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Abstract

Seasonal temperature change in temperate forests is known to trigger the start of spring

growth, and both interannual and spatial variations in spring onset have been tied to

climatic variability. Satellite dates are increasingly being used in phenology studies, but

to date that has been little effort to link remotely sensed phenology to surface climate

records. In this research, we use a two-parameter spring warming phenology model to

explore the relationship between climate and satellite-based phenology. We employ daily

air temperature records between 2000 and 2005 for 171 National Oceanographic and

Atmospheric Administration weather stations located throughout New England to

construct spring warming models predicting the onset of spring, as defined by the date

of half-maximum greenness (D50) in deciduous forests as detected from Moderate

Resolution Imaging Spectrometer. The best spring warming model starts accumulating

temperatures after March 20th and when average daily temperatures exceed 5 1C. The

accumulated heat sums [heating degree day (HDD)] required to reach D50 range from 150

to 300 degree days over New England, with the highest requirements to the south and in

coastal regions. We test the ability of the spring warming model to predict phenology

against a null photoperiod model (average date of onset). The spring warming model

offers little improvement on the null model when predicting D50. Differences between

the efficacies of the two models are expressed as the ‘climate sensitivity ratio’ (CSR),

which displays coherent spatial patterns. Our results suggest that northern (beech-

maple-birch) and central (oak-hickory) hardwood forests respond to climate differently,

particularly with disparate requirements for the minimum temperature necessary to

begin spring growth (3 and 6 1C, respectively). We conclude that spatial location and

species composition are critical factors for predicting the phenological response to

climate change: satellite observations cannot be linked directly to temperature variability

if species or community compositions are unknown.
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Introduction

The abiotic environment regulates physiological pro-

cesses (metabolism, photosynthesis and respiration),

growth, and development of terrestrial vegetation

across a wide range of time scales, from hours to

decades. For example, interannual temperature varia-

bility influences phenology (the seasonal occurrence of

developmental and life cycle events; Rathcke & Lacey,

1985) of both agricultural crops (e.g. Cesaraccio et al.,

2004; Chuine et al., 2004) and temperate forest tree

species (e.g. Richardson et al., 2006).

While it is generally accepted that warmer winter and

spring temperatures give rise to earlier (or faster) spring

growth (Lechowicz, 1984), the underlying ontogenetic

mechanism is still not well understood, and a consensus

model of spring phenology has not yet emerged
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(compare Hanninen, 1995; Chuine, 2000; Schaber &

Badeck, 2003). However, the strong link between seasonal

temperature variability and phenological changes sug-

gests that long-term, broad-scale observations of phenol-

ogy could serve as a proxy for global temperature change

over time and space (Myneni et al., 1997; White et al.,

1997). Over the last four to five decades, observed trends

toward earlier spring development (budburst or flower-

ing) and later autumn senescence have been attributed to

recent warming (White et al., 1997; Fitter & Fitter, 2002;

Peñuelas et al., 2002; Schwartz et al., 2002; White &

Nemani, 2003; Badeck et al., 2004; Chuine et al., 2004).

Long-term phenological records have been analyzed

to probe the underlying relationships between tempera-

ture and phenology (Chuine et al., 2004), but there are

few spatially extensive ground-based field observa-

tions, particularly in North America (Schwartz et al.,

2006). To this end, satellite records of phenology may

provide the opportunity to scale ground-based pheno-

logical observations and test models of phenology

developed from field data. Within individual years,

spatial patterns in satellite-based phenology have been

tied to temperature gradients (Zhang et al., 2004, Fisher

et al., 2006) and seasonal water availability (Lotsch et al.,

2005; Bradley et al., 2006), interannual variability has

been used to infer climate trends (e.g. Myneni et al.,

1997; Anyamba et al., 2002; Potter et al., 2003; Goetz et al.,

2005; Lotsch et al., 2005).

In spite of the spatial and temporal richness of

satellite data, to date there have been no efforts to

parameterize even simple models using remotely

sensed phenological time series in conjunction with

surface meteorological data. Global satellite data [e.g.

the Moderate Resolution Imaging Spectrometer

(MODIS)] and a dense network of climate records [e.g.

National Oceanographic and Atmospheric Administra-

tion (NOAA) National Climate Data Center (NCDC)]

overlap across North American forests, thus allowing

the analysis of satellite phenology with ground-based

models of climate-forced phenology. Our objective here

is to combine these two data sources, thereby develop-

ing a framework with which we can try to answer a

fundamental question: if temperature is related to the

start of the growing season, then to what extent is

interannual variability observed in satellite records

driven by temperature variation?

Climate-phenology models

Linking ground and satellite studies is made difficult by

for a variety of reasons, including uncertainty in satel-

lite data, relatively short (o30 years) satellite records,

inadequate spatial and temporal resolution of the sa-

tellite records, highly heterogeneous forest landscapes,

and numerous mixed species within a pixel (Badeck

et al., 2004). The task is hampered by the wide range of

potential climate-phenology models with highly vari-

able explanatory power, even in single species studies

(Chuine et al., 1998; Schaber, 2002). Many temperate

phenology-climate models have been developed from

studies of single species, and are typically not tested at

multiple locations (but see Schaber, 2002). Despite these

drawbacks, a firm link between climate and vegetation

variability as detected from satellites will advance both

our understanding of phenology and expected ecosys-

tem responses to global climate change.

Conceptually and operationally, the framework for

linking satellite-based deciduous dynamics with cli-

matic data could echo procedures from ground-based

analyses, providing time series for simple models dri-

ven by climate station data. The developed set of

phenology-climate models range from the two para-

meter ‘spring warming’ model (Hunter & Lechowicz,

1992; Rötzer et al., 2004) to complex models that are

considered more ‘physiologically realistic’ but require

numerous parameters (e.g. the parallel model and se-

quential models: Cannell & Smith, 1983; PIM: Schaber,

2002; SeqSar: Chuine et al., 2004).

In the spring warming model, canopy development

occurs in response to aggregated heat sums, or heating

degree days (HDD), measured as the sum of average

daily temperature above a base (Tbase), starting at day

of year (DOY) t0. The HDD at which a specified level of

development has occurred (typically leaf emergence

or first flower) is the critical forcing temperature (F*).

Thus, given known constant Tbase and t0 parameters,

interannual variation in phenology might track the

date at which F*, a constant aggregated heat sum,

occurs. A natural ‘null model’ against which to evaluate

the predictions of the spring warming model is one in

which DOY (or photoperiod) controls spring onset (e.g.

the ‘null model’ of Chuine, 2000 or Richardson et al.,

2006). While the spring-warming model predicts differ-

ent leaf out scenarios in each year depending on inter-

annual temperature variability, the null model predicts

no interannual variation (i.e. by definition, vegetation

which responds only to day length will always emerge

on the same day of the year).

Here, we use 6 years of spatially extensive, but

temporally limited (2000–2005), satellite data to para-

meterize a simple spring warming model, which we

choose for two reasons: (1) in a number of studies, the

simple spring warming model has been shown to be

as accurate as more complex models for predicting the

start of spring growth (Chuine et al., 1998; Schaber,

2002); and (2) given the short time series and inherently

noisy satellite data, there is a high likelihood of over-

fitting a complex model.
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Satellite phenology model

Satellite phenologies are based on two assumptions:

first, that canopy greenness as observed from the satel-

lite is related directly to canopy development; second,

that discrete time-series measurements represent a con-

tinuous function of canopy closure. Previous studies

have demonstrated moderate to good agreement be-

tween satellite measures of greenness and field-based

observations of development (e.g. Jenkins et al., 2002;

Schwartz et al., 2002; Fisher & Mustard, 2006). Here, as

previously (Fisher & Mustard, 2006), we use a simple

logistic growth (sigmoid) curve to describe the seasonal

patterns in greenness while reducing cloud and satellite

noise (see also Zhang et al., 2003; Beck et al., 2005). The

specification of an objective criterion for identifying the

start of the growing season from the chosen continuous

time series is under debate (e.g. differences between

Jenkins et al., 2002; Zhang et al., 2003; Bradley et al., 2006;

Fisher & Mustard, 2006). In this study, we use the half-

maximum greenness (‘onset’) as a stable marker during

greenup (see Fisher & Mustard, 2006, for details).

Judging climate-phenology model efficacy

A significant unresolved failure of many climate-phe-

nology models is their inability to predict spatial var-

iance; while models can predict the interannual

variation in phenology at a specific site, a model devel-

oped at one site will often fail when applied at another

location (Schaber, 2002; Richardson et al., 2006). Multi-

ple years of satellite data give us a unique opportunity

to test models through two dimensions: across space

and time (years, interannually).

We formulate a series of alternative hypotheses,

which may be evaluated with remotely sensed phenol-

ogy data coupled to ground-based climate data.

A. Greenup (the start of the growing season in a forest

canopy) is governed by photoperiod, such that the

timing of growth is consistent by DOY rather than

temperature variability (a.k.a the null model).

B. Greenup is governed by uniform seasonal heat sums

(HDD) in a spring warming model such that the

timing of growth is predicted by the date at which

HDD reaches a consistent F* value at all locations

(Rötzer et al., 2004; Cook et al., 2005).

C. Greenup is governed by nonuniform HDD in a

spring warming model where F* values vary across

space (sites or stations), but are consistent at any

given location (Karlsson et al., 2003); sites may differ

by species, genotype, age, and/or altitude, latitude,

and distance from water bodies (Scheifinger et al.,

2002).

D. Greenup is governed by a combination of HDD and

DOY, such that some forests have consistent F*

values, while others become green with uniform

DOY; sites may differ by forest composition or

location (e.g. drivers are spatially heterogeneous).

Using 6 years of MODIS satellite data (2000–2005) in

New England, northeastern United States, we investi-

gate if there is a regionally coherent response to phe-

nological climate forcing. Specifically, we examine

whether the null or spring warming model better

explains patterns of spring phenology across time and

space. We use these results to assess the hypotheses

stated above.

Methods

Data preparation

The study region covers southern New England, USA,

extending from 40–441N to 69–761W (Fig. 1). Lake

Ontario, central Maine, and eastern Pennsylvania

bound the NW, NE and SW, respectively. This region

covers topographic gradients from sea level to over

1400m, five mountain ranges, and four major land

cover types: deciduous and coniferous forests, agricul-

tural lands, and urban areas. Our analysis is based on

satellite and weather data for the years 2000–2005.

Daily weather data for 231 NOAA stations within the

study region were obtained from the United States

National NCDC (http://www.ncdc.noaa.gov/). Aver-

age daily temperature was calculated as the mean of

the daily maximum (Tmax) and minimum (Tmin). We

use only data between DOY 1 and 200; stations with

more than 5% missing observations between these

dates for a given year were not included in the analysis.

Data gaps were filled by interpolating temperature

from other stations on the basis of elevation and

latitude. Stations with fewer than 5 out of 6 years of

data were culled, leaving a total of 171 stations in the

analysis (Fig. 2).

MODIS bidirectional reflectance corrected spectral

data (MOD09A1) were collected over SIN tile h12 v04

between 2/26/2000 and 10/16/2005 from NASA Dis-

tributed Active Archive Centers (DAAC, http://nasa-

daacs.eos.nasa.gov/). We chose seven spectral band

data at 500m spatial resolution (0.25 km2pixel�1) from

8-day maximum-quality composite data to gather high-

est information content at the finest feasible temporal

and spatial scale. Stations were geolocated in the

MODIS data, and reflectance data extracted in a 7� 7

grid (3.5 km per side, or 12.25 km2) centered at the

station coordinates. Within each extracted pixel, each

seven-band data point (i, represents the ith time incre-
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ment in the time series) was unmixed with a linear

spectral mixture analysis (SMA, e.g. Adams et al., 1993)

to derive green vegetation fractional aerial abundance

(GVi at the ith data point) and the residual spectral error

(RMSEi). Each GVi data point was assigned a weight

(wi5RMSEi
�1) and a DOY (DOYi) acquisition date. The

DOYi was obtained from a MODIS metadata layer which

specifies the actual overpass day within the composite

period (for greater detail on this method, see Fisher &

Mustard, 2006). HDDi were calculated for each data

point (i) according to the HDD obtained at DOYi.

Climate stations in the study region from the NCDC

are placed in a variety of different settings, including

airports, urban areas, along shorelines, and in agricul-

tural fields or adjacent to forests. Because pixels ob-

served around each station will often not represent

contiguous deciduous forest, the phenological record

of each pixel cannot be considered equally valid (White

et al., 2002; Cook et al., 2005). In calculating the pheno-

logical behavior of the landscape surrounding each

climate station, individual pixels within the 7� 7 grid

were weighted according to an index (wpix) calculated

as the product of four weighting factors (w), each of

which ranged between 0 and 1: (a) the pixel’s percent

tree cover (wTC), (b) the likelihood of a deciduous

canopy (wDC), (c) the difference in elevation between

the pixel and the station (wVD) and (d) the horizontal

distance between the pixel and the station (wHD). The

data used for these calculations are displayed in Fig. 2.

The weight by tree cover (wTC) (Fig. 2a) was deter-

mined from the 500m MODIS vegetation continuous

fields percentage tree cover (VCFTC) product (Hansen

et al., 2003) where:

wTC ¼ VCFTC=100: ð1Þ

Weight by deciduous cover (wDC) (Fig. 2b) was de-

termined by a pixel’s average canopy minimum (winter,

vmin) and maximum (full flush, vmax) cover (see Fisher

et al., 2006 for definition and calculation). An ideal

deciduous canopy has a nearly flush canopy in the

summer (vmax5 0.8) and is bare in the winter (vmin5 0).

Therefore, deciduous cover weight was determined by

Cartesian distance in vmax and vmin space:

wDC ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vminð Þ2þ vmax � 0:8ð Þ2
q

: ð2Þ

Pixel topography (Fig. 2c) was determined from

resampled Shuttle Radar Topography Mission (SRTM,

http://seamless.usgs.gov/) data, and significant gaps

Fig. 1 Spatial extent of Moderate Resolution Imaging Spectrometer image in New England, northeastern USA.
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filled with National Elevation Dataset (NED) data.

Weight by absolute vertical distance (wVD) decreased

linearly by 0.02 unitsm�1 absolute elevation difference

between the pixel and station. Pixels received zero

weight if the absolute elevation difference was more

than 50m.

Weight by horizontal distance (wHD) decreases linearly

from one (pixel containing the station) to zero with dis-

tance, reaching 0.5 at 3.5km. Pixels over water were as-

signed awHD of zero. Final pixel weight was calculated as

wpix ¼ wTC � wDC � wVD � wHD: ð3Þ

Vegetation cover climate-phenology model

Our analysis is based on the entire trajectory of spring

green-up, as described by GV, which we model as a

logistic (sigmoid) function, as shown in Eqn (4)

vi ¼ vmin þ vamp
1

1þ eb�cx

� �

: ð4Þ

This functional form has been previously applied to

phenological modeling (Dixon, 1976; Zhang et al., 2003;

Beck et al., 2005; Fisher et al., 2006; Richardson et al.,

2006) and is also commonly used in biometric models

Fig. 2 Individual pixels in a 7� 7 (3.5 km) grid surrounding each climate station are weighted by their estimated forest cover, estimated

deciduous cover, topographic proximity to the station elevation (within 50m), and absolute horizontal distance from the climate station.

Data sets used in this calculation include: (a) percent forest cover from Moderate Resolution Imaging Spectrometer vegetation

continuous fields, (b) Cartesian distance from ‘perfect’ deciduous behavior based on phenological minimum and maximum,

(c) topography from Shuttle Radar Topography Mission and National Elevation Dataset, and (d) the station location. Stations with

at least 1 year of uninterrupted temperature data from 2000 to 2005 are gray, and stations with at least 5 years of data are black

(used in this analysis).
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(Sit & Poulin-Costello, 1994). Here, vmin and vamp fit the

minimum winter greenness and seasonal amplitude,

respectively, the b and c parameters control the phase

and steepness of the greenup curve (see Richardson

et al., 2006 for additional details), and x represents the

driving variable. In the null model, x is the Julian day

(DOYi); in the spring warming model, x is the heat sum

(HDDi) on DOYi.

Optimization is achieved through a weighted least

squares approach, conducted using the Newton mini-

mum distance algorithm, with weights of wi (Fisher

et al., 2006). We take the point where vi5 (vmin1 vamp)/

2, or the half-maximum, as a critical value: in the null

model, D50 is the value of DOYi at the half-maximum,

while in the spring warming model, H50 is the value of

HDDi at the half-maximum. Phrased differently, H50 is

the temperature requirement at the onset of greenness

(D50). The critical forcing temperature (F*) is calculated

as the average temperature requirement ( �H50).

HDD is calculated as the cumulative sum tempera-

ture above Tbase from time t0. Standard literature values

for Tbase and t0 are 4 1C and January 1st, respectively,

but others have found that these values may be

optimized for specific ecosystems (e.g. Chuine, 2000;

Karlsson et al., 2003). Previous studies indicate that F*

can be derived effectively at a single location, but often

cannot predict the start of spring at other sites (e.g.

Schaber, 2002; Richardson et al., 2006). Therefore, it

seems likely that F* values may vary across space, but

here we assume that the parameters Tbase and t0 are

consistent (see ‘Spatial heterogeneity of spring warming

parameters (Tbase and t0)’ for an exploration of this

assumption). We used a grid search on the full data

set to determine the values of Tbase and t0, while

allowing F* to vary. The grid search was conducted by

evaluating fit RMSE at each climate station (fitting v, b,

and c accordingly) with Tbase values ranging from 1.5 to

7.5 1C in 0.5 1C increments and t0 from 20 (January 20th)

to 110 (April 19th) in 5-day increments. In each run,

data points (i) in the time series which fell before t0
(DOYiot0) were assigned a value of HDDi5 0. Best

overall model fit across all climate stations as judged

by weighted RMSE was achieved with t05 80 (April

4th) and Tbase5 5.0 1C (Fig. 3).

Analysis of spring warming and null models

Using values of t05 80 and Tbase5 5.0 1C, D50 and H50

were determined at the 49 grid cells surrounding each

station. The ability of the spring warming model (in

HDD units) or null model (in DOY units) to capture

interannual variability was evaluated at each grid cell

by calculating the standard deviation of the residual

between the actual date of onset (D50) and the spring

warming predicted date of onset (D0
50) or null model

predicted date of onset (�D50). A perfect spring warming

model prediction will yield a low standard deviation

between the residuals of D50 and D0
50 (STDspring); an

interannually invariant forest (perfect null model) will

produce a low standard deviation between D50 and �D50

(STDnull). The predicted date of onset from the spring

warming model (D0
50) is calculated as the DOYi each

year where HDDi5 F*.

The standard deviation metric evaluates the ability of

a given model to predict a single, prespecified state of

development (D50 or H50), but cannot assess the ability

of the null or spring warming model to describe the full

greenup profile (e.g. Richardson et al., 2006). To accom-

plish this latter goal, we used a cross-validation ap-

proach (Hastie et al., 2001) whereby GVi data from a

single year are tested against the predictions of a model

fit using the other 5 years of data. In a perfect model, the

Fig. 3 Result of grid-search for best possible starting para-

meters. Best minimum is found at Tbase5 5 1C and t05 80

(�March 20th). Contours are in Root mean square error of

spectral mixture analysis (RMSEfit), indicating best possible fit

when all data points are fit simultaneously in heating degree

day (HDD) space.
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HDD curve (smoothed GV, or vi) can consistently pre-

dict the shape and phase of the data points in the

greenup curve (GVi). Therefore, the fit from any selec-

tion of years should correctly predict the years not

included in the analysis. This bootstrap-type method,

repeated for every year, quantifies how well the mean

behavior of smoothed GV (vi) represents interannual

variability in both DOYand HDD terms. We summarize

the validation by calculating an average r2 value across

all years for both the null (R2
null) and spring warming

(R2
spring) models. The r2 for each year is calculated as

in Eqn (5)

r2 ¼ 1�
SSE

SSM
¼ 1�

P

vi �GVið Þ2�wi

h i

P

vi �GV wð Þ
� �2

�wi

h i : ð5Þ

Here, SSE is the sum of squares of the validation error,

SSM is the sum of squares of the mean, wi is the weight

at data point i from the spectral RMSE, vi is the value at i

of the sigmoid curve (fit to all years except the year in

question), GVi is green vegetation fraction at data point i

(from the year in question), and GVðwÞ is the weighted

mean of all GVi from the year in question.

A key objective of the present research is to determine

whether, across a region, HDD is a better predictor of

spring phenology than DOY. The relative merit of these

two approaches is quantified using what we refer to as

the climate sensitivity ratio (CSR), calculated using both

r2 and standard deviation metrics [Eqn (6a,b)].

CSRSTD ¼ log
STDspring

STDnull

� �

; ð6aÞ

CSRr2 ¼ log
1� R2

spring

1� R2
null

 !

; ð6bÞ

In both cases, CSRo0 indicates that the spring warm-

ing model captures interannual variability more effec-

tively than the null model.

Results and discussion

Starting model parameters

Across all sites, the grid search for Tbase and T0 para-

meters (Fig. 3) resulted in a minimum model prediction

error at Tbase5 5 1C and t05DOY 80 (March 20). The

base temperature is within the range found by Chuine

et al. (1998) and Richardson et al. (2006) in a spring

warming model, and similar to results presented by

other researchers (Karlsson et al., 2003). The accumula-

tion starting date is later than has been used by many

researchers, but is consistent with observations that

spring phenology is insensitive to mid-winter tempera-

tures (December–February) and very sensitive to late

spring temperatures (March–May; Schaber, 2002), and

even in the 10 days preceding bud-break (Nizinski &

Saugier, 1988).

Although there is a clear minimum, the surface has a

shallow minimum trough, indicating that base tempera-

tures ranging from 3 to 6 1C may be equally appropriate

(suggesting that the model is relatively insensitive to

Tbase choice, e.g. Richardson et al., 2006). A wide range

of starting dates (t0) may also be valid in the aggregate,

extending from February 4th (DOY�35) to as late as

April 4th (DOY�95). This may be due to the fact that

during the heart of winter, temperatures above the

t0 threshold are rarely encountered. Values of t0490

quickly become ill-fitting, as do Tbase values above 6 1C,

presumably because developmentally important warm-

ing events are missed with higher threshold tempera-

tures. There are spatially coherent differences in the

station-specific grid-search response surface, which

suggest that there may be significant variation across

sites in these phenological parameters. These differ-

ences are explored more thoroughly later in this paper.

With only 6 years of data in this study, the model may

not be sufficiently constrained to effectively character-

ize the spatial variance of Tbase and t0. Therefore, rather

than fit separate Tbase and t0 parameters for each station,

we focus instead on the average grid response surface

across all sites (Fig. 3).

Average phenological response: �D50 and �H50 (F*)

There is spatial coherency in the average date of onset,
�D50 (Fig. 4a). In this study, the earliest �D50 is in northern

New Jersey, whereas the latest �D50 is found more than a

month later on the Adirondack Plateau in northern

New York (NY) state (NW in the image). Late �D50 values

in the northern New Hampshire (NH) and Vermont

(VT) mountains are less apparent in this study than in

Fisher & Mustard (2006), but this is possibly due to a

bias in station locations (more likely to occur in a valley

than on mountain slopes or peaks). Other late �D50

values appear in the Catskill Mountains of NY, and

coastal Maine (ME). The late �D50 on the southern

Massachusetts (MA) coast and islands are possibly

influenced by ocean proximity and sandy substrate

(Motzkin et al., 2002).

The map of the critical forcing temperature (Fig. 4b,

F*), or mean HDD requirement to obtain 50% cover is

less spatially coherent than the �D50 map, but still retains

significant spatial patterning. The most prominent fea-

ture of this map is a coastal–continental gradient over-

printed on a latitudinal gradient where high F* values

are found toward the south-east, and low values to the
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north, similar to results presented by Jenkins et al., 2002.

In F*, the NYAdirondacks are similar to nearby stations,

and do not appear as outliers, as in �D50 in Fig. 4a.

Gradients that were not apparent in the �D50 map (Fig.

4a), such as coastal-inland patterns are clear in the F*

map. The wide range of best-fit F* values (150–300 1C)

implies that a single temperature forcing requirement

will not successfully predict interannual greenup (D50)

across sites. With average New England April–May

temperatures of 10 1C (NCDC, http://www.ncdc.noaa.

gov/), minus the Tbase5 5 1C threshold, the variance

of 75 degree days becomes a prediction error of 15 days

(75 degree days/5 1Cday�1
515 days). Together, these

maps suggest that �D50 and F* are unrelated across the

landscape, and in fact there is no correlation (r25 0.02).

Rötzer et al. (2004) notes a robust positive relationship

between onset and F* in Europe. However, the work of

Rötzer assumes a starting day of January 1st, long

before leaf development begins. Therefore, the accumu-

lated sum temperatures at phenologically late regions

will always be higher than early regions. The described

effect would be echoed in this research as a strong

correlation between �D50 and F*, and this is not the case.

A system coupled to climate and described well by

spring warming will have low spatial variance of F*

while the spatial variance of �D50 would show climatic

gradients. Instead, we appear to have a variously

coupled system: there is a low range of F* values

through northern New England despite a large �D50

range, and a wide range of F* values through southern

New England, despite relatively uniform �D50. We are

left with the as of yet unanswered question, not ad-

dressed by field studies: why does the F* metric vary so

significantly across the landscape?

Null model and spring warming half-maximum
prediction (STDnull and STDspring)

We investigate the hypothesis that the spring warming

model can predict interannual variability more effec-

tively than the null model. The standard deviation

of the difference between interannual D50 and �D50

(STDnull, Fig. 5a) is compared against the standard

deviation of the difference between interannual D50

and predicted D50 (D0
50) from the critical F* value

(STDspring, Fig. 5b). The null model predicts D50 with

a mean STDnull of 6.64 days, while the spring warming

model predicts D0
50 with marginally improved (but

insignificant) mean STDspring of 6.60 days.

STDnull and STDspring are highly correlated (r25 0.87),

suggesting that the spring warming model increases in

efficacy at sites that have relatively low interannual

variability. The spatial patterns between both models

are similar, with the best predictability and lowest

variability in a cluster from western MA and northern

CT to central NY and northern NJ (Fig. 5a and b).

Variance is high in coastal MA through ME, and NH.

These results suggest that although the spring warming

model may capture some fraction of the interannual

variability, it cannot predict interannual departures

with better accuracy than the mean date of onset (�D50).

Null model and spring warming greenup profile
prediction

The spatial patterns of both R2
null and R2

spring are rela-

tively spatially incoherent, and indicate a range of

efficacy, predicting between 50% and 90% of GVi inter-

annual variance. The maps are highly correlated

Fig. 4 Maps of the average date of onset (�D50) (a), and the calculated critical forcing temperature (F*), calculated as the interannual

average heating degree day reached at when the canopy is at 50% cover (D50).
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(r25 0.94), and yet very different than the STDnull and

STDspring maps. We suggest that, alone, this method is

sensitive to the intrinsic qualities of the data (satellite

noise, cloud and snow cover) rather than the efficacy of

predicting seasonal variance in DOY or HDD space.

Maps of R2
null and R2

spring (Fig. 6) indicate that both

models fail to predict interannual variance in three

distinct regions: southern coastal MA, a N–S corridor

in central NH, and in upstate NY. There are two

potential interpretations of these patterns: (a) satellite

data in these regions cannot capture land cover and

forest heterogeneity cannot be effectively fit with a

sigmoid curve, or (b) neither the null model nor the

spring warming model provides a reasonable basis for

modeling phenology in these regions. Noise in the time-

series satellite data will reduce R2 for both models.

Alternatively, at some sites, the spring warming model

may fit better than the null model (e.g. Fig. 7a and b), or

vice versa (Fig. 7c and d). In some locations, although

H50 may be reached at a similar HDD every year, the

shape of the curve could be very different, and thus

yield a low r2 value. This would indicate that although

Fig. 5 Maps of STDnull and STDspring. STDnull (a) is the standard deviation of the null photoperiod model, calculated as STD (�D50 �D50;

across all years); STDspring (b) is the standard deviation of the spring warming model, or STD (D0
50–D50). D

0
50 is predicted from the date

at which heating degree day crosses the F* value at the site. Low values in these maps suggest a well-fit model, while at higher values,

the model is less effective.

Fig. 6 Maps of prediction errors from bootstrap analysis, displayed as R2
null (a) and R2

spring (b). In the analysis, an average growth curve

(GVi) is calculated a combined 5 years of data and used to predict the phenology [green vegetation (GV)] of the sixth year. The goodness-

of-fit (r2) values represent the variability of this bootstrap over all 6 years (2000–2005). These values primarily tend to reflect the stability

of the GV signal as perceived from the satellite rather then the efficacy of the model. However subtle differences between R2
null and R2

spring

are more visible in the climate sensitivity ratio of Fig. 8.
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interannualH50 has low variance, the shape of the curve

is not predictable (such as in Fig. 7e and f).

The high correlation between R2
null and R2

spring (Fig. 6a

and b) indicate that the errors occur at each station

regardless of the model used, and are, therefore, in-

trinsic to the station and not the model choice. We

would expect that if the R2
null or R

2
spring spatial patterns

reflected the actual predictability, then the patterns of

R2
null and R2

spring would be correlated to the maps of

STDnull and STDspring, which is only partially the case

(r25 0.55 and 0.68, respectively). These maps, taken at

face value, are both difficult to interpret and appear to

reflect noise or station variability more than climatolo-

gical or phenological meaning.

Spatial variability and the CSR – CSRstd and CSRr2

Both calculations of CSR have improved spatial coher-

ency (Fig. 8) above that of the maps of STDnull,spring and

R2
null;spring. There are generally positive values (poor

spring warming predictability) in the south and nega-

tive CSR values to the north and along the NH and MA

coastline. Although the gradient is not entirely clear, a

species composition difference may explain the pattern

of CSR in New England. In particular, the north–south

gradient is suggestive of a boundary derived by Cogbill

et al. (2002) bisecting northern hardwoods (beech and

maple association) and central hardwood forests (oak

and hickory association). The boundary (superimposed

Fig. 7 Three type locality examples of greenup curves in day of year (DOY) space (a, c, e) and heating degree day (HDD) space (b, d, f),

and the associated standard deviation (STDnull and STDspring) and goodness-of-fit (R2
null and R2

spring) model tests. In northern New York

(a and b), the spring warming model provides more interannual stability than the null model; in central CT (c and d), there is relatively

little interannual variability by DOY, while modeling the same data in with a spring warming model is unstable; in southern New

Hampshire (e and f) the Moderate Resolution Imaging Spectrometer pixels are both heterogeneously mixed and contain significant

topographic variability, thus there is greater uncertainty in modeling interannual growth by both the null and spring warming models.
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on Fig. 8) is derived from recorded forest composition

from surveys before agricultural settlement (ca. 1623–

1850). While it is important to note that recent analyses

suggest significant homogenization postagriculture

(Foster et al., 1998), the transition zone was found to

be in good agreement with modern data from the US

Forest Service forest inventory and analysis project

(USFS FIA; mapped from Miles, 2006) data.

If the difference between the null and spring warm-

ing models shown in the CSR distribution is due to

forest composition, it could imply that central hard-

woods are attuned to temperature variability differently

than northern hardwoods (e.g. Kramer et al., 2000).

Alternatively, similar forests in distinctively different

regions may react differently to climate (e.g. Peterson &

Peterson, 2001; Richardson et al., 2006).

CSRstd is a relative of analyses in other studies, which

compare interannual variability of bud-break from the

null model (average day of bud-break) and various

climate-phenology models (e.g. Hunter & Lechowicz,

1992; Chuine, 2000; Schaber, 2002). These analyses show

that, at any given location, warming models describe

interannual variability of bud-break more effectively

than the annual average. However, previous observa-

tions by Richardson et al. (2006) demonstrated that a

single set of greenup curve parameterizations in a

spring warming model could not effectively explain

the disparities between two deciduous forests separated

by 150 km. The disparity argues strongly against the use

of uniform phenology model parameters, an objective

of many climate-phenology models. While the results of

this study cannot support the efficacy of a uniform

parameter spring warming model in interpreting tem-

perate satellite phenologies, they do suggest operation-

ally different mechanisms in different forest types.

Spatial heterogeneity of spring warming parameters
(Tbase and t0)

It may be instructive to examine at least one of the

underlying assumptions in the spring warming model

to explain observed variance. In particular, the unifor-

mity of the base temperature (Tbase) and starting date of

accumulation (t0) may be an inappropriate simplifica-

tion. The choice of separate Tbase and t0 parameters for

each station would provide poor constraints for the

model, as there would be six parameters (Tbase, t0, vmin,

vmax, b, and c) used to fit 6 years of data (2000–2005).

However, the observation that forest type may be a

significant factor in determining phenological response

to climatic variability allows an ex post facto exploration

of Tbase and t0. The initial parameter grid search (de-

scribed in ‘Vegetation cover climate-phenology model’)

was performed again, but in two populations divided

along the Cogbill et al. (2002) forest composition transi-

tion (the center line of a broad ‘tension zone’).

The result is displayed in two contour plots in Fig. 9,

displaying the best parameter fit error minima for

northern and central hardwoods. Although the popula-

tions appear to have distinct minima (separated pri-

Fig. 8 Maps of the climate sensitivity ratio (CSR) reflect the ability of a sigmoid model to capture canopy cover growth in the spring

warming model relative to the null model. On the left (a), CSRstd is the log ratio between STDspring and STDnull, where valueso0 indicate

that the spring warming model is more effective than the null model (i.e. interannual variability of D50 is predicted by spring warming),

and values40 suggest that the spring warming model (as parameterized) is not appropriate for the site. On the right (b), CSRr2 is the log

ratio between (1� R2
spring) and (1� R2

null), where values 40 imply that the spring warming model explains the greenup curve more

effectively than the null model. The overlaid gray dashed line is the ‘tension zone’ (Cogbill et al., 2002), representing the approximate

transition from central hardwood (oak/hickory) to northern hardwood (beech/maple) forest communities.
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marily by the best base temperature, Tbase), the separa-

tion is insignificant. The 95% confidence interval from a

dw2 test (Press et al., 1992) indicates that the error

bounds between the north and south populations are

highly overlapping (upper bound RMSE contour in the

north5 0.0592, n5 1697; upper bound RMSE contour

in the south5 0.0610, n5 3757). While the broad error

bounds suggest a relatively low sensitivity to exact Tbase

and D0 values in this analysis, a significant separation

would imply a mechanistic difference between northern

hardwood forests responding to lower temperatures

than central hardwoods.

Climate-phenology model hypotheses

In this study, we observe significant differences in the

climate-phenology relationship across the landscape. If

we revisit the original hypotheses, it is clear that the

null model (Hypothesis A) cannot account for satellite

interannual variability, which has been observed to

track climate in multiple studies (White et al., 1997;

Cook et al., 2005; Fisher & Mustard, 2006). However,

the oft-proposed Hypothesis B, that greenup is gov-

erned by a uniform critical forcing temperature (F*), is

also shown not to be the case in this study: the spatial

variability of temperature requirements across the re-

gion (Fig. 4b) rule out this explanation. Hypothesis C,

that greenup is predictable by F* values which are

consistent at any given location, is more likely; however

in this study we show that large areas of southern New

England are not predictable based on station-specific F*

values. From the results of this study, Hypothesis D is

the only hypothesis which cannot be ruled out: greenup

appears to be differentially governed by DOY or spring

warming (consistent with Peterson & Peterson, 2001).

However, in showing that Tbase and t0 parameters may

also vary by location, a modified form of hypothesis C

Fig. 9 Recalculated grid-search results for best starting parameters for forests north (a) and south (b) of the forest transition ‘tension

zone’ (similar layout to Fig. 3). Both contour graphs indicate a poor specificity for t05 80 (�March 20th), but strong trends for distinctly

separate base temperatures (Tbase). Forests north of the tension zone (a) are best modeled with Tbase5 3.0 1C while forests south of the

tension zone (b) require higher base temperatures near 6.0 1C to begin spring growth.
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becomes feasible: greenup is predictable by station-

specific F* values when other functional parameters

(Tbase and t0) are stratified by forest type.

We submit that the spring warming model, despite its

simplicity, may not be adequate to explain the varia-

bility seen in temperate deciduous forests. We suggest

that, contrary to recent assertions, interannual pheno-

logical variability from satellite data may not be readily

interpreted in climate terms (e.g. Jenkins et al., 2002;

Schwartz et al., 2002), nor would we expect that climate-

phenology models applied to temperature data will

accurately predict large spatial scale interannual varia-

bility (e.g. Schwartz et al., 2006). Additional refinement

and a better understanding of phenological triggers

may be required before we understand the climate

implications of studies which satellite phenology

(Myneni et al., 1997; Goetz et al., 2005).

Conclusion

Phenological research over the last two decades has

progressed in two completely independent veins: cli-

mate-phenology models derived from ground observa-

tions, and monitoring methods constructed from

satellite observations. These intrinsically different lines

of study are poorly linked (Schwartz & Reed, 1999;

Badeck et al., 2004). The satellite phenology community

has made the implicit assumption that interannual and

average phenological observations are expressions of

climatological variability (e.g. Jenkins et al., 2002; Zhang

et al., 2004). This assumption is buffered by the typically

large spatial extent of satellite studies: by examining

regional to global patterns of variability, satellite phe-

nological studies will detect significant spatial variabil-

ity which is certainly climatological in nature (e.g.

Jenkins et al., 2002; Schwartz et al., 2002; Zhang et al.,

2004). However, the robustness of these studies at large

global scales does not necessarily translate to accurate

or precise records of phenological variability on the

ground (Schwartz et al., 2002).

While, in phenological work, the satellite community

has historically been compelled to assume regional or

landscape-scale homogeneity (usually for lack of infor-

mation otherwise; Schwartz & Reed, 1999; Jenkins et al.,

2002; Zhang et al., 2003 but see, Bunn et al., 2005),

ground-based phenology models have long recognized

significant differences between species in reacting to

climate (Lechowicz, 1984; Schaber, 2002). Conversely,

the assumption common to most ground-based pheno-

logical studies is that forests of similar type in different

locations respond similarly to climate variability, a

supposition refuted by many phenological studies

(e.g. Karlsson et al., 2003; Richardson et al., 2006),

including this research.

There is great potential at the interface between

satellite and ground-based phenology studies. While

we found that the spring warming model did not

generally hold over our study region, we set a frame-

work for linking satellite data with simple field models

using observed meteorological data. There is a great

deal of potential for generating improved models of

phenology from climate data which operate effectively

over time and space, and can predict variability in the

satellite record.
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Appendix

CSRstd5 efficacy of spring warming model compared with null model (standard deviation)

CSRr2 5 efficacy of spring warming model compared with null model (r2-test)

D505 date of onset, or date at which phenology obtains half-maximum spring greenness
�D50 5 average date of onset (averaged over all years)

D0
505 predicted date of onset from date at which HDD obtains value F*

DOY5 day of year (1–365)

DOYi5 day of year at i

F*5 forcing requirement to obtain half maximum greenness (set equal to �H50)

GVi5 green vegetation fraction from spectral mixture analysis at i

GVðwÞ5 weighted mean of all GVi in a time series

H505 heating degree day at half-maximum greenness
�H50 5 average heating degree day at half-maximum greenness

HDD5 heating degree day (accumulated temperature sum) in spring warming model

HDDi5 heating degree day at i

i5 time or temperature increment

R2
null 5 goodness of fit of the null model in predicting full phenology curve

R2
spring 5 goodness of fit of the spring warming model in predicting full phenology curve

RMSEi5 root mean square error of spectral mixture analysis at i

SSE5 sum of squares of phenology curve error (compares GVi against curve fit)

SSM5 sum of squares of the mean (compares GVðwÞ against curve fit)

STDnull5 standard deviation of half-maximum prediction for null model

STDspring5 standard deviation of half-maximum prediction in spring warming model

t05 starting day for accumulating heat sums in spring warming model

Tbase5 base temperature for spring warming model

Tmax5 daily maximum temperature at climate station

Tmin5 daily minimum temperature at climate station

wDC5 weight fraction of pixel from deciduous cover estimate

wHD5 weight fraction of pixel from horizontal distance

wi5 weight of data point (i) in phenology curve-fit (wi5RMSEi
�1)

wpix5 weight of individual pixel surrounding climate station (0–1)

wTC5 weight fraction of pixel from tree cover estimate

wVD5 weight fraction of pixel from vertical distance

vamp5 phenological curve amplitude

vmin5 phenological curve minimum

b, c5 Phenological fit parameters

VCFTC5 vegetation continuous fields product of tree cover
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