Received 3 March 2021; revised 8 April 2021; accepted 11 April 2021. Date of publication 14 April 2021; date of current version 23 April 2021. The review of this article was arranged by Editor J. Wang.

Digital Object Identifier 10.1109/JEDS.2021.3073129

Phenomenological Model of Gate-Dependent Kink in I-V Characteristics of MoS₂ Double-Gate FETs

MICHAEL A. RODDER¹ (Student Member, IEEE), AND ANANTH DODABALAPUR¹ (Fellow, IEEE)

1 Department of Electrical Engineering, University of Texas at Austin, Austin, TX 78712, USA 2 Department Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA

CORRESPONDING AUTHOR: M. A. RODDER (e-mail: michaelrodder@utexas.edu)

This work was supported in part by the National Science Foundation under Grant CMMI-1938179.

ABSTRACT A phenomenological model, accounting for interface states at metal-semiconductor contacts, is proposed to explain particular gate-bias-dependent kinking in I-V characteristics sometimes observed in MoS_2 FETs. The effect is studied in double-gate FETs by varying top-gate voltage (V_{TG}) and bottomgate voltage (V_{BG}), with the MoS₂ semiconductor layer overlying source/drain (S/D) metal contacts in contact regions. The kink in I_D - V_{TG} characteristics is observed for small negative V_{BG} but not for large negative V_{BG} . The model divides the FET into S/D and channel regions, with bias-dependent S/D resistance (R_{SD}) and channel resistance (R_{CHAN}), and with S/D regions having an additional interface state distribution (additional to any interface states associated with semiconductor/dielectric interfaces in the channel region) due to an imperfect metal-semiconductor interface where MoS_2 overlies S/D metal. The additional interface states are modeled as a Gaussian distribution of acceptor-like states in the upper region of the semiconductor bandgap. When $R_{SD} \ge R_{CHAN}$ (V_{BG} less negative), filling of these acceptorlike states as V_{TG} increases creates a kink in I_D-V_{TG} characteristics since R_{SD} is a major component of overall resistance limiting drain current, I_D. Conversely, when R_{SD} << R_{CHAN} (V_{BG} more negative), filling of these acceptor-like states as V_{TG} increases does not create an I_D - V_{TG} kink since R_{SD} is not the major component of resistance limiting ID. The model highlights 1) metal-semiconductor interface states need to be accounted for when modeling MoS₂ FETs, and 2) importance of forming metal-semiconductor interfaces with low interface state density to avoid I-V kinks which are detrimental for analog applications.

INDEX TERMS MoS₂, double-gate FET, I-V kink, interface states, phenomenological model.

I. INTRODUCTION

Formation of FETs with transition metal dichalcogenide (TMD) semiconductors is an active area of research [1]–[6]. Double-gate FETs are readily formed with a TMD channel, e.g., MoS₂, bound on each side by a dielectric, with a top and bottom gate formed above and below the top and bottom dielectric, respectively [7], [8]. For a conventional MoS₂ double-gate FET (DGFET), MoS₂ overlies (or underlies) source / drain (S/D) metal contacts. Accordingly, imperfect interfaces that can impact DGFET I-V characteristics, e.g., due to interface states, are the source (and drain) metal / MoS₂ interface. Dielectric / MoS₂ interface states can

degrade sub-threshold slope [9] or introduce kinks in topgated DGFET I_D - V_{TG} but with no dependence shown on the bottom gate voltage, V_{BG} [10]. Metal / MoS₂ interface states can cause high, non-ohmic S/D resistance (R_{SD}) resulting from high Schottky-type contact resistance (R_C) due to Fermi-level pinning at the interface and associated large Schottky barrier [11], [12]. Kinks in FET I_D - V_G characteristics have been reported due to metal / silicon interface states in S/D regions of bulk-silicon Schottky-barrier FETs [13], and due to metal / IGZO interface states at the drain edge of stressed single-gate IGZO FETs [14]. In MoS₂ FETs, high non-ohmic R_{SD} more generally results from high Schottkytype R_C caused by low doping of MoS₂ (i.e., low residual

FIGURE 1. Schematic cross-section of the MoS₂ DGFET, with the MoS₂ semiconductor layer overlying source / drain metal contacts.

charge density) in contact regions due to difficulty achieving high doping in MoS₂ [15], [16] leading to reliance on electrostatic gating of contact regions to reduce R_C [17]. For conventional MoS₂ DGFETs, only one gate, e.g., top gate, electrostatically dopes both the contact and channel regions while both gates electrostatically dope the channel [18]. Thus, even with electrostatic gating, the Schottky-type R_C and overall S/D resistance (R_{SD}) of MoS₂ DGFETs can be large relative to channel resistance (R_{CHAN}) for various top and bottom gate biases. For biases in which R_{SD} is large relative to R_{CHAN} (i.e., S/D regions are important), we expect that if electrostatic gating of S/D regions is affected by metal / MoS₂ interface states, e.g., by filling of interface states as V_{TG} increases, then the effect of these interface states will be apparent in I_D-V_{TG} characteristics.

In this letter, we present a simple phenomenological model to explain observed top *and* bottom gate bias dependence of kinked MoS₂ DGFET I_D-V_{TG} characteristics, which is not explained by prior models [10]. First, we describe DGFET fabrication and I_D-V_{TG} characteristics. Second, we develop equations of a phenomenological model which includes a Gaussian distribution of acceptor-like interface states in S/D regions, unlike prior models. Third, we compare the model to our experimental DGFET I_D-V_{TG} characteristics, showing excellent agreement between modeled and experimental I_D-V_{TG}. Lastly, we summarize this works impact on modeling and fabrication of MoS₂ DGFETs. While most of our data and analysis is with DGFETs, the results also apply to single gate FETs.

II. DEVICE FABRICATION AND MEASUREMENTS

 MoS_2 DGFET fabrication utilizes a heavily-doped n-type Si substrate as the bottom gate with 285 nm of SiO₂ as bottomgate dielectric. Ni/Au (4 nm / 12 nm) S/D metal contacts were formed by e-beam lithography (EBL), thermal metal evaporation (TME), and liftoff. Exfoliated MoS₂ (bilayer) was placed on top of S/D metal contacts. An exfoliated h-BN flake was transferred to overlay the MoS₂ and S/D metal, to serve as the top-gate dielectric. Finally, Cr/Au (3 nm / 50 nm) top gate and contact pads were patterned by EBL, TME, and liftoff. Each S/D metal contact length (L_S, L_D) is 1.5µm; the channel length (L_{CHAN}) is 3µm (Fig. 1).

Figure 2 shows measured DGFET I_D - V_{TG} characteristics, for varying V_{BG} , with an I_D - V_{TG} kink at less negative V_{BG}

FIGURE 2. Measured I_D-V_{TG} characteristic, for varying V_{BG}, of the conventional MoS₂ double-gate FET. V_D = 100 mV. Inset: optical micrograph of the double-gate MoS₂ FET before top gate patterning. Scale bar of inset: 5 μ m.

 $(\geq -25$ V), but with no $I_D\text{-}V_{TG}$ kink at more negative V_{BG} (-30 V, -35 V). The $I_D\text{-}V_{TG}$ kink occurs when the gate being swept can electrostatically dope MoS₂ in contact regions, i.e., the top gate.

It is noted that not all fabricated devices (utilizing placement of exfoliated layers onto underlying layers) show these particular I_D-V_{TG} kinks. We observe these particular I_D-V_{TG} kinks in ~25% of our devices. However, it is important to understand the origin of these kinks so that appropriate improvements in MoS₂ FET fabrication can be implemented to avoid these I_D-V_{TG} kinks, which are detrimental for analog applications. For example, improvements in MoS₂ FET fabrication of pre-layer placement surface cleaning or post-layer placement annealing at particular steps in the FET fabrication flow so as to improve particular interfacial properties; accordingly, it is important to determine which of the interfaces is the cause of these I_D-V_{TG} kinks as is discussed in the next section.

III. RESULTS AND DISCUSSION

We next develop equations for a model which includes a Gaussian distribution of acceptor-like interface states (neutral when empty, negatively charged when full, with an energy distribution determined by a fit between modeled and experimental current-voltage characteristics as discussed below) in S/D regions (associated with an imperfect metal / MoS_2 interface where MoS_2 overlies metal contacts), unlike in prior models. Following Jiménez [19] but with modified channel and S/D regions, Fig. 3 shows equivalent capacitive circuits for the MoS₂ DGFET. Figure 3(a) shows the circuit for the channel region; both V_{TG} and V_{BG} affect channel charge. V_{TG}-V_{TG0} and V_{BG}-V_{BG0} are internal voltages from top and bottom gates; V_{TG0} and V_{BG0} are treated as parameters to fit to experimental data [10], [19]. C_{TG} and C_{BG} are the top and bottom gate dielectric capacitances, associated with the top h-BN dielectric and bottom SiO₂ dielectric, respectively. Associated with the channel, $C_{q,c}$ is the quantum capacitance and Cit,c is the capacitance due

FIGURE 3. (a) Equivalent capacitive circuit in the channel region. (b) Equivalent capacitance circuit in the source / drain contact region, for the conventional MoS₂ double-gate FET.

to the combination of interface states from top and bottom dielectric / MoS₂ interfaces, for thin channel films, as in [10]. Figure 3(b) shows the circuit for S/D regions; only V_{TG} affects charge (and R_{SD}) in the MoS₂ overlying S/D metal contacts since V_{BG} is screened by the metal contacts. Associated with MoS₂ overlying source (drain) metal contacts, C_{q,s} (C_{q,d}) is the quantum capacitance and C_{it,s} (C_{it,d}) is the capacitance due to the combination of interface states from the source (drain) metal / MoS₂ interface and top dielectric / MoS₂ interface. At low V_{DS}, we assume same values in S/D regions, i.e., C_{q,s} = C_{q,d} \equiv C_{q,sd}, and C_{it,s} = C_{it,d} \equiv C_{it,sd}.

Equations for charge in MoS_2 and interface states in the channel region (Fig. 3(a)) are:

$$Q_{q,c} + Q_{it,c} = \left[(V_{TG} - V_{TG0}) - V_{C,c} \right] \times C_{TG} + \left[(V_{BG} - V_{BG0}) - V_{C,c} \right] \times C_{BG}$$
(1)

$$Q_{q,c} = q \int_{E_{C,c}}^{\infty} DOS_{2D} \times f(E) dE$$
⁽²⁾

$$Q_{it,c} = q \int_{E_{mid}}^{E_{C,c}} \left(D_{it,u} + \alpha \times D_{it,g} \right) \times f(E) dE \quad (3)$$

where $Q_{q,c}$ is channel charge corresponding to $C_{q,c}$, $Q_{it,c}$ is interface charge corresponding to $C_{it,c}$, $E_{C,c}$ is the semiconductor conduction band energy in the channel ($E_{C,c} = qV_{C,c}$), E_{mid} is the midgap energy, DOS_{2D} is the 2D density of states of MoS_2 , f(E) is the Fermi function, $D_{it,u}$ is an assumed uniform-in-energy density of interface states (to match modeled and experimental FET sub-threshold slope [9]) and $D_{it,g}$ is a Gaussian distribution of interface states (to be discussed later) both corresponding to $C_{it,c}$; α equals 1 or 0 depending if $D_{it,g}$ is included in the channel region. At low V_{DS} , we assume $Q_{q,c}$ and $Q_{it,c}$ are each constant along the channel.

Using (1)-(3), $E_{C,c}$, $Q_{it,c}$, and $Q_{q,c}$ can be calculated; R_{CHAN} (and dependence on V_{TG} , V_{BG}) is then determined from:

$$R_{CHAN} = \frac{L_{CHAN}}{W\mu Q_{q,c}} \tag{4}$$

where W is channel width, and μ is electron mobility in $MoS_2.$

Equations for charge in the MoS_2 and interface states in S/D contact regions (Fig. 3(b)) are:

$$Q_{q,sd} + Q_{it,sd} = \left[(V_{TG} - V_{TG0}) - V_{C,sd} \right] \times C_{TG}$$
(5)

$$Q_{q,sd} = q \int_{E_{C,sd}} DOS_{2D} \times f(E) dE$$
(6)

$$Q_{it,sd} = q \int_{E_{mid}}^{E_{C,sd}} \left(D'_{it,u} + D_{it,g} \right) \times f(E) dE \quad (7)$$

where $Q_{q,sd}$ is charge in the MoS₂ overlying S/D metal contacts corresponding to $C_{q,sd}$, $Q_{it,sd}$ is interface charge corresponding to $C_{it,sd}$, $E_{C,sd}$ is the semiconductor conduction band energy in the S/D region ($E_{C,sd} = qV_{C,sd}$), D'_{it,u} is a uniform-in-energy density of interface states ~0.5 × $D_{it,u}$ (~0.5 is utilized since there is only a top dielectric / MoS₂ interface in S/D regions) and $D_{it,g}$ is a Gaussian distribution of acceptor-type interface states (associated with the metal / MoS₂ interface) both corresponding to $C_{it,sd}$. $D_{it,g}$ is modeled as:

$$D_{it,g} = N_{it,g} \times \exp\left[-\left(\frac{(E_C - E_{it,g}) - E}{W_{it,g}}\right)^2\right]$$
(8)

with peak density $N_{it,g}$ located at energy $E_{it,g}$ below the conduction band, and Gaussian distribution width, $W_{it,g}$.

Using (5)-(8), $E_{C,sd}$, $Q_{it,sd}$, and $Q_{q,sd}$ can be calculated; R_{SD} (and dependence on V_{TG}) is then determined from:

$$R_{SD} = K \times \frac{L_{SD}}{W \mu Q_{q,sd}} \tag{9}$$

where (9) is derived from a transmission line model for metal / semiconductor regions [20], $L_{SD} = L_S + L_D$, K is a multiplier factor (chosen to best fit modeled I_D -V_{TG} to experimental I_D -V_{TG}), and K × L_{SD} represents the transfer length; (9) is valid if K << 1 such that tanh (1/K) ~ 1 [20]. (It will be shown that K = 0.05, i.e., K << 1, enables a best fit between modeled and experimental I_D -V_{TG}; thus, (9) is valid).

Lastly, we solve for I_D vs. V_{TG} and $V_{BG},$ using:

$$I_D = V_D / (R_{CHAN} + R_{SD}) \tag{10}$$

$$I_D = V_D / \left(\frac{1}{W\mu} \left(\frac{L}{Q_{q,c}} + \frac{K \times L_{SD}}{Q_{q,sd}} \right) \right)$$
(11)

We now compare modeled versus measured I_D - V_{TG} characteristics showing that excellent agreement can be achieved.

FIGURE 4. I_D -V_{TG} characteristics, at fixed V_{BG} = -20 V, for (a) varying N_{it,g} at fixed E_{it,g} = 0.15 eV, W_{it,g} = 0.035 eV, K = 0.05, (b) varying E_{it,g} at fixed N_{it,g} = 3 × 10¹³ eV⁻¹ cm⁻², W_{it,g} = 0.035 eV, K = 0.05, (c) varying W_{it,g} at fixed N_{it,g} = 3 × 10¹³ eV⁻¹ cm⁻², E_{it,g} = 0.15 eV, K = 0.05, and (d) varying K at fixed N_{it,g} = 3 × 10¹³ eV⁻¹ cm⁻², E_{it,g} = 0.15 eV, W_{it,g} = 0.035 eV. V_D = 100 mV. (It is noted that the choice of fixed model parameters utilized in Figs. 4 (a)-(d) is based on iterative analysis showing that these fixed model parameters result in a good fit between modeled and experimental I_D-V_{TG}, as described in later figures.)

(It is noted that only DC ID-VTG characteristics are measured and modeled; thus, while the kink effect should be frequency-dependent according to the capture-emission time of interface states, interface state parameters such as captureemission time constants that affect AC characteristics are not included in this model.) Model values corresponding to Figs. 1 and 2 are extracted for C_{TG}, C_{BG}, V_{TG0}, V_{BG0}, D_{it,u}, $L_{CHAN},$ $L_{SD},$ W, and $\mu.$ Figure 4 shows the effect on $I_D\text{-}V_{TG}$ of varying individual model parameters in (8) for D_{it,g} (N_{it,g}, $E_{it,g}$, or $W_{it,g}$) and of varying the model parameter, K, in (9) for R_{SD} , while fixing the other model parameters. From Fig. 4, more kinking in I_D-V_{TG} is observed with increasing Nit,g, Wit,g and K, and with a downwards shift in kinking observed with increasing Eit,g. Accordingly, appropriate adjustment of these parameters, using the trends in I_D -V_{TG} characteristics in Fig. 4 as a guide, can enable a fit between modeled and experimental I_D-V_{TG}, as shown in subsequent figures.

Figures 5–7 show modeled I_D -V_{TG}, for varying V_{BG}, for four cases: 1) $D_{it,g} = 0$ in the channel ($\alpha = 0$) and S/D regions, 2) $D_{it,g} \neq 0$ in the channel ($\alpha = 1$) and S/D regions, 3) $D_{it,g} \neq 0$ in the channel ($\alpha = 1$) region only, and 4) $D_{it,g} \neq 0$ in the S/D region only ($\alpha = 0$). Figure 5 shows modeled I_D -V_{TG}, for varying V_{BG}, for case 1.

FIGURE 5. I_D -V_{TG} characteristics, for varying V_{BG}, with D_{it,g} = 0 in channel and S/D regions. K = 0.05, V_D = 100 mV.

FIGURE 6. (a) I_D-V_{TG} characteristics, for varying V_{BG} (starting at $V_{BG} = -10$ V, with V_{BG} steps of -5 V) for (a) $D_{it,g} \neq 0$ in both the channel ($\alpha = 1$) and S/D regions, (b) $D_{it,g} \neq 0$ in the channel ($\alpha = 1$) region only. N_{it,g} = 3 × 10¹³ eV⁻¹ cm⁻², E_{it,g} = 0.15 eV, W_{it,g} = 0.035 eV, K=0.05, V_D = 100 mV.

No I_D-V_{TG} kinks are observed, unlike experimental I_D-V_{TG} characteristics (Fig. 2). Figure 6(a) shows modeled I_D-V_{TG}, for varying V_{BG}, for case 2. Kinks in I_D-V_{TG} are observed; however, the kinks are observed for all V_{BG} unlike experimental I_D-V_{TG} (Fig. 2). Figure 6(b) shows modeled I_D-V_{TG}, for varying V_{BG}, for case 3. Like Fig. 6(a), I_D-V_{TG} kinks are observed for all V_{BG}. The kink behavior in Figs. 6(a)–(b), for cases 2 and 3, is consistent to the expectation that when $R_{CHAN} \ge R_{SD}$, filling of acceptor-like states located in the channel region as V_{TG} increases creates an I_D-V_{TG} kink since R_{CHAN} is the major component of overall resistance limiting I_D; since $R_{CHAN} \ge R_{SD}$ for all V_{BG}.

Figure 7 shows I_D - V_{TG} , for varying V_{BG} , for case 4 ($D_{it,g} \neq 0$ in the S/D regions only). For this case, the kinks in the modeled I_D - V_{TG} characteristics match to experimental I_D - V_{TG} characteristics (Fig. 2), namely, kinks are pronounced for less negative V_{BG} but disappear for more negative V_{BG} . The kink behavior in Fig. 7 is thus consistent

FIGURE 7. $D_{it,g} \neq 0$ in the S/D region only ($\alpha = 0$ in the channel region). $N_{it,g} = 3 \times 10^{13} \text{ eV}^{-1} \text{ cm}^{-2}$, $E_{it,g} = 0.15 \text{ eV}$, $W_{it,g} = 0.035 \text{ eV}$, K=0.05, $V_D = 100 \text{ mV}$.

FIGURE 8. $D_{it,u}$ - and $D_{it,g}$ -energy distribution which results in a good match between the modeled (Fig. 7) and experimental I_D - V_{TG} characteristics (Fig. 2).

to the expectation that when $R_{SD} \ge R_{CHAN}$ (V_{BG} less negative), filling of these acceptor-like states (located in S/D regions only) as V_{TG} increases creates a kink in I_D-V_{TG} characteristics since R_{SD} is the major component of overall resistance limiting I_D. Conversely, when $R_{SD} << R_{CHAN}$ (V_{BG} more negative), filling of acceptor-like states (located in S/D regions only) as V_{TG} increases does not create an I_D-V_{TG} kink since R_{SD} is not the major component of resistance limiting I_D.

It is noted that the fact that the modeled I_D - V_{TG} characteristics (Fig. 7) match to experimental I_D - V_{TG} characteristics (Fig. 2) justifies the use of acceptor-like interface states in the model. For completeness, Fig. 8 shows the $D_{it,u}$ and $D_{it,g}$ -energy distribution which results in a good match between the modeled and experimental I_D - V_{TG} characteristics. The value of $D_{it,u}$ is consistent with the experimentally extracted uniform component of interface state density associated with the gate-dielectric / channel interface in MoS_2 devices [21], [22].

Based on the understanding derived from the model results in this section, it is expected that process optimization including pre-layer placement surface cleaning or post-layer placement annealing at steps associated with the metal / MoS_2 interface could eliminate this I_D - V_{TG} kink in all subsequently fabricated devices; however, such optimization remains to be investigated.

IV. CONCLUSION

In summary, a phenomenological model is developed which explains particular gate-bias-dependent kinking in ID-VTG characteristics of MoS2 DGFETs, with an ID-VTG kink observed for small negative VBG but not for large negative V_{BG}. The model incorporates a Gaussian distribution of acceptor-like interface states in S/D regions, as can arise from an imperfect metal-semiconductor interface. When R_{SD} \geq R_{CHAN} (V_{BG} less negative), filling of these acceptorlike states as V_{TG} increases creates a kink in I_D-V_{TG} characteristics since R_{SD} is a major component of overall resistance limiting I_D . Conversely, when $R_{SD} << R_{CHAN}$ (V_{BG} more negative), filling of these acceptor-like states as V_{TG} increases does not create an I_D-V_{TG} kink since R_{SD} is not the major component of resistance limiting ID. The model thus highlights 1) metal-semiconductor interface states need be accounted for when modeling MoS₂ FETs, and 2) the importance of forming metal-semiconductor interfaces with low interface state density (e.g., by optimization of cleaning or annealing steps associated with the formation of this specific interface) to avoid I-V kinks which are detrimental for analog applications.

REFERENCES

- A. Kozhakhmetov *et al.*, "Scalable BEOL compatible 2D tungsten diselenide," 2D Mater., vol. 7, no. 1, 2020, Art. no. 015029.
- [2] J. Kwon, C. J. Delker, D. B. Janes, C. T. Harris, and S. R. Das, "Molybdenum contacts to MoS₂ field-effect transistors: Schottky barrier extraction, electrical transport, and low-frequency noise," *Phys. Status Solidi A, Appl. Mater. Sci.*, vol. 217, no. 17, pp. 1–7, 2020.
- [3] Y. Wang *et al.*, "Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors," *Nature*, vol. 568, no. 7750, pp. 70–74, 2019.
- [4] N. B. Guros *et al.*, "Reproducible performance improvements to monolayer MoS₂ transistors through exposed material forming gas annealing," *ACS Appl. Mater. Interfaces*, vol. 11, no. 19, pp. 16683–16692, 2019.
- [5] H. Xu *et al.*, "High-performance wafer-scale MoS₂ transistors toward practical application," *Small*, vol. 14, no. 48, pp. 1–9, 2018.
- [6] T. Roy et al., "Field-effect transistors built from all two-dimensional material components," ACS Nano, vol. 8, no. 6, pp. 6259–6264, 2014.
- [7] G.-H. Lee *et al.*, "Highly stable, dual-gated MoS₂ transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage," *ACS Nano*, vol. 9, no. 7, pp. 7019–7026, 2015.
- [8] H. C. P. Movva *et al.*, "High-mobility holes in dual-gated WSe₂ field-effect transistors," *ACS Nano*, vol. 9, no. 10, pp. 10402–10410, 2015.
- [9] Z. Yang *et al.*, "Performance limits of the self-aligned nanowire topgated MoS₂ transistors," *Adv. Funct. Mater.*, vol. 27, no. 19, pp. 1–7, 2017.
- [10] S. V. Suryavanshi and E. Pop, "S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities," *J. Appl. Phys.*, vol. 120, no. 22, pp. 1–10, 2016.
- [11] G.-S. Kim, S.-H. Kim, J. Park, K. H. Han, J. Kim, and H.-Y. Yu, "Schottky barrier height engineering for electrical contacts of multilayered MoS₂ transistors with reduction of metal-induced gap states," *ACS Nano*, vol. 12, no. 6, pp. 6292–6300, 2018.

- [12] P. Bampoulis, R. Van Bremen, Q. Yao, B. Poelsema, H. J. W. Zandvliet, and K. Sotthewes, "Defect dominated charge transport and fermi level pinning in MoS₂/metal contacts," ACS Appl. Mater. Interfaces, vol. 9, no. 22, pp. 19278–19286, 2017.
- [13] W.-J. Cho, "Influences of trap states at metal/semiconductor interface on metallic source/drain schottky-barrier MOSFET," J. Semicond. Technol. Sci., vol. 7, no. 2, pp. 82–87, 2007.
- [14] H.-J. Lee, K. Abe, H. Y. Noh, J.-S. Kim, H. Lee, and M.-J. Lee, "Analysis of the hump phenomenon and needle defect states formed by driving stress in the oxide semiconductor," *Sci. Rep.*, vol. 9, no. 1, pp. 1–9, 2019.
- [15] S. Bang *et al.*, "Contact engineering of layered MoS₂ via chemically dipping treatments," *Adv. Funct. Mater.*, vol. 30, no. 16, pp. 1–9, 2020.
 [16] J. H. Park *et al.*, "Band structure engineering of layered WSe₂
- [16] J. H. Park *et al.*, "Band structure engineering of layered WSe₂ via one-step chemical functionalization," *ACS Nano*, vol. 13, no. 7, pp. 7545–7555, 2019.
- [17] M. E. Beck and M. C. Hersam, "Emerging opportunities for electrostatic control in atomically thin devices," ACS Nano, vol. 14, no. 6, pp. 6498–6518, 2020.

- [18] M. A. Rodder and A. Dodabalapur, "Symmetry of gating in doublegate MoS₂ FETs," *IEEE Trans. Electron Devices*, vol. 66, no. 10, pp. 4468–4473, Oct. 2019.
- [19] D. Jiménez, "Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors," *Appl. Phys. Lett.*, vol. 101, no. 24, 2012, Art. no. 243501.
- [20] D. B. Scott, W. R. Hunter, and H. Shichijo, "A transmission line model for silicided diffusions: Impact on the performance of VLSI circuits," *IEEE J. Solid-State Circuits*, vol. 75, no. 2, pp. 281–291, Apr. 1982.
- [21] W. Li *et al.*, "Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices," *Nat. Electron.*, vol. 2, no. 12, pp. 563–571, 2019.
- [22] N. Fang, S. Toyoda, T. Taniguchi, K. Watanabe, and K. Nagashio, "Full energy spectra of interface state densities for n- and p-type MoS₂ field-effect transistors," *Adv. Funct. Mater.*, vol. 29, no. 49, pp. 1–9, 2019.