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The properties of compact binaries, such as masses and spins, are imprinted in the gravitational waves

(GWs) they emit and can be measured using parametrized waveform models. Accurately and efficiently

describing the complicated precessional dynamics of the various angular momenta of the system in these

waveform models is the object of active investigation. One of the key models extensively used in the

analysis of LIGO and Virgo data is the single-precessing-spin waveform model IMRPhenomPv2. In this

article we present a new model IMRPhenomPv3, which includes the effects of two independent spins in

the precession dynamics. Whereas IMRPhenomPv2 utilizes a single-spin frequency-dependent post-

Newtonian rotation to describe precession effects, the improved model, IMRPhenomPv3, employs a

double-spin rotation that is based on recent developments in the description of precessional dynamics.

Besides double-spin precession, the improved model benefits from a more accurate description of

precessional effects. We validate our new model against a large set of precessing numerical-relativity

simulations. We find that IMRPhenomPv3 has better agreement with the inspiral portion of precessing

binary-black-hole simulations and is more robust across a larger region of the parameter space than

IMRPhenomPv2. As a first application we analyze the gravitational-wave event GW151226 with an

efficient frequency-domain waveform model that describes two-spin precession. Within statistical

uncertainty our results are consistent with published results. IMRPhenomPv3 will allow studies of

the measurability of individual spins of binary black holes using GWs and can be used as a foundation upon

which to build further improvements, such as modeling precession through merger, extending to higher

multipoles, and including tidal effects.
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I. INTRODUCTION

Binary systems of compact bodies such as neutron stars

(NSs) and black holes (BHs) generate gravitational waves

(GWs) that are detectable by second-generation ground-

based interferometers. The energy carried away by GWs

causes the orbit to decay and the binary to merge on

astrophysical time scales. These tiny ripples in spacetime

propagate almost completely unaffected through the

Universe and have the source properties imprinted in the

gravitational waveform. In August 2017 the second observ-

ing run (O2) of the detectors aLIGO [1] and Virgo [2]

ended, and to date O1 and O2 have resulted in the

publication of six likely binary black hole (BBH) [3–7]

merger events, and the joint GW-electromagnetic observa-

tion of a pair of merging NSs [8,9].

Detection and characterization of GW signals is

carried out by a suite of software pipelines that analyze

detector data using a variety of analysis methods [10–14].

Matched-filter-based analyses, used in the search for and

parameter estimation [15–17] of GW signals from compact

binaries, require accurate and computationally inexpensive

models for the GW signals, which are used as templates.

The need for computationally tractable analyses is best

satisfied by frequency-domain models. Moreover, the

accuracy of GW signal models and the quantity and quality

of the physical effects they include impact both the types of

sources GW analyses are sensitive to and the fidelity of the

conclusions we draw about their properties.

One such physical effect that has been at the center of

waveform-modeling efforts in recent years is spin preces-

sion: when the binary components’ spin angular momenta

are misaligned with the orbital angular momentum of the

binary, spin-orbit and spin-spin interactions cause the

binary orbit to change orientation in space, resulting in

modulations in the observed signal amplitude and phase

[18,19]. Modeling these modulations is a challenging task,
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especially for systems with unequal-mass components that

are observed from close to the binary plane, since this case

requires accurate modeling of both spin-precession effects

and higher modes beyond the dominant ðl; jmjÞ ¼ ð2; 2Þ
multipoles.

Numerous models have been developed in recent years

with the goal of providing a complete coverage across the

BBH parameter space containing all relevant physical

effects required for the current sensitivity of GW detectors.

The effective-one-body–numerical-relativity (EOB-NR)

model, SEOBNRv3 [20], built upon the nonprecessing

model of [21], is a time-domain two-spin precessing model.

It provides the ðl; jmjÞ ∈ ðð2; 2Þ; ð2; 1ÞÞ multipoles in the

coprecessing frame although only the (2,2) is calibrated to

numerical-relativity (NR) data. This model has been shown

to accurately model the l ¼ 2 multipoles from precessing

BBHs [22]; however, as it requires the integration of a set of

coupled ordinary differential equations it incurs a large

computational cost.

The phenomenological (phenom) waveform models are

typically developed and constructed in the frequency

domain and the precessing model IMRPhenomP was

presented in [23]. IMRPhenomP was built upon the

nonprecessing model of [24] and was later upgraded

to IMRPhenomPv2, which used the nonprecessing

model of [25,26]. Despite its computational efficiency

IMRPhenomP maps the two spins to one effective spin

that governs the precession dynamics, though this choice

was shown to not lead to appreciable biases in the

characterization of the first BBH signal [27,28]. A time-

domain phenom model for precessing BBHs was presented

in [29]; however, it is restricted to equal-mass BBHs with

spin magnitudes up to 0.6.

Recently work has been done to develop models for

multipoles beyond the dominant ðl; jmjÞ ¼ ð2; 2Þ multi-

pole. The first of such models were the nonspinning

EOB-NR model of [30] and a nonspinning phenom model

was presented in [31]. The first extension of these higher

multipole modes into spinning nonprecessing BBHs has

been accomplished both by the phenom [32] and effective-

one-body (EOB) [33] approaches.

An alternative approach to waveform modeling has been

successful in building surrogate models [34] that inter-

polate GW data from NR simulations. The surrogate model

of [35] is a fully precessing, time-domain model containing

l ≤ 4multipoles; however, it is restricted to systems where

the ratio of the components’masses is less than 2. A hybrid

approach to improve existing analytical models by using

methods similar to the surrogate modelling has also

recently been suggested [36].

In this paper we take another step towards a computa-

tionally tractable GWmodel that accurately models generic

BBH systems by introducing the frequency-domain fully

precessing phenomenological model, IMRPhenomPv3,

that describes the inspiral, merger, and ringdown phases

of spinning BBHs. Our upgrade from IMRPhenomPv2 to

IMRPhenomPv3 hinges on a novel closed-form solution

to the differential equations that describe precession

including the effects of radiation reaction in the post-

Newtonian (PN) regime where the binary components are

well separated [37,38]. This closed-form solution to the

precession equations including the effects of radiation

reaction has been shown to accurately describe precession

for systems with generic masses and spins [37]. Moreover,

since it is an analytic frequency-domain model, it is also

amenable to the reduced-order-quadrature method to

greatly accelerate likelihood evaluations for fast parameter

estimation [39]. In addition, IMRPhenomPv2 exhibits

nonphysical precession behavior for some high mass-ratio,

antialigned spin configurations, as discussed in Sec. II D,

but this behavior is not observed in IMRPhenomPv3.

We validate our new model by comparing against a large

set of precessing NR waveforms. We find that the improved

treatment of the inspiral improves the accuracy of the

model for measurement of low-mass systems in LIGO-

Virgo data. Finally, as a first application and demonstration

of our model’s readiness we perform a Bayesian parameter

estimation analysis (using LALInference [16]) on the

GW event GW151226 [4]. This is a ∼22 M⊙ BBH signal

where at least one of the BHs is measured to have a

dimensionless spin magnitude of ≳0.2 at the 99% credible

level. The presence of spin and the low total mass, which

implies a large number of GW cycles (∼55) measurable by

the detector, makes this an ideal candidate to look for

evidence of precession. This is the first analysis of

GW151226 with an efficient frequency-domain inspiral-

merger-ringdown (IMR) precession model with the full

four degrees of freedom coming from precession.

II. BUILDING THE NEW MODEL

In this section we describe the construction of

IMRPhenomPv3 and highlight the improvements com-

pared to IMRPhenomPv2.

A. Precessing BBH phenomenology

A quasicircular BBH system can be parametrized by

only seven intrinsic parameters; the mass-ratio q ¼ m1=m2
1

and six spin angular momenta S⃗1 and S⃗2. In addition, the

total mass M ¼ m1 þm2 can be factored out and systems

with different total masses can be obtained with appropriate

scaling of M. For each BBH we can define a Newtonian

orbital angular momentum L⃗, which is perpendicular to the
instantaneous orbital plane and a total angular momen-

tum J⃗ ¼ L⃗þ S⃗1 þ S⃗2.
We classify BBH systems into different categories

according to their spin. Nonprecessing systems have BH

1
We use the convention m1 ≥ m2.
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spins that are either aligned or antialigned with L⃗. Systems

with spins (anti-) aligned with L⃗ plunge and merge at

(larger) smaller separations compared to nonspinning

binaries, shifting the merger and ringdown part of the

signal to (lower) higher GW frequencies. Precessing BBHs

are systems with arbitrary BH spin orientation. Interactions

between the BH spins and L⃗ introduce a torque on the

orbital angular momentum, causing it to precess around the

(almost constant) direction of the total angular momentum.

Special subcategories of precessing systems include sim-

ple- and transitional-precession binaries [18,19]. Most

binaries undergo simple precession, while transitional

precession occurs when J⃗ ¼ L⃗þ S⃗1 þ S⃗2 ≈ 0 [18].

B. Modeling precessing BBHs

The complicated phenomenology of generically precess-

ing BBHs makes waveform modeling especially challeng-

ing. A significant advance was achieved when it was

observed that the GW signal from precessing binaries is

simplified when observed in a frame that is adapted to the

precessional motion of the binary [40,41]. In this non-

inertial (coprecessing) frame the z axis approximately

tracks the orientation of the orbital plane. When the

waveform is transformed into this frame it closely mimics

the signal of the equivalent BBH system that has the spin

components perpendicular to L⃗ set to 0 [40,42]. This is a

consequence of the approximate decoupling between the

components of spin parallel and perpendicular to L⃗; the
former influences the rate of inspiral and the latter drives

the precessional motion [18,40,43].

This observation led to a method for building models for

the gravitational waveform from generic precessing BBHs

by first constructing a model for the gravitational waveform

produced by the equivalent nonprecessing BBHs and then

introducing precession through a time- (or frequency-)

dependent rotation of the signal derived from the orbital

dynamics [44]. Colloquially this procedure is denoted

“twisting-up” a nonprecessing model to produce a precess-

ing model [44].

Beginning with an inertial frame that is aligned with the

total angular momentum at some reference frequency ẑ ¼ Ĵ
we describe the orbital angular momentum by the azimu-

thal and polar angles (α, β). In order to completely specify

the rotation we use the frame that minimizes precessional

effects and adopt the “minimum rotation condition” [45],

which enforces the third Euler angle to obey _ϵðtÞ ¼
_αðtÞ cosðβðtÞÞ. This angle constitutes a modification to

the orbital phase chosen so that the frequency in the inertial

frame is the same as the frequency in the coprecessing

frame. For a geometric depiction, see Fig. 1 in Ref. [37].
2

This procedure was used to produce the first precessing

IMR models [20,21,23]. The general procedure is as

follows. First, we express the two GW polarizations hþ
and h× as a linear combination of spherical harmonics with

spin weight −2. The coefficients of the basis functions are

the GW multipoles hl;m; see Eq. (1). This decomposition is

performed in a frame that is aligned with the total angular

momentum and the direction of propagation is given by the

spherical polar coordinates (θ;φ),

hðt; θ;ϕÞ ¼ hþ − ih× ¼
X

l≥2;m

hl;mðtÞY
−2
l;mðθ;φÞ: ð1Þ

From here we wish to express the GW multipoles from

precessing BBHs h
prec
l;m in terms of the multipoles from

nonprecessing BBHs h
non
prec

l;m and the appropriate angles that

describe the twisting-up from nonprecessional to preces-

sional dynamics. This is done by applying the Wigner-D

rotation matrices to the GW multipoles from the non-

precessing system using the angles ðα; β; ϵÞ [40,41,44,45].
Here we focus on the l ¼ 2 multipoles and the case where

the nonprecessing model only contains the l ¼ jmj ¼ 2

multipoles. In that case, the waveform is given by

h
prec
2;m ðtÞ ¼ e−imαðtÞ

X

jm0j¼2

eim
0ϵðtÞd2

m0;m
ð−βðtÞÞh

non
prec

2;m0ðtÞ: ð2Þ

In order to complete the transformation from a non-

precessing IMR model to a precessing IMR model we also

need to modify the mapping between the inspiraling

progenitor BHs and the final BH, taking into account

the effect of precession. We typically assume that changes

in the GW flux due to precession can be neglected so that

the estimate of the final mass can be taken from fits to NR

simulations of nonprecessing systems. The final spin,

however, is sensitive to precession and therefore needs

to be modified from the model used in the underlying

nonprecessing model.

In the next sections, we review the angles ðαv2; βv2; ϵv2Þ
that were used for the IMRPhenomPv2model and then we

describe the updated ðαv3; βv3; ϵv3Þ that we employ to

produce the updated model IMRPhenomPv3.

C. Review of IMRPhenomPv2

The method described in the previous section to

construct a complete IMR model for precessing BBHs

was used to create the IMRPhenomP model [23]. The

original model used the IMRPhenomC [24] model to

describe the nonprecessing system, but was subsequently

enhanced to IMRPhenomPv2, which uses IMRPhenomD

[25,26], a more accurate aligned-spin model valid for

larger mass-ratio binaries and BHs with larger spin mag-

nitudes. Moreover IMRPhenomD includes some two-spin

information during the inspiral. Both of these underlying

2
To convert from the notation used in [37] to ours, use the

following substitutions: ϕz → α, θL → β and ζ → ϵ.
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aligned-spin models provide only the l ¼ jmj ¼ 2 spheri-

cal harmonic multipole.

In both previous versions of IMRPhenomP the

precession angles ðαv2; βv2; ϵv2Þ were computed by a

closed-form frequency-domain expression derived under

the assumption of a single-spin system and parametrized by

the aligned effective-spin parameter χeff and the precession

effective-spin parameter χp [46] defined as

χp ≔
max ðA1S1⊥; A2S2⊥Þ

A1m
2
1

; ð3Þ

where A1 ¼ 2þ 3m2

2m1
, A2 ¼ 2þ 3m1

2m2
and Si⊥ are the magni-

tudes of the spin-angular momenta perpendicular to L⃗.
Additionally, IMRPhenomP used a small-angle approxi-

mation for the opening angle (β), an assumption that was

subsequently relaxed in IMRPhenomPv2.

The expressions for ðαv2; βv2; ϵv2Þ were derived under

the stationary phase approximation (SPA) [47] and are used

to twist-up the entire waveform, including through merger

and ringdown, where the assumptions of SPA are formally

invalid. Nevertheless the extrapolation of the PN expres-

sions into the merger and ringdown has been shown to not

impair the model, so long as the mass ratio and spin are not

large; see [23] and Sec. III.

IMRPhenomPv2 uses a single-spin approximation that

only models the simple-precession case where the direction

of J is relatively constant during the inspiral, and the

direction of the final BH spin is assumed to be parallel to J.
The magnitude of the final spin angular momentum Sf is

computed as the sum of parallel and perpendicular angular

momentum components with respect to L⃗. Snon
prec

is the angular

momentum from the nonprecessing system and S⊥ is the

angular momentum of the in-plane spin components.

Sf ≡M2
f χf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2⊥ þ S2non
prec

q

: ð4Þ

The final dimensionless spin magnitude χf, with a free

parameter λ, is written as [48,49]

χf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

S⊥
λ2

M2
f

�

2

þ χ2non
prec

s

: ð5Þ

The choice made for λ in IMRPhenomPv2 is

λ ¼ Mf=M, implying that the S⊥ angular momentum gets

scaled by the initial total mass. We comment that this is a

fairly arbitrary choice as we have a model for Mf that we

use in the nonprecessing part [25]. However, it was found

that this simplification still yielded a model with acceptable

accuracy. Finally, S⊥ is approximated using the effective

precessing parameter χp and computing the angular

momentum by assuming only the primary BH has in-plane

spin components, i.e.,

S⊥ ¼ m2
1 χp: ð6Þ

The model IMRPhenomPv2 has been used in numerous

publications to estimate the source parameters of all BBH

observations in the LIGO-Virgo O1 and O2 runs, e.g.,

[4–7,50–53], and has been the basis of a reduced order

quadrature approximation to the likelihood [39] that has

enabled fast parameter estimation of GW sources [54]. The

model’s low computational cost has also enabled it to form

the basis of the model IMRPhenomPv2_NRTidal [55]

used for the analysis of the long binary neutron star signal

GW170817 [56,57].

D. Issues with IMRPhenomPv2 precession angles

Despite IMRPhenomPv2’s good performance across

the parameter space, there are some known issues with the

precession angles. Specifically, the angle αv2ðfÞ is written
as a power series in f, including terms up to next-to-next-

to-leading order (NNLO) in the spin. The leading-order

Newtonian term (see, for example, Ref. [18]) is

αNv2 ¼ α0 −
20ð1þ 3

4q
Þ

192f
; ð7Þ

where α0 is a constant. At this order, the precession angle is a

monotonically increasing function, which is what we expect

in a physical system exhibiting simple precession: the orbital

angular momentum vector precesses around the total angu-

lar momentum throughout the binary’s evolution, and the

rate of precession, steadily increases. At leading order [18]

we also see that the precession angle (and therefore also the

precession frequency) depend only on the mass ratio of the

binary; the spin affects the precession rate at higher orders.

If we extend this expression up to f1=3, as is done in the

NNLO expressions used in IMRPhenomPv2 [58] [which

also include a logðfÞ term], then higher order terms can

enter with opposing signs. In some cases this can remove

the monotonicity of αv2ðfÞ, even for simple-precession

configurations where we know that such behavior is not

physically consistent.

Figure 1 shows examples of this behavior. We first

consider a binary that is in the range of possible configu-

rations identified in GW observations: the mass ratio is 1,

the component of the spin parallel to the orbital angular

momentum is 0, i.e., χeff ¼ 0, and the larger BH has a spin

of magnitude 0.9 lying in the orbital plane, i.e., χp ¼ 0.9;

since χp has not been constrained in observations to date, a

value of 0.9 is consistent with the measured parameters.

The angle of the spin in the plane at a particular reference

frequency determines the constant α0, but we focus here on

the frequency evolution of the precession angle. We plot the

precession angle αv2ðfÞ − αðf0Þ, where Mf0 ¼ 0.0001,

which corresponds to approximately 2 Hz for a binary

with a total mass of 10 M⊙. The results are shown up to

the Schwarzschild ISCO frequency (Mf ¼ 0.0217). We

can see that αv2ðfÞ, as predicted by the leading-order
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Eq. (7) (blue dashed line), the full NNLO expressions

used for IMRPhenomPv2 (blue solid line), the full

IMRPhenomPv3 expression (orange dashed line), and

the truncated IMRPhenomPv3 expression (orange solid

line) all agree well, even though spin effects are not

included in the leading-order result.

In the second example, we can see that the NNLO

expression is needed to accurately describe the precession

for higher mass ratios and higher spins. This example shows

αv2ðfÞ − αðf0Þ for a binary with mass ratio 8; again χeff ¼ 0

and χp ¼ 0.9. The NNLO IMRPhenomPv2 and the

IMRPhenomPv3 expressions agree well, but the leading-

orderexpressionaccumulatesadifferenceagainst theothersof

∼60 rad, or∼10 precession cycles, out of∼47 cycles over the

course of the entire inspiral. This level of agreement between

the IMRPhenomPv2 and IMRPhenomPv3 expressions is

typical across all configurations with mass ratios up to∼5, so

we can be confident thatIMRPhenomPv2 accuratelymodels

the precession angle αv2 with sufficient accuracy for aLIGO

and Virgo BBH observations to date.

In the third example, the mass ratio is 10, but

now χeff ¼ −0.8, χp ¼ 0.1. Now the IMRPhenomPv2

expressions disagree significantly between each other and

against the IMRPhenomPv3 expressions. Most notable,

however, is that the IMRPhenomPv2 precession angle

(shown alone in the fourth panel of Fig. 1) reaches a

maximum and then decreases; the maximum implies that at

this point the precession comes to a halt, and then continues

in the opposite direction. This occurs at a frequency of

∼10 Hz for a 10 M⊙ binary, i.e., many orbits before

merger, while the system should still be undergoing simple

precession, and when PN results should still be valid.

Indeed, simple precession does continue through these

frequencies in an evolution of the PN equations of motion,

as indicated by the αv3ðfÞ results shown in the third panel.

We therefore conclude that the NNLO frequency expansion

behaves unphysically for certain mass-ratio and spin

combinations, and degrades the accuracy of a model in

these regions of parameter space.

E. Upgrading to IMRPhenomPv3

The first closed-form analytic inspiral waveform model

for generically precessing BBHs was presented in [37,38].

The solution utilized two ingredients. First, the analytic

FIG. 1. Comparison of leading-order (IMRPhenomPv2, leading order), NNLO (IMRPhenomPv2), full-PN (IMRPhe-

nomPv3, all terms), and the version we adopt in the final model (IMRPhenomPv3) expressions for the precession angle, α. First

panel, q ¼ 1, Mtot ¼ 10 M⊙ χeff ¼ 0, χp ¼ 0.9; second panel, q ¼ 8, Mtot ¼ 10 M⊙ χeff ¼ 0, χp ¼ 0.9; third panel, q ¼ 10, Mtot ¼
10 M⊙ χeff ¼ −0.8, χp ¼ 0.1; fourth panel, same configuration as third panel, but zoom of nonphysical behavior of αv2ðfÞ. All cases
are generated from a frequency of 2 Hz. See the text for discussion.
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solution to the conservative precession equations con-

structed in [59] was supplemented by radiation-reaction

effects through a perturbative expansion in the ratio of the

precession to the radiation reaction time scale [60,61]

known as multiple scale analysis [62]. Second, the fre-

quency-domain waveform was analytically computed

through the method of shifted uniform asymptotics, first

introduced in [63]. The resulting inspiral waveform model

for the precession dynamics incorporates spin-orbit and

spin-spin effects to leading order in the conservative

dynamics and up to 3.5 PN order in the dissipative

dynamics ignoring spin-spin terms.

We here use the first of the above ingredients, namely,

the generic two-spin solution of [37,38] to obtain two-

spin expressions for the precession angles ðαv3; βv3; ϵv3Þ.
Specifically we use Eqs. (58), (66), and (67) and the

coefficients in Appendix D in [37] for αv3 (denoted as ϕz in

that paper). Appendix F in [37] provides the analogous

equations and coefficients for the ϵv3 angle (called ζ in

[37]), while the βv3 angle (called θL in [37]) is given by

Eq. (8).

As an illustration of the new waveform model we com-

pare IMRPhenomPv2 (blue-dashed) and IMRPhenomPv3

(orange-solid) for a mass ratio 1:10, two-spin system in

Fig. 2. The top left panel shows the h×ðtÞ
3
GW polarization

viewed at an inclination angle
4
of 90 deg. The top right panel

is a zoom in around the merger. At early times both models

are in agreement; however, due to the difference between the

precession angle models the two models start to noticeably

disagree around 90 s before merger.

Similarly to the angles αv2 and ϵv2, the expressions for

αv3 and ϵv3 involve series expansions in terms of the GW

frequency. The expression for ϵv3 is fully expanded and

expressed in terms of a power series of the GW frequency,

f−4=3þn=3, n ∈ ½1; 6�. The angle αv3 involves both expanded
(n ∈ ½1; 6�) and unexpanded terms, a choice made to

increase the angle’s accuracy for unequal-mass systems,

as discussed in Sec. IV D 1 of [37]. The order to which we

truncate the relevant expansions can impact the accuracy of

the model: too few n terms and the expansion fails to

accurately describe the inspiral but too many n terms and

the expressions become inaccurate when extrapolating

towards higher frequencies. Figure 2 illustrates the impact

of expansion order n on the precession angles. The lower-

left and lower-middle panels show the αv3 and ϵv3 angles as

a function of the GW frequency. The solid-orange line

shows the model that is used in IMRPhenomPv3 and the

paler curves show different the result for truncation orders

for the αv3 and ϵv3 models. The dashed-blue line shows

the results for the precession angle model used in

IMRPhenomPv2, which deviates away from the other

approximations. The αv2 angle in particular shows quali-

tatively different behavior, growing rapidly as the fre-

quency increases.

We also have a choice when computing βv3, the

angle between J⃗ and L⃗. We investigated either using

Newtonian order, 2 PN nonspinning (as was done in

IMRPhenomPv2) and also a 3 PN version including

spin-orbit terms for the magnitude of L⃗ that is used in

the computation of βv3. A comparison between the different

methods for calculating βv3 can be seen in the lower-right

panel in Fig. 2. The observed modulations are nutation due

to spin-spin effects.

The three vertical black lines (from left to right) are the

hybrid-MECO [64], Schwarzschild ISCO and the ringdown

frequency for this system. We assume the limit to which PN

results can be reliably used to be near the hybrid-MECO/

Schwarzschild ISCO and the region between this and the

ringdown frequency to be the region where we are

extrapolating the precession angles beyond their assumed

region of validity. This assumption appears to hold as it

seems to track the location of a turnover point in many of

the precession angle variants, a feature that is unphysical (at

least in simple precession cases) as discussed in Sec. II D.

To decide which choices when computing the precession

angles lead to the most accurate model we performed

several mismatch calculation comparing different versions

of the model with NR. We find that most choices lead to

reasonably accurate models for the inspiral, but can lead to

suboptimal performance during the merger. We obtain an

accurate model for the entire coalescence by using all but

the highest order terms in the expressions for αv3 and ϵv3
and use the highest order PN calculation available, namely,

with 3 PN with spin-orbit terms when computing jL⃗j in the

β angle. In Sec. III we only show results for the final model.

The final prescription we need to complete the model is a

description of the remnant black hole. We find the method

used in IMRPhenomPv2 to be adequate and continue to

use it in IMRPhenomPv3. Improvements to this simple

model could take the form of implementing explicit models

for the remnant black hole; see [65–67].

We alsonote oneother improvement onIMRPhenomPv2,

which deals with superkick configurations [68]. These are

equal-mass configurations where each black hole has the

same spin, but the spins both lie in the orbital plane and

point in opposite directions. These configurations possess

symmetry such that the orbital plane does not precess, but

instead “bobs” up and down as linear momentum is radiated

perpendicular to the orbital plane. If IMRPhenomPv2

is given the parameters for such a configuration, the

definition of χp, Eq. (3) will yield a nonzero value, and

the code will construct the waveform for a precessing

system. Neighboring configurations in parameter space

3
The time domain h×ðtÞ was obtained by computing the

inverse Fourier transform of h̃×ðfÞ.
4
Here, inclination is the angle between the initial L⃗ and the line

of sight. Because L⃗ is evolving on the precession time scale, we
emphasize that the value of the inclination angle is more
ambiguous than in the nonprecessing case.
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display similar behavior, and IMRPhenomPv2 again gen-
erates the “wrong” waveform. By correctly accounting for
both spins, IMRPhenomPv3 corrects this problem. A
request for an equal-mass superkick configuration yields
the waveform for an equal-mass nonspinning configuration,
which is the closest approximation that does not experience
recoil.

III. COMPARISON TO NUMERICAL RELATIVITY

In this section we compare IMRPhenomPv3 to a
large number of NR simulations of precessing BBHs
and show the excellent agreement between our model
and the simulations.

A. Mismatch calculation

In GW searches and parameter estimation, template

waveforms are correlated with detector data. This operation

can be written as an inner product weighted by the

sensitivity of the detector [described by the power spectral

density (PSD) SnðfÞ] between the real valued template hðtÞ
and signal sðtÞ waveforms. We define the overlap between

the template and signal as

O≡ ðhjsÞ≡ 4Re

Z

fmax

fmin

h̃�ðfÞs̃ðfÞ

SnðfÞ
df; ð8Þ

where h̃ represents the Fourier transform of h and h̃� is the

complex conjugate of h̃.
This inner product is closely related to the definition of

the matched-filter signal-to-noise ratio (SNR) and indeed

the 1 −O between normalized waveforms (x̂ ¼ x=
ffiffiffiffiffiffiffiffiffiffi

ðxjxÞ
p

)

is directly proportional to the loss in SNR, making it a

useful metric to measure the accuracy of waveform models.

FIG. 2. Composite figure comparing the various models for the precession angles and their overall effect on the waveform.

We generate the gravitational waveform from a BBH system with the following parameter: q ¼ 10, M ¼ 20, S1 ¼ ð0.4; 0; 0.4Þ,

S2 ¼ ð0.3; 0;−0.3Þ, fstart ¼ 10 Hz. The top row shows h× polarization evaluated at ι ¼ π=2 (here ι is the angle between L⃗ and the line of

sight). In all panels the dashed blue line corresponds to IMRPhenomPv2 and the solid orange line corresponds to IMRPhenomPv3.

Top left: The full waveform generated from 10 Hz. Top right: Zoom in around merger. We observe early-time agreement and late-time

disagreement caused by the different precession models. The bottom row shows the precession angles as a function of GW frequency.

Bottom left: α. Bottom middle: ϵ. Bottom right: β. The solid black line is the hybrid-MECO frequency [64], the dashed black line is

the Schwarzschild ISCO frequency and the dot-dashed black line is the ringdown frequency for this system. The legend in the

bottom left plot applies to the bottom middle plot as well and shows to what n order (see text) the α and ϵ angles were expanded. The

legend in the bottom right figure indicates if aligned spins were included in the calculation of the magnitude of the orbital angular

momentum.
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Aside from the masses and spins of the BHs the GW

signal depends on a number of extrinsic parameters: the

direction of propagation in the source frame (ι;ϕ0), a

polarization angle ψ , a reference time t0 and the luminosity

distance DL. The dependency of the observed GW signal

on the polarization angle (ignoring the angular position of

the source with respect to a detector) is given by

hðtÞ ¼ hþðtÞ cosð2ψÞ þ h×ðtÞ sinð2ψÞ: ð9Þ

Given two waveforms h and s we quantify the agreement

between them by computing their normalized overlap

subject to various averages and optimizations of extrinsic

parameters while keeping the intrinsic parameters fixed.

Note that the use of normalized waveforms ĥ and ŝ factors
away the dependency of the DL in the overlap.

In particular for each inclination angle ι considered we

compute the overlap between ĥ and ŝ with the same masses

and spins and vary the extrinsic signal parameters (ϕs
0;ψ

s
0)

by evaluating them on a 10 × 10 grid with the following

domain: ϕs
0 ∈ ½0; 2π� and ψ s

0 ∈ ½0; π=4�. For each point on

this grid we analytically maximize over a time shift using

an inverse Fourier transform, analytically maximize over

ψh
0 according to the method detailed in [69] and finally

numerically optimize the overlap over ϕh
0 using optimiza-

tion routines from the SciPy package.
5
From here we

define thematch as a function of the extrinsic parameters of

the signal as

Mðϕs
0;ψ

s
0Þ≡ max

th
0
;ϕh

0
;ψh

0

ðĥjŝðϕs
0;ψ

s
0ÞÞ: ð10Þ

Next we average over the extrinsic parameters of the

signal ðϕs
0;ψ

s
0Þ weighted by its optimal SNR ρ at each

point which accounts for the likelihood that this signal

would be detected [43,70]. We call this the orientation-

averaged match,

M≡

�P

iρ
3
iM

3
i

P

iρ
3
i

�

1=3

: ð11Þ

From here we define the orientation-averaged mismatch as

1 −M. We quote results in terms of this. In what follows

we use h to denote a template waveform, i.e., generated

by a waveform approximant and s to denote the signal

waveform which is a NR waveform.

We compute the orientation-averaged mismatch between

the template waveform and each NR waveform at three

different inclination angles ð0; π=3; π=2Þ rad. By increas-

ing the inclination angle we tend to observe a weaker

but more modulated waveform due to the precession.

We therefore expect the accuracy of the models to decrease

at inclined orientations where the effects of precession are

typically more pronounced. We consider three different

waveform approximants: IMRPhenomPv2, our improve-

ment IMRPhenomPv3, and the precessing IMR EOB-NR

model SEOBNRv3 [22]. For each NR simulation we gen-

erate a template with the same masses and spins beginning

from the start frequency as reported in the NR metadata.

Waveforms were generated using the LALSimulation

package, part of the software library LALSuite [71],

using the NR injection infrastructure presented in [72].

When comparing GW signal models with NR there is an

ambiguity that one encounters when trying to identify a

time (or frequency) in the gravitational waveform and the

corresponding retarded time (or frequency) of the BBH

dynamics, where spins are measured and defined in the NR

simulation [73]. This complicates the comparison of

precessing systems because the orientation of the spin is

now time dependent. This is not the only ambiguity present

when comparing PN with NR; the definition of the spin is

not necessarily the same [74].

We have attempted to account for any ambiguity in the

definition of the spin orientation by allowing the frequency

at which the spins are specified to vary; however, we

acknowledge that this modification may smooth out model

inaccuracies. This is similar to what was done in Ref. [22]

where SEOBNRv3 was compared to a similar set of NR

waveforms. In IMRPhenomPv2 and IMRPhenomPv3 we

can fix the start frequency, fstart, and vary the spin-reference
frequency (fref); however, in the LALSuite implementa-

tion of SEOBNRv3 this is not possible and instead the spins

are defined at the start frequency. Therefore we perform the

optimization of the spin-reference frequency slightly differ-

ently between the phenom models and the EOB-NR model.

For the phenom models we numerically optimize the

overlap over fref in the following range ½0.8; 1.4� × fstart
and for SEOBNRv3 we numerically optimize the overlap

over fstart in the same range but if 1.4fstart is greater than the
maximum start frequency allowed by the EOB-NR gen-

erator, fEOBmax , then we use this.
6
For long waveforms the

variation in the resulting match is less that 1%; however, for

shorter waveforms, such as SXS:BBH:0165, the variation

can be as larger as 8%.

Our NR signal waveforms only contain the l ¼ 2

multipoles, which is a good approximation for comparable

mass systems q≲ 3 and for small inclinations where the

effect of precession on the waveform is minimized. This

assumption breaks down for some of the cases we consider

here but we are primarily concerned with how faithful our

new model is to a signal which contains the modes that we

have modeled. We also want to keep separate systematic

errors due to neglecting l > 2 modes and those due to

inaccuracies in modeling the l ¼ 2modes. We compute the
5
Because we are comparing generic precessing waveforms we

cannot analytically optimize over ϕh
0 in the presence of m ≠ 2

multipoles.
6
fEOBmax is equal to the orbital frequency at a separation of 10M.
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match assuming the theoretical design sensitivity of one of

the LIGO detectors (zero detuned high power PSD [75])

and starting from a low frequency cutoff of 10 Hz until the

end of the waveform. We compute the match over a range

of total masses spanning from 20 to 200 M⊙. If the NR

waveform is not long enough to start at 10 Hz then we use

the starting frequency of the NR waveform as the low

frequency cutoff in the match integral.

B. NR catalogue

We use the SXS public catalogue [76,77] of NR wave-

forms as our validation set consisting of 90 precessing

waveforms with mass ratios between 1∶1 and 1∶6. Figure 3

presents an illustration of the parameter space covered. This

set of NR waveforms mainly covers the mass-ratio space

between 1∶1 and 1∶3 with only three waveforms above this:

two at mass-ratio 1∶5 and one at 1∶6. This is clearly a

heavily undersampled region of parameter space across NR

groups (see other public catalogues from RIT [78,79] and

GaTech [80,81]). The vast majority of cases also have spin

magnitudes that are ≤0.5; however there is one case (SXS:

BBH:0165) where j ⃗χj ¼ 0.9. However, this is a short

waveform of only six orbits in length. Again this highlights

the need for longer NR simulations of BBHs with j ⃗χj > 0.5

across all mass ratios.

The bottom panel of Fig. 3 illustrates the length of the

NR simulations. It shows the start frequency, in Hz, of the

l ¼ jmj ¼ 2 GW multipole when the BBH system is

scaled to 50 M⊙. In order for a NR waveform to be used

in the analysis of LIGO-Virgo data, without hybridizing to

PN, the waveform needs to span the sensitive region of the

detector; a typical start frequency for current instruments is

between 20 and 25 Hz (see Fig. 2 of [6]). We see that for a

BBH of total mass 50 M⊙, similar to GW150914 [3], many

of these cases start at around 20 Hz. Again there are a

couple of outliers at mass ratios 1∶5 and 1∶6.

C. Results

Figure 4 shows the results of the orientation-averaged

mismatch (1 − M̄) calculation as a function of the total

mass. Each row corresponds to a fixed template waveform

labeled in the top left of each plot in the first column. From

top to bottom each row shows results for IMRPhenomPv2,

IMRPhenomPv3 and SEOBNRv3. From left to right each

column corresponds to the three different inclination angles

we tested 0, π=3 and π=2 respectively.

First we note that, for all three models, the majority of

cases have mismatches smaller that 3% and many smaller

than 1%. This is in agreement with the findings of

Ref. [22]. Interestingly we find that the mismatch varies

weakly with inclination angle indicating that the models

perform well even when precession effects are amplified.

One of the key results is the superior performance of

IMRPhenomPv3 for total masses between 20 and 50 M⊙

where all but one case (SXS:BBH:0165 is discussed below)

has mismatches ≲1%. We attribute this to the more

FIG. 3. The precessing parameter space we probe using the SXS public catalogue. The x axis is the SXS catalogue number. The four

panels (from top to bottom) show the mass ratio q ¼ m1=m2, the dimensionless spin magnitudes j ⃗χij, the polar angle between the

Newtonian orbital angular momentum and the individal BH spin vectors θi where i ¼ 1, 2 for the larger and smaller BH respectively and

finally the last panel plots the start GW frequency for each simulation when scaled to a total mass of 50 M⊙, where the primary and

secondary BHs are plotted as blue diamonds and orange circles respectively.
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accurate and reliable new model of the precession dynam-

ics of [37,38].

To highlight regions of parameter space where current

models are least accurate we have compiled Table I, which

lists the SXS catalogue number, their mass ratio and initial

spin components if at any point the mismatch is greater

than 3%. In the table we report the orientation-averaged

mismatch averaged over all total masses for each inclina-

tion angle. We also color these cases in Fig. 4.

Our expectation that higher mass-ratio systems will yield

the least accurate results, due to the fact that precession is

based on a PN model and not calibrated to NR, is borne out

in our results. Out of all the worst cases, with the exception

of SXS:BBH:0161, the worst cases have mass ratios ≥3.

SXS:BBH:0161 is the only equal-mass outlier with worst

mismatch marginally greater than 3% for IMRPhenomPv2.

For IMRPhenomPv3 and SEOBNRv3 the accuracy is better

than 1% for the vast majority of cases.

The case with the highest mismatch, across all templates,

is SXS:BBH:0165. This is a mass-ratio 1∶6 system with

initial spins S1 ¼ ð0.74; 0.19;−0.50Þ and S2 ¼ ð−0.19; 0;
−0.23Þ with a length of ∼6.5 orbits. IMRPhenomPv2 has

a best mismatch of ∼12%. IMRPhenomPv3 substantially

improves upon this with a worst mismatch of ∼3.6%.

SEOBNRv3 performs well achieving a worst mismatch of

∼1.3%. Given that the precession, in all three IMR models,

FIG. 4. The results of the comparison between IMRPhenomPv2 (first row), IMRPhenomPv3 (second row) and SEOBNRv3 (third

row) and the precessing NR simulations from the public SXS catalogue. Each column shows the results for ι ¼ ð0; π=3; π=2Þ, from left

to right, where ι is the angle between the Newtonian orbital angular momentum L⃗ and the line of sight, at the start frequency. The figure

shows the orientation-averaged mismatch (1 −M) as a function of the total mass (log scale). Cases which have a maximum mismatch

greater than 3% are colored and presented in Table I.
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is modeled with uncalibrated PN or EOB calculations, it is

not surprising that the region of parameter space where the

models do worst comes from high mass ratios and high spin

magnitudes. This is, by far, the case with the most dramatic

improvement. In terms of its place in parameter space it has

the largest mass-ratio and spin magnitude.

Out of the two mass-ratio 1∶5 systems one of them has a

worst mismatch larger than 3%. This case, SXS:BBH:0058,

is also the longest mass-ratio 1∶5 case with approximately

28 orbits. We improve from a worst mismatch of 3.3%

with IMRPhenomPv2 to 2.2% with IMRPhenomPv3.

SEOBNRv3 shows good agreement with a worst average

mismatch of ∼1.4%.

For cases with mass ratio 1∶3 we find that only 1 (SXS:

BBH:0049) out of the 15 cases has a mismatch larger

than 3%. The mismatch is worst for IMRPhenomPv2 and

only goes marginally above 3 for the ι ¼ π=2 case where

we expect the effects of precession to be most pronounced.

With IMRPhenomPv3 we improve, across all inclinations,

with average mismatches between 1% and 2%. We find a

similar performance with SEOBNRv3.

Note however, that all the mass-ratio 1∶3 and 1∶5

systems have spin magnitudes ≤0.5. Validating precessing

waveform models at large spin magnitudes requires more

NR simulations to be performed. We highlight again that

these comparisons only include the l ¼ 2 multipoles in

the signal waveform and for larger mass-ratio systems

(q ≳ 3); neglecting the higher multipoles is no longer a

good approximation to the full GW signal.

IV. GW151226 ANALYSIS

As a first application of the new IMRPhenomPv3model

we study whether the improved two-spin prescription

allows for improved parameter extraction from existing

GW signals. We focus on event GW151226 as it is the only

system with strong support for at least one spinning BH

[4,54]. Only recently, GW151226 has been analyzed with a

precessing model that employs two-spin dynamics [82].

The source of GW151226 has a low-enough total mass that

an analysis with SEOBNRv3 is computationally very

challenging; simultaneously, GW151226 is so massive that

the merger phase of the coalescence is in band, making an

analysis with precessing inspiral-only models, such as

SpinTaylorT4, incomplete.

The new IMRPhenomPv3waveform model constructed

here meets both criteria of computational efficiency and

full coalescence description, allowing us to perform an

efficient two-spin analysis of GW151226. We use the

Bayesian inference code LALInferenceNest [83]

and publicly available data from the LIGO Open

Science Centre. We estimate the power spectral density

noise using on-source data and the BayesWave algorithm

[84,85]. We marginalize over detector calibration ampli-

tude and phase uncertainty using values provided in [53].

We use a spin prior that is uniform in direction and

magnitude up to 0.89. In what follows, we present and

compare results obtained using IMRPhenomPv2 using a

reduced-order-quadrature approximation to the likelihood

[39] and IMRPhenomPv3.

Table II presents our results for the intrinsic parameters.

We quote the median value from the one-dimensional

marginalized posterior and the associated 90% sym-

metric credible interval. Noteworthy differences are a

broader uncertainty in the primary mass resulting in

IMRPhenomPv3 favoring a slightly more asymmetric

system, although both models are within the statistical

uncertainty of each other. Overall we find consistent results

between the two models as well as the published LIGO-

Virgo Collaboration analysis [53]. We also have an estimate

of the Bayes factor for a coherent signal across the two

TABLE I. Percentage mismatches averaged over all total masses for each the three inclination angles (rad) considered. All cases that

have a mismatch larger than 3% are shown. The first column shows the SXS ID number with the mass ratio and initial spin vectors in

parentheses.

Waveform model IMRPhenomPv2 IMRPhenomPv3 SEOBNRv3

SXS:BBH:ID 0 π=3 π=2 0 π=3 π=2 0 π=3 π=2

0049 [q ¼ 3, S⃗1 ¼ ð0.5; 0; 0Þ, S⃗2 ¼ ð0; 0; 0.5Þ] 0.7 1.5 2.4 0.9 1.4 1.8 1.0 1.5 1.8

0058 [q ¼ 5, S⃗1 ¼ ð0.5; 0; 0Þ, S⃗2 ¼ ð0; 0; 0Þ] 1.2 2.0 3.3 1.3 1.2 2.2 0.2 0.5 1.4

0161 [q ¼ 1, S⃗1 ¼ ð0.52; 0;−0.3Þ, S⃗2 ¼ ð0.52; 0;−0.3Þ] 1.0 1.1 1.4 0.2 0.6 0.7 0.8 0.6 0.7

0165 [q ¼ 6, S⃗1 ¼ ð0.74; 0.19;−0.50Þ, S⃗2 ¼ ð−0.19; 0;−0.23Þ] 15.4 12.5 12.1 3.6 3.5 3.0 1.2 1.1 1.3

TABLE II. Parameter table for GW151226. Masses are defined

in the source frame. We quote the median and the 90% symmetric

credible interval of the one-dimensional marginalized posterior

distributions.

Parameter IMRPhenomPv2 IMRPhenomPv3

Primary mass: m1ðM⊙Þ 13.68þ7.93
−3.13 14.45þ10.23

−3.96

Secondary mass: m2ðM⊙Þ 7.73þ2.10
−2.41 7.35þ2.57

−2.52

Total mass: MtotðM⊙Þ 21.50þ5.48
−1.44 21.85þ7.64

−1.77

Mass ratio: q 0.57þ0.36
−0.32 0.51þ0.44

−0.31

Effective spin: χeff 0.19þ0.18
−0.07 0.20þ0.23

−0.09

Precession parameter: χp 0.44þ0.34
−0.28 0.44þ0.35

−0.28

Log Bayes factor: LogðBÞ 50.707 51.291
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LIGO detectors versus an incoherent signal or noise. We

find a slightly larger Bayes factor for IMRPhenomPv3

despite the extra degrees of freedom from the full two-spin

description.

Figure 5 shows the two-dimensional posterior densities

for χeff − χp
7
(left) and χeff − q (right) obtained from both

waveform models as well as the one-dimensional prior

distributions. Both plots demonstrate broad agreement with

IMRPhenomPv3 marginally favoring more unequal

masses. This result is also consistent based on the compar-

isons to NR waveforms presented in the previous section.

The posterior for χp is consistent with its prior, confirming

the absence of evidence of spin precession in GW151226.

Overall we find that a reanalysis of the merger event

GW151226 with our new waveform model does not

provide new insights into the nature of the source but

instead reinforces our current understanding of the source.

The consistency of the results implies that two-spin

precession effects do not impact this signal in agreement

with previous studies predicting that aligned-two-spin

effects are not easily measurable [86]. However, it is

possible that certain binaries and orientations might make

it possible to measure both spins simultaneously. This

could be achieved, for example, with precessing models

that also include higher multipoles modes, or with louder

signals observed by more detectors.

V. DISCUSSION

We have presented an upgrade to the phenomenological

model IMRPhenomPv2 called IMRPhenomPv3. This

model predicts the GW polarizations computed using the

dominant l ¼ jmj ¼ 2 multipole in the coprecessing

frame, from noneccentric merging BBHs with generically

orientated spins. Our upgrade consists of replacing the

model for the precession dynamics of [23] that was derived

under the assumption of a single spin precessing BBH

system with the more accurate analytic model from [37,38]

that contains two-spin effects.

We have validated our new model against a large set of

precessing NR waveforms. Although our selection of NR

waveforms is biased towards mass ratios <3 and spin

magnitudes <0.5 we find that all three models considered

generally perform well; however, we have identified a

clear region in parameter space, mass ratios >3, where all

models begin to loose accuracy. Encouragingly we find that

IMRPhenomPv3 greatly outperforms the previous model

for the most extreme case we considered, with the largest

improvement being ∼12%. This improvement suggests that

IMRPhenomPv3 can be utilized in a much wider param-

eter space than IMRPhenomPv2 was found to be reliable.

We emphasize the importance of NR to continue to push

the capabilities of precessing BBH simulations that will

allow more stringent tests of waveforms models and

ultimately lead to more accurate waveform models being

developed.

As a first application we reanalyzed GW151226 with our

two-spin model and find consistent results compared with

FIG. 5. Posteriors probability densities for χeff − χp (left) and χeff − q (right) for GW151226 using IMRPhenomPv2 and

IMRPhenomPv3. Despite the more accurate description of two-spin dynamics of IMRPhenomPv3 the posteriors are consistent,

demonstrating the difficulty of measuring two-spin dynamics.

7
Note that IMRPhenomPv3 no longer explicitly uses the

effective precession parameter χp. However we show it here for
direct comparison to IMRPhenomPv2 results.
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the single-spin model, thereby reinforcing our current

inference on the nature of GW151226.

As our waveform model is analytic one can evaluate the

model using a nonuniform grid of frequencies. This is

essential for methods such as reduced order quadrature

[39] and the multibanding technique of [87]. These methods

can increase the computational efficiency of sampling-based

parameter estimation by factors of 300 for low-mass systems.

We note that there are a number of physical effects that

are ignored. We do not model any asymmetry between the

positive and negative m modes, which are responsible for

large out-of-plane recoil kick velocities. In the underlying,

aligned-spin model we do not include effects from higher

order multipoles; however, we have recently developed a

method to do this [32] and we are currently determining the

accuracy of a precessing model that includes higher order

multipoles in the coprecessing frame. Finally, the solutions

to the spin-precession dynamics presented in Refs. [37,38]

and, by extension, the new model we construct here assume

that the direction of the total angular momentum is

approximately fixed. Therefore they do not capture the

effect of transitional precession [18].
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Phys. Rev. Lett. 122, 011101 (2019).

[68] B. Bruegmann, J. A. Gonzalez, M. Hannam, S. Husa, and U.

Sperhake, Phys. Rev. D 77, 124047 (2008).

[69] I. Harry, S. Privitera, A. Bohé, and A. Buonanno, Phys. Rev.
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