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Abstract 

Background: The use of agricultural and food by-products is an economical solution to industrial biotechnology. The 

apricot press residues are abounding by-products from juice industry which can be used as substrates in solid state 

fermentation process (SSF), thus allowing a liberation and increase of content from various biomolecules with high 

added value.

Methods: The evolutions of phenolic levels (by colorimetric assays and high performance liquid chromatography, 

HPLC–MS) and antioxidant activities (by DPPH assay) during SSF of apricot pomaces with Aspergillus niger and Rhizo-

pus oligosporus were investigated. The changes in fatty acid compositions of oils in apricot kernels during SSFs were 

also analyzed by gas chromatography (GC–MS).

Results: The results showed that the levels of total phenolics increased by over 70% for SSF with R. oligosporus and 

by more than 30% for SSF with A. niger. A similar trend was observed in the amounts of total flavonoids (increases of 

38, and 12% were recorded for SSF by R. oligosporus and A. niger, respectively). Free radical scavenging capacities of 

methanolic extracts were also significantly enhanced. The main phenolic compounds identified through HPLC–MS in 

fermented apricot press residues were chlorogenic acid, neochlorogenic acid, rutin, and quercetin 3-acetyl- glucoside. 

This work also demonstrated that the SSF with filamentous fungal strains not only helped in higher lipid recovery 

from apricot kernels, but also resulted in oils with better quality attributes (high linoleic acid content).

Conclusion: The utilization of apricot by-products resulting from the juice industry as waste could provide an extra 

income and at the same time can help in solving solid waste management problems

Keywords: Solid-state fermentation, Aspergillus niger, Rhizopus oligosporus, Apricot pomace, Polyphenols, Antioxidant 

activity
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Introduction
In the past few years there has been a renewed interest in 

re-evaluating the efficient and environmentally rational 

utilization or finding alternative uses for natural, renew-

able resources such as the agro-industrial processing lig-

nocellulosic wastes.

Many studies have shown that important amounts 

of lignocellulosic biomass can potentially be converted 

into different high value products including bio-fuels, 

health promoting biomolecules, and inexpensive energy 

sources for microbial fermentation and enzyme produc-

tion [1]. Inadequate collection and improper disposal of 

these agro-industrial by-products may generate signifi-

cant environmental and ecological problems. Moreover, 

the direct disposal of these wastes into the environment, 

especially those originating from the fruit processing 

industry (from alcoholic and non-alcoholic beverages 

industry) leads to a significant loss of biomass which 

could be useful in the production of various value added 

metabolites [3].

�e fruits of apricot (Prunus armeniaca L.) are charac-

terized by high contents of nutrients and phenolic com-

pounds such as neochlorogenic and chlorogenic acids, 

proanthocyanidin dimers and trimers, several quercetin 

and kaempferol glycosides, and cyanidin 3-glucoside as 

the main pigments [4]. �e phytochemical composition 

of stone-fruits strongly depends on the cultivars and on 

fruit parts (skin and flesh) [5]. Many studies have dem-

onstrated that the phenolic compounds possess a wide 

range of health benefits, such as free-radical scaveng-

ing property, anticancer activity, prevention of coronary 

heart diseases and antiviral properties [6–12].

Large amounts of fruit residues resulting from the 

pressing of stone fruits (such as apricots) are available in 

most countries of the world. �ese residues, called pom-

aces, are mostly composed of fruit skins, pulp and seeds, 

and are considered as waste of no value. In the available 

literature there are few references on polyphenol com-

position of apricot by-products. Although the potential 

of apricot as sources of different phytochemicals seems 

clear, there is little information available concerning the 

strategies for the liberation and extraction of the bioac-

tive molecules from the vegetable matrix. �e majority 

of the phenolics are mostly found in plants in conjugated 

form principally, with one or more sugar residues linked 

to hydroxyl groups [13]. �ese conjugations reduce 

their ability to function as good antioxidants. �e enzy-

matic hydrolysis of conjugated polyphenols with carbo-

hydrate degrading enzymes produced by filamentous 

fungal strains during the SSF can be an attractive means 

of increasing the amounts of free phenolics in pomaces 

used as substrates in the fermentation processes [14].

Solid-state fermentation is defined as a microbial cul-

ture that develops on moist substrates in the absence (or 

near absence) of free water [3]. �e substrates must con-

tain sufficient moisture to allow the microbial growth and 

metabolism. �e selection of a suitable microorganism 

is one of the most important criteria in solid state bio-

processing. �ere are various factors that affect the SSF 

process and these vary from process to process depend-

ing upon the type of substrates and the microorganisms 

used, and also on the scale of the process. Filamentous 

fungi are the most suitable with highest adaptability for 

solid-state bioprocessing systems, being able to produce 

high quantities of enzymes with high scientific and com-

mercial values [15].

Aspergillus niger and Rhizopus oligosporus are two fila-

mentous fungi which have been used in many SSF stud-

ies, due to their ability to synthesize many food grade 

enzymes (such as cellulase, pectinase, protease, etc.) with 

broad substrate specificity, and low-pH and high temper-

ature stability that have significant role in the hydrolysis 

of phenolic conjugates [16].

To the best of our knowledge, this is the first work that 

uses the apricot fruit by-products as support in SSF for 

the production of value-added compounds. �erefore, 

the aim of this study was to evaluate the changes in phe-

nolic compositions and antioxidant activity by SSF of 

apricot pomaces (fruit skins, pulp) (from juice industry) 

with A. niger and R. oligosporus. Moreover, the effect of 

fermentation time on the total lipid content in solid state 

fermented apricot kernels was also studied.

Materials and methods
Raw material and chemicals

�e stones from fully ripened apricot (Prunus armeniaca 

L.) fruits were removed and individually broken to obtain 

the intact kernels. �e press cake residues (pomaces—

composed of fruit skins and pulp) were obtained in our 

laboratory from de-stoned of yellow apricot fruits col-

lected in July 2016. �e pomace and kernels were dried in 

oven (37 °C) until complete drying, ground and stored in 

refrigerator before use.

Folin-Ciocalteu’s phenol reagent, sodium carbonate 

 (Na2CO3), sodium nitrite  (NaNO2), ammonium nitrate 

 (NH4NO3), hydrochloric acid (HCl), aluminum chloride 

 (AlCl3), sodium hydroxide (NaOH), salts for nutrient 

solution, glucose, acetic acid, acetonitrile, methanol, phe-

nolic standards, DPPH (1,1-diphenyl-2 picrylhydrazyl) 

were purchased from Sigma-Aldrich (Steinheim, Ger-

many). �e FAMEs (fatty acid methyl esters) standard (37 

component FAME Mix, SUPELCO) was purchased from 

Supelco (Bellefonte, PA, USA). All chemicals and rea-

gents used in this study were of analytical grade.
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Culture medium and fermentation conditions

Culture medium

Aspergillus niger (ATCC-6275) and Rhizopus oligosporus 

(ATCC-22959) (LGC Standards GmbH, Wesel Germany) 

were selected as suitable fungi for SSF and were main-

tained on potato dextrose agar (PDA) slants and Petri 

plates at 4 °C [17]. �e fungal spores were collected from 

the sporulation medium plates, inoculated into sterile 

distilled water, and stored in the freezer.

Solid-state fermentation

500  mL Erlenmeyer flasks containing 15  g solid sub-

strates, 30  mL of a nutrient solution  NaNO3 (4  g/L), 

 K2HPO4 (2 g/L),  MgSO4 (0.25 g/L), glucose (10 g/L) and 

 NH4NO3 (1  g/L), were used for SSF. �e fermentation 

mediums were autoclaved at 121 °C for 30 min and inoc-

ulated with spore suspension (2 × 107 spores/g of solid). 

After being thoroughly mixed, the fermentations were 

conducted for 14  days at 30  °C. �e experiments were 

performed in triplicate. During SSF, 1 g of samples of the 

media were taken at different time points for analysis [16, 

17].

Extraction and analysis of phenolic compounds

�e apricot pomace samples (2  g) were individually 

extracted three times with 20  mL of extraction mix-

ture (hydrochloric acid/methanol/water in the ratio of 

1:80:19) at 40  °C for 30  min in an ultrasonic bath [16]. 

�e resulting dried extracts were dissolved in methanol 

and stored (4 °C) until analysis (total and individual phe-

nolics, total flavonoids and antioxidant activities).

Total phenolics

�e total phenolic amounts were determined by the 

Folin–Ciocalteu method [26], using a Synergy HT 

Multi-Detection Microplate Reader with 96-well plates 

(BioTek Instruments, Inc., Winooski, VT, USA). An ali-

quot (25  μL) of each extract was mixed with 125  μL of 

Folin–Ciocalteu reagent (0.2 N) and 100 μL of 7.5% (w/v) 

 Na2CO3 solution [16]. �e absorbance against a metha-

nol blank was recorded at 760  nm. A standard curve 

was prepared using gallic acid and the TP content in the 

extract was expressed as gallic acid equivalents (GAE) in 

mg/100 g fresh weight (FW) of waste.

Total �avonoids

�e total flavonoid amounts were measured according 

to the aluminium chloride colorimetric method devel-

oped by Zhishen et al. [26] using quercetin as reference 

standard, as described by Dulf et al. [17]. �e absorbance 

was measured at 510  nm. Total flavonoid content was 

expressed as mg quercetin equivalent (mg QE/100 g FW).

Analysis of individual phenolic compounds 

by HPLC–DAD-ESIMS (high-performance liquid 

chromatography-diode array detection-electro-spray 

ionization mass spectrometry)

�e phenolic extracts were analyzed using an Agilent 

1200 HPLC with DAD detector, coupled with MS detec-

tor single quadrupole Agilent 6110. �e separations 

of phenolic compounds were performed at 25  °C on an 

Eclipse column, XDB C18 (4.6 ×  150  mm, 5  μm) (Agi-

lent Technologies, USA). �e binary gradient consisted 

of 0.1% acetic acid/acetonitrile (99:1) in distilled water 

(v/v) (solvent A) and 0.1% acetic acid in acetonitrile (v/v) 

(solvent B) at a flow rate of 0.5  mL/min, following the 

elution program used by Dulf et al. [16]: 0–2 min (5% B), 

2–18 min (5–40% B), 18–20 min (40–90% B), 20–24 min 

(90% B), 24–25 min (90–5% B), 25–30 min (5% B).

�e phenolics were identified by comparing the reten-

tion times, UV- visible and mass spectra of unknown 

peaks with the reference standards. For MS fragmen-

tation, the ESI(+) module was applied, with scanning 

range between 100 and 1000  m/z, capillary voltage 

3000 V, at 350 °C and nitrogen flow of 8 L/min. �e elu-

ent was monitored by DAD, and the absorbance spectra 

(200–600 nm) were collected continuously in the course 

of each run. �e flavonols were detected at 340 nm [17]. 

Data analysis was performed using Agilent ChemSta-

tion Software (Rev B.04.02 SP1, Palo Alto, California, 

USA). �e chlorogenic and neochlorogenic acids were 

expressed in mg chlorogenic acid/100 g FW of substrate 

and flavonol glycosides were calculated as equivalents of 

rutin (mg rutin/100 g FW of substrate).

DPPH free radical scavenging assay

�e antioxidant activity of the obtained phenolic extracts 

were determined by DPPH radical scavenging assay, 

using the method described by Dulf et al. [17]. �e per-

centage inhibition (I%) was calculated as [1 − (test sam-

ple absorbance/blank sample absorbance)] × 100.

Oil extraction and fatty acid analysis

�e non- and fermented (after 2, 6 and 9  days of SSF) 

apricot kernels (5 g) were extracted with 60 mL solution 

of chloroform: methanol (2:1, v/v) [17]. �e oil contents 

were determined gravimetrically. An aliquot (10–15 mg) 

of each lipid extract was transesterified into FAMEs using 

the acid-catalyzed method [9] and analyzed by gas chro-

matography–mass spectrometry (GC–MS) using a previ-

ously described protocol [17]. A GC–MS (PerkinElmer 

Clarus 600 T GC–MS (PerkinElmer, Inc., Shelton, CT, 

USA)) equipped with a Supelcowax 10 capillary col-

umn was used (60 m × 0.25 mm i.d., 0.25 μm film thick-

ness; Supelco Inc., Bellefonte, PA, USA). �e column 
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temperature was programmed from 140 to 220  °C at a 

rate of 7  °C/min and held for 23 min. Helium was used 

as carrier gas at a constant flow rate of 0.8 mL/min. �e 

mass spectra were recorded in EI (positive ion electron 

impact) mode. �e mass scans were performed from m/z 

22 to 395. Identification of fatty acids was carried out by 

comparing their retention times with those of known 

standards and the generated mass spectral data with 

those of the NIST library (NIST MS Search 2.0).

Quantification of the fatty acids was achieved by the 

comparison of peak areas with internal standard (nona-

decanoic acid, Sigma, Steinheim, Germany) which was 

added to the samples (200  μg) prior to methylation, 

without application of any correction factor. Fatty acid 

compositions of oils in apricot kernels were expressed as 

weight percentages of the total fatty acids.

Statistical analysis

All tests were conducted in triplicate and the results 

were presented as mean ± standard deviation (SD). Cor-

relations among the antioxidant activity and phenolics 

were calculated using Pearson’s  correlation. Statistical 

analyses were performed by Student’s t-test and ANOVA 

(repeated measures ANOVA; Tukey’s Multiple Compari-

son Test; GraphPad Prism Version 5.0, Graph Pad Soft-

ware Inc., San Diego, CA). Differences between means at 

the 5% level were considered statistically significant.

Results and discussion
Total phenolic and �avonoid contents. HPLC–MS analysis 

of individual phenolic compounds

�e total phenolic amounts determined by Folin-Ciocal-

teu procedure showed a similar increasing trend over the 

first 6 days of solid-state fermentation for both filamen-

tous fungal strains. �is trend has continued only for fer-

mentation with R. oligosporus until day 9, after that the 

total soluble phenolics sharply decreased for the remain-

ing days of SSF (Fig. 1).

�e increase in total phenolic content was higher when 

R. oligosporus was used for fermentation (78%-day 9), 

compared to A. niger (34%-day 6). �ese increases of 

measurable free phenolics contents could be attributed 

to the fungal-derived β-glucosidases which can hydro-

lyze β-glucosidic bonds, mobilizing the free phenolic 

compounds to react with the Folin–Ciocalteau reagent 

[14]. Similar tendencies in phenolic contents were also 

observed in our previous studies [16, 17]. �e free phe-

nolics amounts showed significant decrease in the sec-

ond part of fermentations (Fig. 1) which could be due to 

the polymerization and lignification of the released free 

phenolics by lignifying and tannin forming peroxidases, 

activated in response to the stress induced on the micro-

organism due to the nutrient deficiencies [18].

�e total flavonoid contents of solid-state processed 

apricot by-products showed similar trends as total phe-

nolic amounts (Fig. 2).

In the first 6  days of fermentation with A. niger, and 

after 9 days of SSF by R. oligosporus, significant increases 

were observed in flavonoid contents until the maximum 

yields of 29  mg QE/100  g pomace, FW-by A. niger and 

36 mg QE/100 g pomace, FW-by R. oligosporus, respec-

tively (from the initial value of 26 mg QE/100 g FW). An 
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Fig. 1 Total phenolic content of extracts from solid state fermented 

apricot pomaces. Values are mean ± SD of triplicate determinations 

and different letters (a, b) indicate significant differences (p < 0.05) 
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pomaces. Values are mean ± SD of triplicate determinations and 

different letters (a, b) indicate significant differences (p < 0.05) (paired 
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important increase in the levels of total flavonoids was 

also observed by Lin et al. [19] in Aspergillus-fermented 

litchi pericarp. According to Ruiz et al. [4], the total poly-

phenol and flavonoid contents in apricot strongly depend 

on varieties.

�e quantities of the main phenolics in the extracts of 

apricot pomaces were determined during solid-state fer-

mentations (Table  1), using HPLC–DAD-MS. All sam-

ples contained four dominant phenolics: two cinnamic 

acids (3-caffeoylquinic and 5-caffeoylquinic acids) and 

two flavonols (quercetin-3-rutinoside and quercetin-

3(6″acetyl-glucoside)) (Fig. 3).

�ese phenolic profiles were in general agreement with 

the study of Ruiz et  al. [4] on phenolic composition in 

peels of different apricot varieties. Chlorogenic acid and 

rutin were the major phenolics in both processed pom-

aces (Table 1). Overall, the SSF with both fungal strains 

had significant effect (p < 0.05) on evolution of phenolic 

amounts. In general, a decrease of the individual phenolic 

concentrations in all samples (excepting quercetin-3-ru-

tinoside, as main flavonol in fermented samples with R. 

oligosporus) was observed (Table 1).

�e usefulness of by-products from the beverage 

industry is still underestimated. To our knowledge this is 

the first study investigating the variation of the amounts 

of phenolic compounds in apricot pomaces from the 

beverage industry in correlation to fermentation days in 

solid-state system with these two filamentous fungi.

Antioxidant activity

�e evolution of the antioxidant potential of methanol 

extracts from solid state fermented apricot by-products 

were measured using the DPPH radical scavenging assay 

and the results are presented in Fig. 4. �e DPPH assay is 

widely used to determine antioxidant activity of phenolic 

compounds in natural plant extracts. �is assay is based 

on the capacity of stable free radicals of DPPH to react 

with hydrogen donors.

After each SSF process, statistically significant 

increases in antioxidant activity levels (p  <  0.05) of the 

analyzed extracts were registered. �e antioxidant 

capacity increased by over 18% for both fungal fermenta-

tions by day 2 compared with the initial value (%I = 70) 

before gradually decreasing for the remaining period of 

growth.

Table 1 Mean phenolic contents (mg/100 g FW) of apricot pomaces during solid-state fermentation

Values (mean ± SD, n = 3) in the same column with di�erent letters (a–e) signi�cantly di�er (p < 0.05) (ANOVA “Tukey’s Multiple Comparison Test”). FD fermentation 

day, 3-CQA 3-ca�eoylquinic acid (neochlorogenic acid), 5-CQA 5-ca�eoylquinic acid (chlorogenic acid), Q-3-rut quercetin-3-rutinoside (rutin), Q-3-ac-gluc Quercetin-

3(6″acetyl-glucoside) * Tentative identi�cation

Phenolics ([M + H] + ion, fragments Cinnamic acids Flavonols

3-CQA (355, 181) 5-CQA (355, 181) Q-3-rut (611, 303) Q-3-ac-gluc* (517,303)

Aspergillus niger

FD

 0 7.81 ± 0.31a 15.14 ± 0.61a 16.50 ± 0.66a 5.71 ± 0.23a

 2 5.23 ± 0.21b 12.17 ± 0.49c 15.65 ± 0.63b 4.81 ± 0.19b

 6 4.93 ± 0.20c 12.65 ± 0.51b 15.61 ± 0.62b 4.26 ± 0.17c

 9 4.58 ± 0.18d 11.78 ± 0.47d 14.50 ± 0.58c 4.15 ± 0.17d

 14 4.23 ± 0.17e 11.26 ± 0.45e 14.13 ± 0.57d 4.07 ± 0.16e

Rhizopus oligosporus

 0 7.81 ± 0.31a 15.14 ± 0.61a 16.50 ± 0.66b 5.71 ± 0.23a

 2 5.06 ± 0.20e 10.21 ± 0.41e 15.69 ± 0.63d 4.70 ± 0.19d

 6 5.76 ± 0.23d 11.74 ± 0.47d 15.98 ± 0.64c 4.89 ± 0.20c

 9 6.59 ± 0.26b 13.48 ± 0.54b 18.17 ± 0.73a 5.15 ± 0.21b

 14 5.98 ± 0.24c 12.39 ± 0.50c 16.58 ± 0.66b 4.59 ± 0.18e
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3-caffeoylquinic acid; (2) 5-caffeoylquinic acid; (3) quercetin-3-rutino-
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In the case of SSF with A. niger, weak positive 

(0.1 < r < 0.3), but statistically not significant (p > 0.05) 

correlations were found between antioxidant capacity 

(determined by DPPH assay) and total phenolic and fla-

vonoid contents (Fig. 5). It is also worth to mention that 

the values obtained for SSF with R. oligosporus correlated 

negatively (r < 0, p > 0.05) (Fig. 5). Moreover, the results 

presented in Fig.  6 also revealed a negative relation-

ship between the concentrations of individual phenolic 

compounds and antioxidant activity of the methanolic 

extracts.

�ese correlation analyses suggested that the individual 

phenolic compounds could not be the key constituents 

responsible for the free radical scavenging activity of 

studied fermented samples.

�ese findings are mainly in agreement with our pre-

vious observations [16, 17] and with reported data from 

other authors [3, 18]. In all these reports (on different 

bio-processed agro-food wastes and cereals), weak cor-

relations between polyphenolic contents and antioxidant 

capacities were found. �is may be caused by the polym-

erization of phenolic monomers due to the stress induced 
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on the fungus in certain phases of its growth. Many 

studies have shown that increasing degree of polymeri-

zation enhances the effectiveness of phenolics against a 

variety of free radical species due to the increment of the 

hydroxyl groups in addition to the extensive conjugations 

between double bonds and carbonyl groups from their 

structures [20, 21].

Changes in lipid and fatty acid compositions during SSF 

of the apricot kernels by A. niger and R. oligosporus

�e data on oil content of apricot kernels processed with 

A. niger and R. oligosporus are shown in Fig. 7. Both fun-

gal strains increased the total lipid content until the sec-

ond day of fermentation.

�e unfermented apricot kernels showed a fat content 

of 29.50 g/100 g of kernel (FW), which is close to the val-

ues already reported in the literature [22]. �e extracted 

lipids increased significantly (p  <  0.05) by 18.64% from 

the initial value for the solid state fermented kernels with 

A. niger whereas for R. oligosporus the evolution of these 

biomolecules was statistically insignificant (p  >  0.05) 

(1.50%). It can be concluded that A. niger has a better 

lipogenic effect than R. oligosporus when grown on apri-

cot kernels.

Recent studies have shown that the enzymes (cellu-

lase, pectinase, protease, etc.) produced by the filamen-

tous fungi in solid state system have a determining role 

in degradation of oil seeds cell wall, leading to the release 

of most of the lipids (generally bound to proteins or to 

the polyglucides) enmeshed in cellular structures [23]. 

�e researchers have reported maximum enzyme activ-

ity until 48–72 h of SSF, depending on culture conditions 

(available fermentable sugars (carbon source), carbon to 

nitrogen (C:N) ratio of the fermentation medium, tem-

perature, pH, etc.) after which the enzyme production 

had stabilized or decreased. �ese observations are in 

agreement with our findings regarding the dynamics of 

the lipid yields presented in Fig. 7, with the maximum oil 

amounts in the 2nd day of SSF.

�e changes in fatty acid compositions of oils in apri-

cot kernels during SSFs with A. niger and R.oligosporus 

are shown in Table  2. �e predominant fatty acids in 

all processed samples were oleic acid (C18:1n  −  9), 

linoleic acid (C18:2n  −  6), and palmitic acid (C16:0). 

�e SSF processes have caused statistically significant 

(p  <  0.05) decreases of the palmitic (C16:0) and stearic 

(C18:0) acids, and a substantial increase (p  <  0.05) in 

the content of linoleic acid (C18:2(n − 6)) and oleic acid 

(C18:1(n  −  9)), respectively (Table  2). Moreover, the 

studied oils are characterized by high levels of unsatu-

rated fatty acids (mono-(MUFAs) and polyunsaturated 

fatty acids (PUFAs)). �e elevated levels of MUFAs from 

the analyzed apricot kernel oils are comparable to those 

of MUFA-rich vegetable oils, such as rapeseed, avocado, 

olive etc. [24].

�e evolutions of the major fatty acids during the SSF 

are in agreement with the previously reported data, 

which demonstrated that the filamentous fungi are able 

to produce lipids with considerable proportions of unsat-

urated fatty acids [25].

Conclusions
�e present work showed that the enrichment of apricot 

pomaces with phenolic compounds can be achieved by 

solid-state bioprocessing using food grade fungi. Total 

phenolic contents increased by over 78% for SSF with R. 

oligosporus and by more than 30% for SSF with A. niger. 

�e total flavonoid levels showed similar tendencies 

with the total phenolics. HPLC analysis showed a rela-

tive decrease in the amounts of each phenolic compound 

during the SSF processes. �e antioxidant potential 

determined by DPPH radical scavenging assay increased 

significantly (> 18%) over the course of growth.

�is work also demonstrated that the solid-state fer-

mentation with filamentous fungal strains not only 

helped in higher lipid recovery from apricot kernels, but 

also resulted in oils with better quality attributes (high 

linoleic acid content). �e high lipid content of apricot 
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kernels, comparable to oleaginous seeds, such as rape-

seed or sunflower, makes them suitable for commercial 

oil production.

�is research may potentially provide the basis for a 

sustainable process of integrated exploitation of apri-

cot by-products as potential, cheap, and easily available 

sources of high value phytochemicals for the pharmaceu-

tical and food industries.
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