Notes: glc: glucoside 
 

Table 5. Mean concentrations (mg L-1) of phenolic compounds identified in all white, rosé and red 
Romanian wines (n = 3) 

 White wines Rosé wines 
Phenolic compounds FACot2011 FAJid2011 FRJid2011 FRRec2012 BRPan2012 BBHus2011 

Flavan-3-ols  
(+)-Catechin 25.29 ± 0.50 42.05 ± 0.43 35.64 ± 0.18 33.30 ± 0.25 43.99 ± 0.34 42.30 ± 0.19 

Epicatechin gallatea 24.03 ± 0.32 36.49 ± 0.15 32.74 ± 0.38 12.46 ± 0.08 40.09 ± 0.33 28.92 ± 0.22 
Gallocatechina 22.22 ± 0.21 33.10 ± 0.25 35.11 ± 0.41 38.81 ± 0.24 19.88 ± 0.10 28.12 ± 0.34 

Total 71.54 111.64 103.49 84.57 103.96 99.34 
Stilbenes  

Resveratrol-3-O-glc 
(Piceid) b 

0.43 ± 0.02 0.50 ± 0.04 0.44 ± 0.06 0.36 ± 0.03 0.45 ± 0.06 0.37 ± 0.04 

Resveratrol-5-O-glcb 0.27 ± 0.01 0.36 ± 0.02 0.23 ± 0.02 0.43 ± 0.05 0.17 ± 0.02 0.20 ± 0.03 
trans-Resveratrol 0.67 ± 0.05 0.86 ± 0.06 0.73 ± 0.05 1.46 ± 0.09 0.61 ± 0.06 0.34 ± 0.02 

Piceatannolb 0.35 ± 0.02 0.31 ± 0.01 0.29 ± 0.03 0.29 ± 0.01 0.29 ± 0.03 0.29 ± 0.05 
Pterostilbeneb 3.76 ± 0.11 0.48 ± 0.02 0.44 ± 0.03 0.46 ± 0.03 5.11 ± 0.19 5.63 ± 0.21 

Pallidolb 0.38 ± 0.05 0.38 ± 0.05 0.24 ± 0.01 0.19 ± 0.02 0.24 ± 0.01 0.32 ± 0.03 
Total 5.86 2.89 2.37 3.19 6.87 7.15 

Flavonols  
Myricetin-3-O-galc - - - - 2.39 ± 0.09 2.05 ± 0.08 
Myricetin-3-O-glcc 1.17 ± 0.10 1.97 ± 0.09 2.35 ± 0.11 2.20 ± 0.06 2.95 ± 0.16 2.54 ± 0.12 

Myricetinc - - - - - 1.28 ± 0.05 
Quercetin-3-O-gal 

(Hyperoside)c 
3.89 ± 0.22 3.17 ± 0.17 2.91 ± 0.14 3.89 ± 0.12 2.64 ± 0.08 2.28 ± 0.12 

Quercetin-3-O-glc 
(Isoquercetin)c 

2.02 ± 0.14 8.50 ± 0.15 5.73 ± 0.20 - 10.43 ± 0.19 3.26 ± 0.16 

Quercetin-3-O-glucc 6.02 ± 0.19 6.29 ± 0.13 5.26 ± 0.11 6.37 ± 0.17 3.73 ± 0.15 4.32 ± 0.17 
Quercetin - - - - - - 

Isorhamnetin-3-O-galc 14.04 ± 0.24 9.73 ± 0.14 12.31 ± 0.18 17.79 ± 0.20 11.17 ± 0.19 6.55 ± 0.15 
Isorhamnetin-3-O-glcc 20.43 ± 0.31 30.23 ± 0.15 24.26 ± 0.32 53.66 ± 0.33 21.65 ± 0.23 11.63 ± 0.18 

Isorhamnetinc 7.57 ± 0.16 3.30 ± 0.16 2.51 ± 0.09 0.96 ± 0.05 2.88 ± 0.09 2.96 ± 0.16 
Laricitrin-3-O-glcc 5.22 ± 0.15 13.15 ± 0.14 9.62 ± 0.14 14.41 ± 0.11 5.80 ± 0.22 5.20 ± 0.19 
Laricitrin-3-O-(6-

acetyl)-glcc 
- - 1.34 ± 0.07 1.76 ± 0.09 1.72 ± 0.11 1.70 ± 0.07 

Laricitrinc 1.61 ± 0.12 1.46 ± 0.08 1.24 ± 0.05 - 1.09 ± 0.08 1.14 ± 0.11 
Kaempferol-3-O-glc 

(Astragalin)c 
15.90 ± 0.18 8.58 ± 0.14 6.81 ± 0.11 4.13 ± 0.17 7.31 ± 0.13 9.49 ± 0.19 

Kaempferolc 4.24 ± 0.11 - 1.63 ± 0.10 - - - 
Syringetin-3-O-glcc 3.46 ± 0.09 2.69 ± 0.12 2.05 ± 0.11 0.86 ± 0.04 1.37 ± 0.06 2.78 ± 0.08 
Syringetin-3-O-(6-

acetyl)-glcc 
- - - - - - 
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Total 85.57 89.07 78.02 106.03 75.13 57.18 
Anthocyanins  

Cyanidin-3-O-glcd - - - - - - 
Cyanidin-3-O-(6-

acetyl)-glcd 
- - - - < 0.50 < 0.50 

Petunidin-3-O-glcd - - - - < 0.50 < 0.50 
Petunidin-3-O-(6-

acetyl)-glcd 
- - - - < 0.50 < 0.50 

Delfinidin-3-O-glcd - - - - < 0.50 < 0.50 
Delfinidin-3-O-(6-

acetyl)-glcd 
- - - - < 0.50 < 0.50 

Delfinidin-3-O-(6-
coumaryl)-glcd 

- - - - < 0.50 < 0.50 

Peonidin-3-O-glcd - - - - - - 
Peonidin-3-O-(6-acetyl)-

glcd 
- - - - < 0.50 < 0.50 

Malvidin-3-O-glcd - - - - < 0.50 < 0.50 
Malvidin-3-O-(6-acetyl)-

glcd 
- - - - < 0.50 < 0.50 

Malvidin-3-O-(6-
coumaryl)-glcd 

- - - - < 0.50 < 0.50 

Total - - - - - - 
 Red wines 

Phenolic 
compounds 

BNPan2011 BNHus2010 BNSN2011 BNSC2010 FNCot2010 FNPan2011 FNCep2012 FNToh2010 FNMur2011 

Flavan-3-ols          

(+)-Catechin 
112.39 ± 

0.84 
167.41 ± 

 0.49 
203.38 ±  

0.92 
193.76 
± 0.55 

192.38 ±  
0.44 

331.59 ± 
1.10 

202.88 ± 
0.92 

241.16 ± 
0.78 

212.11 ± 
0.65 

Epicatechin 
gallatea 

63.75 ± 
0.42 

157.91 ±  
0.60 

146.08 ±  
0.72 

213.81 
± 0.74 

192.11 ±  
0.68 

197.57± 
0.88 

141.30 ± 
0.60 

299.16 ± 
1.20 

206.68 ± 
0.96 

Gallocatechina 
48.98 ± 

0.38 
89.64 ±  

0.36 
77.39 ± 

 0.33 
65.01 ± 

0.35 
101.29 ± 

 0.51 
63.23 ±  

0.32 
53.79 ± 

0.43 
125.60 ± 

0.80 
60.59 ± 

0.37 
Total 225.12 414.96 426.85 472.58 485.78 592.39 397.97 665.92 479.38 

Stilbenes          
Resveratrol-3-
O-glc (Piceid) 

b 

0.94 ± 
0.08 

1.21 ± 
 0.11 

1.03 ±  
0.08 

1.20 ± 
0.09 

1.32 ± 
 0.08 

0.98 ±  
0.08 

1.14 ±  
0.06 

1.02 ± 
0.05 

1.01 ±  
0.07 

Resveratrol-5-
O-glcb 

0.29 ± 
0.04 

0.36 ±  
0.05 

0.32 ±  
0.04 

0.29 ± 
0.01 

0.26 ± 
 0.04 

0.27 ±  
0.03 

0.26 ±  
0.01 

0.25 ± 
0.03 

0.26 ±  
0.03 

trans-
Resveratrol 

2.70 ± 
0.12 

1.71 ±  
0.09 

1.33 ±  
0.13 

1.58 ± 
0.14 

1.68 ±  
0.10 

2.27 ±  
0.15 

0.72 ±  
0.03 

1.36 ± 
0.09 

1.33 ±  
0.07 

Piceatannolb 
0.40 ± 

0.04 
0.26 ±  

0.06 
0.24 ±  

0.03 
0.20 ± 

0.03 
0.18 ±  

0.03 
0.21 ± 
 0.03 

0.24 ±  
0.02 

0.37 ± 
0.04 

0.26 ±  
0.05 

Pterostilbeneb 
12.05 ± 

0.16 
1.04 ±  

0.10 
0.66 ±  

0.06 
0.27 ± 

0.02 
11.51 ±  

0.21 
9.10 ±  

0.18 
1.08 ±  

0.08 
13.42 ± 

0.10 
12.34 ± 

0.14 

Pallidolb 
1.31 ± 

0.07 
1.24 ±  

0.10 
1.48 ± 
 0.11 

2.04 ± 
0.12 

2.53 ±  
0.19 

1.91 ±  
0.11 

1.25 ±  
0.08 

3.78 ± 
0.16 

1.95 ± 
 0.06 

Total 17.69 5.82 5.06 5.58 17.48 14.74 4.69 20.20 17.15 

Flavonols          
Myricetin-3-

O-galc - 
3.51 ±  

0.16 
20.75 ± 

 0.35 
3.29 ± 

0.14 
3.92 ±  

0.16 
1.95 ±  

0.08 
2.44 ±  

0.07 
- - 

Myricetin-3-
O-glcc 

7.08 ± 
0.14 

11.21 ±  
0.12 

6.25 ±  
0.19 

12.84 ± 
0.19 

15.79 ±  
0.23 

7.99 ±  
0.16 

17.15 ± 
0.22 

8.70 ± 
0.15 

9.71 ±  
0.17 

Myricetinc 
6.59 ± 

0.17 
2.32 ±  

0.09 
6.34 ±  

0.14 
3.31 ± 

0.17 
7.80 ±  

0.18 
6.98 ±  

0.14 
1.48 ±  

0.10 
5.58 ± 

0.12 
2.66 ±  

0.06 
Quercetin-3-

O-gal 
(Hyperoside)c 

3.93 ± 
0.13 

4.49 ±  
0.19 

2.17 ±  
0.11 

3.38 ± 
0.08 

3.58 ±  
0.17 

3.20 ± 
 0.11 

4.90 ± 
 0.16 

2.79 ± 
0.07 

2.99 ± 
 0.13 

Quercetin-3-
O-glc 

(Isoquercetin)c 

7.81 ± 
0.11 

2.38 ± 
 0.11 

4.69 ±  
0.17 

4.70 ± 
0.18 

6.37 ±  
0.13 

5.42 ± 
 0.17 

4.34 ±  
0.12 

2.99 ± 
0.11 

6.83 ±  
0.16 

Quercetin-3-
O-glucc 

12.56 ± 
0.14 

9.88 ±  
0.14 

13.02 ± 
 0.24 

10.52 ± 
0.20 

11.69 ±  
0.19 

9.86 ±  
0.20 

7.29 ±  
0.13 

8.65 ± 
0.19 

13.20 ± 
0.20 
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Quercetin 
- 

5.95 ±  
0.15 

9.95 ± 
 0.15 

5.07 ± 
0.13 

11.68 ±  
0.11 

2.88 ±  
0.12 

2.35 ±  
0.05 

6.52 ± 
0.14 

2.68 ±  
0.08 

Isorhamnetin-
3-O-galc 

- 
3.73 ± 
 0.07 

10.09 ±  
0.22 

4.61 ± 
0.12 

8.94 ± 
 0.19 

- 
6.01 ±  

0.12 
10.35 ± 

0.21 
14.93 ± 

0.19 
Isorhamnetin-

3-O-glcc 
92.93 ± 

0.33 
42.72 ±  

0.36 
49.28 ± 

 0.38 
46.30 ± 

0.33 
46.94 ±  

0.37 
82.33 ±  

0.44 
20.36 ± 

0.25 
26.22 ± 

0.32 
37.18 ± 

0.29 

Isorhamnetinc 
6.57 ± 

0.13 
4.82 ± 
 0.12 

1.94 ±  
0.12 

3.57 ± 
0.07 

2.35 ±  
0.06 

4.65 ±  
0.18 

0.98 ±  
0.03 

2.22 ± 
0.06 

2.23 ± 
 0.12 

Laricitrin-3-
O-glcc 

30.68 ± 
0.24 

14.37 ±  
0.21 

35.96 ± 
 0.29 

19.99 ± 
0.19 

30.92 ±  
0.15 

30.43 ±  
0.32 

11.13 ± 
0.16 

14.15 ± 
0.17 

14.66 ± 
0.20 

Laricitrin-3-
O-(6-acetyl)-

glcc 

9.19 ± 
0.18 

9.59 ±  
0.11 

9.69 ±  
0.18 

10.87 ± 
0.22 

15.05 ±  
0.14 

9.54 ± 
 0.16 

16.08 ± 
0.18 

9.39 ± 
0.20 

10.32 ± 
0.14 

Laricitrinc 
1.37 ± 

0.07 
1.65 ±  

0.05 
- 

1.31 ± 
0.04 

1.72 ±  
0.09 

1.49 ±  
0.09 

0.70 ±  
0.02 

1.09 ± 
0.08 

1.57 ±  
0.07 

Kaempferol-3-
O-glc 

(Astragalin)c 

19.15 ± 
0.21 

29.98 ± 
 0.26 

16.32 ±  
0.22 

26.70 ± 
0.18 

26.93 ± 
 0.24 

25.64 ±  
0.24 

10.42 ± 
0.20 

70.05 ± 
0.35 

24.56 ± 
0.22 

Kaempferolc 
- - 

1.79 ±  
0.07 

- 
1.32 ±  

0.07 
- - 

1.29 ± 
0.06 

- 

Syringetin-3-
O-glcc 

34.35 ± 
0.26 

34.23 ±  
0.43 

45.98 ± 
 0.39 

35.00 ± 
0.25 

46.15 ±  
0.34 

34.41 ± 
 0.25 

34.37 ± 
0.25 

39.03 ± 
0.45 

18.81 ± 
0.26 

Syringetin-3-
O-(6-acetyl)-

glcc 

4.68 ± 
0.11 

4.00 ±  
0.13 

6.70 ±  
0.18 

4.45 ± 
0.15 

7.93 ±  
0.15 

7.42 ± 
 0.18 

2.98 ±  
0.14 

4.54 ± 
0.15 

4.19 ±  
0.14 

Total 236.89 184.83 240.92 195.91 249.08 234.19 142.98 213.56 166.52 

Anthocyanins          
Cyanidin-3-

O-glcd - - 4.55 ± 0.14 - - 3.36 ± 0.14 - - 1.62 ± 0.04 

Cyanidin-3-
O-(6-acetyl)-

glcd 

2.82 ± 
0.11 

1.27 ±  
0.06 

1.45 ±  
0.05 

1.30 ± 
0.04 

1.19 ± 
 0.05 

1.52 ±  
0.08 

4.17 ±  
0.15 

1.22 ± 
0.02 

2.70 ± 
 0.10 

Petunidin-3-
O-glcd 

2.06 ± 
0.09 

- 
1.26 ±  

0.07 
1.22 ± 

0.06 
1.36 ±  

0.09 
1.69 ±  

0.09 
1.77 ± 
 0.09 

- - 

Petunidin-3-
O-(6-acetyl)-

glcd 

2.58 ± 
0.12 

1.28 ±  
0.08 

2.35 ±  
0.11 

1.26 ± 
0.08 

2.19 ±  
0.13 

1.60 ±  
0.06 

5.74 ±  
0.14 

2.38 ± 
0.08 

4.96 ±  
0.14 

Delfinidin-3-
O-glcd 

26.07 ± 
0.22 

- 
5.71 ±  

0.18 
2.10 ± 

0.09 
13.06 ± 

 0.20 
24.90 ±  

0.18 
6.50 ±  

0.20 
9.42 ± 

0.16 
32.62 ± 

0.26 
Delfinidin-3-
O-(6-acetyl)-

glcd 

5.99 ± 
0.14 

3.09 ±  
0.14 

3.32 ± 
 0.17 

2.79 ± 
0.15 

4.09 ± 
 0.14 

4.41 ± 
 0.11 

16.40 ± 
0.19 

4.57 ± 
0.11 

8.15 ±  
0.16 

Delfinidin-3-
O-(6-

coumaryl)-glcd 

5.14 ± 
0.17 

1.58 ±  
0.11 

0.87 ±  
0.03 

1.78 ± 
0.11 

5.00 ±  
0.17 

4.67 ±  
0.14 

9.51 ±  
0.17 

4.52 ± 
0.12 

6.32 ±  
0.18 

Peonidin-3-O-
glcd 

- - 2.22 ± 0.10 - - - - - - 

Peonidin-3-O-
(6-acetyl)-glcd 

6.47 ± 
0.16 

1.47 ±  
0.08 

1.86 ±  
0.09 

1.55 ± 
0.07 

4.30 ± 
 0.15 

6.88 ± 
 0.18 

8.53 ±  
0.18 

5.27 ± 
0.14 

12.10 ± 
0.14 

Malvidin-3-O-
glcd 

3.16 ± 
0.11 

1.22 ±  
0.04 

1.22 ±  
0.08 

1.17 ± 
0.06 

3.38 ± 
 0.11 

3.34 ±  
0.11 

5.72 ± 
 0.21 

4.31 ± 
0.11 

5.51 ±  
0.11 

Malvidin-3-O-
(6-acetyl)-glcd 

4.41 ± 
0.15 

1.96 ±  
0.08 

1.60 ±  
0.12 

2.02 ± 
0.12 

2.15 ±  
0.14 

4.11 ±  
0.15 

6.41 ±  
0.19 

5.31 ± 
0.19 

3.65 ±  
0.14 

Malvidin-3-O-
(6-coumaryl)-

glcd 

6.10 ± 
0.19 

1.76 ±  
0.05 

1.44 ± 
 0.04 

1.49 ± 
0.09 

5.49 ±  
0.19 

6.63 ±  
0.13 

4.11 ± 
 0.11 

3.88 ± 
0.12 

7.48 ±  
0.22 

Total 64.80 13.63 27.85 16.68 42.21 63.11 68.86 40.88 85.11 

Notes: - not found; < 0.50 - compounds detected but not quantifiable;  a Expressed in equivalents of catechin; b 

Expressed in equivalents of trans-resveratrol; c Expressed in equivalents of quercetin; d Expressed in equivalents of 
cyanidin; glc: glucoside; gal: galactoside; gluc: glucuronide 

 
The results obtained confirm a variation in the polyphenolic content amongst wines tested, due to their 

different grape cultivar, geographical origin, and wine colour, as expected. Comparisons with other data from 
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Romanian wines was difficult since only total phenolic content was available (Hosu et al., 2014), or 
concentration levels limited to a few compounds (resveratrol, catechin, quercetin and phenolic acids) and 
samples (Geana et al., 2014a; Luchian et al., 2018). However, the obtained concentration ranges are in 
agreement with the values reported in available literature (Tinttunen and Lehtonen, 2001; Castillo-Muñoz et 

al., 2007; García-Falcón et al., 2007; Tenore et al., 2011; Rodríguez-Cabo et al., 2014). 
 

Flavan-3-ols 

Three flavan-3-ol monomers were found in the studied wines: (+)-catechin, epicatechin gallate and 
gallocatechin. The concentration levels for (+)-catechin in red wines are in agreement with the values reported 
for French and German wines (Tinttunen and Lehtonen, 2001), except for the FNPan2011 wine with the highest 
amount of catechin (331.59 mg L-1). In almost all samples catechin was the most abundant flavan-3-ol 
monomer, independently of the wine type or the aging time. Our results confirmed previous findings that 
reported catechin to be the most important flavanol found in wines made from different grape varieties 
(Monagas et al., 2005; Gomez-Alonso et al., 2007). The great variation obtained for the concentrations of 
individual flavan-3-ols, both between the three types of wines (white, rosé and red), as well as between the red 
wines, can be attributed to the vinification techniques, grape cultivar and climate characteristics. The high levels 
of flavan-3-ols in some samples (BNSC2010, FNCot2010, FNPan2011, FNToh2010, FNMur2011) may be the consequence of 
a better extraction of grape tannins into the wine, during a longer maceration time. The total flavanol content 
in red wines was significantly higher than those in white and rosé wines. Our data are in accordance with the 
results of Spanish and China wines (Pérez-Magariño et al., 2006; Li et al., 2009), and are higher than those 
obtained for Greek, French and German wines (Arnous et al., 2001; Tinttunen and Lehtonen, 2001). The red 
wine sample with the highest content in total flavan-3-ols was FNToh2010; its content was nearly triple that in 
the BNPan2011 red wine. Larger variations on total flavanol content were registered in case of red wines, for which 
differences were obtained depending on the variety of grape from which they come. Thus, the FN wines had a 
higher content of total flavanols than the BN wines. Therefore, getting a high content of total flavanols for 
Romanian wines is a desirable result since flavanols have been shown to exhibit powerful antioxidant activities 
in different environments, and, even the concentrations of individual flavanols might be responsible for the 
antioxidant capacities of wines (Arnous et al., 2001). Additionally, the flavan-3-ols content is a key parameter 
for wine quality since these compounds were responsible for the astringency and bitterness. They also play an 
important role due to their interactions with other phenolic compounds during wine ageing (Boulton, 2001). 
 

Stilbenes 

Stilbenes are one minor group of phenolic compounds in wine, resveratrol being the principal stilbene. 
In all analyzed wines, there were found six stilbenes: five different forms of resveratrol-monomer stilbenes 
(trans-resveratrol, trans-piceid, resveratrol-5-O-glucoside, piceatannol, pterostilbene) and one form of 
resveratrol-dimer (pallidol).  

Trans-resveratrol, a stilbene with multiple health benefits, was quantified, ranging from 0.67 to 1.46 mg 
L-1 in white wines, from 0.34 to 0.61 mg L-1 in rosé wines and from 0.72 to 2.70 mg L-1 in red wines. These 
amounts were comparable with the reported ranges found for white, rosé and red wines (Tinttunen and 
Lehtonen, 2001; Abril et al., 2005; Stervbo et al., 2007). Usually, trans-resveratrol contents in rosé wines are 
higher than those present in white wines and this difference in concentrations is linked to the winemaking 
process, especially to the contact of wine with the solid parts of the grape (Mattivi, 1993). However, we found 
that white wines have higher trans-resveratrol contents. This apparent contradiction can be explained by the 
environmental factors (different climatic conditions, soil quality, geographical origin) that can affect 
resveratrol contents, but also the concentration of resveratrol in wine varies considerably and appears to depend 
on the grape variety (Abril et al., 2005). In case of wines from regions of climatic similarity, these differences of 
concentrations can be due to the intrinsic resveratrol-synthesizing capacity of the different grape cultivars 
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employed (Goldberg et al., 1995). Resveratrol concentrations increase during fermentation of the skins in case 
of rosé wines, for example, but the amount extracted is dependent on the variety, wine production process, and 
stress exposure (Geana et al., 2014b).  

Among the nine red wines tested, BNPan2011 showed the highest concentration of trans-resveratrol (2.70 
mg L-1), while FNCep2012 exhibited the lowest level of trans-resveratrol (0.72 mg L-1). It has been observed that 
the red wines from Dealurile Moldovei wine region (BNPan2011, FNPan2011, BNHus2010 and FNCot2010) had higher 
amounts of trans-resveratrol than the red wines from the other Romanian wine regions, independently of the 
grape cultivar or the aging time. These differences regarding the trans-resveratrol levels in the analyzed wines 
may be related to vinification process (which influences the extraction and diffusion of phenolics from the 
grape to the wine) as well environmental factors (soil, geographical origin and climatic conditions).  

Concerning the compound piceid, the natural main precursor of resveratrol found in grape, all the 
analyzed wines showed lower levels of trans-piceid than of trans-resveratrol, except the rosé wine BBHus2011 and 
the red wine FNCep2012 which had higher levels. Thus, lower concentrations of piceid, compared to those of 
resveratrol, can be explained by the hydrolysis of glycosylated forms (piceid) present in wine to aglycone form 
(resveratrol), with wine aging. The values of trans-piceid were similar to reported average data (Rodríguez-
Cabo et al., 2014). Pallidol, alongside some other resveratrol dimers, are fungal metabolites of resveratrol and 
the occurrence of this compound in wine is due to the oxidation of resveratrol by fungus in infected berries 
used for vinification (Cichewicz et al., 2000). Trans-piceatannol and pterostilbene were also detected and 
quantified in all samples.  

The levels of total stilbenes showed significant differences according to grape cultivar, winemaking 
region and vintage. An estimation of the total stilbene intake from FNToh2010 red wine, which is the richest in 
stilbenes from our samples, and considering a regular consumption of 250 mL day-1 of FNToh2010 wine, would 
mean a daily intake of stilbenes of approximately 5 mg day-1 individual-1. For people drinking only FN 
Romanian wines, this value should be between 1.18 and 4.38 mg day-1 individual-1, and between 1.27 and 4.43 
mg day-1 individual-1 for people drinking only BN Romanian wines. Therefore, one can conclude that 
Romanian wines, especially FN and BN varieties, can be an important source of daily intake of stilbenes. Our 
results indicate that Romanian red wines contained high levels of pterostilbene, and important levels of pallidol, 
trans-resveratrol and trans-piceid, which may constitute a significant proportion in stilbene dietary intake. 
Whereas resveratrol bioavailability by oral administration in rats is around 40% (Marier et al., 2002), the 
resveratrol plasma concentration obtained after ingestion of these red wines would probably be low, but might 
be increased after a long-term consumption. Since resveratrol glucoside may be deglycosylated and converted 
into bioavailable resveratrol during digestion, biological activities would be due both to the glycosylated and 
aglycone forms (Moreno-Labanda et al., 2004). 

In order to explain the differences in stilbene levels between varieties, further studies are needed, 
regarding the soil composition, vinification and conservation process, and environmental conditions. It would 
also be necessary to investigate the bioavailability of the major stilbenes, such as pterostilbene and pallidol. 
 

Flavonols 

Flavonols are yellow pigments with significant role in the stabilization of the wine colour, since they 
participate in the co-pigmentation reactions with anthocyanins (Gomez-Alonso et al., 2007). As well as 
anthocyanins, flavonols occur naturally as glycosides and sugar substitution on flavonols usually takes place as 
the O-glycosides, mainly at the 3-position, the UV spectrum being the indicative of substitution position 
(Castillo-Muñoz et al., 2007). Seventeen flavonols were identified and quantified in Romanian wines, 
including twelve original grape flavonol O-glycosides and five free flavonol aglycones released from them by 
hydrolysis in wine. Taking into account the differences that occur in their biosynthesis pathway in grape berries, 
flavonols could be classified into six groups: myricetin derivatives, quercetin derivatives, isorhamnetin 
derivatives, laricitrin derivatives, kaempferol derivatives and syringetin derivatives. The concentrations of the 
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above-mentioned compounds varied according to variety, geographical origin and environmental conditions. 
Regarding the group of myricetin derivatives, none of the white wine varieties were found to contain myricetin 
aglycon and myricetin-3-O-galactoside and nor the BRPan2012 rosé wine to contain myricetin aglycon. These 
results are in agreement with previously reported data for other white wines (Rastija et al., 2009; Vrček et al., 
2011; Pereira et al., 2013). Among the red wines, myricetin-3-O-galactoside was not detected in the following 
three samples: BNPan2011, FNToh2010 and FNMur2011. Only myricetin-3-O-glucoside was found in all red, rosé and 
white wines. Excepting the BNSN2011 red wine, in all other fourteen studied wines, myricetin-3-O-glucoside was 
the most abundant flavonol from the group of myricetin derivatives and this can be explained by the fact that 
this compound is not so easily hydrolyzed.  

Among quercetin derivatives, only quercetin-3-O-galactoside and quercetin-3-O-glucuronide were 
detected and quantified in all fifteen wine samples. Quercetin-3-O-glucoside was not detected in the FRRec2012 
white wine, while the quercetin aglycon was not found in any of the white and rosé wine varieties and neither 
in the BNPan2011 red wine, although previous studies reported the presence of quercetin aglycon in Spanish white 
wines (Pereira et al., 2013). These results confirmed that the rates of hydrolysis of the flavonol glycosides in 
wine were different, according to the type of flavonol aglycone and, also, with respect to the nature of the 
glycoside moiety. Since the quercetin-3-O-glucoside, one of the main flavonol glycosides found in grapes, seems 
to be easily hydrolysed, it is usual to observe an important level of free quercetin in wines due to its hydrolysis 
(Castillo-Muñoz et al., 2007). Therefore, this has been observed in five samples of red wine: BNHus2010, BNSN2011, 
BNSC2010, FNCot2010 and FNToh2010. 

The isorhamnetin derivatives dominated the flavonol profiles in all white and rosé wines, and also in 
seven of the nine red wines investigated. For the other two red wine samples, the syringetin derivatives were the 
dominant in the FNCep2012 wine and the kaempferol derivatives in the FNToh2010 wine. At the same time, 
isorhamnetin-3-O-glucoside was the most abundant O-glucoside compound in all studied wines, except the 
FNCep2012 and FNToh2010 red wines that has the highest amount of syringetin-3-O-glucoside, respectively 
kaempferol-3-O-glucoside. Within each group of the isorhamnetin, laricitrin and kaempferol derivatives, the 
amounts of the 3-O-glucosides were much higher than those of their corresponding free aglycones. With regard 
to free aglycones, isorhamnetin was quantified in all samples, laricitrin was not found in two wine samples 
(FRRec2012 and BNSN2011) and kaempferol was found only in two white wines (FACot2011 and FRJid2011) and three 
red wines (BNSN2011, FNCot2010 and FNToh2010). 

To conclude, the concentrations of the flavonol O-glycosides found in all wines were higher than for 
flavonol aglycones, since the conjugates are more stable than the free forms, as confirmed by other studies 
(Castillo-Muñoz et al., 2007). All wine samples showed high levels of flavonols, decreasing from red wines 
(143.04-249.15 mg L-1) to white wines (78.07-106.09 mg L-1) and rosé wines (57.23-75.19 mg L-1). This 
variability can be explained by several factors like the grape cultivar, the degree of grape ripening, the 
winemaking process and the aging time (Castillo-Muñoz et al., 2007). Also, it is known that the increased 
biosynthesis of polyphenols, especially flavonols, is greatly influenced by sunlight exposure and temperature, so 
the wines made from grapes which are grown in warmer, sunnier areas may have a higher level of flavonols 
(Tenore et al., 2011). On the basis of our results, it can be suggested that Romanian wines are richer in flavonols 
than wines from other countries, other authors reporting a lower number of flavonols in their wines, but similar 
or higher levels of individual flavonols (Tenore et al., 2011). 
 

Anthocyanins 

Anthocyanin pigments give the colour of grapes and young red wines. They occur naturally as glycosides 
and for V. vinifera red wines the glycosylation appears exclusively at the 3-position (Downey and Rochfort, 
2008). The monomeric anthocyanins were eluted by HPLC and detected at 520 nm, by DAD and MS, as 
distinct individual peaks which overlapped over the polymeric anthocyanin hump (Figure 1C). The 
identification of individual peaks was made by comparing retention times, individual UV/Vis absorption 
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spectra and MS molecular ions by comparison with pure compounds and literature data (Mazzuca et al., 2005). 
A number of twelve anthocyanins were identified and quantified in the analyzed red wines, while in rosé wines, 
considering their small content, they could not be quantified.  

The anthocyanins identified were monoglucoside derivatives of five anthocyanidins: cyanidin, 
petunidin, delphinidin, peonidin and malvidin, and derivatives were 6-O-acetyl and 6-O-coumaryl. It was 
observed that the anthocyanin profiles and composition of the wines were not similar; therefore, the vineyard 
location produced selective effects on individual anthocyanins, even in the case of the wines from the same 
grape variety. Differently from other studies (Kelebek et al., 2010; Li et al., 2011), delfinidin forms of the 
anthocyanins were the most abundant class of monomeric anthocyanins, followed by malvidin, peonidin, 
petunidin and cyanidin. Among the non-acylated anthocyanins, malvidin-3-O-glucoside was the only found in 
all wine samples. Peonidin-3-O-glucoside was found only in the BNSN2011 wine, and cyanidin-3-O-glucoside 
was quantified in three samples, FNMur2011, FNPan2011 and BNSN2011. In addition, petunidin-3-O-glucoside was 
not found in the BNHus2010, FNToh2010 and FNMur2011 wines. The levels obtained for non-acylated anthocyanins 
were in accordance with those reported before for delfinidin-3-O-glucoside (Figueiredo-González et al., 2014), 
peonidin-3-O-glucoside (Bai et al., 2013), cyanidin-3-O-glucoside (Li et al., 2011) and petunidin-3-O-
glucoside (Bai et al., 2013). The acylated anthocyanins consisted of five acetylated anthocyanins and two 
coumaryl derivatives of anthocyanins, quantified in all samples. They had a better stability and solubility than 
the non-acylated anthocyanins, but their contents could be influenced by several factors, such as the grape 
varieties, the vineyard location and climatic conditions (Garcia-Beneytez et al., 2003). 

The total concentration of monomeric anthocyanins from the BN wines was lower than those from FN 
wines, excepting the BNPan2011 that had similar content with FNPan2011. Our results are similar with those 
reported for Spanish wines (García-Falcón et al., 2007) and Greek wines (Arnous et al., 2001), but much lower 
than those reported for Italian (De Nisco et al., 2013) and Turkish wines (Kelebek et al., 2010). These 
discrepant values can be due to the compositional differences between young and aged wines, degradation or 
condensation of monomeric anthocyanins with other compounds, to give more stable polymeric pigments. 
Furthermore, our findings showed for wines of 2011 and 2012 higher levels of anthocyanins (63.15-85.16 mg 
L-1) than for wines of 2010 (13.66-42.25 mg L-1), except for the BNSN2011 wine, whose total anthocyanin content 
was poor (27.92 mg L-1). 
 

Principal component analysis 

The classification and discriminations between red, rosé and white wine samples, based on their 
phenolics profile and quantity, was performed by multivariate data analysis, using the Principal Component 
Analysis (PCA). Figure 2A shows two-dimensional scores plot of the fifteen analyzed wine samples, defined by 
the first two principal components, PC1 and PC2. The first principal component (PC1) accounted for 89% 
of the variability and the second principal component (PC2) accounted for 7% of the variability; together, PC1 
and PC2 account for 96% of the total variance. Three main groups were identified: the first included white 
wines, the second rosé ones and the third included red wines. The first group partially overlapped the second 
one for two white wines, but overall, wines were obviously discriminated along the first axis (PC1) based on 
the wine colour. White and rosé wines are grouped mostly in the lower negative part of PC1, except for the 
FRRec2012 white wine which is placed in the left upper part of the plot. Within the third group, the red wines 
BNSN2011, FNPan2011 and FNCep2012 are grouped in the right upper part of the plot, while BNHus2010, BNSC2010, 

FNCot2010, FNToh2010 and FNMur2011 are grouped mostly in the lower positive part of PC1. Only the BNPan2011 red 
wine is located in the left upper side of PC1. These differences are due also to the sweetness index, as we 
reported also, using Fourier Transform Infrared spectroscopy coupled with chemometry (Banc et al., 2014).  

Figure 2B includes the loading plots for PC1 and PC2, showing that catechin, epicatechin and 
gallocatechin are mainly responsible for the discriminations among clustered wine samples. The results 
obtained by PCA demonstrate that the differences between samples are due to varietal variability and to the 
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wine colour, but in terms of geographical region, it is more difficult to discriminate the samples considering 
only the phenolic composition.  
 

 

(A) 

 

(B) 

Figure 2. (A) Scores of the fifteen wine samples in the plane defined by the first two principal components: 
PC1 and PC2; (B) Loading plots for PC1 and PC2 

 
Total phenolic content 

The total phenolic content of all analyzed wines is presented in Table 6. The TPC concentrations were 
expressed as mg Gallic acid equivalents per liter of wine (mg GAE/L), based on the linear equation obtained 
from Gallic acid standard calibration curve. 

 
Table 6. Total phenolic content (TPC), DPPH radical scavenging activity (%) and total antioxidant 
activity (TAA) of 15 analysed wines (mean value (n = 3)) 

Wine no. Wine sample 
TPC 

(mg GAE/L) 
DPPH radical 

scavenging activity (%) 
TAA 

(mM TE/L) 
1 FACot2011 220.00a 30a 0.66a 
2 FAJid2011 230.00ab 44c 0.84b 

3 FRJid2011 245.00c 51d 0.93c 

4 FRRec2012 244.00c 43bc 0.82b 
5 BRPan2012 236.00bc 45c 0.86b 
6 BBHus2011 243.00c 41b 0.80b 
7 BNPan2011 801.00d 86fg 8.61f 
8 BNHus2010 2149.00h 88gh 8.95i 
9 BNSN2011 2064.00g 90h 9.19j 

10 BNSC2010 2196.00i 85f 8.54e 
11 FNCot2010 2311.00k 87fg 8.75gh 
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12 FNPan2011 1877.00f 87fg 8.77h 
13 FNCep2012 2248.00j 86fg 8.69g 
14 FNToh2010 2359.00l 95i 9.84k 
15 FNMur2011 1660.00e 63e 5.54d 

Note: different letters (a, b, c…) on the same column indicate significant differences among wine samples at p < 0.05 
(Duncan's test). GAE: Gallic acid equivalents; TE: Trolox equivalents 

 
Therefore, the TPC values ranged from 220 to 245 mg GAE/L for the white wines, from 236 to 243 mg 

GAE/L for the rosé wines and from 801 to 2359 mg GAE/L for the red wines. This difference between red, 
rosé and white wines is in agreement with previously published results (Paixão et al., 2007; Li et al., 2009; Rastija 

et al., 2009). Among the red wines, the highest content of phenolics was found in FNToh2010 (2359 mg GAE/L) 
and the lowest in the BNPan2011 wine (801 mg GAE/L). FNCot2010 and FNCep2012 also contained a high content of 
phenolic compounds (2311 mg GAE/L, respectively 2248 mg GAE/L). Among the white wines, FRJid2011 and 
FACot2011, respectively, represented the wines with the highest and lowest phenolic contents (245 mg GAE/L, 
respectively 220 mg GAE/L). The amounts of phenolic compounds vary in different wine samples according 
to grape variety, environmental factors in the vineyard, the wine processing techniques, soil and atmospheric 
conditions during ripening, aging process and berry maturation (Pérez-Magariño and González-San José, 
2006). Our results confirm this variation in phenolic content among wine samples tested, the total phenols’ 
content in red wine being up to 10 times higher than in rosé and white wine, explained by a higher content of 
condensed tannins and anthocyanins in red wines. These differences may be also the result of a better phenolics’ 
extraction from grape skin and seed contact time, fermentation conditions and temperature for red wines, as 
opposed to white ones. The highest phenolic content of red wines contributed to their increased antioxidant 
activity in comparison to rosé and white wine.  

 
Total antioxidant activity 

The antioxidant activities of all wines were evaluated using DPPH free radical scavenging assay, and to 
express the Total Antioxidant Activity (TAA) Trolox was used as standard control for the samples’ capacity to 
scavenge DPPH·, expressed as percentage values (%) or as mM Trolox equivalents (TE/L) (Table 6). The 
wines’ total antioxidant activity ranged from 0.657 to 0.930 mM TE/L for the white ones, from 0.804 to 0.855 
mM TE/L for the rosé ones and from 5.538 to 9.840 mM TE/L for the red wines. Our data is in accordance 
with the results of Croatian red and white wines (Vrček et al., 2011) and is higher than those obtained for 
Madeira red, rosé and white wines (Paixão et al., 2007). The free radical scavenging activities found by DPPH 
assay in the white, rosé and red wine varieties differed significantly, red wines’ values were higher than those of 
white and rosé wines, in agreement with literature reports (Fernández-Pachón et al., 2004; Paixão et al., 2007; 
Vrček et al., 2011). The strongest antioxidant activity was found in the red wine FNToh2010, having the highest 
content of phenolics, while the lowest activity was obtained in white wine FACot2011, with the lowest content of 
phenolics. 

As regards the sulfur dioxide content of the examined wines, most labels, but not all, have the mention 
"contains sulfites". According to European Commission regulations (Ruling no 606/2009) (EC, 2009), the 
total sulfur dioxide content cannot exceed 150 mg L-1 in conventional red wines, and 200 mg L-1 in 
conventional white wines. In organic wines, the total sulfur dioxide content cannot exceed 100 mg L-1 in red 
wines and 150 mg L-1 in white wines. Studies conducted so far indicate that the presence of SO2 in wines has 
no significant influence on the antioxidant activity of wines. Thus, the results obtained by Garaguso and 
Nardini (2015) indicate that organic red wines produced without sulfur dioxide/sulfites addition possess 
antioxidant activity, phenolics profile, total polyphenols and flavonoids content comparable to those of 
conventional red wines. In another study, Gabriele et al. (2018) followed the influence of SO2 on the 
phytochemical profile and in vitro antioxidant activity of wines and they found comparable results for wines 
produced without SO2 addition and those with 50 mg/L SO2 added. 
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Correlations between total phenolic content and total antioxidant activity 

The results of study show that, higher the concentration of antioxidants is, higher the free radical 
scavenging activity is. The antioxidant activity of wine polyphenols are related with their chemical structure 
since it has been reported that compounds with a high number of hydroxyl groups present higher activity. The 
contribution of each polyphenol to the antioxidant activity of wines is different, so the activity of wines depends 
on their phenolic profile. 

The present study reveals for white wines a very strong correlation (p < 0.001) between TPC and TAA, 
representative for the 98.60% and respectively 81.70% of sample in case of FACot2011 (r = 0.993) and respectively 
FRJid2011 (r = 0.904); a positive correlation (p < 0.01) representative for the 61.40% of sample for FRRec2012 (r = 
0.784) and a medium positive correlation (p < 0.05) representative only for the 26.50% of sample for FAJid2011 
(r = 0.515). 

Regarding the rosé wines, it was obtained a weak to medium positive correlation (p < 0.01) for the 
BRPan2012 (r = 0.440), representative for the 19.40% of sample, and a medium negative correlation (p < 0.01) 
for the BBHus2011 (r = - 0.565), representative for the 31.90% of sample. Thus, it was observed that, although the 
TPC for BBHus2011 was slightly higher than for BRPan2012, the antioxidant activity was lower. 

In case of red wines, for all BN samples, negative correlations were obtained, very strong (p < 0.001) for 
BNPan2011 (r = - 0.976) and BNSC2010 (r = - 0.982), and weak negative correlation statistically insignificant (p > 
0.05) for BNHus2010 (r = - 0.222) and BNSN2011 (r = - 0.327). Positive correlations between TPC and TAA were 
obtained for all FN red wine samples. These were very strong (p < 0.001) for FNCot2010 (r = 0.952), medium (p 
< 0.01) for FNPan2011 (r = 0.625) and FNCep2012 (r = 0.648), and very weak statistically insignificant (p > 0.05) 
for FNToh2010 (r = 0.169) and FNMur2011 (r = 0.213).  

Finally, our results showed that the antioxidant activity of wines has not been influenced by TPC, since 
wines having a highest TPC did not always show the highest values for antioxidant activity. These findings 
were in agreement with those reported by a few authors (Rivero-Pérez et al., 2007), but in contrast with others 
who have shown positive correlation between TPC of wines and their antioxidant activity evaluated by DPPH 
(Fernández-Pachón et al., 2004). Therefore, we can conclude that the antioxidant activity of wines is more 
related to the type of individual phenolic compounds found in the wines, than to the total phenolic content. 
Also, it has been suggested that, the antioxidant activity is mainly due to the flavan-3-ols fraction and not to 
anthocyanins. The polymeric phenolics and other pigments may not have similar antioxidant characteristics in 
comparison with monomeric anthocyanins, and, a possible synergy or antagonism among the different classes 
of polyphenols may influence the antioxidant capacity (Arnous et al., 2002; Di Majo et al., 2008). 

 
 

Conclusions 

 

This study represents the first phytochemical investigation of phenolic components from fifteen 
commercial Romanian wines, produced from six autochthonous grape cultivars. A total of 38 individual 
phenolic derivatives were identified and quantified in red, rosé and white wine samples by HPLC-DAD-
ESI(+)MS analysis. The results obtained revealed qualitative and quantitative differences between the fifteen 
wine samples, depending on grape variety and wine type (white, rosé or red), red wine samples being 
characterized by a higher phytochemical concentration than the white and rosé wine samples. By Principal 
Component Analysis, significant discriminations between samples were noticed, due to varietal variability and 
to the wine colour, flavan-3-ols, e.g. catechin, epicatechin and gallocatechin being mainly responsible for the 
discriminations among clustered wine samples. Total and individual phenolic compounds content and 
antioxidant activity measured as radical scavenging activity were comparable to those of wines produced from 
international grape cultivars. The antioxidant activity of wines seems to be related more to the type of 
individual phenolic compounds, than to the total phenolic content and the antioxidant activity to be mainly 
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due to the flavan-3-ols. The results confirmed that the tested Romanian wines represent a good source of 
antioxidants and, therefore, a moderate consumption may have beneficial influence on human health. Further 
in vivo studies will be performed to confirm their potential beneficial effects on human health. 
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