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Phenolic Compounds of Red Wine Aglianico del Vulture
Modulate the Functional Activity of Macrophages via Inhibition of
NF-κB and the Citrate Pathway
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Phenolic compounds of red wine powder (RWP) extracted from the Italian red wine Aglianico del Vulture have been investigated
for the potential immunomodulatory and anti-inflammatory capacity on human macrophages. These compounds reduce the
secretion of IL-1β, IL-6, and TNF-α proinflammatory cytokines and increase the release of IL-10 anti-inflammatory cytokine
induced by lipopolysaccharide (LPS). In addition, RWP restores Annexin A1 levels, thus involving activation of proresolutive
pathways. Noteworthy, RWP lowers NF-κB protein levels, promoter activity, and nuclear translocation. As a consequence of
NF-κB inhibition, reduced promoter activities of SLC25A1—encoding the mitochondrial citrate carrier (CIC)—and ATP citrate
lyase (ACLY) metabolic genes have been observed. CIC, ACLY, and citrate are components of the citrate pathway: in LPS-
activated macrophages, the mitochondrial citrate is exported by CIC into the cytosol where it is cleaved by ACLY in
oxaloacetate and acetyl-CoA, precursors for ROS, NO⋅, and PGE2 inflammatory mediators. We identify the citrate pathway as a
RWP target in carrying out its anti-inflammatory activity since RWP reduces CIC and ACLY protein levels, ACLY enzymatic
activity, the cytosolic citrate concentration, and in turn ROS, NO⋅, PGE2, and histone acetylation levels. Overall findings suggest
that RWP potentially restores macrophage homeostasis by suppressing inflammatory pathways and activating proresolutive
processes.

1. Introduction

Immunomodulators are heterogeneous compounds capable
to interact with the immune system to upregulate or down-
regulate specific biological aspects of the host response. For
example, phenolic compounds scavenge free radicals, pre-

vent lipid peroxidation, modulate inflammatory pathway,
and block the secretion of proinflammatory cytokines [1].
Resveratrol counteracts the production of proinflammatory
cytokines, while anthocyanidins downregulate the expression
of cyclooxygenase 2 (COX2) in macrophages exposed to lipo-
polysaccharide (LPS) [2]. Interestingly, resveratrol is able to
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dampen inflammation and induce apoptosis in immune cells
by triggering proresolutive mediator Annexin A1 (AnxA1)
pathway [3, 4].

In addition, cyanidin-3-O-glucoside, petunidin-3-O-glu-
coside, and delphinidin-3-O-glucoside inhibit the master
regulator of the immune function in mammalian cells, the
transcription factor NF-κB, in a mitogen-activated protein
kinase- (MAPK-) dependent manner [5, 6]. Certain antho-
cyanidins can suppress the generation of reactive oxygen spe-
cies (ROS) [7, 8]. For example, cyanidin-3-O-glucoside has
great oxygen radical absorbance capacity (ORAC) in vitro
[9] and delphinidin is one of the most active scavenger
against superoxide anion [10]. Compounds found in red
wine can also upregulate the transcription factor of the
expression of antioxidant and detoxifying enzymes in mam-
malian cells, improving the cytoprotection against several
types of stress [10].

In inflammatory processes, metabolic changes occur to
meet the new energetic demands of cells. The result is the
production of metabolites, which both can act as immune
signaling molecules and supply substrates necessary for the
biosynthesis of proinflammatory mediators [11, 12]. Acti-
vated dendritic cells and macrophages switch rapidly from
a resting to an activated state characterized by a different
metabolic profile. In particular, LPS or classically activated
macrophages—also known as M1 macrophages—have high
rates of glycolysis and pentose phosphate pathway while the
Krebs cycle is broken at two points and fatty acid oxidation
and oxidative phosphorylation are downregulated [11, 12].
The two breakpoints of Krebs cycle are at succinate dehydro-
genase and isocitrate dehydrogenase, with consequent with-
drawals of succinate and citrate from the cycle. Most of the
citrate is channelled into the citrate pathway, made of the
mitochondrial transporter citrate carrier (CIC) and the
enzyme ATP citrate lyase (ACLY) [13–16]. CIC exports cit-
rate from the mitochondria in exchange for malate. In the
cytosol, ACLY cleaves it into oxaloacetate (OAA) and
acetyl-coenzyme A (acetyl-CoA). OAA is converted to
malate by cytosolic malate dehydrogenase 1 (MDH1) and
to pyruvate by malic enzyme 1 (ME1) with consequent pro-
duction of nicotinamide adenine dinucleotide phosphate
(NADPH). Of note, both NADPH oxidase and inducible
nitric oxide synthase (iNOS) need NADPH for ROS and
nitric oxide (NO⋅) synthesis, respectively [13, 15]. Acetyl-
CoA is processed into malonyl-coenzyme A (malonyl-CoA)
by acetyl-coA carboxylase (ACC). Malonyl-CoA is a sub-
strate for cholesterol or fatty acid synthesis. Therefore, it
could be used for the production of arachidonic acid, a pre-
cursor for prostaglandin E2 (PGE2), a key modulator of
inflammation with a crucial role in inflammatory diseases
[13, 15]. Acetyl-CoA is also a substrate for protein and his-
tone acetylation [17]. Moreover, citrate is implied in itaco-
nate synthesis that modulates the production of different
inflammatory mediators, acting as a negative regulator of
inflammation [18]. The citrate pathway has a key role also
in diseases such as Down syndrome and Behçet syndrome
[19, 20].

The red wines have become popular in recent years due
to their content of phenolic compounds with antioxidant

activity as well as hypolipidemic and anti-inflammatory
effects. Although different studies have been performed on
the red wine compounds, most of them are aimed at investi-
gating the chemical composition, the biodiversity, the genetic
diversity, the pedigree reconstitution, and the general antiox-
idant properties. In this study, we investigated on the benefi-
cial immunomodulatory effect of a powder rich in phenolic
compounds from the red wine Aglianico del Vulture. It is
one of the best Italian red wines that has never been studied.
We have focused on the secretion of proinflammatory and
anti-inflammatory cytokines, NF-κB expression, the citrate
pathway, and epigenetic modifications in LPS-activated
human macrophages. Such studies will help to identify the
targets for RWP and the development of potential therapeu-
tics in the prevention and treatment of inflammatory chronic
diseases.

2. Material and Methods

2.1. Wine Samples. Red wine (Vitis vinifera L., Aglianico cul-
tivar) was provided by Cantine del Notaio (Rionero, Italy).
Grapes were harvested in September 2018, samples were col-
lected after grape pressing, and the wine fermentation was
completed (no residual sugar was present into the wine).
The samples were frozen and stored at -20°C before freeze
drying. The wine samples (500mL) in a glass cylinder were
connected to a freeze drying apparatus and freeze-dried
under vacuum using a Stellar Millrock ST8S5-l lyophilizer
(Millrock Technology, Kingston, NY, USA).

2.2. LC–MS and LC–MS/MS Analyses. Part of whole and
dealcoholized wine sample was dissolved in 100μL of 40%
MeOH with 0.1% (v/v) formic acid at a concentration of
10mg/mL and centrifuged (5min, 13,000 rpm), and 1μL ali-
quots were injected in a UPLC–ESI–Qtrap system. Mass
spectrometry-based analyses were carried out to evaluate
the amount of specialized metabolites (delphinidin, cyanidin,
and malvidin, all glucoside, caffeic and coumaric acids, res-
veratrol, and quercetin). Quali-quantitative analysis was car-
ried out using an API6500 Q-Trap spectrometer (AB Sciex,
Foster City, CA, USA) coupled with a Nexerax2 UHPLC
apparatus (Shimadzu, Kyoto, Japan), working in both posi-
tive and negative MRM modes.

The instrumental parameters were optimized directly
injecting solutions containing pure compounds. A Kinetex
column (Phenomenex) (C18 100Å, 50mm × 2:6 μm× 2:1
mm) was adopted for chromatographic analyses, and com-
pounds were separated using a linear gradient from 5% to
50% of acetonitrile (eluent B) and water containing 0.1% for-
mic acid (eluent A) over 5 minutes followed by a faster gradi-
ent until to 95% of B. The flow rate was 0.35mL/min, and the
injection volume was 1μL. To perform accurate quantitative
analyses, 8 points (in the range 0.010–10μg/mL) calibration
curves were built for all the standard compounds. The mean
values ± standard deviation from at least three experiments
were reported. All data were processed using Analyst soft-
ware (ABSciex), and identification of compounds was based
on retention times, accurate mass measurements, MS/MS
data, exploration of specific spectral libraries and public
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repositories for MS-based metabolomic analysis [21], and
comparison with data reported in the literature [7, 22–25].

2.3. Isolation of Human Monocytes from Whole Blood. Pri-
mary human monocytes were isolated from healthy donors
after obtaining written informed consent. The study was per-
formed in agreement with the Declaration of Helsinki and in
accordance with the Committee on Human Research
approved procedures. Venous blood was collected into K2
EDTA-coated BD vacutainer tubes (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA). Peripheral blood
mononuclear cells (PBMCs) were separated by Histopaque-
1077 (Sigma-Aldrich, St Louis, MO) density gradient centri-
fugation: whole blood was mixed with Hanks’ Balanced Salt
solution (HBSS, Sigma-Aldrich) at a ratio of 1 : 2 (v/v), lay-
ered on the top of Histopaque-1077 (Sigma-Aldrich) and
centrifuged at 1000 x g for 15 minutes. The layer of mononu-
clear cells (PBMCs) at the interphase was recovered and
washed twice in HBSS. PBMCs were incubated with CD14
antibody conjugated to magnetic beads (MACS®, Miltenyi
Biotec GmbH, Bergisch Gladbach, Germany) for 15 minutes
at 4°C. After washing, cells were loaded onto MACS® column
(Miltenyi Biotec GmbH) placed in a magnetic field, and
CD14- positive (CD14+) and CD14-negative (CD14-) popu-
lations were divided. The CD14+ monocytes were differenti-
ated to macrophages by using 100 ng/mL human M-CSF in
Roswell Park Memorial Institute (RPMI) 1640 medium
(Thermo Fisher Scientific, San Jose, CA, USA) supplemented
with 10% fetal bovine serum, 2mM L-glutamine, 100U/mL
penicillin, and 100μg/mL streptomycin at 37°C in a humidi-
fied atmosphere of 5% CO2.

2.4. Cell Culture and Treatments. Human embryonic kidney
293 cells (HEK293, Sigma-Aldrich) were grown in Dulbec-
co’s Modified Eagle Medium (DMEM, Thermo Fisher Scien-
tific) supplemented with 10% fetal bovine serum, 2mML-
glutamine, 100U/mL penicillin, and 100μg/mL streptomy-
cin in a humidified chamber with 5% CO2 at 37

°C. To evalu-
ate the immunomodulatory and anti-inflammatory
properties of Aglianico del Vulture red wine, primary human
monocytes and HEK293 cells were treated with RWP 20 or
200μg/mL for 1 hour. Then, inflammation was induced by
1μg/mL of lipopolysaccharide isolated and purified from E.
coli strain EH100 (AdipoGen Life Sciences, Inc., San Diego,
USA). Except for cytokines and PGE2 quantification, cells
were washed twice with PBS at the end of LPS treatment
before proceeding with subsequent analyses, as detailed fur-
ther in the sections below.

2.5. Cell Count. CD14+monocytes were seeded into a 96-well
plate (2 × 104 cells/well) and treated with a wide range of
RWP concentrations: 2.5, 5, 10, 20, 50, 100, 200, 400, 800,
1600, and 3200μg/mL. After 72 hours, cell count was carried
out by using the automated handheld Scepter 2.0 Cell Coun-
ter (Merck Millipore, Switzerland).

2.6. Quantification of Cytokines. CD14+ monocytes (5 × 105

cells) were pretreated in 24-well plates with RWP 20 or
200μg/mL for 1 hour and then stimulated with 1μg/mL of
LPS. Twenty-four hours later, cell-free supernatants were

collected and assayed for the concentration of interleukins
1β, 6, and 10 (IL-1β, IL-6, and IL-10) and tumor necrosis fac-
tor α (TNF-α) by Luminex100 System (R&D Systems, Inc.,
Minneapolis, MN, USA) using specific matched-pair anti-
bodies and recombinant cytokines as standards following
the manufacturer’s recommendations.

2.7. Western Blotting. Cellular pellet was resuspended in
Laemmli buffer and boiled for 5 minutes at 100°C. Thirty
micrograms of proteins were subjected to SDS-PAGE and
then electroblotted onto nitrocellulose membranes. The
membranes were blocked for 1 hour in a tris-buffered saline
(TBS) solution containing 5% nonfat dry milk and 0.5%
Tween 20 and then immunostained at 4°C overnight with
anti-NF-κB/p65 (ab7970, Abcam, Cambridge, MA), anti-
CIC [26, 27], anti-ATP citrate lyase (ab157098, Abcam),
anti-acetylated H3 (ab47915, Abcam), anti-total H3
(ab1791, Abcam), anti-AnxA1 (GTX101070, GeneTex), and
anti-FPR2 or anti-β-actin (ab8227, Abcam) antibodies. Fol-
lowing 1-hour incubation with HRP Goat anti-Rabbit IgG
secondary antibody (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), the immunoreactions were detected by using the
horseradish peroxidase substrate WesternBright™ ECL
(Advansta, Menlo Park, CA, USA) at Chemidoc™ XRS detec-
tion system equipped with Image Lab Software for image
acquisition and densitometric analysis (Bio-Rad Laborato-
ries, Hercules, CA, USA).

2.8. Transient Transfection. For monitoring the activity of the
NF-κB signaling pathway, HEK293 cells were transiently
transfected with a NF-κB reporter plasmid containing a fire-
fly luciferase gene driven by five copies of NF-κB response
element (5′-GGGACTTTCC-3′) located upstream of the
minimal TATA box promoter (pGL3–5xNF-κB). To mea-
sure SLC25A1 gene promoter activity, HEK293 cells were
transfected as previously described [28] using pGL3 basic-
LUC vector (Promega, Madison, WI, USA) containing the
−1785/−20 bp region of the SLC25A1 gene promoter
(SLC25A1pGL3) upstream of the luciferase reporter gene
[29]. For ACLY gene promoter activity, in pGL3, basic-
LUC vector was cloned the −3116/−20 bp region of the
ACLY gene promoter (called “3000”) or a deletion fragment
of this region (called “1000”) [30]. To normalize the extent of
transfection, cells were transfected with 10 ng of pRL-CMV
(Promega). Twenty-four hours after transfection, HEK293
cells were triggered with LPS in the presence or absence of
RWP 20 or 200μg/mL. The day after, cells were lysed and
assayed for LUC activity by using the Dual-Luciferase®
Reporter Assay System (Promega), according to the manu-
facturer’s protocol.

2.9. Immunocytochemistry. Cells were induced with LPS for 1
or 3 hours in the presence or not of RWP 20 or 200μg/mL,
then were washed in PBS and fixed by cross-linking with
3% paraformaldehyde solution. Following permeabilization
with PBS +0.25% Triton X-100 (PBST) and blocking with
PBST +1% BSA (bovine serum albumin), cells were incu-
bated with anti-NF-κB/p65 (ab7970, Abcam) primary anti-
body at 4°C overnight. The day after, Alexa Fluor 488
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(Thermo Fisher Scientific) was used as a secondary antibody
while Fluoroshield Mounting Medium with DAPI
(ab104139, Abcam) was employed to preserve fluorescence
and as a counterstain for DNA. The images were obtained
with a fluorescence microscope (EVOS FLoid Cell Imaging
Station, Thermo Fisher Scientific).

2.10. Quantification of Citrate. The amount of citrate was
quantified in macrophages treated with LPS in the presence
or not of RWP 20 or 200μg/mL by a fluorometric method
using the Citrate Colorimetric/Fluorometric Assay Kit (Bio-
Vision, Milpitas, CA, USA) as per the manufacturer’s
instructions.

2.11. ACLY Activity. Primary monocytes were pretreated
with RWP 20 or 200μg/mL for 1 hour and then activated
to macrophages with LPS. At the end of treatments, cells were
washed twice in ice-cold PBS. The cell pellet was resuspended
in ice-cold 0.1% NP40 in PBS, and three freeze-melt cycles
(-80°C for 8 minutes/40°C for 4 minutes) were performed.
After centrifugation, supernatant was collected and protein
concentration was determined by Bradford assay. ACLY
activity was assessed by the coupled malic dehydrogenase
method [31, 32], as previously described [30]. The specific
ACLY activity was expressed as a percentage of the control
after normalization to the protein concentration.

2.12. ROS, NO⋅, and PGE2 Detection. To evaluate ROS and
NO⋅ levels, CD14+ monocytes were triggered by LPS in the
presence or not of RWP 20 or 200μg/mL. Where indicated,
cells were treated also with 5mM sodium malate (Sigma-
Aldrich) or 500μM NADPH (Sigma-Aldrich). Following 24
hours, ROS and NO⋅ concentrations were measured by using
6-Carboxy-2′,7′-Dichlorodihydrofluorescein Diacetate
(DCF-DA, Thermo Fisher Scientific) and 4-Amino-5-
Methylamino-2′,7′-Difluorofluorescein Diacetate (DAF-
FM Diacetate, Thermo Fisher Scientific), respectively, as pre-
viously reported [33].

For PGE2 quantification, cells were exposed to RWP 20
or 200μg/mL for 1 hour and, where indicated, cotreated with
5mM sodium acetate (Sigma-Aldrich); then inflammation
was induced by LPS. At the end of 48 hours LPS treatment;
PGE2 was measured by using DetectX® Prostaglandin E2
High Sensitivity Immunoassay Kit (Arbor Assays, Ann
Arbor, MI, USA) as previously described [33].

2.13. Statistical Analysis. Results are shown as the means ±
SD of, at least, three independent experiments. Statistical sig-
nificance of differences was determined by using one-way
ANOVA followed by Dunnett’s or Tukey’s tests for multiple
comparisons. The statistical methods used for each experi-
ment are detailed in figure legends. Asterisks in figures
denote statistical significance: ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗

p < 0:001. When Tukey’s post hoc test was performed, differ-
ent letters indicate significant differences between treatments
at p < 0:05.

3. Results

3.1. Composition and Identification of the Red Wine Powder
Components. The red wine powder from Aglianico del Vul-
turewas freeze-dried under vacuum. Quali-quantitative anal-
ysis of RWP was performed by LC-ESI-QTrap-MS/MS and
LC-ESI-QTrap-MS analyses. The use of the Kinetex column
and LC-ESI-MS/MS (alternating positive and negative ioni-
zation modes) allowed for the simultaneous separation and
identification of all compounds. Compounds identified
showed very good results in the optimized chromatographic
column with retention times that ranged from 1.21 to
2.51min. Extracted ion chromatograms for each compound
are presented in Figure S1. Individual components were
identified by comparison of their m/z values in the total ion
current (TIC) profile with those of the selected compounds
described in the literature. In particular, seven compounds
were identified in RWP (Table 1) belonging to a wide
variety of structurally different metabolic classes: phenolic
acids (caffeic acid and p-coumaric acid); stilbenes
(resveratrol); anthocyanidins (delphinidin-3-O-glucoside,
cyanidin-3-O-glucoside, and malvidin 3-O-glucoside); and
flavonols (quercetin).

The tested Aglianico del Vulture red wine powder con-
tained significant amounts of anthocyanidins. In particular
malvidin-3-O-glucoside was the most abundant
(14:00 ± 0:23mg/100mL), followed by cyanidin-3-O-gluco-
side (1:30 ± 0:218mg/100mL) and delphinidin-3-O-gluco-
side (0:072 ± 0:003mg/100mL) (Table 1). Our results are in
accordance with the typical anthocyanin profiling of Aglia-
nico wine, in which malvidin 3-O-glucoside represents about
60% of total anthocyanidins while contents of cyanidin-3-O-
glucoside and delphinidin-3-O-glucoside are very low
(around 5%) [34]. The content of resveratrol in Aglianico
del Vulture was 0:053 ± 0:01mg/100mL, similar to other
Italian red wines [26, 35, 36]. Concentrations of caffeic acid
and p-coumaric acid were 0:218 ± 0:047mg/100mL and
0:078 ± 0:002mg/100mL, respectively. Quercetin was deter-
mined equal to 0:785 ± 0:02mg/100mL as listed on Table 1.

3.2. Evaluation of RWP Toxicity on Primary Human
Monocytes. We next investigated the RWP toxicity. Primary
human monocytes, isolated from peripheral blood of healthy
donors, were treated with increasing concentrations of RWP,
ranging from 2.5 to 3200μg/mL. After 72 hours, cell counts
were performed. As shown in Figure 1, RWP did not affect
the cell number until at a dose of 800μg/mL. A slight cyto-
toxicity was observed at the highest tested concentrations of
1600 and 3200μg/mL, where reductions in the cell number
compared with untreated cells (0) were about 20% and
40%, respectively (∗∗∗p < 0:001, Dunnett’s multiple compari-
sons test).

3.3. Effect of RWP on the Secretion of IL-1β, IL-6, TNF-α, and
IL-10 Cytokines. To begin to understand the impact of this
RWP on the human body, we analyzed its pro- and anti-
inflammatory properties. We treated primary human mono-
cytes with LPS, a component of the outer membrane of
Gram-negative bacteria that induces inflammatory cascade
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through the toll-like receptor 4 (TLR4) [27]. LPS leads to the
rapid activation of proinflammatory cytokines IL-1β, IL-6,
and TNF-α [37] and the production of IL-10, a potent anti-
inflammatory cytokine.

We therefore assessed the release of IL-1β, IL-6, TNF-α,
and IL-10 cytokines after 24 hours of stimulation of mono-
cytes with LPS in the presence or absence of RWP. We
observed marked and significant increases in the levels of
all the cytokines analyzed after the induction with LPS
(Figures 2(a)–2(d): unstimulated cells vs. LPS, p < 0:001,
Tukey’s test). RWP lowered IL-1β, IL-6, and TNF-α secretion
in a dose-dependent manner (Figures 2(a)–2(c)). Specifically,
at a dose of 200μg/mL, RWP reduced significantly by half the
levels of all the proinflammatory cytokines released after
stimulation with LPS, whereas RWP at a dose of 20μg/mL
decreased levels of IL-1β, IL-6, and TNF-α (Figures 2(a)–
2(c): LPS vs. LPS + RWP 20μg/mL, p<0.001, Tukey’s test)
by about 35%. On the other hand, IL-10 levels increased sig-
nificantly in a concentration-dependent manner when
monocytes were treated with RWP compared to being trig-
gered only with LPS (Figure 2(d): LPS vs. LPS + RWP
20μg/mL–200μg/mL, p < 0:001, Tukey’s test).

3.4. Aglianico del Vulture Red Wine Powder Modulates
Expression of Proresolutive Protein AnxA1 in Inflammatory
Conditions. We next focused on the role of the AnxA1/FPR2
axis in LPS-induced inflammation in vitro. AnxA1 is a prore-
solutive protein induced and activated during inflammation,
aimed at limiting tissue damage and restoring homeostasis
through activation of Formyl Peptide Receptor 2 (FPR2)
[3]. LPS treatment reduced total AnxA1 expression, while
pretreatment with RWP, at both concentration used (20 or
200μg/mL), was able to restore its physiological amount,
thus preventing cells to undergo excessive inflammation
(Figure 3(a)). In addition, expression of FPR2 receptor was
downregulated by LPS administration (Figure 3(b)).

Although not significantly, RWP slightly increased FPR2
expression, only causing a positive trend (Figure 3(b)).

3.5. Effect on Expression, Promoter Activity and Nuclear
Translocation of NF-κB.When LPS binds to TLR4 on the sur-
face of macrophages, a signal transduction cascade leading to
transcription of specific enzymes, such as COX2, matrix
metalloproteinase-9, and inflammatory cytokines TNF-α,
IL-1, IL-6, IL-8, and chemokines [38]. The NF-κB pathway
plays a central role for the protective properties of a moderate
wine consumption [39]. Therefore, we evaluated if the red
wine powder from Aglianico del Vulture will affect the NF-
κB pathway. We focused on the expression of NF-κB, its pro-
moter activity, and its cellular localization.

For this, primary human monocytes were treated with
LPS in the presence or absence of RWP. LPS induced a
marked overexpression of subunit p65 of NF-κB
(Figure 4(a)). RWP, used as both 20μg/mL and 200μg/mL,
reduced p65/NF-κB protein levels to about 40%
(Figure 4(a)). Likewise, even if significant (Tukey’s test), no
strong differences were found in the ability to inhibit NF-
κB promoter activity between RWP 20μg/mL and RWP
200μg/mL (Figure 4(b)). To monitor the effect of RWP on
the NF-κB signal transduction pathway, HEK293 cells were
transiently transfected with a NF-κB reporter plasmid con-
taining a firefly luciferase gene driven by five copies of NF-
κB response element located upstream of the minimal TATA
box promoter. After activation by proinflammatory stimuli,
endogenous NF-κB binds to the DNA response elements,
inducing transcription of the luciferase reporter gene. When
cells were treated with LPS, we observed a significant increase
in luciferase activity, when compared to untreated cells
(Figure 4(b) C vs. LPS, p < 0:001, Tukey’s test); RWP reported
the levels of luciferase activity in LPS-triggered cells at values
similar to those of control. Next, we analyzed the cellular
localization of p65, the subunit of NF-κB. After 1 hour
(Figure 4(c)) and 3 hours (Figure 4(d)) of treatment with
LPS, we observed the translocation of subunit p65 of NF-κB
from the cytosol to the nucleus. In cells cotreated with
RWP, the main NF-κB localization was cytosolic
(Figures 4(c) and 4(d)). Altogether, these data suggest that
RWP plays a role in inhibiting the NF-κB pathway.

3.6. Effect on the Citrate Export Pathway: Focus on CIC and
Citrate. Among the proinflammatory genes activated by
NF-κB is SLC25A1, which encodes the mitochondrial citrate
carrier (CIC). It is the component of the citrate pathway
responsible for the export of the citrate withdrawn from the
Krebs cycle to the cytosol after LPS stimulation [13, 14].

The human SLC25A1 promoter contains two NF-κB
response elements at positions −414/−405 bp and
−1314/−1305 bp. To verify if RWP induced alterations in
the transcription rate of the SLC25A1 promoter, we trans-
fected HEK293 cells with the previously described
SLC25A1pGL3—a vector with SLC25A1—promoter encom-
passing the −1785/−20 bp region of the SLC25A1 gene cloned
upstream of the luciferase reporter gene [29]. Next, we
treated with LPS, in the presence or absence of RWP. We
observed that RWP significantly reduced luciferase activity

Table 1: Composition of the red wine powder (RWP) obtained
from Aglianico del Vulture (harvest 2018). Mass spectrometry-
based analyses were carried out to evaluate the amount of
specialized metabolites in RWP. The mean values ± standard
deviation (SD) from at least three independent experiments, each
in triplicate, are reported.

mg/100mL ± SD

Phenolic acids

Caffeic acid 0:218 ± 0:047

Coumaric acid 0:078 ± 0:002

Stilbenes

Resveratrol 0:053 ± 0:01

Anthocyanidins

Delphinidin-3-O-glucoside 0:072 ± 0:003

Cyanidin-3-O-glucoside 1:30 ± 0:18

Malvidin-3-O-glucoside 14:00 ± 0:23

Flavonols

Quercetin 0:785 ± 0:02
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in a dose-dependent manner by 50% (RWP 20μg/mL) and
60% (RWP 200μg/mL) in cells upon LPS stimulation
(Tukey’s test, Figure 5(a)). We also measured the protein
levels of CIC and confirmed a downregulation at the protein
level (Figure 5(b)). However, we did not observe a dose-
dependent effect at the protein level. LPS induced a threefold
overexpression of CIC with respect to untreated cells
(Figure 5(b)), and RWP, as both 20μg/mL and 200μg/mL,
reported CIC levels to values similar to control cells
(Figure 5(b)). A correspondent lowering in cytosolic citrate
levels was detected: RWP either as 20μg/mL or as 200μg/mL
reduced cytosolic citrate by around 40% with respect to LPS-
triggered cells (Figure 5(c)).

3.7. Effect on the Citrate Export Pathway: Focus on ATP
Citrate Lyase. ACLY is upregulated very early in macro-
phages activated by LPS or by TNF-α and/or interferon γ
(IFNγ) as well as in inflammatory conditions [15, 19, 20].
To determine whether RWP affected NF-κB binding to
ACLY, we analyzed the promoter region of the human ACLY
gene. Since it contains an active NF-κB response element
localized at −2048/−2038 bp [15], cells were transiently trans-
fected with pGL3 basic-LUC vectors containing the
−3116/−20 bp full-length region of the ACLY gene promoter
(called “3000,” Figure 6(a)), including the NF-κB response
element. As a control, we also transfected cells with a mutant
version, containing a truncated version of this region (called
“1000,” Figure 6(a)), without the NF-κB response element.
Both plasmids were then used to test the effect of RWP on
luciferase activity. The absence of the binding site for NF-
κB was responsible for the lower ACLY gene promoter activ-
ity in cells transfected with 1000 than 3000 (Figure 6(a)). Fol-
lowing 24 hours of LPS treatment, the strongest promoter
activity was registered in 3000 transfected cells (3000 + LPS,
Figure 6(a)). The luciferase gene reporter activity was signif-

icantly reduced to levels similar to unstimulated cells (3000,
Figure 6(a)) by RWP 20μg/mL and to even lower levels by
RWP 200μg/mL (Figure 6(a)). RWP induced a parallel
decrease in ACLY protein levels and enzymatic activity in
LPS-triggered macrophages (Figures 6(b) and 6(c)). More
in detail, LPS induced a twofold increase in ACLY expression
levels (Figure 6(b)) and a 35% rise in ACLY activity
(Figure 6(c)). No significant differences were observed
between RWP 20μg/mL and 200μg/mL in bringing ACLY
protein levels (Figure 6(b)) and activity (Figure 6(c)) down.
These results, together with CIC and cytosolic citrate deple-
tion, define a crucial role of RWP in immunometabolism.

Moreover, it has been recently demonstrated that rapid
metabolic changes in LPS-induced macrophages are impor-
tant to increase ACLY-derived acetyl-CoA that in turn leads
to histone acetylation [40, 41], critical in regulating global
chromatin accessibility and gene transcription. Transcrip-
tional regulation of genes involved in macrophage activation
and inactivation or determination of their polarization state
occurs through histone modifications [42]. Therefore,
changes in histone acetylation have a great impact in inflam-
mation. We show that after LPS stimulation the levels of
ACLY went up, with consequences in increased H3 histone
acetylation (Figure 6(d)). On the other hand, treatment of
cells with RWP lowered acetylated H3 in a dose-dependent
manner (Figure 6(d)), suggesting an epigenetic activity of
RWP.

3.8. Effect on the Levels of Inflammatory Mediators
Downstream the Citrate Pathway: ROS and NO⋅. Since
RWP downregulated CIC and ACLY, we analyzed its role
in regulating the citrate pathway in LPS-activated macro-
phages. Citrate cleavage made by ACLY supplies intermedi-
aries for the biosynthesis of three inflammatory mediators:
ROS, NO⋅, and prostaglandin E2 [16]. In LPS-triggered
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Figure 1: Effect of RWP on primary human monocyte cell number. Primary human monocytes were treated with increasing concentrations
of RWP, ranging from 2.5 to 3200 μg/mL, and cell viability was assessed by cell count after 72-hour exposure. Themean values ± SD of three
independent experiments with four replicates in each are shown. Differences were significant (p < 0:001) according to one-way ANOVA.
Dunnett’s multiple comparisons test was run as post hoc test to compare treatment groups with the control group (0, set at 100%); where
indicated, differences were statistically significant (∗∗∗p < 0:001).
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macrophages, the accumulated citrate is exported by CIC
from the mitochondria to the cytosol and converted by
ACLY into oxaloacetate and acetyl-CoA. OAA is converted
to pyruvate with consequent production of NADPH [43],
used for ROS and NO⋅ synthesis. Our analysis showed
enhanced and significant releases of ROS and NO⋅ when
human primary monocytes were treated with LPS
(Figures 7(a) and 7(b)). RWP, on the other hand, reduced

the levels of reactive oxygen species and nitric oxide in a
dose-dependent manner (Figures 7(a) and 7(b)). In particu-
lar, RWP 20μg/mL decreased by 10 and 15% the levels of
ROS and NO⋅, respectively, with respect to cells treated only
with LPS; reductions induced by RWP 200μg/mL were about
20 and 35% (Figures 7(a) and 7(b)).

Malate and NADPH are two metabolites downstream the
citrate pathway: in particular, malate is produced in the
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Figure 2: RWP affected the secretion of IL-1β, IL-6, TNF-α, and IL-10 cytokines. Primary human monocytes were incubated with RWP and
activated to macrophages with 1 μg/mL LPS. Twenty-four hours later, the concentrations of the proinflammatory IL-1β (a), IL-6 (b), and
TNF-α (c) and anti-inflammatory IL-10 (d) cytokines in cell culture supernatants were measured. Values represent the means ± SD of
three independent experiments with four replicates in each. According to one-way ANOVA, differences in IL-1β (a), IL-6 (b), TNF-α (c),
and IL-10 (d) levels were significant (p < 0:001). Therefore, Tukey’s post hoc test was performed, and different letters indicate significant
differences between treatments at p < 0:05. C: control; L: LPS; R20: RWP 20μg/mL; R200: RWP 200μg/mL.
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Figure 3: RWP significantly restored expression of AnxA1 in LPS-induced inflammation. Primary human monocytes were incubated with
RWP 20 μg/mL or RWP 200 μg/mL and activated with 1μg/mL LPS. Expression of AnxA1 (a) and FPR2 (b) was assessed following 24 h
treatment with LPS. Protein expression was quantified by using optical density (O.D.) ratio for AnxA1 or FPR2 versus β-actin; normalized
values obtained are reported under western blot images. C: control; L: LPS; R20: RWP 20 μg/mL; R200: RWP 200 μg/mL.
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reaction catalyzed by MDH1, while NADPH derived from
the ME1 cleavage of malate in pyruvate. Exogenous malate
used alone or in combination with NADPH reverts ACLY
inhibition phenotype leading to a huge increase of both
ROS and NO⋅ inflammatory mediators. As shown in
Figures 6(a) and 6(b), the addition of malate alone or in com-
bination with NADPH was sufficient to increase ROS as well
as NO⋅ levels in LPS-triggered cells treated with RWP. There-
fore, the effect of RWP on ROS and NO⋅ levels could occur
through the citrate pathway suppression together with a
direct inhibition of NF-κB, which controls the expression of

ACLY, but also the expression of NADPH oxidase and iNOS
genes [44, 45].

3.9. Inhibition of COX2 and Reduction of PGE2 Level:
Involvement of the Citrate Pathway. Finally, the focus was
set on the other inflammatory mediator downstream the cit-
rate pathway, PGE2, and on the enzyme COX2 responsible
for its synthesis. It is well known that wine polyphenols
inhibit COX2 in inflammation induced by LPS. Aglianico
del Vulture red wine powder at 20μg/mL as well as
200μg/mL reduced COX2 expression levels almost the half
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Figure 4: RWP inhibited NF-κB transcription factor. (a) Primary humanmonocytes were incubated with RWP 20μg/mL or RWP 200 μg/mL
and activated to macrophages with 1 μg/mL LPS. Specific antibodies detected the expression levels of subunit p65 of NF-κB and β-actin. The
intensities of immunolabeled protein bands were measured by a quantitative software and normalized to β-actin; values obtained are reported
under western blot images. Protein expression levels in control sample were taken as 1, and other samples were expressed in proportion to the
control. (b) HEK293 cells were transfected with NF-κB luciferase reporter plasmid and treated with LPS in the presence or not of RWP
20μg/mL or RWP 200μg/mL. Bar chart reports the mean values ± SD of three independent experiments, each in triplicate. According to
one-way ANOVA, differences were significant (p < 0:001). Therefore, Tukey’s post hoc test was performed, and different letters indicate
significant differences between treatments at p < 0:05. (c-d) Immunocytochemistry experiments were performed to identify the cellular
localization of subunit p65 of NF-κB, recognized by a specific antibody. Cells were treated with RWP 20 μg/mL or RWP 200μg/mL and
activated with LPS. C: control; L: LPS; R20: RWP 20μg/mL; R200: RWP 200μg/mL.
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with respect to macrophages activated only with LPS
(Figure 8(a)). The strongest reduction was observed with
the lowest tested concentration of RWP (Figure 8(a)). Inter-
estingly, acetate, a metabolite downstream of the citrate path-
way, reverted the inhibition of COX2 induced by RWP
(Figure 8(b)). A similar trend was observed when PGE2 levels
were measured in cell culture supernatants after 48 hours of
incubation with LPS (Figure 8(c)). In details, RWP-
stimulated cells showed PGE2 levels similar to unstimulated
cells. We observed a 40% decrease in PGE2 levels when com-
pared to LPS-triggered cells. On the other hand, the addition
of acetate brought PGE2 levels up (Figure 8(c)). This
decreased PGE2 level is most likely because of a decrease in
PGE2 production, due to a reduced availability of precursors
for PGE2 synthesis: as acetate can be converted to acetyl-CoA
by acetyl-CoA synthase (ACSS), adding exogenous acetate
rescues the effect of ACLY inhibition on PGE2 production.
These data, with the previous regarding the effect of RWP
on ROS and NO⋅, strengthened and confirmed our hypothe-

sis that the citrate pathway is a target of RWP in carrying out
its anti-inflammatory activity.

4. Discussion

In this study, for the first time, we have investigated the
biological properties of Aglianico del Vulture red wine
and we have shown that it exerts potential health benefits
thanks to its content in polyphenols well known to act as
immunomodulators and anti-inflammatory molecules [1,
2, 5, 6, 9, 10, 46–49].

Malvidin 3-O-glucoside and cyanidin-3-O-glucoside are
the most abundant phenolic compounds we have found, in
accordance with the typical anthocyanin profiling of Aglia-
nico wine, in which malvidin 3-O-glucoside represents about
60% while cyanidin-3-O-glucoside and delphinidin-3-O-glu-
coside are around 5% of total anthocyanidins [34]. These
compounds were present in higher concentration with
respect to another DOC red wine Carignano del Sulcis,
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Figure 5: Effect of RWP on CIC and cytosolic citrate. (a) HEK293 cells were transiently transfected with SLC25A1pGL3, the pGL3 basic-LUC
vector encompassing the −1785/−20 bp region of the SLC25A1 gene cloned upstream of the luciferase reporter gene. Then, cells were triggered
with LPS in the absence (LPS) or in the presence of RWP 20μg/mL or RWP 200μg/mL. Unstimulated cells (c) were used as a negative control.
The luciferase gene reporter activity was assessed after 24 hours. (b) Primary humanmonocytes, preincubated for 1 hour with RWP 20 μg/mL
or RWP 200μg/mL, were activated to macrophages with LPS, and CIC protein levels were evaluated. CIC and β-actin proteins were
immunodecorated with specific antibodies. The intensities of immunolabeled protein bands were measured by using a quantitative
software and normalized to β-actin: values obtained are reported under western blot images. Protein expression levels in control sample
were taken as 1, and other samples were expressed in proportion of the control. (c) In cells treated as in (b), cytosolic citrate levels were
quantified. In (a) and (c), values represent means ± SD of three experiments with three replicates in each. Statistical analysis was
performed by one-way ANOVA followed by Tukey’s test for multiple comparisons. Different letters indicate significant differences at p <
0:05. C: control; L: LPS; R20: RWP 20 μg/mL; R200: RWP 200μg/mL.
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cultivated in the southwestern region of Sardinia (Italy) [24].
In our sample, the concentration of the stilbene resveratrol
was lower (0:053 ± 0:01mg/100mL) than that of red wines
from Veneto region (Italy), in which resveratrol averaged
0.083mg/100mL [50], and Campania region (Italy) [26].
On the other hand, the flavonol quercetin was more abun-
dant in Aglianico del Vulture red wine, compared to the last
red wines from Campania, in particular with respect toAglia-
nico del Benevento [26]. Finally, among the phenolic acids, a
higher rate of caffeic acid was found in our sample in com-
parison with wines counted among the best wines for anti-
inflammatory properties for their abundance in phenolic
compounds, such as Cabernet Sauvignon, Merlot, Syrah,
and Carménère [47].

Human primary monocytes have been used for our
investigations. Cells were treated with LPS, which triggers
innate immune responses leading to the secretion of cyto-
kines IL-1β, IL-6, and TNF-α and proinflammatory media-
tors blocked by Aglianico del Vulture powder. On the other
hand, RWP induced an increased release of IL-10, necessary
to initiate host defence against microbial invasion [37]. How-
ever, excessive secretion of proinflammatory cytokines could
be deleterious for the host since they cause systemic meta-
bolic and hemodynamic disturbances. For that reason, mac-
rophages produce IL-10, a potent anti-inflammatory
cytokine produced by macrophages as a negative-feedback
mechanism to dampen excessive inflammation during
infection.
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Figure 6: Effect of RWP on ACLY. (a) HEK293 cells were transiently transfected with pGL3 basic-LUC vectors containing the −3116/−20 bp
full-length region of the ACLY gene promoter (3000) or a truncated version of this region (1000). Then, cells were triggered with LPS in the
absence (LPS) or in the presence of RWP 20 μg/mL or RWP 200 μg/mL. Unstimulated cells were used as a negative control. The luciferase
gene reporter activity was assessed after 24 hours. Primary human monocytes, preincubated for 1 hour with RWP, were activated to
macrophages with LPS, and protein levels of ACLY (b) and acetylated H3 and total H3 (d) were evaluated. In (b, d) ACLY, acetylated H3,
total H3, and β-actin proteins were immunodecorated with specific antibodies. The intensities of immunolabeled protein bands were
measured by using a quantitative software and normalized to β-actin: values obtained are reported under western blot images. Protein
expression levels in control sample were taken as 1, and other samples were expressed in the proportion of the control. (c) In cells treated
as in (b, d) ACLY enzymatic activity was quantified. In (a) and (c), values represent means ± SD of three experiments with three replicates
in each. Statistical analysis was performed by one-way ANOVA followed by Tukey’s test for multiple comparisons. Different letters indicate
significant differences at p < 0:05. C: control; L: LPS; R20: RWP 20 μg/mL; R200: RWP 200μg/mL.
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These data are in line with the rescuing effect exerted by
RWP on AnxA1 levels, which were decreased upon LPS acti-
vation. This impairment could lead to uncontrolled inflam-
mation resulting in chronic disease following unbalance
between inflammation and resolution [51]. Thus, RWP could
modulate inflammatory response with an alternate mecha-
nism, which controls the resolution pathway associated to
the AnxA1/FPR2 axis.

In vitro and in vivo studies reported that polyphenols
contained in red grapes and red wines are able to abrogate
the LPS-mediated activation of NF-κB with consequent
attenuation of the storm of proinflammatory cytokines
released by monocytes [52], so that the NF-κB pathway has
been identified as a critical target for the protective properties
of a moderate wine consumption. Therefore, our attention
was directed to evaluate the effect of RWP on an NF-κB tran-
scription factor. As was to be expected, RWP reduced the
expression of p65 subunit of NF-κB, promoter activity, and
nuclear translocation of NF-κB. As a consequence of NF-κB
inhibition, SLC25A1 and ACLY gene promoter activities low-
ered with consequent reduction in CIC and ACLY protein
levels; a parallel decrease in cytosolic citrate concentration
and inflammatory mediators linked to the citrate pathway
(ROS, NO⋅, and PGE2) was observed. Obviously, the effect
of the tested powder on ROS, NO⋅, and PGE2 could also be
a consequence of the direct inhibition of NF-κB since under
its transcriptional controls are genes encoding for iNOS
and COX2. However, the inhibition of the citrate pathway
has a central role. In fact, treatments with metabolites down-

stream the citrate pathway removed RWP inhibitory effects
on proinflammatory mediators: exogenous malate alone or
in combination with NADPH reverted the reduction of
ROS and NO⋅ levels; acetate did the same on PGE2 concen-
tration and COX2 expression levels. Analogous involvement
of the citrate pathway was found in Down syndrome, where
hydroxycitrate—a natural ACLY inhibitor—reduced the typ-
ical prooxidant status, but the addition of malate or NADPH
abolished its antioxidant effect [19]. Similarly, Pistacia lentis-
cus hydrosol exhibited its anti-inflammatory activity acting
through the citrate pathway [30].

Interestingly, RWP exerts its effect also at the epigenetic
level, as shown by reduction of the acetylation of H3 histone.
Acetyl-CoA, a product of the citrate pathway needed for his-
tone acetylation [17], represents a key node in metabolism
due to its intersection with many metabolic pathways and
transformations, influencing the regulation of numerous life
processes.

In addition to the effect on the citrate pathway, it cannot
be ruled out that the RWP compounds contained in this wine
might have other beneficial effect. In fact, it is known that
increasing of cytokines IL-1β and TNF-α, with subsequent
increased expression of adhesion molecules, contributes to
lipid accumulation within the atheroma and dysregulated
activity of vascular smooth muscle cells [53]. Thus, reduction
of proinflammatory cytokines by RWP might also positively
affect the cardiovascular system. Furthermore, since inflam-
mation and ROS may induce the increase/decrease of several
miRNAs, including oxidative stress-responsive miRNAs
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Figure 7: RWP lowered ROS and NO⋅ levels, restored by addition of exogenous malate and NADPH. Primary humanmonocytes were treated
with LPS (L) in absence or in presence of RWP alone or plus malate and NADPH. Following 24 hours, ROS (a) and NO⋅ (b) levels were
evaluated and expressed as the percentage of unstimulated cells (set at 100%). Mean values ± SD of three replicate independent
experiments with five replicates in each are shown. According to one-way ANOVA, differences in ROS (a) and NO⋅ (b) levels were
significant (p < 0:001). Therefore, Tukey’s post hoc test was performed, and different letters indicate significant differences between
treatments at p < 0:05. C: control; L: LPS; R20: RWP 20μg/mL; R200: RWP 200μg/mL; M: malate; N: NADPH.
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[54], it could also be hypothesized that these phytochemicals
may also control the expression of some target miRNAs in
both normal and pathological conditions [55]. For example,
the phytochemical epigallocatechin gallate may act as an epi-
genetic modulator of DNA methylation and chromatin
remodeling, leading to the alteration of gene expression and
modification of miRNA activities [56]. Other beneficial
effects, such as glucose homeostasis, mitochondrial function,
energy metabolism, and stress responses, have been ascribed
to phenolic compounds [57]. However, further investigations
are needed to elucidate these and other potential beneficial
effects of RWP.

In conclusion, our study highlights for the first time the
contribution of red wine Aglianico del Vulture phenols in
modulation of inflammatory response. Notably, our findings
suggest a specific signature of this red wine showing its own

phenolic profile. The underlying mechanism is associated to
different pathways, including the suppression of inflamma-
tory mediators and the inhibition of NF-κB and the citrate
pathway. Bioactive compounds from red wines such as mal-
vidin 3-O-glucoside and cyanidin-3-O-glucoside, quercetin
and resveratrol, have been shown to inhibit inflammatory
mediators via NF-κB [46, 48, 49]. The involvement of the cit-
rate pathway is the strongest novelty, since this has never
been investigated so far as a possible mechanism of action
for any wine compounds. Here, we demonstrate that this
pathway mediates several anti-inflammatory effects of the
red wine Aglianico del Vulture phenols. In the recent years,
the activation of ACLY and CIC—constituents of the citrate
pathway—has been linked to the presence of inflammatory
conditions [46, 48, 49]. Therefore, the citrate pathway seems
a new hopeful target of inflammation. In this context, its
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Figure 8: RWP lowered COX2 and PGE2 levels. Primary human monocytes were activated to macrophages with LPS (LPS) in the absence or
in the presence of RWP alone or plus acetate and COX2 (a, b), and PGE2 levels were quantified. In (a) and (b), COX2 and β-actin proteins
were immunodecorated with specific antibodies. The intensities of immunolabeled protein bands were measured by using a quantitative
software and normalized to β-actin; values obtained are reported under western blot images. Protein expression levels in control sample
were taken as 1, and other samples were expressed in proportion to the control. (c) Following 48 hours, PGE2 levels were evaluated and
expressed as the percentage of the levels in untreated cells (set at 100%). Mean values ± SD of three replicate independent experiments
with three replicates in each are shown. According to one-way ANOVA, differences were significant (p < 0:001). Therefore, Tukey’s post
hoc test was performed, and different letters indicate significant differences between treatments at p < 0:05. C: control; L: LPS; R20: RWP
20μg/mL; R200: RWP 200μg/mL; Ac: acetate.
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inhibition by red wine Aglianico del Vulture phenols—as a
molecular mechanism underlying the regulation of macro-
phage function—could reveal very interesting applications
in the prevention and treatment of inflammatory chronic dis-
eases simply through bioactive food compounds.

5. Conclusions

For the first time, this study investigates the immunomodula-
tory and anti-inflammatory potential of red wine powder
(RWP) extracted from the Italian red wine Aglianico del Vul-
ture. RWP reduces IL-1β, IL-6, and TNF-α proinflammatory
while increasing IL-10 anti-inflammatory cytokine secretion
and inhibiting NF-κB promoter activity in macrophages
induced by LPS. In addition, RWP activates proresolutive
pathways by restoring Annexin A1 levels. Beyond the classi-
cal targets of macrophage function, we also identify the cit-
rate pathway as a RWP target in carrying out its anti-
inflammatory activity since, by reducing CIC and ACLY pro-
tein levels, ACLY enzymatic activity, RWP lowers ROS, NO⋅,
PGE2, and histone acetylation levels. Overall findings evi-
dence that Aglianico del Vulture powder suppresses inflam-
matory pathways and activates proresolutive processes
hinting the potential value of RWP in the prevention and
treatment of inflammatory conditions as well as inflamma-
tory chronic diseases.
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