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Phenome-wide association studies across large
population cohorts support drug target validation
Dorothée Diogo1, Chao Tian2, Christopher S. Franklin3, Mervi Alanne-Kinnunen4, Michael March5,

Chris C.A. Spencer3, Ciara Vangjeli3, Michael E. Weale3, Hannele Mattsson4,6, Elina Kilpeläinen4,

Patrick M.A. Sleiman5, Dermot F. Reilly1, Joshua McElwee1,15, Joseph C. Maranville1,16, Arnaub K. Chatterjee1,17,

Aman Bhandari1,18, the 23andMe Research Team, Khanh-Dung H. Nguyen7, Karol Estrada7, Mary-Pat Reeve8,

Janna Hutz8, Nan Bing9, Sally John7, Daniel G. MacArthur10,11, Veikko Salomaa 6, Samuli Ripatti4,10,12,

Hakon Hakonarson5, Mark J. Daly10,11, Aarno Palotie4,10,11,13,14, David A. Hinds 2, Peter Donnelly 3,

Caroline S. Fox1, Aaron G. Day-Williams1,7, Robert M. Plenge1,16 & Heiko Runz1,19

Phenome-wide association studies (PheWAS) have been proposed as a possible aid in drug

development through elucidating mechanisms of action, identifying alternative indications, or

predicting adverse drug events (ADEs). Here, we select 25 single nucleotide polymorphisms

(SNPs) linked through genome-wide association studies (GWAS) to 19 candidate drug tar-

gets for common disease indications. We interrogate these SNPs by PheWAS in four large

cohorts with extensive health information (23andMe, UK Biobank, FINRISK, CHOP) for

association with 1683 binary endpoints in up to 697,815 individuals and conduct meta-

analyses for 145 mapped disease endpoints. Our analyses replicate 75% of known GWAS

associations (P < 0.05) and identify nine study-wide significant novel associations (of 71 with

FDR < 0.1). We describe associations that may predict ADEs, e.g., acne, high cholesterol,

gout, and gallstones with rs738409 (p.I148M) in PNPLA3 and asthma with rs1990760

(p.T946A) in IFIH1. Our results demonstrate PheWAS as a powerful addition to the toolkit for

drug discovery.
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T
he discovery and development of novel therapeutics is
difficult. It may take 15 years to advance a new molecular
entity from therapeutic hypothesis to approval, with

development costs in the billion dollar range and only a 10%
chance of a new drug tested in humans eventually getting
approval1. Two reasons stand out to explain the high failure rate
of clinical trials and receding return on R&D investment across
the pharmaceutical industry: a lower efficacy of the compound in
the targeted disease population than anticipated from preclinical
studies; and the occurrence of unintended drug effects, particu-
larly mechanism-based adverse drug events (ADEs) uncovered
only in late-stage clinical trials2. A greater understanding of
human data relevant to the drug target at early stages of drug
development is generally considered to increase the probability of
success1,3,4.

Resources that systematically capture biomedical information
on vast numbers of individuals are revolutionizing our ability to
understand the complexities of human biology and morbidity.
Electronic health records (EHRs) and other resources that sys-
tematically capture extensive health information have rapidly
become well-established tools for epidemiological and post-
marketing research5,6. Recently, a surge of initiatives are seeking
to link such phenotype resources with genome-scale genetic data
in order to gain further insights into the genetics of common
diseases7–14.

An attractive approach to help accelerate drug development
utilizing these genotype–phenotype resources is through applying
phenome-wide association studies (PheWAS). PheWAS are an
unbiased approach to test for associations between a specific
genetic variant, or, more recently, combination of variants, and a
wide range of phenotypes in large numbers of individuals7,15,16.
By exploring the associations of a genetic variant that impacts the
function of a drug target gene, PheWAS in disease-agnostic
cohorts with extensive health information may enrich the drug
discovery process for five reasons: (1) association studies in
disease-agnostic cohorts may validate target-disease links in
cohorts that more closely resemble the real-world, i.e., the
patients that will ultimately receive a drug;17 (2) by unraveling
pleiotropy, PheWAS may improve our understanding of the
biological functions of a target, or hint at concealed pathophy-
siological connections between disease entities previously con-
sidered as distinct;18,19 (3) PheWAS may reveal opportunities for
drug repurposing, an attractive alternative to de novo drug
development;20,21 (4) PheWAS may point to phenotypes that
associate with an inverse directionality of target function, thus
unraveling potential ADEs at very early stages of a developmental
program, minimize risks to trial participants, and help define the
most appropriate patient populations to benefit from a drug;21

and (5) through quantitative estimates from genetic safety and
efficacy profiles, PheWAS may help prioritize multiple possible
targets by identifying the target with the most promising ther-
apeutic window. Despite these benefits, the ability for PheWAS to
substantially add to the decision making in drug development is
thwarted by the difficulty to obtain and systematize compre-
hensive genotypes and phenotypes across very large numbers of
individuals.

Here, we test the hypothesis that PheWAS can inform target
validation at early stages of drug discovery. We select candidate
drug targets across a range of therapeutic indications based on
their support from genome-wide association studies (GWAS). To
maximize power, we map a large spectrum of clinical endpoints
from four of the world’s largest disease-agnostic cohorts with
extensive health information (23andMe, UK Biobank interim
release, FINRISK and CHOP) and conduct association testing in
up to 697,815 individuals. We validate the top associations in the
extended UK Biobank cohort (337,199 participants), and apply

conditional analyses and co-localization methods to identify true
pleiotropy predicting drug efficacy or safety signals. Our results
show that PheWAS, despite limitations, enrich drug discovery
with valuable information.

Results
Assessing pleiotropy of SNPs near 19 candidate drug targets. In
this study, we queried the literature for genes nominated through
GWAS as putatively causally linked to the risk for common
complex human diseases and supported by various degrees of
additional genetic or biological evidence. We selected 19 genes
that, based on previously described genetic associations with
either immune-mediated (9 genes: ATG16L1, CARD9, CD226,
CDHR3, GPR35, GPR65, IFIH1, IRF5, and TYK2), cardiometa-
bolic (8 genes: F11, F12, GDF15, GUCY1A3, KNG1, LGALS3,
PNPLA3, and SLC30A8), or neurodegenerative diseases (2 genes:
LRRK2, TMEM175), were evaluated as potential novel drug tar-
gets (Table 1). Gene-disease associations had been established
through 25 common lead single nucleotide polymorphisms
(SNPs) that all reached a conservative level of statistical sig-
nificance (P < 5 × 10−8) for association in GWAS with at least one
phenotype of relevance to drug discovery and development
(Supplementary Table 1). All of these SNPs have either been
demonstrated to impact the target gene in functional studies
(genetic evidence), or locate proximal to a gene implicated in a
biological mechanism related to the GWAS phenotype (biological
evidence). Our selection ranged from targets with little biological
knowledge beyond GWAS nomination (e.g., TMEM175 for Par-
kinson’s disease (PD)) to targets with drug candidates in early
clinical trials (e.g., F11 for thromboembolism). Details on the
genetic and biological support for all selected genes and SNPs is
provided in Supplementary Methods.

To broadly investigate pleiotropic effects of the 25 chosen SNPs
in a maximal number of individuals, we interrogated four large
disease-agnostic cohorts that link genome-wide genotype data
from individuals of European ancestry with extensive phenotypic
data: the 23andMe Inc. cohort with self-reported phenotypes on
671,151 research participants22, the interim UK Biobank cohort
analyzed by Genomics plc with questionnaire-based health
information on 112,337 participants (from the first genetic data
release in May 2015)10, and two EHR-based cohorts from an
adult Finnish cohort (FINRISK; 21,371 participants)23 and from a
pediatric healthcare population from the Children’s Hospital of
Philadelphia (CHOP; 12,044 patients)24 (Table 2 and Methods).
All four cohorts contributed phenotypic data in different formats
(medical interviews, self-reports, WHO ICD codes, or ICD9-CM
codes) in both shared and distinct phenotype categories (Fig. 1a).
Manual phenotype mapping identified 145 distinct clinical
endpoints that were tested in two or more cohorts in up to
697,815 individuals (Fig. 1b, Supplementary Table 2, and
Supplementary Table 3). As illustrated in Fig. 1c, these 145
mapped phenotypes represent a broad spectrum of disease
categories and, as typically observed in disease-agnostic cohorts,
show significant variability in the case:control ratios, both within
and between cohorts. In addition, PheWAS in the four cohorts
provided association results for 1538 cohort-specific unmapped
endpoints, leading to a total of 1683 endpoints included in our
analysis. Association testing in the cohorts was performed using
logistic regression models; meta-analyses were performed using
fixed effect models (see Methods for details).

Meta-PheWAS replicate known GWAS signals. We first eval-
uated whether association testing in the four disease-agnostic
cohorts replicated established results from published GWAS.
GWAS had associated the 25 tested SNPs with genome-wide
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significance to 58 binary disease endpoints. Of these, 47 end-
points were ascertained with adequate power (beta ≥ 0.8) to reach
P < 0.05 in the PheWAS meta-analysis. After excluding the three
Parkinson’s disease associations that were derived from 23andMe
data in the published GWAS, we observed that 33 of the 44 (75%)
powered GWAS associations replicated at P < 0.05 in our Phe-
WAS meta-analysis with consistent directions of effects (18/27
(67%) powered GWAS associations replicated at FDR < 0.1 (P <
3.8 × 10−4)) (Supplementary Figs 1, 2, and Supplementary
Table 4). The overlap between the published GWAS effect sizes
and the confidence intervals observed in the meta-PheWAS and
in the four cohorts is provided in Supplementary Figs 2 and 3. As

expected from data obtained in real-world settings, the replication
rate of known associations was highly disease-dependent (Sup-
plementary Fig. 1B). For instance, out of the 11 associations that
failed to replicate despite sufficient case numbers in the cohorts,
eight were associations with inflammatory bowel disease (IBD),
Crohn’s disease (CD), or ulcerative colitis (UC), likely reflecting
suboptimal ascertainment of these endpoints in real-world set-
tings. Nonetheless, the high replication rate of previously reported
associations demonstrates the power of combining disease-
agnostic cohorts from various sources to detect and validate
true SNP-disease associations, and to substantiate therapeutic
hypotheses.

Table 1 Candidate drug targets investigated in the study

Human genetics Drug developmentb

Gene Prior GWAS associationsa Mendelian disorders (direction of effect) Indications/status/proposed mechanism of action

ATG16L1 CD; IBD – – / – / –

CARD9 CD; IBD; UC Familial candidiasis (LOF) – / – / –

CD226 IBD; MPV; T1D – – / – / –

CDHR3 Asthma – – / – / –

F11 aPTT; VTE; FXI levels FXI deficiency (LOF) Hemophilia C/launched/factor XI stimulant

Thrombosis/phase II/factor XI inhibitor

F12 aPTT; FXII levels Hereditary angioedema (GOF); FXII

deficiency (LOF)

Hereditary angioedema; thrombosis/phase I/factor XII

inhibitor

Antiphospholipid syndrome/preclinical/factor XII

inhibitor

GDF15 BMI – Cachexia/preclinical/GDF-15 antagonist

GPR35 CD; IBD; UC – Cough; mastocytosis; pruritus/phase II/GPR35 agonist

GPR65 CD; IBD; UC – – / – / –

GUCY1A3 BP; CAD; MI Moyamoya 6 with achalasia (LOF) – / – / –

IFIH1 IgAD; IBD; psoriasis; UC; SLE; T1D;

vitiligo

Aicardi–Goutieres syndrome (GOF);

Singleton–Merten syndrome (GOF)

Solid cancer/phase I/IFIH1 stimulant (additional targets:

RIG-I; TLR3)

IRF5 PBC; RA; SJO; SLE; SSc; UC – – / – / –

KNG1 aPTT; FXI levels – – / – / –

LGALS3 Galectin-3 levels – Liver fibrosis; non-alcoholic steatohepatitis; psoriasis/

phase II/galectin-1 and 3 antagonist

Pulmonary idiopathic fibrosis/phase II/galectin-3

antagonist

Atopic eczema; head and neck cancer; melanoma/phase

I/galectin-1 and 3 antagonist

Arrhythmia; fibrosis: myocardial, renal; pulmonary

hypertension/preclinical/galectin-1 and 3 antagonist

Cardiac and renal conditions/preclinical/galectin-3

antagonist

LRRK2 CD; IBD; PD; UC Familial Parkinson’s disease (GOF) Parkinson’s disease/phase I/LRRK2 inhibitor

Alzheimer’s disease; glaucoma/preclinical/LRRK2

inhibitor

PNPLA3 Alcohol-related cirrhosis; ALT; CT;

hepatic steatosis; NAFLD

– – / – / –

SLC30A8 Fasting glucose; T2D – – / – / –

TMEM175 PD – – / – / –

TYK2 CD; IBD; MS; PBC; psoriasis; RA;

SLE; T1D; UC

Immunodeficiency (LOF) Atopic eczema/phase II/JAK1 and TYK2 inhibitor

psoriasis/phase II/TYK2 inhibitor; JAK1 and TYK2

inhibitor

SLE/phase II/TYK2 inhibitor

Alopecia areata; UC/phase II/JAK1 and TYK2 inhibitor

IBD/phase I/TYK2 inhibitor; JAK1 and TYK2 inhibitor

psoriatic arthritis/phase I/TYK2 inhibitor

CD/preclinical/JAK1-3 and TYK2 inhibitor

cancer: acute leukemia, colorectal, anaplastic large cell

lymphoma; MS; RA/preclinical/JAK1 and TYK2 inhibitor

Uveitis/preclinical/TYK2 inhibitor

ALT: alanine aminotransferase, aPTT: activated partial thromboplastin time, BMI: body mass index, CAD: coronary artery disease, IgAD: immunoglobulin A deficiency, MI: myocardial infarction, MPV:

mean platelet volume, NAFLD: non-alcoholic fatty liver disease, RA: rheumatoid arthritis, SLE: systemic lupus erythematosus, T1D: type 1 diabetes, T2D: type 2 diabetes, VTE: venous thromboembolism,

CD: Crohn’s disease, IBD: inflammatory bowel disease, MS: multiple sclerosis, PBC: primary biliary cirrhosis, PD: Parkinson’s disease, SJO: Sjogren’s syndrome, SSc: systemic sclerosis, UC: ulcerative

colitis, GOF: gain-of-function, LOF: loss-of-function
aPublished associations at the genetic locus as defined in Methods. Causal gene not always unambiguously established. For details, see Supplementary Information
bAs listed in Citeline’s Pharmaprojects database. Active development with most advanced status (preclinical or clinical) as of Dec 16, 2017 is indicated
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Meta-PheWAS identify novel SNP-phenotype associations. We
next investigated whether meta-PheWAS across the four cohorts
could identify novel associations to support the proposed clinical
indication(s) (derived from established genetic associations, see
Table 1), suggest alternative indications for drug repositioning, or
uncover potential target-related ADEs. To improve statistical
power in this analysis, the PheWAS results in the four cohorts
were meta-analyzed together with summary statistics from pub-
lished GWAS studies of 34 diseases available from a larger
database assembled and harmonized by Genomics plc (referred to
as Genomics plc GWAS, Supplementary Note 1). Overall, 27,763
association tests (across 145 harmonized and 1538 cohort-specific
endpoints) resulted in nine putative novel associations reaching
study-wide significance after Bonferroni correction (P < 1.8 × 10
−6) (Table 3). Using a less stringent significance threshold of FDR
< 0.1 (P < 7 × 10−4) previously applied in PheWAS25, we identi-
fied 71 distinct putative novel associations (Fig. 2, Supplementary
Table 5 and Supplementary Data 1). Of these, 30 were with
mapped phenotypes and were obtained from meta-analyzing
results from at least two cohorts, and 41 were supported by a
single cohort (and thus require independent replication) (Sup-
plementary Table 5). Forty-three of these putative novel asso-
ciations showed the same directions of effect as disease endpoints
related to the proposed clinical indication for a drug and may hint
at potential repositioning opportunities (Supplementary Fig. 4).
Conversely, 27 showed directions of effect opposite to disease
endpoints related to the proposed clinical indication and may
suggest safety signals that could endanger therapeutic success and
warrant monitoring for in preclinical models and clinical trials
(Supplementary Fig. 4).

The 30 novel associations with mapped phenotypes showed
limited evidence of heterogeneity between the PheWAS cohorts
(Supplementary Fig. 5). Twenty-three (77%) of these 30
associations showed an I2 < 40%. Manual review of the results
showed that only one of the seven associations with I2 > 40%, the
GDF15 rs17724992 association with high blood pressure, was less
significant in the meta-analysis than in the individual cohorts
(P23andMe= 6.4 × 10−10, OR23andMe= 0.96; PGplc/UK Biobank=

0.58, ORGplc/UK Biobank= 0.99; Pmeta= 7.6 × 10−9, ORmeta=

0.97) (Supplementary Fig. 5B).

Replication of novel associations in UK Biobank v2. Forty-one
of the 71 potential novel associations reaching FDR < 0.1,
including eight of the nine novel associations reaching study-wide
significance, were with phenotypes tested by Neale et al. through
GWAS in the expanded UK Biobank (v2) cohort of up to 337,199
participants of European ancestry. In an attempt to replicate
putative novel associations discovered in our meta-PheWAS, we
performed weighted Z score-based meta-analyses between the
23andMe, FINRISK and CHOP PheWAS results, the published
GWAS results and the UK Biobank v2 results (excluding the Gplc

UK Biobank results). Out of the 41 putative novel associations,
16 showed P < 0.05 in UK Biobank v2 with consistent direction of
effect, thus validating and further strengthening significance of our
previous results (Supplementary Table 6). An additional seven
potential novel associations showed increased significance in
meta-analysis despite P > 0.05 in UK Biobank v2, largely due to
small number of cases and lack of statistical power in UK Biobank
v2 alone. Overall, meta-analysis with UK Biobank v2 strengthened
all eight novel associations with study-wide significance after
Bonferroni correction and 23/41 (56%) of the potential novel
associations with FDR < 0.1, including eight associations that were
based on results from a single PheWAS cohort. Strengthened
associations in the meta-analysis with UK Biobank v2 include the
rs17724992-high blood pressure association that showed sig-
nificant heterogeneity between the 23andMe and the interim UK
Biobank cohorts (P23andMe= 6.4 × 10−10, OR23andMe= 0.96;
PUK Biobank v2= 4.4 × 10−5; Pmeta_v2= 3.9 × 10−13).

Interpretation of apparent pleiotropy in PheWAS results. A
challenge to the PheWAS approach is to reliably distinguish true
pleiotropic associations of a SNP (or SNPs in strong LD with the
lead SNP), suggesting a shared causal mechanism, from unrelated
associations driven by independent SNPs at a locus18. For
instance, in our study, the putative association of rs2274273 near
LGALS3 (encoding the galactin-3 protein) with PD (OR23andMe=

0.94, P23andMe= 1 × 10−4) likely reflects a distinct causal
mechanism previously attributed to GCH126. rs2274273 is a
protein quantitative trait locus (pQTL) that controls plasma levels
of galectin-327. Through a Bayesian test for co-localization using
summary statistics from published GWAS studies26,28,29, we
excluded rs2274273 as a causal SNP for PD (posterior probability
for a shared variant leading the PD and galectin-3 levels asso-
ciations= 0.0008%) (Supplementary Fig. 6).

A second challenge to PheWAS is the existence of common co-
morbidities among endpoints, or alternatively an insufficient
distinction between phenotypes19. In our meta-PheWAS,
rs17724992 near GDF15 showed association with multiple
cardiovascular-related phenotypes, which is likely mediated by
the known association of this SNP with body mass index (BMI)30,
an established risk factor for cardiovascular disease31. This is
supported by the lack of association of rs17724992 with blood
pressure (PSBP= 0.064, PDBP= 0.134) and coronary artery disease
(CAD, P= 0.17) in the large GWASs published by the
International Consortium for Blood Pressure and the CARDIo-
GRAMplusC4D consortium32,33. Phenotype correlation scores
can indicate apparent pleiotropic effects that may be explained by
comorbidities or confounding (Supplementary Fig. 7), yet follow-
up customized association analyses adjusting for specific
phenotypic covariates are required to distinguish true pleiotropic
effects and inform target validation.

Table 2 Cohorts included in this study

Cohort Participants geographic

distribution

Phenotypes source N binary endpoints

testeda
Max sample

size

23andMe 89% USA (adult) Questionnaire-based self-reports 654 671,151

Genomics plc UK

Biobank

100% UK (adult) Questionnaire-based self-reports, medical

interviews and follow-up

90 112,337

FINRISK 100% Finns (adult) National health registries (ICD8,9,10) 278 21,371

CHOP 100% USA (pediatric) Electronic health records (ICD9-CM) 870 12,044

Genomics plc GWAS Mixed Mixed—multiple independent disease-specific

cohorts

34 -

aNumber of binary endpoints with N cases ≥ 20
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In summary, these two examples demonstrate that thorough
investigation of association results can reduce biases introduced
through PheWAS.

Meta-PheWAS reveal pleiotropic effects of PNPLA3 rs738409.
Among the nine study-wide significant associations, our meta-
PheWAS revealed multiple novel associations for the PNPLA3
missense SNP rs738409 (p.I148M). The rs738409-G allele has
previously been reported as associated with an increased risk for
non-alcoholic fatty liver disease (NAFLD), alcohol-related

cirrhosis and hepatic steatosis, as well as elevated alanine ami-
notransferase (ALT) levels, most likely through a gain-of-function
(GOF) mechanism (Supplementary Methods). Consistent with
these findings, our meta-PheWAS found rs738409-G to be
associated with elevated liver tests (OR23andMe= 1.25, P23andMe=

4 × 10−45) (Supplementary Fig. 8). Beyond that, our analysis also
indicated that carriers of the rs738409-G allele that increases ALT
are more prone to develop liver toxicities when treated with
nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibu-
profen (OR23andMe= 1.43, P23andMe= 4.6 × 10−5) or aspirin
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Manual phenotype mapping was performed to identify phenotypes shared between cohorts. One hundred and forty-five phenotypes were captured with at

least 20 cases in at least 2 cohorts. After PheWAS in each cohort separately, the 145 phenotypes were meta-analyzed to increase statistical power and

enable systematic comparisons of results between cohorts. c The 145 mapped phenotypes (see Supplementary Table 2) represent a broad spectrum of

phenotypic categories and are captured with variable case:control ratios in the cohorts tested
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(OR23andMe= 1.57, P23andMe= 5.3 × 10−5). It also confirmed the
association of rs738409-G with increased risk of T2D (ORmeta=

1.08, Pmeta= 8 × 10−11) recently reported in a T2D fine-mapping
study that confirmed rs738409 as the most likely causal SNP34.
Our meta-PheWAS further revealed significant associations
between rs738409-G and decreased risk for high cholesterol
(ORmeta= 0.96, Pmeta= 1.6 × 10−7; Pmeta_v2= 1.1 × 10−8) and the
intake of cholesterol-lowering medications (OR23andMe= 0.97,
P23andMe= 2 × 10−4; Pmeta_v2= 2.8 × 10−5), consistent with
recent results from the lipids exome chip study describing a
significant association of rs738409-G with decreased LDL levels35.
In addition, the meta-PheWAS revealed novel significant asso-
ciations between the rs738409-G GOF allele and decreased risk
for acne (OR23andMe= 0.90, P23andMe= 1.5 × 10−11; Pmeta_v2=

7.3 × 10−12), gout (ORmeta= 0.92, Pmeta= 4.1 × 10−5; Pmeta_v2=

3.9 × 10−9), and gallstones (ORmeta= 0.95, Pmeta= 2.7 × 10−4;
Pmeta_v2= 1.5 × 10−5). All these associations remained prominent
after adjusting for elevated liver tests (Supplementary Table 7),
and were further strengthened in the meta-analysis with the
expanded UK Biobank cohort (Supplementary Table 6). Taken
together, our PheWAS results support the hypothesis that ther-
apeutic inhibition of PNPLA3 could treat liver diseases. They also
support T2D as a potential alternative indication for PNPLA3
inhibition. However, concomitant inverse associations with
multiple other endpoints, including acne and high plasma cho-
lesterol levels, indicate potential clinically relevant on-target
ADEs that should be considered in decisions to progress PNPLA3
inhibitors toward clinical development.

IFIH1 partial loss-of-function increases asthma risk. The meta-
PheWAS further revealed novel, important pleiotropic effects for
drugs directed toward IFIH1. Carriers of the IFIH1 (encoding
MDA5) rs1990760-C allele (MAF= 40%) have an established
lower risk for several autoimmune diseases (type 1 diabetes, T1D;
vitiligo; systemic lupus erythematosus, SLE; psoriasis) and an
increased risk for UC (Supplementary Methods). Functional
studies suggest that rs1990760-C (p.T946A) causes IFIH1 loss-of-
function (LOF), and additional IFIH1 LOF alleles have been
shown to protect against T1D, vitiligo, psoriasis, and psoriatic
arthritis (PsA) (Supplementary Methods). Our meta-PheWAS
support these associations (Fig. 2 and Supplementary Table 4).
Beyond this, we found a significant novel association between

rs1990760-C and increased risk for asthma (ORmeta= 1.04, Pmeta

= 6.7 × 10−8) that reached Pmeta_v2= 2 × 10−8 in the meta-
analysis with the expanded UK Biobank cohort (Fig. 3a and
Supplementary Table 6). The association between rs1990760 and
asthma was supported by data from all four disease-agnostic
cohorts as well as the GABRIEL and EVE asthma GWAS
cohorts36,37, despite lack of power to detect an association with
rs1990760 in the published GWAS cohorts alone (Fig. 3b). This
association remained significant after adjustment for auto-
immune diseases in the 23andMe cohort, demonstrating that the
asthma association is independent of the previously established
associations of rs1990760 with autoimmunity (Supplementary
Table 8). Co-localization analysis confirmed that the same SNP
was responsible for the SLE, UC, and asthma associations at the
locus, supporting true pleiotropic effects driven by the same
causal variant(s) (Fig. 3c). The observed IFIH1 pleiotropic effects
were further strengthened by the observation in the Genomics plc
UK Biobank data that the independent low-frequency IFIH1
missense allele p.I923V (rs35667974-C, MAF= 1.8%), previously
reported to result in IFIH1 LOF and to protect against T1D,
vitiligo, psoriasis, and PsA, and to increase risk of UC, was also
associated with increased risk of asthma (ORGplc/UK Biobank=

1.18, PGplc/UK Biobank= 1.1 × 10−4) (Fig. 3d). Together, these and
previous findings establish IFIH1 as a gene with an allelic series38

and further support the therapeutic hypothesis that inhibition of
MDA5 may protect against several autoimmune diseases. How-
ever, our results also reveal the potential of MDA5 inhibitors to
cause pulmonary ADEs and strengthen previous findings for an
increased risk for colitis-related symptoms, endpoints that may
limit the therapeutic window of MDA5 modulators and should be
considered for monitoring in clinical trials.

PheWAS assist target prioritization for thromboembolism.
Beyond informing on individual genes, we hypothesized that
PheWAS might help prioritize targets among several candidates
within a biological pathway. Factors XI, XII, and plasma kini-
nogen (encoded by KNG1) are members of the contact activation
coagulation pathway39. Anti-coagulation therapies directed
against these factors are hypothesized to have improved ther-
apeutic windows over current standard-of-care, which is
accompanied by significant bleeding liabilities40. With the aim to
estimate genetic risk–benefit profiles for the three candidate

Table 3 Significant novel associations in the PheWAS meta-analysis

Novel association in meta-PheWASa

Gene SNP EA (EAF)b Known associated phenotypec Phenotype OR (CI95) P value Directiond N cases N controls

CD226 rs763361 T (0.47) IBD Hypothyroidism 1.05 (1.04–1.07) 8.11e−11 ++?+? 35,428 412,577
GDF15 rs17724992 A (0.73) BMI Heart metabolic diseasee 1.03 (1.02–1.04) 3.08e−09 +???? 275,944 209,302

High blood pressuree 1.03 (1.02–1.04) 7.64e−09 ++??? 151,511 465,686
Blood pressure medicatione 1.03 (1.02–1.04) 1.76e−07 +???? 125,406 394,753
GERD 1.03 (1.02–1.04) 6.11e−07 +???? 130,654 384,572
Any CVDe 1.03 (1.01–1.04) 1.40e−06 +???? 148,577 388,405

IFIH1 rs1990760 T (0.61) T1D Asthmaf 0.96 (0.95–0.98) 1.11e−07 −−−−− 57,101 269,659
IRF5 rs10488631 C (0.11) SLE Hypothyroidism 1.08 (1.05–1.12) 5.78e−07 ++?+? 23,182 236,240
PNPLA3 rs738409 G (0.33) ALT Severe acne 0.91 (0.88–0.93) 1.47e−11 −???? 14,812 187,018

High cholesterol 0.96 (0.94–0.97) 1.59e−07 −−??? 101,646 180,947
TYK2 rs34536443 G (0.89) Psoriasis Any immune disorder 1.10 (1.07–1.13) 4.27e−12 +???? 112,148 173,986

Hypothyroidism 1.14 (1.08–1.20) 1.19e−06 ++?−? 23,145 233,757

ALT: alanine aminotransferase, BMI: body mass index, CVD: cardiovascular disease, EA: effect allele, EAF: effect allele frequency, GERD: gastroesophageal reflux disease, IBD: inflammatory bowel

disease, SLE: systemic lupus erythematosus, T1D: type diabetes, T2D: type 2 diabetes
aAssociations reaching P < 1.8e−6 (Bonferroni-corrected significance threshold) in the meta-analysis of PheWAS results with GWAS results. The full list of potential novel SNP-phenotype pairs reaching

FDR < 0.1 is provided in Supplementary Table 5. Novel associations with direction of effect opposite to the known associated disease(s) effect, predicting potential adverse drug events, are highlighted in

bold
bThe effect allele is the risk allele for known associated disease(s) related to the therapeutic hypothesis
cKnown associated disease related to the therapeutic hypothesis (surrogate for efficacy). The strongest association reported in the literature is indicated. The full list of known associations is provided in

Supplementary Table 1
dDirection of effect in 23andMe, Genomics plc UK Biobank, FINRISK, CHOP, and GWAS
eCorrelated phenotypes
fMeta-analysis results including the 23andMe, Gplc/UK Biobank, FINRISK, CHOP, and GWAS Gabriel cohorts. When further including the independent GWAS EVE study, the association reaches P=

6.7 × 10−8
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targets, we chose to interrogate three uncorrelated SNPs at the
F11, KNG1, and F12 loci. These three SNPs had similar allele
frequencies in Europeans, had previously been shown to impact
FXI, FXII, and/or KNG1 mRNA and/or protein levels, and are
associated with activated partial thromboplastin time (aPTT), a
biomarker of blood clotting, or venous thromboembolism (VTE)
risk (Supplementary Methods and Supplementary Table 1).
Carriers of the rs4253399-T allele, which reduces circulating FXI
levels and increases aPTT, showed an expected lower risk for
blood clots (ORmeta= 0.84, Pmeta= 3.5 × 10−25)41, but no evi-
dence for association with bleeding tendency (OR23andMe= 1.04,
P23andMe= 0.35) (Fig. 4). In contrast, carriers of the KNG1 allele
rs5030062-A, which reduces plasma kininogen as well as circu-
lating FXI, and increases aPTT, showed both reduced blood
clotting (ORmeta= 0.93, Pmeta= 1.6 × 10−4) as well as increased
bleeding liability (OR23andMe= 1.14, P23andMe= 4.1 × 10−4). A
nominal association with both phenotypes was found in carriers
of the FXII levels-reducing and aPTT-increasing allele rs2731672-
T (blood clots: OR23andMe= 0.96, P23andMe= 0.034; bleeding
tendency: OR23andMe= 1.09, P23andMe= 0.039).

By comparing these results with the effect of the three SNPs on
aPTT (Supplementary Table 1), our study suggests that, among

the three factors tested, targeting FXI may yield the best
compromise between thromboembolism risk reduction and
increased bleeding liability, which is consistent with the outcomes
of a recent phase 2 clinical trial42.

Discussion
Our study investigates the utility of PheWAS to help predict ther-
apeutic success of candidate drug targets nominated through
human genetics. We focused on a selection of loci that GWAS have
firmly established as associated with common immune-mediated,
cardiometabolic, or neurodegenerative human diseases, and where
additional biological or genetic evidence supports candidate drug
target genes within these loci as likely causing the disease associa-
tions. We analyzed SNPs impacting these targets for association
with 1683 disease endpoints captured in four large, disease-agnostic
population cohorts that link genome-wide genotypes with various
types of structured health information. Our PheWAS meta-analysis
replicates 75% of the published GWAS associations at P < 0.05,
substantially surpassing performance of previous PheWAS in
smaller cohorts25. Through meta-analyzing PheWAS results with
published GWAS data, we identified nine novel SNP-phenotype
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associations that exceeded stringent significance thresholds for
multiple test correction, as well as additional putative associations
with therapeutically relevant clinical endpoints. For a subset of early
drug targets, our results support previous genetic evidence for
efficacy in distinct common disease indications. Our analysis fur-
ther proposes alternative indications as opportunities for drug
repositioning and predicts on-target adverse drug events that may
warrant preclinical or clinical monitoring.

Among others, we discovered novel associations for p.I148M in
PNPLA3. This is a common gain-of-function missense allele
increasing the risk for a range of liver phenotypes, which sug-
gested that pharmaceutical inhibition of PNPLA3 could be a
viable strategy to treat or prevent liver diseases. While our Phe-
WAS support this hypothesis and further backs expanding the
indication spectrum of a putative PNPLA3 inhibitor to T2D, we
also uncovered opposite associations with severe acne and high
cholesterol, phenotypes that if observed during a clinical trial
might put a therapeutic program at risk.

We also identified a novel association of the IFIH1 loss-of-
function allele rs1990760-C (p.T946A) with risk of asthma. The
rs1990760-C allele, which protects against several autoimmune
diseases and increases risk of UC, has been shown to decrease
interferon (IFN) signaling and lower resistance to viral chal-
lenge43, while complete loss of IFIH1 function makes children
susceptible to severe viral respiratory infections44,45. The asso-
ciation of rs1990760-C with increased risk of asthma discovered
in our meta-PheWAS is consistent with the observation that
bronchial epithelial cells from asthmatics produce lower amounts
of IFN-β during viral infections46, a finding that lead to inhaled
IFN-β being tested in phase 2 clinical trials for the treatment of
virus-induced asthma exacerbation47. Future studies will need to
investigate the risk:benefit ratio of modulating MDA5 (encoded
by IFIH1) for asthma relative to autoimmune diseases.

While our study illustrates the power of systematically inter-
rogating disease-agnostic cohorts with extensive health informa-
tion to enrich target validation, it also emphasizes several
opportunities to improve existing resources in order for PheWAS
to become a routine tool in drug discovery and development.
First, truly large, thoroughly phenotyped cohorts will be needed
to adequately power PheWAS. Despite our meta-PheWAS being
conducted in close to 700,000 individuals, 20% of GWAS asso-
ciations could not be replicated (P < 0.05) in the disease-agnostic
cohorts due to an insufficient number of cases. In addition,
PheWAS should considerably gain from improved phenotypic
endpoints48. In our study, this is best reflected by an only modest
replication rate, despite adequate power, for CD, UC, and IBD

endpoints that are closely related and difficult to discern from
other disorders in routine clinical settings49. To better take these
considerations and other characteristics of disease-agnostic
cohorts (typical case:control ratio unbalance between pheno-
types and phenotype correlation) into account, novel statistical
methods will be needed to better define significance thresholds
and control type I error rates in PheWAS50. Second, our study
highlights the challenge to systematically combine phenotypes
from independent disease-agnostic cohorts with various pheno-
type data sources. While we introduce the concept of meta-
PheWAS and demonstrate that mapping phenotypes to inter-
rogate independent PheWAS cohorts may considerably
strengthen association signals, there is still a need for standar-
dized terminology, automated phenotype extraction, and coor-
dinated data management across healthcare institutions that will
help with better harmonization across cohorts in the future9,51. A
third challenge to the PheWAS approach is inherent to the cur-
rent limitations of human genetics. Even when starting from a
highly-annotated set of loci as in our study, PheWAS may lead to
spurious interpretation of association results that can only be
ruled out through thorough follow-up18. We demonstrate this at
the example of LGALS3 and PD. Access to genome-wide asso-
ciation results for systematic fine-mapping and co-localization
analyses, functionalization of GWAS loci and the emergence of
association data for intermediate phenotypes, e.g., at the protein
level, will be needed to help narrow the gap between SNPs and
candidate target genes in the future. Finally, a fourth challenge to
broadly use PheWAS for drug development is to relate findings
from germline variants that impact a target across an individual’s
entire lifetime to success of an interventional trial with much
shorter observation periods. In the end, many decisions to pursue
or discontinue a therapeutic program may remain dependent on
the specific risk:benefit ratio that quantitative genetics as applied
here may help to predict, and the level of unmet clinical need.

Taken together, our study highlights PheWAS as a highly
promising, yet largely untapped opportunity to use disease-
agnostic cohorts with extensive health information for drug target
validation. We provide several examples that illustrate PheWAS
as a powerful strategy to help predict efficacy and unintended
drug effects, which should ultimately help to develop better drugs.
Whether PheWAS may truly impact decision making during drug
development will only become evident with either the emergence
of ADEs in trials that genetics could have predicted, or reduced
safety-related attrition rates for portfolios enriched in targets
nominated through human genetics. The growing number of
large-scale population cohorts that link genetic data with
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extensive health data, together with an increased willingness
across the borders of academia, biotech and the pharmaceutical
industry to collaborate and share data, will provide opportunities
to demonstrate that.

Methods
SNP selection. In this study, we selected 25 SNPs that were significantly associated
(P < 5 × 10−8) in published GWAS with binary or quantitative phenotypes related
to three main therapeutic areas: (auto)immune, cardiometabolic, or neurodegen-
erative diseases (Supplementary Methods). These 25 SNPs had either been func-
tionally validated in published studies, establishing the candidate target gene as
causal for the risk of disease, or they were located within or near genes (as defined
by the regions encompassing all SNPs in r2 > 0.5 to the GWAS index SNPs
extended to the nearest recombination hot spots) for which previous studies had
generated convincing biological evidence to be of relevance for the respective
clinical endpoint. The 25 SNPs were linked to 19 genes that were evaluated as
candidate drug targets. Detailed information on the SNPs, candidate causal genes
and their link to common human disease is provided in Supplementary Methods.
The list of SNPs and their known associated phenotypes is provided in Supple-
mentary Table 1.

Study cohorts. We interrogated four large observational disease-agnostic cohorts of
subjects of European ancestry with genome-wide genotyped data linked to extensive
phenotypic information (Table 2). All participants included in each of the four
cohorts were unrelated individuals of European ancestry. Individual-level data from
each cohort was analyzed independently, and the relevant summary statistics for the
25 SNPs were shared for further analysis. We restricted all cohorts to binary disease
phenotypes with at least 20 cases per cohort. All endpoints were derived from
questionnaires or ICD codes (including endpoints like high cholesterol or high blood
pressure). No quantitative laboratory measurements were included in the study.

The 23andMe cohort comprised up to 671,151 participants and 654 binary
disease endpoints derived from questionnaire-based self-reports22. Participants
were restricted to a set of individuals who have > 97% European ancestry, as
determined through an analysis of local ancestry using a support vector machine
(SVM) and a hidden Markov model (HMM) to assign individuals to one of 31
reference populations. For each phenotype, we chose a maximal set of unrelated
individuals using a segmental identity-by-descent (IBD) estimation algorithm. We
defined individuals as related if they shared > 700 cM IBD on either one or both of
their chromosomes. SNPs with Hardy–Weinberg equilibrium P < 10−20, call rate <
95%, or strong allele frequency deviation from European 1000 Genomes reference
data were excluded. Participant genotype data were then imputed against the
September 2013 release of 1000 Genomes Phase1 reference haplotypes52, using an
internally developed phasing tool, Finch, which implements the Beagle haplotype
graph-based phasing algorithm53, and Minimac254.

The Genomics plc analysis of UK Biobank cohort (referred to as ‘Genomics plc
UK Biobank’) comprised 112,337 participants and 90 binary disease endpoints
derived from questionnaire-based self-reports and medical interviews10. GWAS
analyses were performed by Genomics plc using the interim data release (May
2015). QC followed the recommendations provided by UK Biobank. European
ethnicity was defined as self-reported white British ethnic background, and
confirmed by principal component analysis clustering. Samples with relatives (3rd
degree or closer) were excluded. Imputation was carried out by the UK Biobank
data providers using SHAPEIT355, IMPUTE356, and a reference panel combining
the 1000 Genomes Phase 357 and UK10K datasets58.

FINRISK is a collection of cross-sectional population surveys carried out since
1972 to assess the risk factors of chronic diseases and health behavior in the
working age population of Finland23. The FINRISK cohort comprised 21,371
Finnish participants and 269 binary disease endpoints derived from ICD codes
grouping in Finnish national hospital registries and cause-of-death registry, and
drug reimbursement and purchase registries. The FINRISK samples were
genotyped using Illumina CoreExome, OmniExpress, and 610K chips. After gender
check, samples with genotype missing rate > 5% or excess heterozygosity (> 4SD)
were excluded. SNPs QC, including exclusion of SNPs with genotype missing rate
> 2%, minor allele frequency <1%, or Hardy–Weinberg equilibrium P value <1 × 10
−6, was performed for each genotyping chip separately. Multidimensional scaling
(MDS) components were estimated with PLINK v1.959 from the LD-pruned
genotype data where relatives with pi-hat > 0.2 had been removed. Samples with
non-Finnish ancestry observed as MDS outliers were removed. Imputation was
performed with SHAPEIT55 and IMPUTE256 using a reference panel combining
information from the 1000 Genomes phase 357 and 1941 Finnish SiSu whole
genome sequences60. Imputation was stratified based on genotyping chip.

The cohort from the Children’s hospital of Philadelphia (CHOP) comprised
12,044 pediatric patients and 870 binary disease endpoints derived from ICD9–CM
codes using the ICD9-to-PheWAS codes mapping described by Denny et al.24,61.
Subjects included in the CHOP PheWAS were genotyped on one of the following
genotyping chips following the Illumina standard protocols: Illumina Human610-
Quad version 1, Illumina 550K SNP array, or Illumina OmniExpress array.
Samples with genotype call rate > 95% were included in the study. SNPs with
genotype missing rate > 5%, minor allele frequency <1%, and Hardy–Weinberg

equilibrium P value < 0.00001 were excluded. Principle component analysis (PCA)
was performed using EIGENSTRAT62 on ∼130,000 SNPs that had been pruned for
linkage disequilibrium using PLINK v1.0759 and reference genotypes from the
HapMap consortium63. Imputation was performed with SHAPEIT v255 and
IMPUTE256 using the 1000 Genomes project phase 1 reference panel52. SNPs with
INFO scores < 0.9 were excluded.

All the participants in the 23andMe, Genomics plc UK Biobank, FINRISK, and
CHOP cohorts provided written informed consent for participating in research
studies. Blood or saliva samples were collected according to protocols approved by
local institutional review boards. Details are provided in the original publications
describing the cohorts10,22−24. This research has been conducted using the UK
Biobank resource under the Genomics plc project application number 9659.

In addition, with the aim to replicate novel associations identified in the four
disease-agnostic cohorts, we interrogated genome-wide summary statistics from 57
published GWAS, including 34 binary disease phenotypes, derived from a larger
database that has been assembled and harmonized by Genomics plc (referred to as
‘Genomics plc GWAS’). The full list of studies in Genomics plc GWAS database
and tested in this study is available in the Supplementary Note 1). These included
checks to ensure consistency of the data, and alignment of alleles to the forward
strand of the human reference sequence, with effects ascribed to the alternative
allele. Effect size estimates for quantitative traits were rescaled relative to the
residual variance. Summary-statistic imputation was applied to infer association
evidence at common variants (minor allele frequency > 2%) in the 1000 Genomes
EUR reference panel. Results for SNPs associated with the relevant phenotype with
P < 0.05 were included in the meta-analysis.

Correlation between all GWAS was estimated to ensure that no GWAS
included in the meta-analysis for a given phenotype presented overlapping
samples. In addition, to further prevent GWAS results from overlapping samples to
be meta-analyzed, only the most recent/largest study for a given disease was
included in our analysis when several GWAS studies in the Genomics plc database
investigated the same disease. Although we could not directly estimate potential
overlapping samples between the different disease-agnostic cohorts, significant
overlap is very unlikely based on the participants’ characteristics (Table 2).

Identification of shared phenotypes. The phenotypic endpoints tested in the
23andMe, UK Biobank, FINRISK, and CHOP cohorts were derived from different
sources (self-reports, self-reports and medical interviews, WHO ICD codes, and
ICD9-CM codes, respectively) and named using different nomenclatures (e.g.,
clinical terms versus popular terms, abbreviations versus full names). In order to
compare and combine results from the four cohorts with published GWAS results
from the Genomics plc database, we manually mapped the phenotypes. Examples
of mapped and unmapped phenotypic endpoints are provided in Supplementary
Table 2. This step allowed us to identify 145 distinct phenotypes shared by at least 2
cohorts and with at least 20 cases in the independent cohorts (Fig. 1). The full list
of mapped phenotypes is provided in Supplementary Table 3 and the Supple-
mentary Data 1. We note that, in each cohort some phenotypes were captured
multiple times by different endpoints with slightly different definitions. In this case,
only one endpoint per cohort was selected for meta-analysis.

PheWAS and meta-analysis. Phenome-wide association analyses for each of the
25 SNPs were conducted in the 23andMe, Genomics plc UK Biobank, FINRISK
(PheWAS results release November 2016), and CHOP cohorts separately. Each
SNP-phenotype association was tested independently (assuming an additive
genetic model), using logistic regressions adjusted for age, gender, and principal
components to adjust for population stratification. Genotyping batch and survey
cohort were also included as covariates in the FINRISK PheWAS. We then per-
formed two distinct analyses to (1) replicate known GWAS associations, and (2) to
detect novel associations.

First, we meta-analyzed PheWAS results from the four cohorts, to investigate
the ability of these cohorts to replicate known GWAS associations. After
harmonizing the effect alleles across the cohorts, fixed effect meta-analyses were
performed using PLINK59. I2 statistic and manual review of the meta-analyzed
results were used to evaluate heterogeneity between cohorts.

We then compared the meta-analysis association results with known significant
SNP-phenotype associations from published GWAS, taking into account the
statistical power to detect an association in the meta-analysis of the PheWAS
results in the disease-agnostic cohorts.

Second, we meta-analyzed results from the four disease-agnostic cohorts
together with available GWAS results in order to detect novel associations. Meta-
analysis was performed using PLINK as described above. Meta-analysis results at
the 145 shared phenotypes were then combined with cohort-specific phenotype
results from the 25 SNPs, resulting in 27,762 tests in total. It is clear given the
structure of this PheWAS and meta-PheWAS that the 27,762 tests are not
independent tests, which requires thought about the most appropriate method to
control for multiple testing correction. We have chosen two methods, one that
provides an extremely, over-conservative multi-testing correction assuming
independence (Bonferroni correction) and one less conservative method that has
been shown to be robust to test dependency (Benjamini & Hochberg’s False
Discovery Rate (FDR))64. Benjamini and Yekutieli (2001) illustrated that the FDR
procedure is robust to positive correlation amongst tests65, therefore we have
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chosen to use the standard Benjamini & Hochberg FDR procedure implemented in
the p.adjust method in R. For defining significance in this study, we set a FDR
threshold of 0.1, which corresponded to P < 7 × 10−4. The over-conservative
significance threshold based on Bonferroni correction was P= 0.05/27,762= 1.8 ×
10−6. We note that Bonferroni correction ignores the correlation structure between
the tested phenotypes or the fact that all the SNPs tested in this study are known to
be associated with one or several phenotypes in published GWAS.

Meta-analysis with UK Biobank v2 association results. To further test the
robustness of the putative novel associations identified in our study, we performed
a meta-analysis of the 23andMe, FINRISK, CHOP, and published GWAS results
for 41 SNP-phenotype pairs with association results released by Neale et al. from an
analysis of the expanded UK Biobank cohort, consisting of up to 337,199 unrelated
participants of European ancestry (referred to as UK biobank v2). In order to meta-
analyze these UK Biobank v2 results, which had been obtained using linear
regression models, with the PheWAS cohorts and GWAS results of the current
study, which were obtained using logistic regression models, we performed a
weighted Z score meta-analysis. For each SNP-phenotype pair in each study i, we
defined weights using the following equation:

Wi ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=Nai þ 1=NuiÞ
p

ð1Þ

where Nai and Nui are the numbers of cases and controls in study i, respectively.
For each SNP-phenotype pair, we then calculated the meta-analysis Z score as

follows:

Z ¼
X

ðWi � ZiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

ðW2
i Þ

q

ð2Þ

Zi is the Z score in study i, derived from the logistic or linear regression model.
The UK Biobank GWAS results used in this analysis have been released by the

Neale’s lab under the following URL: https://sites.google.com/broadinstitute.org/
ukbbgwasresults/home?authuser=0.

Statistical power estimations. We estimated statistical power to detect an asso-
ciation with known associated phenotypes using a formula adapted from Yang
et al.66, based on the published effect size in the most recently published GWAS,
the frequency of the associated SNP risk allele in the 1000Genomes EUR popu-
lation, the number of cases and controls in the disease-agnostic cohorts, and the
following phenotype prevalence reported by the Centers for Disease Control and
Prevention (https://www.cdc.gov): coronary artery disease, 5.8%; Crohn’s disease,
0.2%; inflammatory bowel disease, 0.44%; myocardial infarction, 3%; multiple
sclerosis, 0.09%; primary biliary cirrhosis, 0.04%; Parkinson’s disease, 0.07%;
psoriasis, 3%; rheumatoid arthritis, 0.6%; systemic lupus erythematosus, 0.2%;
systemic scleroderma, 0.02%; type 1 diabetes, 0.5%; type 2 diabetes, 9%; ulcerative
colitis, 0.24%; venous thromboembolism, 0.4%; vitiligo, 1%.

Co-localization analyses. To distinguish true pleiotropic effects from multiple
associations at the loci that are explained by different causal SNPs (and potentially
incriminating different causal genes), we used association summary statistics
available from published GWAS and applied a Bayesian test implemented in the R
package ‘coloc’ to assess co-localization, i.e., the probability of sharing causal
genetic variants between pairs of apparent pleiotropic phenotypes using association
summary statistics at the loci of interest28. Co-localization analysis at the LGALS3
locus was performed using meta-analyzed PD GWAS summary statistics from
23andMe published elsewhere (N cases= 4127, N controls= 62,037)26, and
galectin-3 plasma pQTL results in 3562 blood donors29. Co-localization analysis at
the IFIH1 locus was performed using meta-analyzed SLE GWAS results from two
independent published studies67,68, meta-analyzed asthma GWAS summary sta-
tistics from 23andMe69 and the Genomics plc UK Biobank (unpublished), and
published UC GWAS summary statistics70.

Data availability
Full results from meta-analysis of the 23andMe, Gplc/UK Biobank, FINRISK and CHOP

cohorts with published GWAS results are provided in the Supplementary Data 1. All

summary statistics results from PheWAS in the individual cohorts can be requested to

the respective authors.
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