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Abstract Synaptic plasticity is considered to be the bio-
logical substrate of learning and memory. In this document
we review phenomenological models of short-term and long-
term synaptic plasticity, in particular spike-timing dependent
plasticity (STDP). The aim of the document is to provide a
framework for classifying and evaluating different models of
plasticity. We focus on phenomenological synaptic models
that are compatible with integrate-and-fire type neuron
models where each neuron is described by a small number of
variables. This implies that synaptic update rules for short-
term or long-term plasticity can only depend on spike timing
and, potentially, on membrane potential, as well as on the
value of the synaptic weight, or on low-pass filtered (tempo-
rally averaged) versions of the above variables. We examine
the ability of the models to account for experimental data
and to fulfill expectations derived from theoretical considera-
tions. We further discuss their relations to teacher-based rules
(supervised learning) and reward-based rules (reinforcement
learning). All models discussed in this paper are suitable for
large-scale network simulations.

Keywords Spike-timing dependent plasticity · Short term
plasticity · Modeling · Simulation · Learning

A. Morrison · M. Diesmann
Computational Neuroscience Group,
RIKEN Brain Science Institute, Wako City, Japan

M. Diesmann
Bernstein Center for Computational Neuroscience,
Albert-Ludwigs-University, Freiburg, Germany

W. Gerstner (B)
Laboratory of Computational Neuroscience, LCN,
Brain Mind Institute and School of Computer and Communication
Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Station 15, 1015 Lausanne, Switzerland
e-mail: wulfram.gerstner@epfl.ch

1 Introduction

Synaptic changes are thought to be involved in learning,
memory, and cortical plasticity, but the exact relation between
microscopic synaptic properties and macroscopic functional
consequences remains highly controversial. In experimental
preparations, synaptic changes can be induced by specific sti-
mulation conditions defined through presynaptic firing rates
(Bliss and Lomo 1973; Dudek and Bear 1992), postsynaptic
membrane potential (Kelso et al. 1986; Artola et al. 1990),
calcium entry (Lisman 1989; Malenka et al. 1988), or spike
timing (Markram et al. 1997; Bi and Poo 2001).

Whereas detailed biophysical models are crucial to unders-
tand the biological mechanisms underlying synaptic plasti-
city, phenomenological models which describe the synaptic
changes without reference to mechanism are generally more
tractable and less computationally expensive. Consequently,
phenomenological models are of great use in analytical and
simulation studies. In this manuscript, we will examine a
number of phenomenological models with respect to their
compatibility with both experimental and theoretical results.
In all cases, we consider a synapse from a presynaptic neuron
j to a postsynaptic neuron i . The strength of a connection
from j to i is characterized by a weight wi j that quantifies
the amplitude of the postsynaptic response, typically measu-
red as the height of the postsynaptic potential or the slope of
the postsynaptic current at onset. The conditions for synap-
tic changes as well as their directions and magnitudes can
be formulated as ‘synaptic update rules’ or ‘learning rules’.
Such rules can be developed from purely theoretical conside-
rations, or to account for macroscopic phenomena such as the
development of receptive fields, or based on findings from
electrophysiological experiments manipulating firing rate or
voltage. In this manuscript, however, we restrict our scope to
rules which have been developed to account for the results
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of experiments in which synaptic plasticity was observed as
a result of pre- and postsynaptic spikes (for more general
reviews, see Dayan and Abbott 2001; Gerstner and Kistler
2002; Cooper et al. 2004).

For the classification of the synaptic plasticity rules, it
is important to specify the time necessary to induce such a
change as well as the time scale of persistence of the change.
For both short-term and long-term plasticity, changes can
be induced in about 1 s or less. In short-term plasticity (see
Sect. 3), a sequence of eight presynaptic spikes at 20 Hz
evokes successively smaller (depression) or successively lar-
ger (facilitation) responses in the postsynaptic cell. The cha-
racteristic feature of short-term plasticity is that this change
does not persist for more than a few hundred milliseconds:
the amplitude of the postsynaptic response recovers to close-
to-normal values within less than a second (Markram et al.
1998; Thomson et al. 1993).

In contrast to short-term plasticity, long-term potentiation
and depression (LTP and LTD) refer to persistent changes of
synaptic responses (see Sect. 4). Note that the time neces-
sary for induction can still be relatively brief. For example,
in spike-timing-dependent plasticity (Bi and Poo 2001; Sjos-
trom et al. 2001), a change of the synapse can be induced by
60 pairs of pre- and postsynaptic spikes with a repetition fre-
quency of 20 Hz; hence stimulation is over after 3 s. However,
this change can persist for more than one hour. The final stabi-
lization of, say, a potentiated synapse occurs only thereafter,
called the late phase of LTP (Frey and Morris 1997). An addi-
tional aspect is that neurons in the brain must remain within
a sustainable activity regime, despite the changes induced by
LTP and LTD. This is achieved by homeostatic plasticity, an
up- or down-regulation of all synapses converging onto the
same postsynaptic neuron which occurs on the time scale of
minutes to hours (Turrigiano and Nelson 2004).

The phenomenological models discussed in this manu-
script can be classified from a theoretical point of view as
unsupervised learning rules. There is no notion of a task to be
solved, nor is there any notion of the change being ‘good’ or
‘bad’ for the survival of the animal; learning consists simply
of an adaptation of the synapse to the statistics of the activity
of pre- and postsynaptic neurons. This is to be contrasted with
reward-based learning, also called reinforcement learning
(SuttonandBarto1998).Inreward-basedlearningthedirection
and amount of change depends on the presence or absence
of a success signal, that may reflect the current reward or the
difference between expected and received reward (Schultz
et al. 1997). Reward-based learning rules are distinct from
supervised learning since the success signal is considered
as a global and unspecific feedback signal, that often comes
with a delay, whereas in supervised learning the feedback
is much more specific. In the theoretical literature, there
exists a large variety of update rules that can be classified
as supervised, unsupervised or reward based learning rules.

In this paper, we start with a review of some basic
experimental facts that could be relevant for modeling, follo-
wed by a list of theoretical concepts arising from fundamental
notions of learning and memory formation (Sect. 2). We then
review models of short-term plasticity in Sect. 3 and models
of long-term potentiation/depression (LTP/LTD), in particu-
lar the spike-timing dependent form, in Sect. 4. Throughout
the review we discuss spike-based plasticity rules from a
computational perspective, giving implementations that are
appropriate for analytical and simulation approaches. In the
final sections we briefly mention reward driven learning rules
for spiking neurons (Sect. 5) and provide an outlook toward
current challenges for modeling. The relevance of molecular
mechanisms and signaling chains (Lisman 1989; Malenka
et al. 1988) for models of synaptic plasticity (Lisman and
Zhabotinsky 2001; Shouval et al. 2002; Rubin et al. 2005;
Badoual et al. 2006; Graupner and Brunel 2007; Zou and
Destexhe 2007), as well as the importance of the postsynaptic
voltage (Kelso et al. 1986; Artola et al. 1990; Sjostrom et al.
2001), is acknowledged but not further explored.

2 Perspectives on plasticity

Over the last 30 years, a large body of experimental results on
synaptic plasticity has been accumulated. The most impor-
tant discoveries are summarized in Sect. 2.1. Simultaneously,
theoreticians have investigated the role of synaptic plasti-
city in long-term memory, developmental learning and task-
specific learning. The most important concepts arising from
this research are described in Sect. 2.2. Many of the plasti-
city models employed in the theoretical approach were ins-
pired by Hebb’s (1949) postulate that describes how synaptic
connections should be modified:

When an axon of cell A is near enough to excite cell B
or repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one
or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

In classical Hebbian models, this famous postulate is often
rephrased in the sense that modifications in the synaptic
transmission efficacy are driven by correlations in the firing
activity of pre- and postsynaptic neurons. Even though the
idea of learning through correlations dates further back in the
past (James 1890), correlation-based learning is now gene-
rally called Hebbian learning. Most classic theoretical studies
represented the activity of pre- and postsynaptic neurons in
terms of rates, expressed as continuous functions. This has
led to a sound understanding of rate-based Hebbian lear-
ning. However, rate-based Hebbian learning neglects the fine
temporal structure between pre- and postsynaptic spikes.
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Spike-based learning models for temporally structured
input need to take this timing information into account (e.g.
Gerstner et al. 1993) which leads to models of spike-timing
dependent plasticity (STDP) (Gerstner et al. 1996; Kempter
et al. 1999; Roberts 1999; Abbott and Nelson 2000) that can
be seen as a spike-based generalization of Hebbian learning.
The first experimental reports showing both long-term poten-
tiation and depression induced by causal and acausal spike
timings on a time scale of 10 ms were published by Markram
and Sakmann (1995) and Markram et al. (1997), slightly
after the theoretical work, however potentiation induced by
the pairing of EPSPs with postsynaptic depolarization on a
time scale of 100 ms was demonstrated considerably earlier
(Gustafsson et al. 1987). Timing in rate-based Hebbian lear-
ning (although not spike-based) can be traced even further
back in the past (Levy and Steward 1983). From a conceptual
point of view, all spike-based and rate-based Hebbian lear-
ning rules share the feature that only variables that are locally
available at the synapse can be used to change the synaptic
weight. These local elements that can be used to construct
such rules are listed in Sect. 2.3.

2.1 Experimental results

The most important results from experiments on synaptic
plasticity with respect to the modeling of synaptic plasticity
are as follows:

(i) Short-term plasticity depends on the sequence of pre-
synaptic spikes on a time scale of tens of milliseconds
(Markram et al. 1998; Thomson et al. 1993).

(ii) Long-term plasticity is sensitive to the presynaptic
firing rate over a time scale of tens or hundreds of
seconds. For example 900 presynaptic stimulation
pulses at 1 Hz (i.e. 15 min of total stimulation time)
yield a persistent depression of the synapses, whereas
the same number of pulses at 50 Hz yields potentiation
(Dudek and Bear 1992).

(iii) Long-term plasticity depends on the exact timing of
the pre- and postsynaptic spikes on the time scale of
milliseconds (Markram et al. 1997; Bi and Poo 2001).
For example LTP is induced if a presynaptic spike
precedes the postsynaptic one by 10 ms, whereas LTD
occurs if the order of spikes is reversed. In this context
it is important to realize that most experiments are
done with repetitions of 50–60 pairs of spikes whereas
a single pair has no effect.

(iv) STDP depends on the repetition frequency of the pre-
post spike-pairings. In fact, 60 pairings pre-before-
post at low frequency have no effect, whereas the same
number of pairs at a repetition frequency of 20 Hz gives
strong potentiation (Sjostrom et al. 2001).

(v) Plasticity depends on the postsynaptic potential (Kelso
et al. 1986; Artola et al. 1990). If the postsynaptic neu-
ron is clamped to a voltage slightly above rest during
presynaptic spike arrival, the synapses are depressed,
while at higher depolarization the same stimulation
leads to LTP (Artola et al. 1990; Ngezahayo et al.
2000).

(vi) On a slow time scale of hours, homeostatic changes of
synapses may occur in form of rescaling of synaptic
response amplitudes (Turrigiano et al. 1994). These
changes can be useful to stabilize neuronal firing rates.

(vii) Also on the time scale of hours, early phase LTP
is consolidated into late phase LTP. During the
consolidation phase heterosynaptic interactions may
take place, probably as a result of synaptic tagging
and competition for scarce protein supply (Frey and
Morris 1997). Consolidation is thought to lead to long-
term stability of the synapses.

(viii) Distributions of synaptic strength (e.g., the EPSP
amplitudes) in data collected across several pairs of
neurons are reported to be unimodal (Sjostrom et al.
2001). At a first glance, this seems to be at odds with
experimental data suggesting that single synaptic
contacts are in fact binary (Petersen et al. 1998;
O’Connor et al. 2005).

(ix) Synapses do not form a homogeneous group, but dif-
ferent types of synapse have different plasticity pro-
perties (Abbott and Nelson 2000; Thomson and Lamy
2007). In fact, the same presynaptic neuron makes
connections to different types of target neurons with
different plasticity properties for short-term (Markram
et al. 1998) and long-term plasticity (Lu et al. 2007).

Many other experimental features could be added to this list,
e.g., the role of intracellular calcium, of NMDA receptors,
etc., but we will not do so; see Bliss and Collingridge (1993)
and Malenka and Nicoll (1993) for reviews. We emphasize
that, given the heterogeneity of synapses between different
brain areas (plasticity has mainly been studied in visual or
somatosensory cortex and hippocampus) and between dif-
ferent neuron and synapse types, we cannot expect that a
single theoretical model can account for all experimental
facts. In the next section, we will instead consider which theo-
retical principles could guide our search for suitable plasticity
rules.

2.2 Theoretical concepts

Synaptic plasticity is held to be the basis for long-term
memory, developmental learning, and task-specific learning.
From a theoretical point of view, synaptic learning rules
should therefore provide:
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(i) sensitivity to correlations between pre- and postsynap-
tic neurons (Hebb 1949) in order to respond to corre-
lations in the input (Oja 1982). This is the essence of
all unsupervised learning rules

(ii) a mechanism for the development of input selectivity
such as receptive fields (Bienenstock et al. 1982; Miller
et al. 1989), in the presence of strong input features.
This is the essence of developmental learning

(iii) a high degree of stability (Fusi et al. 2005) in the
synaptic memories whilst remaining plastic (Grossberg
1987). This is the essence of memory formation and
memory maintenance

(iv) the ability to take into account the quality of task perfor-
mance mediated by a global success signal (e.g. neuro-
modulators, Schultz et al. 1997). This is the
essence of reinforcement learning (Sutton and Barto
1998).

These items are not necessarily exclusive, and the relative
importance of a given aspect may vary from one subsystem to
the next; for example, synaptic memory maintenance might
be more important for a long-term memory system than for
primary sensory cortices. There is so far no rule which exhi-
bits all of the above properties; moreover, theoretical models
which reproduce some aspects of experimental findings are
generally incompatible with other findings. For example, tra-
ditional learning rules that have been proposed as an explana-
tion of receptive field development (Bienenstock et al. 1982;
Miller et al. 1989), exhibit a spontaneous separation of synap-
tic weights into two groups, even if the input shows no or only
weak correlations. This is difficult to reconcile with experi-
mental results in visual cortex of young rats where a unimo-
dal distribution was found (Sjostrom et al. 2001). Moreover
model neurons that specialize early in development on one
subset of features cannot readily re-adapt later on. On the
other hand, learning rules that do produce a unimodal distri-
bution of synaptic weights (van Rossum et al. 2000; Rubin
et al. 2001; Gütig et al. 2003; Morrison et al. 2007) do not
lead to long-term stability of synaptic changes, as the trajec-
tories of individual synaptic weights perform random walks.
Hence it appears that long-term stability of memory requires
a multimodal synapse distribution (Toyoizumi et al. 2007;
Billings and van Rossum 2008) or additional mechanisms to
stabilize the synaptic weights contributing to the retention of
a memory item.

2.3 Locally computable measures

In a typical spiking network model, a neuron is characteri-
zed by its voltage (subthreshold) and its firing times (spikes/
superthreshold). Mesoscopic measures such as population
activity are not accessible for the individual synapses. As a

Fig. 1 Implementation of plasticity by local variables: each spike
contributes to a trace x(t). The update of the trace is either by a fixed
value (top) or to a fixed value (bottom)

consequence, spike-based plasticity models may be construc-
ted from a combination of the following terms:

(i) spontaneous growth or decay (a non-Hebbian zero-
order term)—this could be a small effect that leads to
slow ‘homeostatic’ scaling of weights in the absence
of any activity

(ii) effects caused by postsynaptic spikes alone indepen-
dent of presynaptic spike arrival (a non-Hebbian first-
order term). This could be an additional realization
of homeostasis: if the postsynaptic neuron spikes at a
high rate over hours, all synapses are down-regulated

(iii) effects caused by presynaptic spikes, independent of
postsynaptic variables (another non-Hebbian first-
order term). This is typically the case for short-term
synaptic plasticity

(iv) effects caused by presynaptic spikes in conjunction
with postsynaptic spikes (STDP) or in conjunction
with postsynaptic depolarization (Hebbian terms)

(v) all of the above effects may depend on the current value
of the synaptic weight. For example, close to a maxi-
mum weight synaptic changes could become smaller.

We note that the changes induced by pre- or postsynaptic
spikes need not necessarily immediately affect the synaptic
weight. Alternatively, they may lead to an update of an inter-
nal hidden variable which evolves with some time constant
τ . Hence, the hidden variable implements a low-pass filter.
For example, let us denote by δ

(
t − t f

)
a spike of a neu-

ron occurring at time t f . Then an internal variable x can be
defined with dynamics:

dx

dt
= − x

τ
+

∑

t f

A δ
(

t − t f
)

, (1)

such that it is updated with each spike by an amount A and
decays between spikes with a time constant τ (see Fig. 1,
top). If the time constant is sufficiently long and A = 1/τ ,
the hidden variable gives an online estimate of the mean firing
rate in the spike train. Other variations in the formulation of
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such a ‘trace’ left by a spike are possible that do not scale
linearly with the rate. First, instead of updating by the same
amount each time, we may induce saturation,

dx

dt
= − x

τ
+

∑

t f

A (1 − x−) δ
(

t − t f
)

. (2)

For A < 1 the amount of increase gets smaller as the variable
x before the update (denoted by x−) approaches its maximal
value of 1. Hence the variable x stays bounded in the range
0 ≤ x ≤ 1. An extreme case of saturation is given by A = 1,
in which case the reset is always to the value of 1, regardless
of the value of x just before. In this case, the value of the trace
x depends only on the time since the most recent spike (see
Fig. 1, bottom). We will see in the following sections that
the idea of traces left by pre- or postsynaptic spikes plays a
fundamental role in algorithmic formulations of short-term
and long-term plasticity. For example, in the case of Hebbian
long-term potentiation, traces left by presynaptic spikes need
to be combined with postsynaptic spikes, whereas short-term
plasticity can be seen as induced by traces of presynaptic
spikes, independent of the state of the postsynaptic neuron.

In principle, voltage dependence could be treated in a simi-
lar fashion, see, e.g., Brader et al. (2007), but we will focus in
the following on learning rules for short-term and long-term
plasticity that use spike timing as the relevant variable for
inducing postsynaptic changes.

3 Short-term plasticity

Biological synapses have an inherent dynamics, which
controls how the pattern of amplitudes of postsynaptic res-
ponses depends on the temporal pattern of the incoming
spike train. Notably, each successive spike can evoke a res-
ponse in the postsynaptic neuron that is smaller (depression)
or larger (facilitation) than the previous one. Its time scale
ranges from 100 ms to about a second. Fast synaptic dyna-
mics is firmly established in biological literature (Markram
et al. 1998; Gupta et al. 2000), and well-accepted models
exist for it (Abbott et al. 1997; Tsodyks et al. 1998). Neuro-
transmitter is released in quanta of fixed size, each evoking
a contribution to the postsynaptic potential of fixed ampli-
tude; this is known as the quantal synaptic potential (Kandel
et al. 2000). The release of an individual quantum is known
to be stochastic, but the details of the mechanism underlying
this stochasticity remain unclear. However, the following two
phenomenological models describe the average response and
are therefore entirely deterministic. Both models use the idea
of a ‘trace’ left by presynaptic spikes (see previous section),
but in slightly different formulations.

3.1 Markram–Tsodyks Model

One well-established phenomenological model for fast
synaptic dynamics was originally formulated for depression
only in Tsodyks and Markram (1997) and later extended to
facilitating dynamics in Markram et al. (1998). Here, we dis-
cuss the formulation of the model presented in Tsodyks et al.
(2000).

If neuron i receives a synapse from neuron j (see Fig. 2b),
the synaptic current (or conductance) in neuron i is wi j yi j (t),
where wi j is the absolute strength and yi j (t) is a scaling factor
that describes the momentary input to neuron i . Dropping the
indices for the rest of this discussion, y evolves according to:

dx

dt
= z

τrec
− u + x − δ

(
t − t f

j

)
(3)

dy

dt
= − y

τI
+ u + x − δ

(
t − t f

j

)
(4)

dz

dt
= y

τI
− z

τrec
(5)

where x ,y and z are the fractions of synaptic resources in the
recovered, active, and inactive states respectively, t f

j gives the
timing of presynaptic spikes, τI is the decay constant of PSCs
and τrec is the recovery time from synaptic depression. These
equations describe the use of synaptic resources by each pre-
synaptic spike—a fraction u+ of the available resources x is
used by each presynaptic spike. The variable u+ therefore
describes the effective use of the synaptic resources of the
synapses, which is analogous to the probability of release in
the model described in (Markram et al. 1998). The notation
x− in the update equations (3) and (4) is intended to remind
the reader that the value of x just before the update is used. In
facilitating synapses, u+ is not a fixed parameter, but derived
from a variable u which is increased with each presynaptic
spike and returns to baseline with a time constant τfac:

du

dt
= − u

τfac
+ U (1 − u−) δ

(
t − t f

j

)
(6)

where the parameter U determines the increase in u with
each spike. We note that the update is equivalent to the satu-
rated trace (2). The notation u− indicates that the value of u
is taken just before the update caused by presynaptic spike
arrival. However, in (3) and (4) we use the value u+ just
after the update of the variable u. If τfac → 0, facilitation
is not exhibited, and u+ is identical to U after each spike,
as is the case with depressing synapses between excitatory
pyramidal neurons (Tsodyks and Markram 1997). The model
described by Eqs. 3–6 gives a very good fit to experimen-
tal results: compare Fig. 2a and c. However, it should be
noted that the values for the model parameters, including the
time constants, are quite heterogeneous, even within a single
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A B C

Fig. 2 Short-term plasticity in experiment and simulation. a Experi-
mental results from rat cortex in slice. The average amplitude of the
evoked postsynaptic potential in neuron i varies with each successive
spike of the presynaptic neuron j . Top panel: depression; bottom panel:
facilitation. b Schematic representation of the neuron configuration.

c Simulation results. The membrane potential of the postsynaptic neuron
i is shown for repeated stimulations mediated by a synapse implemen-
ting the Markram–Tsodyks model. Experimental results adapted from
Markram et al. (1998), simulations performed with NEST (Gewaltig
and Diesmann 2007)

neural circuit (Markram et al. 1998). The biophysical causes
of the heterogeneity are still largely unclear.

We note that not only the usage variable u, but also the
variable y in (4) is essentially a ‘trace’ very similar to the one
defined in the preceding section. To see this we eliminate the
variable x which is possible since the total amount of synaptic
resources is fixed (x + y + z = 1). Hence (4) becomes:

dy

dt
= − y

τI
+ u+(1 − y− − z−) δ

(
t − t f

j

)
,

which is a modification of the saturated trace in (2), the
difference stemming from the fact that an additional ‘inac-
tive’ state has been introduced. Let us now suppose that
the life-time of the ‘inactive’ state is short, i.e. τrec � τI.
Then z decays rapidly back to zero and the above equation
becomes the standard saturated trace. Since x = 1 − y and
dx/dt = −dy/dt , the available synaptic resources have the
dynamics:

dx

dt
= 1 − x

τI
− u + x − δ

(
t − t f

j

)
, (7)

which implies that the variable x is reduced at each presy-
naptic spike and, in the absence of spikes, approaches an
asymptotic value of unity with time constant τI.

The model defined in (3)–(6) can be solved using the tech-
nique of exact integration (Rotter and Diesmann 1999) by
exploiting the following observations. The system of diffe-
rential equations (3)–(6) is essentially linear, because all pro-
ducts of state variables are multiplied with delta functions.
Therefore, between each presynaptic spike the system can
be integrated linearly, and on the occurrence of each spike

the system is reset to a new initial condition. Moreover, the
amount of synaptic resources is conserved - note that the
right-hand sides of (3)–(5) add up to 0—thus z can be elimi-
nated from the system. Let the state of the synapse be given
by:

s =
⎛

⎝
u
x
y

⎞

⎠ ,

with the dynamics of u given by (6), that of y by (4) and that

of x given by dx/dt = (1 − x − y)/τrec − u + x − δ
(

t − t f
j

)
.

Between two successive presynaptic firing times t ′ and t ′′ the
state of the synapse evolves linearly. At t ′′, the state of the
synapse without the effects of the new spike can be calculated
as:

s̃
(
t ′′

) = P�t

(
s
(
t ′
)

1

)
,

where �t = t ′′ − t ′ is the time difference of the two spikes
and (s(t ′), 1)T is a four-dimensional vector. The closed form
expression of the propagator matrix is:

P�t =

⎛

⎜⎜⎜⎜
⎝

e
− �t

τfac 0 0 0

0 e− �t
τrec

τI(e
− �t

τrec −e
− �t

τI )
τI−τrec

1 − e− �t
τrec

0 0 e
− �t

τI 0

⎞

⎟⎟⎟⎟
⎠

.

The state of the synapse at t ′′ is the sum of the linear evolution
since t ′ and the non-linear modification of the state due to
the new spike:
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s
(
t ′′

) = s̃
(
t ′′

) + s0,

where the initial conditions are given by:

s0 =
⎛

⎝
U (1 − ũ)

−x̃ [̃u + U (1 − ũ)]
x̃ [̃u + U (1 − ũ)]

⎞

⎠ .

Note that the updated value of u is used to update the variables
x and y. This reflects the assumption that the effectivity of
resource use is determined not just by the history of the
synapse but also by the arrival of the new presynaptic spike,
thus ensuring a non-zero response to the first spike (Tsodyks
et al. 1998).

In many simulation systems synapse models are constrai-
ned to transmit a synaptic weight rather than a continuous
synaptic current. In such cases, the synaptic weight transmit-
ted to the postsynaptic neuron is wi j y0, assuming the post-
synaptic neuron reproduces the dynamics of the y variable.
It is not necessary for the neuron to reproduce the y dyna-
mics for each individual synapse; due to the linearity of y
between increments, all synapses with the same τI can be
lumped together. This is the implementation used in NEST
(Gewaltig and Diesmann 2007). If the postsynaptic neuron
also implements an exact integration scheme (for a worked
example see Morrison et al. 2007), the dynamics of y can
be incorporated into the propagator of the dynamics of the
postsynaptic neuron.

3.2 Abbott model

A simpler model was developed by Abbott et al. (1997), for
a complete description see Dayan and Abbott (2001). In this
model, synaptic conductance is expressed as gs = gs Ps Prel,
where gs is the maximum conductance, Ps is the fraction of
open postsynaptic channels and Prel is the fraction of presy-
naptic sites releasing transmitter. Ps generates the shape of
the postsynaptic conductance, and will not be further consi-
dered here. Facilitation and depression can both be mode-
led as presynaptic processes that modify Prel. In both cases,
between presynaptic action potentials Prel decays exponen-
tially with a time constant τP back to its ‘resting’ level P0. In
the case of facilitation, a presynaptic spike causes Prel to be
increased by fF (1 − Prel):

dPrel

dt
= P0 − Prel

τP
+ fF (1 − Prel) δ

(
t − t f

j

)
, (8)

where t f
j is the timing of the presynaptic spikes, fF controls

the degree of facilitation (with 0 ≤ fF ≤ 1), and the factor
(1−Prel) prevents the release probability from growing larger
than 1. Note that (8) is just a modification of the saturated
trace in (2) due to a nonzero ‘resting’ level.

In the case of depression, activity at the synapse causes
Prel to be decreased by fD Prel:

dPrel

dt
= P0 − Prel

τP
− fD Prelδ

(
t − t f

j

)
, (9)

where fD controls the degree of depression (with 0 ≤ fD ≤
1), and the factor Prel prevents the release probability from
becoming less than 0. Note that with an equilibrium value
P0 = 1 (which is always possible) this equation is equiva-
lent to the that of the simplified Tsodyks model without the
inactive state (7).

4 Long-term plasticity (STDP)

Experimentally reported STDP curves vary qualitatively
depending on the system and the neuron type—see Abbott
and Nelson (2000) and Bi and Poo (2001) for reviews. It is
therefore obvious that we cannot expect that a single STDP
rule, be it defined in the framework of temporal traces outli-
ned above or in a more biophysical framework, would hold
for all experimental preparations and across all neuron and
synapse types. The first spike-timing experiments were
perform by Markram and Sakmann on layer 5 pyramidal neu-
rons in neocortex (Markram et al. 1997). In the neocortex, the
width of the negative window seems to vary depending on
layer, and inhibitory neurons seem to have a more symmetric
STDP curve. The standard STDP curve that has become an
icon of theoretical research on STDP (Fig. 1 in Bi and Poo
1998) was originally found for pyramidal neurons in rat hip-
pocampal cell culture. Inverted STDP curves have also been
reported, for example in the ELL system in electric fish. This
gives rise to different functional properties (Bell et al. 1997).

4.1 Pair-based STDP rules

Most models of STDP interpret the biological evidence in
terms of a pair-based update rule, i.e. the change in weight of
a synapse depends on the temporal difference between pairs
of pre- and postsynaptic spikes:

�w+ = F+(w) · exp (− |�t | /τ+) if �t > 0
(10)

�w− = −F−(w) · exp (− |�t | /τ−) if �t ≤ 0,

where �t = t f
i − t f

j is the temporal difference between
the post- and the presynaptic spikes, and F±(w) describes
the dependence of the update on the current weight of the
synapse. A pair-based model is fully specified by defining:
(i) the form of F±(w); (ii) which pairs are taken into consi-
deration to perform an update. In order to incorporate STDP
into a neuronal network simulation, it is also necessary to
specify how the synaptic delay is partitioned into axonal and
dendritic contributions.
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Fig. 3 Implementation of pair-based plasticity by local variables. The
spikes of presynaptic neuron j leave a trace x j (t) and the spikes of the
postsynaptic neuron i leave a trace yi (t). The update of the weight wi j
at the moment of a postsynaptic spike is proportional to the momen-
tary value of the trace x j (t) (filled circles). This gives the amount of
potentiation due to pre-before-post pairings. Analogously, the update
of wi j on the occurrence of a presynaptic spike is proportional to the
momentary value of the trace yi (t) (unfilled circles), which gives the
amount of depression due to post-before-pre pairings

A pair-based update rule can be easily implemented with
two local variables: one for a low-pass filtered version of the
presynaptic spike train and one for the postsynaptic spike
train. The concept is illustrated in Fig. 3. Let us consider the
synapse between neuron j and neuron i . Suppose that each
spike from presynaptic neuron j contributes to a trace x j at
the synapse:

dx j

dt
= − x j

τx
+

∑

t f
j

δ
(

t − t f
j

)
, (11)

where t f
j denotes the firing times of the presynaptic neuron.

In other words, the variable is increased by an amount of one
at the moment of a presynaptic spike and decreases exponen-
tially with time constant τx afterwards; see the discussion of
traces in Sect. 2.3. Similarly, each spike from postsynaptic
neuron i contributes to a trace yi :

dyi

dt
= − yi

τy
+

∑

t f
i

δ
(

t − t f
i

)
, (12)

where t f
i denotes the firing times of the postsynaptic neu-

ron. On the occurrence of a presynaptic spike, a decrease of
the weight is induced proportional to the momentary value
of the postsynaptic trace yi . Likewise, on the occurrence of
a postsynaptic spike a potentiation of the weight is induced
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Fig. 4 a Percentage change in peak synaptic amplitude after perfor-
ming the Bi and Poo (1998) spike pairing protocol as a function of
initial synaptic amplitude. Data from Bi and Poo (1998). b As in a, but
the absolute weight change is plotted rather than the percentage weight
change, and a double logarithmic representation is used. Fitted additive
potentiation update, gray dashed curve; fitted multiplicative potentia-
tion update, solid gray curve; fitted power law update (slopes 0.4 and
−1), black curves. Figure adapted from Morrison et al. (2007)

proportional to the trace x j left by previous presynaptic
spikes:

�w+
i j

(
t f
i

)
= F+

(
wi j

)
x j

(
t f
i

)
(13)

�w−
i j

(
t f

j

)
= −F−

(
wi j

)
yi

(
t f

j

)
, (14)

or alternatively:

dwi j

dt
= −F−

(
wi j

)
yi (t) δ

(
t − t f

j

)

+F+
(
wi j

)
x j (t) δ

(
t − t f

i

)
. (15)

A pseudo-code algorithm along these lines for simulating
arbitrary pair-based STDP update rules that is suitable for
distributed computing is given in Morrison et al. (2007).

Depending on the definition of the trace dynamics (accu-
mulating or saturating, see Sect. 2.3), different spike pairing
schemes can be realized. Before we turn to the consequences
of these subtle differences (Sect. 4.1.2) and the implemen-
tation of synaptic delays (Sect. 4.1.3), we now discuss the
choice of the factors F+ (w) and F− (w), i.e. the weight
dependence of STDP.

4.1.1 Weight dependence of STDP

The clearest experimental evidence for the weight depen-
dence of STDP can be found in Bi and Poo (1998), see
Fig. 4a. Unfortunately, it is difficult to interpret this figure
accurately, as the unit of the ordinate is percentage change,
and thus not independent of the value on the abscissa. An
additional confounding factor is that the timing interval used
in the spike pairing protocol varies considerably across the
data. However, even given these drawbacks, the rather flat
dependence of the percentage weight change for depression
(�w/w ≈ constant) suggests a multiplicative dependence

123



Biol Cybern (2008) 98:459–478 467

A B C

Fig. 5 a Histogram showing the equilibrium distribution of synaptic
efficacies using the additive STDP rule with τ = 10 ms, α = 1.05,
λ = 0.005. The upper two histograms show the behavior of a single
synapse. In the top panel the presynaptic neuron is repeatedly stimulated
before the postsynaptic neuron. In the middle panel the timing relation
is reversed. The bottom histogram is the distribution of synaptic effica-
cies in a network of N = 1,000 excitatory cells with Poisson activation

times and mean input rate rin = 10 Hz. These cells converge on a single
conductance-based integrate and fire cell with parameters τm = 20 ms,
τs = 5 ms, Vs = 5, and gs = 0.01. b As in a, but for multiplicative
STDP. Adapted from Rubin et al. (2001). c Equilibrium weight distri-
bution in logarithmic gray scale as a function of the weight dependence
exponent µ for an integrate and fire neuron driven by 1,000 uncorrelated
Poisson processes at 10 Hz. Adapted from Gütig et al. (2003)

of depression on the initial synaptic strength (�w ∝ w). For
potentiation the picture is less clear.

Instead of plotting the percentage weight change, Fig. 4b
shows the absolute weight change in double logarithmic
representation. The exponent of the weight dependence can
now be determined from the slope of a linear fit to the data,
see Morrison et al. (2007) for more details. A multiplicative
update rule (F−(w) ∝ w) is the best fit to the depression
data but a poor fit to the potentiation data. The best fit to the
potentiation data is a power law update (F+(w) ∝ wµ). The
quality of an additive update (F+(w) = A+) fit is between
the power law fit and the multiplicative fit.

4.1.1.1 Unimodal versus bimodal distributions
The choice of update rule can have a large influence on the
equilibrium weight distribution in the case of uncorrelated
Poissonian inputs. This was first demonstrated by Rubin et al.
(2001), see Fig. 5. Here, the behavior of an additive STDP
rule (F+(w) = λ, F−(w) = λα, where λ � 1 is the learning
rate and α an asymmetry parameter) is compared with the
behavior of a multiplicative STDP rule (F+(w) = λ(1 −w),
F−(w) = λαw, with w in the range [0, 1). In the lowest his-
tograms, the equilibrium distributions are shown for a neu-
ron receiving 1,000 uncorrelated Poissonian spike trains at
10 Hz. In the case of additive STDP, a bimodal distribution
develops, whereas in the case of multiplicative STDP, the
equilibrium distribution is unimodal. Experimental evidence
currently suggests that a unimodal distribution of synaptic
strengths is more realistic than the extreme bimodal distri-
bution depicted in Fig. 5a, see, for example, Turrigiano et al.
(1998) and Song et al. (2005). Gütig et al. (2003) exten-
ded this analysis by regarding additive and multiplicative
STDP as the two extrema of a continuous spectrum of rules:

F−(w) = λαwµ, F+(w) = λ(1 − w)µ. A choice of µ = 0
results in additive STDP, a choice of µ = 1 leads to multi-
plicative STDP, and intermediate values result in rules which
have an intermediate dependence on the synaptic strength.

Gütig et al. (2003) further demonstrated that the unimodal
distribution is the rule rather than the exception for update
rules of this form. A bimodal distribution is only produced
by rules with a very weak weight dependence (i.e. µ � 1).
Moreover, the critical value for µ at which bimodal distri-
butions appear decreases as the the effective population size
Nrτ increases, where N is the number of synapses conver-
ging onto the postsynaptic neuron, r is the rate of the input
spike trains in Hz and τ is the time constant of the STDP win-
dow (assumed to be equal for potentiation and depression).
Figure 5c shows the equilibrium distributions as a function
of µ for N = 1,000, r = 10 Hz and τ = 0.02 s. µcrit is
already very low for this effective population size. Because
of the high connectivity of the cortex, we may expect that the
effective population size in vivo would be an order of magni-
tude greater, and so the region of bimodal stability would
be vanishingly small according to this analysis. It is worth
noting that in the case that a sub-group of inputs is correlated,
a bimodal distribution develops for all values of µ, whereby
the synaptic weights of the correlated group become stronger
than those of the uncorrelated group (data not shown—see
Gütig et al. 2003). In contrast to a purely additive rule, the
peaks of the distributions are not at the extrema of the permit-
ted weight range. Moreover, the bimodal distribution does not
persist if the correlations in the input are removed after lear-
ning. A unimodal distribution for uncorrelated Poissonian
inputs and an ability to develop multimodal distributions in
the presence of correlation is also exhibited by the additive/
multiplicative update rule proposed by van Rossum et al.
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(2000): F+(w) = λ, F−(w) = λαw; and by the power
law update rule proposed by Morrison et al. (2007) and also
Standage et al. (2007): F+(w) ∝ λwµ, F−(w) ∝ λαw.

4.1.1.2 Fixed point analysis of STDP update rules
An insight into the similarity of behavior of all of these for-
mulations of STDP with the exception of the additive update
rule can be obtained by considering their fixed point struc-
ture. Equation (10) gives the updates of an individual synap-
tic weight. If the pre- and postsynaptic spike trains are sto-
chastic, the weight updates can be described as a random
walk. Using Fokker–Planck mean field theory, the average
rate of change of synaptic strength corresponds to the drift
of the random walk, which can be expressed in terms of the
correlation between the pre- and postsynaptic spike trains
(Kempter et al. 1999; Kistler and van Hemmen 2000; Kemp-
ter et al. 2001; Rubin et al. 2001; Gütig et al. 2003). Writing

the presynaptic spike train as ρ j = ∑
t f

j
δ
(

t − t f
j

)
and the

postsynaptic spike train as ρi = ∑
t f
i

δ
(

t − t f
i

)
, the mean

rates are νi/j = 〈
ρi/j

〉
. Assuming stationarity, the raw cross-

correlation function is given by

� j i (�t) = 〈
ρ j (t)ρi (t + �t)

〉
t (16)

i.e. averaging over t while keeping the delay �t between
the two spike trains fixed. The synaptic drift is obtained by
integrating the synaptic weight changes given by (10) over
�t weighted by the probability, as expressed by (16), of the
temporal difference �t occurring between a pre- and post-
synaptic spike:

ẇ = −F−(w)

0∫

−∞
d�t K− (�t) � j i (�t)

+F+ (w)

∞∫

0

d�t K+ (�t) � j i (�t) , (17)

where K± (�t) = exp(− |�t | /τ±), the window function of
STDP.

As we are only interested in the qualitative structure of
fixed points rather than their exact location, we will simplify
the analysis by assuming that the pre- and postsynaptic spike
trains are independent Poisson processes with the same rate,
i.e. 〈ρi 〉 = 〈

ρ j
〉 = ν and � j i (�t) = ν2. We can therefore

write:

ẇ = −F−(w)τ−ν2 + F+ (w) τ+ν2.

In general, the rate ν of a neuron is dependent on the weight
of its incoming synapses and so the right side of this equation
cannot be easily determined. However, we can reformulate
the equation as:

Fig. 6 The fixed point structure of STDP: The synaptic drift ẇ scaled
by the square of the pre- and postsynaptic firing rate ν is plotted as a
function of the synaptic weight w for various formulations of STDP.
Model parameters chosen for visual clarity as only the qualitative beha-
vior is relevant. Additive, gray dash-dotted curve; multiplicative, gray
dashed curve; van Rossum, gray curve; intermediate Gütig, black curve;
power law, dashed black curve

ẇ

ν2 = −F−(w)τ− + F+ (w) τ+. (18)

The fixed points of the synaptic dynamics are given by defi-
nition by ẇ = 0, and therefore also by ẇ/ν2 = 0. Figure 6
plots (18) for a range of w and a variety of STDP models. In
all cases except for additive STDP the curves pass through
ẇ/ν2 = 0 at an intermediate value of w and with a nega-
tive slope, i.e. for weights below the fixed point there is a
net potentiating effect, and for weights above the fixed point
there is a net depressing effect, resulting in a stable fixed
point which is not at an extremum of the weight range. In the
case of additive STDP there is no such fixed point, stable or
otherwise.

The behavior of the additive model can be assessed more
accurately by relaxing the assumption that pre- and postsy-
naptic spike trains can be described by independent Poisson
processes. Instead, we consider a very simple neuron model
in which the output spike train is generated by an inhomo-
geneous Poisson process with rate νi (ui ) = [α ui − ν0]+
with scaling factor α, threshold ν0 and membrane poten-

tial ui (t) = ∑
j wi jε

(
t − t f

j

)
, where ε(t) denotes the time

course of an excitatory postsynaptic potential generated by a
presynaptic spike arrival. The notation [x]+ denotes a piece-
wise linear function: [x]+ = x for x > 0 and zero otherwise.
In the following we assume that the argument of our piece-
wise linear function is positive so that we can suppress the
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square brackets. Assuming once again that all input spike
trains are Poisson processes with rate ν, the expected firing
rate of the postsynaptic neuron is simply:

νi = −ν0 + ανε̄
∑

j

wi j ,

where ε̄ = ∫
ε(s)ds, the total area under an excitatory post-

synaptic potential. The conditional rate of firing given an
input spike at time t f

j is given by

νi (t) = −ν0 + ανε̄
∑

j

wi j + αwi jε
(

t − t f
j

)
,

thus the postsynaptic spike train is correlated with the presy-
naptic spike trains. This term shows up as additional spike-
spike correlations in the correlation function � j i . Hence, in
addition to the terms in (18), the synaptic dynamics contains
a term of the form ανw F+(w)

∫
K+(s)ε(s)ds that is linear

rather than quadratic in the presynaptic firing rate (Kempter
et al. 1999, 2001). With this additional term, (18) becomes

ẇ

ν
= νi [−F−(w)τ− + F+ (w) τ+]

+αwF+(w)

∫
K+(s)ε(s)ds. (19)

For the multiplicative models the argument hardly changes,
but for the additive model it does. For C = F−(w)τ− −
F+ (w) τ+ > 0, the additive model has a fixed point which
we find by setting the right-hand side of (19) to zero,i.e.

0 = −Cνi + αw Css,

where Css = F+(w)
∫

K+(s)ε(s)ds denotes the contribu-
tion of the spike–spike correlations. In contrast to the curves
in Fig. 6, the slope at the zero-crossing is now positive, indi-
cating instability of the fixed point. This instability leads to
the formation of a bimodal weight distribution that is typi-
cal for the additive model. Despite the instability of indivi-
dual weights (which move to their upper or lower bounds),
the mean firing rate of the neuron is stabilized (Kempter
et al. 2001). To see this we consider the evolution of the
output rate dνi/dt = ανε̄

∑
j dwi j/dt . Since dwi j/dt =

−Cνiν + ανwi j Css and ανε̄
∑

j wi j = νi + ν0, we can
write:

dνi

dt
= −αν2ε̄NCνi + αν (νi + ν0) Css,

where N is the number of synapses converging on the post-
synaptic neuron. Thus we have a dynamics of the form:

dνi

dt
= − (νi − νFP)

τν

with a fixed point given by:

νFP = Cssν0

NCνε̄ − Css
(20)

and a time constant τν = (αν [NCνε̄ − Css])−1. Note that
stabilization at a positive rate requires that ν0 > 0 and C > 0.
The first condition states that, in the absence of any input, the
neuron does not show any spontaneous activity, and this is
trivially true for all standard neuron models, including the
integrate-and-fire model. The latter condition is equivalent
to the requirement that the integral over the STDP curve be
negative:

∫
ds[F+(w)K+(s) − F−(w)K−(s)] = −C < 0.

Exact conditions for stabilization of output rates are given
in Kempter et al. (2001). Since for constant input rates ν we
have νi = ν0 + ανε̄

∑
j wi j , stabilization of the output rate

implies normalization of the summed weights. Hence STDP
can lead to a control of total presynaptic input and of the
postsynaptic firing rate – a feature that is usually associated
with homeostatic processes rather than Hebbian learning per
se (Kempter et al. 1999, 2001; Song et al. 2000).

Note that the existence of a fixed point and its stability
does not crucially depend on the presence of soft or hard
bounds on the weight. Equations (18) and (19) can equate to
zero for hard-bounded or or unbounded rules.

4.1.1.3 Consequences for network stability
Results on the consequences of STDP in large-scale net-
works are few and far between, and tend to contradict each
other. Part of the reason for the lack of simulation papers
on this important subject is the fact that simulating such
networks consumes huge amounts of memory, is computa-
tionally expensive, and potentially requires extremely long
simulation times to overcome transients in the weight dyna-
mics which can be of the order of hundreds of seconds of
biological time. A lack of theoretical papers on the subject
can be explained by the complexity of the interactions bet-
ween the activity dynamics of the network and the weight
dynamics, although some progress is being made in this area
(Burkitt et al. 2007).

It was recently shown that power law STDP is compa-
tible with balanced random networks in the asynchronous-
irregular regime (Morrison et al. 2007), resulting in a
unimodal distribution of weights and no self-organization
of structure. This result was verified for Gütig et al. (2003)
STDP for an intermediate value of the exponent (µ = 0.4).
Although it has not yet been possible to perform systematic
tests, it seems likely that all the formulations of STDP with
the fixed point structure discussed in Sect. 4.1.1.1 would give
qualitatively similar behavior. The results for additive STDP
seem to be more contradictory. Izhikevich et al. (2004) repor-
ted self-organization of neuronal groups, whereas the chief
feature of the networks investigated by Iglesias et al. (2005)
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seems to be extensive withering of the synaptic connections.
In the former case, it is the existence of many strong synapses
which defines the network, in the latter, the presence of many
weak ones. This discrepancy may be attributable to different
choices for the effective stabilized firing rates (20) in com-
bination with different choices of delays in the network, see
Sect. 4.1.3.

4.1.2 Spike pairing scheme

There are many possible ways to pair pre- and postsynaptic
spikes to generate a weight update in an STDP model. In an
all-to-all scheme, each presynaptic spike is paired with all
previous postsynaptic spikes to effect depression, and each
postsynaptic spike is paired with all previous presynaptic
spikes to effect potentiation. This is the interpretation used
for the fixed point analysis in Sect. 4.1.1.1 and can be imple-
mented using local variables as demonstrated in Sect. 4.1. In
a nearest neighbor scheme, only the closest interactions are
considered. However, there are multiple possible interpreta-
tions of nearest neighbor, as can be seen in Fig. 7. Nearest
neighbor schemes can also be realized in terms of appropria-
tely chosen local variables. The symmetric nearest-neighbor
scheme shown in Fig. 7a can be implemented by pre- and
postsynaptic traces that reset to 1, rather than incrementing
by 1 as is the case for the all-to-all scheme. In the case of the
presynaptic centered interpretation depicted in Fig. 7B, the
postsynaptic trace resets to 1 as in the previous example, but
the presynaptic trace must be implemented with a slightly
more complicated dynamics:

dx j

dt
=− x j

τx
+

∑

t f
j

(
1 − x−

j

)
δ
(

t − t f
j

)
−

∑

t f
i

x−
j δ

(
t − t f

i

)
,

where t f
j and t f

i denote the firing times of the pre- and post-

synaptic neurons respectively, and x−
j gives the value of x j

just before the update. In other words, the trace is reset to
1 on the occurrence of a presynaptic spike and reset to 0 on
the occurrence of a postsynaptic spike. Similarly, the reduced
symmetric interpretation shown in Fig. 7c can be implemen-
ted by pre- and postsynaptic ‘doubly resetting’ traces of this
form.

It is sometimes assumed that the scheme used makes no
difference, as the ISI of cortical network models is typi-
cally an order of magnitude larger than the time constant
of the STDP window. However, this is not generally true
(Kempter et al. 2001; Izhikevich and Desai 2003; Morrison
et al. 2007). For a review of a wide variety of schemes and
their consequences, particularly with respect to selectivity
of higher-frequency inputs, see Burkitt et al. (2004). Expe-
rimental results on this issue suggest limited interaction bet-
ween pairs of spikes. Sjostrom et al. (2001) found that their

A

B

C

Fig. 7 Examples of nearest neighbor spike pairing schemes for a pre-
synaptic neuron j and a postsynaptic neuron i . In each case, the dark
gray indicate which pairings contribute toward depression of a synapse,
and light gray indicate which pairings contribute toward potentiation.
a Symmetric interpretation: each presynaptic spike is paired with the
last postsynaptic spike, and each postsynaptic spike is paired with the
last presynaptic spike (Morrison et al. 2007). b Presynaptic centered
interpretation: each presynaptic spike is paired with the last postsynap-
tic spike and the next postsynaptic spike (Izhikevich and Desai 2003;
Burkitt et al. 2004: Model II). c Reduced symmetric interpretation: as
in c but only for immediate pairings (Burkitt et al. 2004: Model IV, also
implemented in hardware by Schemmel et al. 2006)

data was best fit by a nearest neighbor interaction similar to
Fig. 7c but giving precedence to LTP, i.e. a postsynaptic spike
can only contribute to a post-before-pre pairing if it has not
already contributed to a pre-before-post pairing. However,
this result may also be due to the limitations of pair-based
STDP models to explain the experimentally observed fre-
quency dependence, see Sect. 4.2. More recently, Froemke
et al. (2006) demonstrated that the amount of LTD was not
dependent on the number of presynaptic spikes following a
postsynaptic spike, suggesting nearest-neighbor interactions
for depression as in Fig. 7c. However, the amount of LTP was
negatively correlated with the number of presynaptic spikes
preceding a postsynaptic spike. This suggests that multiple
spike pairings contribute to LTP, but not in the linear fashion
of the all-to-all scheme, which would predict a positive corre-
lation between the number of spikes and the amount of LTP.
Again, these results are good evidence for the limitations of
pair-based STDP rules.

4.1.3 Synaptic delays

Up until now we have referred to �t as the temporal diffe-
rence between a pre- and a postsynaptic spike, i.e. �t = t f

i −
t f

j . However, many classic STDP experiments are expres-
sed in terms of the temporal difference between the start of
the EPSP and the postsynaptic spike (Markram et al. 1997;
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A B C

Fig. 8 Different partitions of synaptic delays and the resulting shift of
the raw cross-correlation function as perceived at the synapse (black
curves) with respect to the raw cross-correlation function as percei-
ved at the soma (gray curves). The cross-correlation functions shown
are purely illustrative and do not result from a specific network model.
a All synaptic delay is axonal, backpropagation delay is 0. The synaptic
raw cross-correlation function is shifted to the left by d. b The axonal

delay is the same as the backpropagation delay. The synaptic raw cross-
correlation function is identical to the somatic raw cross-correlation
function. c All synaptic delay is dendritic, axonal delay is 0. The synap-
tic raw cross-correlation function is shifted to the right by d. See Senn
et al. (2002) for a more detailed treatment of the partitioning of synaptic
delays

Bi and Poo 1998). In fact, when a presynaptic spike is gene-
rated at t f

j , it must first travel down the axon before arri-

ving at the synapse, thus arriving at t s
j = t f

j + dA, where
dA is the axonal propagation delay. Similarly, a postsynaptic
spike at t f

i must backpropagate through the dendrite before

arriving at the synapse at t s
i = t f

i + dBP, where dBP is the
backpropagation delay. Consequently, the relevant temporal
difference for STDP update rules is �t s = t s

i − t s
j as ini-

tially suggested by Gerstner et al. (1993) and Debanne et al.
(1998). Senn et al. (2002) showed that under fairly general
conditions, STDP may cause adaptation in the presynaptic
and postsynaptic delays in order to optimize the effect of
the presynaptic spike on the postsynaptic neuron. In order
to calculate the synaptic drift as in (17), we therefore need
to integrate the synaptic weight changes over �t s , weighted
by the raw cross-correlation function at the synapse. With
� j i (�t) = � j i (�t s + (dA − dBP)), we reformulate (17) as:

ẇ = −F−(w)

0∫

−∞
d�t s K−

(
�t s) � j i

(
�t s + (dA − dBP)

)

+F+ (w)

∞∫

0

d�t s K+
(
�t s)� j i

(
�t s + (dA − dBP)

)
.

(21)

In the case of independent Poisson processes as in
Sect. 4.1.1.1, the shift of the raw cross-correlation function
by (dA − dBP) has no effect, as � j i (�t) is constant. Gene-
rally, however, this is not the case. For example, networks of
neurons, both in experiment and simulation, typically exhi-
bit oscillations with a period several times larger than the

synaptic delay, even when individual spike trains are irregular
(see Kriener et al. 2008, for discussion). If the axonal delay is
the same as the backpropagation delay, i.e. dA = dBP = d/2,
where d is the total transmission delay of the spike, the raw
cross-correlation function at the synapse is the same as the
raw cross-correlation at the soma:

�s
ji

(
�t s) = � j i

(
�t s + (dA − dBP)

) = � j i (�t) .

This situation is depicted in Fig. 8b. Let w0 be the synap-
tic weight for which the synaptic drift given in (21) is 0,
i.e. the fixed point of the synaptic dynamics for the cross-
correlation shown. If the axonal delay is larger than the back-
propagation delay, this results in a shift of the raw cross-
correlation function to the left. This is shown in Fig. 8a for
the extreme case of dA = d, dBP = 0, resulting in a net shift
of d. This increases the value of the first integral in (21) and
decreases the second integral, such that ẇ < 0 at w0. Conver-
sely, if the axonal delay is smaller than the backpropagation
delay, the raw cross-correlation function is shifted to the right
(Fig. 8c, for the extreme case of dA = 0, dBP = d). This
decreases the value of the first integral in (21) and increases
the second integral, such that ẇ > 0 at w0. Therefore, a
given network dynamics may cause systematic depression,
systematic potentiation or no systematic change at all to the
synaptic weights, depending on the partition of the synap-
tic delay into axonal and dendritic contributions. Systematic
synaptic weight changes can in turn result in qualitatively
different network behavior. For example, in Morrison et al.
(2007) small systematic biases in the synaptic weight dyna-
mics were applied to a network with an equilibrium charac-
terized by a unimodal weight distribution and medium rate
(< 10 Hz) asynchronous irregular activity dynamics. Here, a
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small systematic depression led to a lower weight, lower rate
equilibrium also in the asynchronous irregular regime, whe-
reas a systematic potentiation led to a sudden transition out
of the asynchronous irregular regime: the activity was cha-
racterized by strongly patterned high-rate peaks of activity
interspersed with silence, and the unimodal weight distribu-
tion splintered into several peaks.

4.2 Beyond pair effects

There is considerable evidence that the pair-based rules dis-
cussed above cannot give a full account of STDP. Specifi-
cally, they reproduce neither the dependence of plasticity on
the repetition frequency of pairs of spikes in an experimen-
tal protocol, nor the results of recent triplet and quadruplet
experiments.

STDP experiments are usually carried out with about 60
pairs of spikes. The temporal distance of the spikes in the
pair is of the order of a few to tens of milliseconds, whereas
the temporal distance between the pairs is of the order of
hundreds of milliseconds to seconds. In the case of a faci-
litation protocol (i.e. pre-before-post), standard pair-based
STDP models predict that if the repetition frequency is
increased, the strength of the depressing interaction (i.e. post-
before-pre) becomes greater, leading to less net potentiation.
This prediction is independent of whether the spike pairing
scheme is all-to-all or nearest neighbor (see Sect. 4.1.2).
However, experiments show that increasing the repetition fre-
quency leads to an increase in potentiation (Sjostrom et al.
2001). Other recent experiments employed multiple-spike
protocols, such as repeated presentations of symmetric tri-
plets of the form pre-post-pre and post-pre-post (Bi and Wang
2002; Froemke and Dan 2002; Wang et al. 2005; Froemke
et al. 2006). Standard pair-based models predict that the two
sequences should give essentially the same results, as they
each contain one pre-post pair and one post-pre pair. Expe-
rimentally, quite different results are observed.

Here we review two examples of simple models which
account for these experimental findings. For other models
which also reproduce frequency dependence or multiple-
spike protocol results, see Abarbanel et al. (2002), Senn
(2002) and Appleby and Elliott (2005).

4.2.1 Triplet model

One simple approach to modeling STDP which addresses
these issues is the triplet rule developed by Pfister and
Gerstner (2006). This model is based on sets of three spikes
(one presynaptic and two postsynaptic). As in the case of
pair-based rules, the triplet rule can be easily implemented
with local variables as follows. Similarly to pair-based rules,
each spike from presynaptic neuron j contributes to a trace
x j at the synapse:

Fig. 9 Implementation of the triplet rule by local variables. The spikes
of presynaptic neuron j contribute to a trace x j (t), the spikes of postsy-
naptic neuron i contribute to a fast trace y1

i (t) and a slow trace y2
i (t). The

update of the weight wi j at the moment of a presynaptic spike is propor-
tional to the momentary value of the fast trace y1

i (t) (unfilled circles),
as in the pair-based model (see Fig. 3). The update of the weight wi j at
the moment of a postsynaptic spike is proportional to the momentary
value of the trace x j (t) (black filled circles) and the value of the slow
trace y2

i (t) just before the spike (gray filled circles)

dx j

dt
= − x j

τx
+

∑

t f
j

δ
(

t − t f
j

)
,

where t f
j denotes the firing times of the presynaptic neuron.

Unlike pair-based rules, each spike from postsynaptic neuron
i contributes to a fast trace y1

i and a slow trace y2
i at the

synapse:

dy1
i

dt
= − y1

i

τ1
+ δ

(
t − t f

i

)

dy2
i

dt
= − y2

i

τ2
+ δ

(
t − t f

i

)
,

where τ1 < τ2, see Fig. 9. LTD is induced as in the standard
STDP pair model given in (13), i.e. the weight change is
proportional to the value of the fast postsynaptic trace y1

i
evaluated at the moment of a presynaptic spike. The new
feature of the rule is that LTP is induced by a triplet effect: the
weight change is proportional to the value of the presynaptic
trace x j evaluated at the moment of a postsynaptic spike
and also to the slow postsynaptic trace y2

i remaining from
previous postsynaptic spikes:

�w+
i j

(
t f
i

)
= F+

(
wi j

)
x j

(
t f
i

)
y2

i

(
t f −
i

)

where t f −
i indicates that the function y2

i is to be evaluated

before it is incremented due to the postsynaptic spike at t f
i .
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Fig. 10 The triplet rule reproduces the finding that increased frequency
of pair repetition leads to increased potentiation in visual cortex pyra-
midal neurons. Data from Sjostrom et al. (2001), figure adapted from
Pfister and Gerstner (2006)

Analogously to pair-based models, the triplet rule can also
be implemented with nearest-neighbor rather than all-to-all
spike pairings by an appropriate choice of trace dynamics,
see Sect. 4.1.2.

The triplet rule reproduces experimental data from visual
cortical slices (Sjostrom et al. 2001) that increasing the repe-
tition frequency in the STDP pairing protocol increases net
potentiation (Fig. 10). It also gives a good fit to experiments
based on triplet protocols in hippocampal culture (Wang et al.
2005). The main functional advantage of such a triplet lear-
ning rule is that it can be mapped to a Bienenstock–Cooper–
Munro learning rule (Bienenstock et al. 1982): if we assume
that the pre- and postsynaptic spike trains are governed by
Poisson statistics, the triplet rule exhibits depression for low
postsynaptic firing rates and potentiation for high postsy-
naptic firing rates. If we further assume that the triplet term
in the learning rule depends on the mean postsynaptic fre-
quency, a sliding threshold between potentiation and depres-
sion can be defined. In this way, the learning rule matches
the requirements of the BCM theory and inherits the pro-
perties of the BCM learning rule such as input selectivity.
From BCM properties, we can immediately conclude that
the model should be useful for receptive field development.
Note that earlier efforts to show that STDP maps to the BCM
model (Izhikevich and Desai 2003; Senn et al. 2000) demons-
trated neither an exact mapping nor a sliding threshold. The

exact relationship between the above triplet model and other
models is discussed in Pfister and Gerstner (2006).

4.2.2 Suppression model

An alternative model to address the inability of standard pair-
based models to account for data obtained from triplet and
quadruplet spike protocols was developed by Froemke and
Dan (2002). They observed that in triplet protocols of the
form pre-post-pre, as long as the intervals between the spikes
were reasonably short (< 15 ms), the timing of the pre–post
pair was a better predictor for the change in the synaptic
strength than either the timing of the post–pre pair or of both
timings taken together. Similarly, in post–pre–post protocols,
the timing of the first post-pre pairing was the best predic-
tor for the change of synaptic strength. On the basis of this
observation, they proposed a model in which the synaptic
weight change is not just dependent on the timing of a spike
pair, but also on the efficacy of the spikes. Each spike of pre-
synaptic neuron j sets the presynaptic spike efficacy ε j to 0
whereafter it recovers exponentially to 1 with a time constant
τ j . The efficacy of the nth presynaptic spike is given by:

εn
j = 1 − exp

(
−

(
tn

j − tn−1
j

)
/τ j

)
,

where tn
j denotes the nth spike of neuron j . In other words,

the efficacy of a spike is suppressed by the proximity of a
previous spike. Similarly, the postsynaptic spike efficacy is
reset to 0 by each spike of postsynaptic neuron i , recovering
exponentially to 1 with time constant τi . The model can be
implemented with local variables as follows. Each presynap-
tic spike contributes to an efficacy trace ε j (t) with dynamics:

dε j

dt
= −ε j − 1

τ j
−

∑

t f
j

ε−
j δ

(
t − t f

j

)
,

where ε−
j denotes the value of ε j just before the update. The

standard presynaptic trace x j given in (11) is adapted to take
the spike efficacy into account:

dx j

dt
= − x j

τx
+

∑

t f
j

ε−
j δ

(
t − t f

j

)
,

i.e. each presynaptic spike increments x j by the value of the
spike efficacy before the update. Similarly, each postsynaptic
spike contributes to an efficacy trace εi (t) with dynamics:

dεi

dt
= −εi − 1

τi
−

∑

t f
i

ε−
i δ

(
t − t f

i

)
,
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and a postsynaptic trace yi with increments weighted by the
postsynaptic spike efficacy:

dyi

dt
= − yi

τy
+

∑

t f
i

ε−
i δ

(
t − t f

i

)
.

The weight updates on the occurrence of a post- or presy-
naptic spike are therefore given by:

�w+
i j

(
t f
i

)
= F+

(
wi j

)
x j

(
t f
i

)
ε−

i

(
t f
i

)

�w−
i j

(
t f

j

)
= −F−

(
wi j

)
yi

(
t f

j

)
ε−

j

(
t f

j

)
.

This model gives a good fit to triplet and quadruplet protocols
in visual cortex slice, and also gives a much better prediction
for synaptic modification due to natural spike trains (Froemke
and Dan 2002). However, it does not predict the increase
of LTP with the repetition frequency observed by Sjostrom
et al. (2001). A revised version of the model (Froemke et al.
2006) also accounts for the switch of LTD to LTP at high
frequencies by modifying the efficacy functions.

4.3 Voltage dependence

Traditional LTP/LTD experiments employ the following
induction paradigm: the postsynaptic neuron is held at a
fixed depolarization while one or several presynaptic neu-
rons are activated. Often a presynaptic pathway is stimula-
ted extracellularly, so that several presynaptic neurons are
activated. Depending on the level of the postsynaptic mem-
brane potential, the activated synapses increase their effi-
cacy while other non-activated synapses do not change their
weight (Artola et al. 1990; Artola and Singer 1993). More
recently, depolarization has also been combined with STDP
experiments. In particular, Sjostrom et al. (2004) showed a
dependence of synaptic weight changes on the synaptic mem-
brane potential just before a postsynaptic spike.

There is an ongoing discussion whether the voltage
dependence is more fundamental than the dependence on
postsynaptic spiking. Indeed, voltage dependence alone can
generate STDP-like behavior (Brader et al. 2007), as the
membrane potential behaves in a characteristic way in the
vicinity of a spike (high shortly before a spike, and low
shortly after). Alternatively, a dependence on the slope of
the postsynaptic membrane potential has also been shown
to reproduce the characteristic STDP weight change curve
(Saudargiene et al. 2003). The voltage effects caused by back-
propagating spikes is implicitly contained in the mechanis-
tic formulation of STDP models outlined above. In particu-
lar, the fast postsynaptic trace y1 in the above triplet model
could be seen as an approximation of a backpropagating
action potential. However, the converse is not true: a pure
STDP rule does not automatically generate a voltage depen-
dence. Moreover, synaptic effects caused by subthreshold

depolarization in the absence of postsynaptic firing cannot
be modeled by standard STDP or triplet models.

4.4 Induction versus maintenance

We stress that all the above models concern induction of
potentiation and depression, but not their maintenance. The
induction of LTP may take only a few seconds: for example,
stimulation with 50 pairs of pre- and postsynaptic spikes
given at 20 Hz takes less than 3 s. However, afterwards the
synapse takes 60 min or more to consolidate these changes,
and this process may also be interrupted (Frey and Morris
1997). During this time synapses are ‘tagged’, that is, they
are ready for consolidation. Consolidation is thought to rely
on a different molecular mechanism than that of induction.
Simply speaking, gene transcription is necessary to trigger
the building of new proteins that increase the synaptic effi-
cacy.

4.4.1 Functional consequences

Long-term stability of synapses is necessary to retain memo-
ries that have been learned, despite ongoing activity of presy-
naptic neurons. A simple possibility used in many models is
that plasticity is simply switched off once the neuron has lear-
ned what it should. This approach makes sense in the context
of reward-based learning: the learning rate goes to zero once
the actual reward equals the expected reward and learning
stops automatically (see Sect. 5.2). It also makes sense in the
framework of supervised learning (see Sect. 5.1). Learning is
normally driven by the difference between desired output and
actual output. However, in the context of unsupervised lear-
ning it is inconsistent to switch off the dynamics. Neverthe-
less, receptive field properties should be retained for a fairly
long time even if the stimulation characteristic changes.

4.4.2 Bistability model

A simple model of maintenance has been proposed by Fusi
et al. (2000). The basis of the model is a hidden variable that
has an unstable fixed point (threshold). If the variable has
a value above threshold it converges towards 1; otherwise
towards 0. To stay within the framework of the previous sec-
tions, let us suppose that the weight w is calculated by one
of the STDP or short-term plasticity models. Maintenance is
implemented by adding on top of the STDP dynamics a slow
bistable dynamics (Gerstner and Kistler 2002):

dw

dt
= α(w) = −w (1 − w)(wθ − w)/τα,

where τα is a time constant of consolidation in the range
of several minutes of biological time. The result is that in
the absence of any stimulation, individual synapses evolve
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towards binary values of 0 or 1 which are intrinsically stable
fixed points of the slow dynamics. As a result, rather strong
stimuli are necessary to perturb the synaptic dynamics.

4.4.3 Biological evidence

Whether single synapses themselves are binary or continuous
is a matter of intense debate. Some experiments have sugges-
ted that synapses are binary (Petersen et al. 1998; O’Connor
et al. 2005). However, this would seem to result in a bistable
distribution of weights which is at odds with the unimodal
distribution reported by other studies (Turrigiano et al. 1998;
Sjostrom et al. 2001; Song et al. 2005), and with the finding
that the magnitude of LTP/LTD increases with the number of
spike pairs in a protocol until saturation is reached (Froemke
et al. 2006).

Some possibilities to reconcile these findings include: (i)
since pairs of neurons form several contacts with each other,
it is likely that in standard plasticity experiments several
synapses are measured at the same time; (ii) LTP and STDP
results are typically reported as pooled experiments over
several pairs of neurons. Under the assumption that the upper
bound is not the same for all synapses, a broad distribution
could result; (iii) both unimodal distribution and bimodal dis-
tributions could be stable. Untrained neurons would show a
unimodal distribution whereas neurons that have learned to
respond to a specific pattern would develop a bimodal dis-
tribution of synaptic weights (Toyoizumi et al. 2007); (iv)
all synapses are binary, but the efficacy of the ‘strong’ state
is subject to short-term plasticity and homeostasis; (v) some
synapses are binary and some are not. Potentially a combi-
nation of several of these possibilities must be considered in
order to explain the experimental findings.

5 Supervised and reinforcement learning

All the models considered in Sect. 4 are unsupervised ‘Heb-
bian’ rules: changes are triggered as a result of combined
action of pre- and postsynaptic neurons. The postsynaptic
neuron itself is driven by its input arising from presynaptic
neurons. There is no notion of whether or not the postsynaptic
output is ‘good’ or ‘useful’. If, however, the local variables
are combined with global teacher or reinforcement signals,
completely different learning paradigms are possible.

5.1 Supervised learning

Supervised plasticity has been demonstrated experimentally
by Fregnac and Schulz (2006): the behavior of a (cortical)
neuron can be changed by pairing some class of stimuli
with an (artificial) increase of neural activity while pairing
another class of stimuli with a decrease of responsiveness.

Theoretical studies have demonstrated that a teacher-forced
STDP approach can be used to learn precise spike times
(Legenstein et al. 2005; Pfister et al. 2006). In a natural
situation, this would mean that a few strong neural inputs
can drive the neuron and therefore drive learning of other
inputs. If these strong inputs are controlled in a task-specific
way, they act as a teacher for the postsynaptic neuron. For a
practical realization of this idea see Brader et al. (2007).

5.2 Reinforcement learning

If neuronal activity leads to actions, feedback may arise from
the environment in forms of reward (a piece of pizza) or
punishment (burnt fingers). It is thought that success of an
action is signaled by neuromodulators—a top candidate is
dopamine (Schultz et al. 1997). Dopamine signals are clo-
sely related to a quantity in reinforcement learning known as
δ, that can be interpreted as the difference between the recei-
ved reward and the expected reward. Here ‘reward’ means
current or future rewards that can be reliably predicted. In
reinforcement learning, the difference between actual and
expected rewards plays an important role for the update of
weights in Q-learning, SARSA, and related variants of tem-
poral difference learning (Sutton and Barto 1998).

Under a suitable interpretation of the role of pre- and post-
synaptic neurons, the weight update rules can be derived from
an optimality framework (Pfister et al. 2006). The learning
rule can be interpreted as a Hebbian learning based on joined
pre- and postsynaptic activity, but conditioned on the pre-
sence of a global reward signal. Variants of such reinforce-
ment rules for spiking neurons have been developed (Seung
2003; Pfister et al. 2006; Izhikevich 2007; Florian 2007).

6 Discussion

Pair-based STDP models can be decomposed into three
aspects: weight dependence, spike-pairing scheme and delay
partition (Sect. 4.1). We have shown that all of these aspects
can have significant consequences for the behavior of the
model system under investigation. However, in many cases
there is not enough experimental data to settle these ques-
tions definitively. Therefore, choices for each aspect should
be made consciously and take into consideration the relevant
available experimental findings. Moreover, these choices
should be explicitly documented and critically addressed: it
should be clear to what extent results depend on the specific
choices.

In particular, the choice of STDP weight dependence is
critical. The available evidence suggests that both potentia-
tion and depression are dependent on the weight. Whereas it
is useful to start with very simplified models to gain insight,
we now know that STDP models which assume some weight
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dependence produce qualitatively different behavior from the
additive model. Moreover, weight dependent rules are no har-
der to implement computationally than additive rules. In the
absence of fresh experimental evidence supporting an addi-
tive rule, weight dependent rules should therefore be consi-
dered as the standard.

Pair-based models of STDP have their limitations. They
give incorrect predictions for many experiments such as tri-
plet and quadruplet protocols and cannot account for synaptic
modification due to natural spike trains or pairing protocols
at different frequencies. Models of STDP that are beyond
the pair-based framework (Sect. 4.2) can account for these
findings at the cost of only a small number of additional
variables, and so should attract increasing theoretical inter-
est.

In this manuscript, we have considered models in which
synaptic modifications depend only on spike timing. Howe-
ver, this ignores many aspects of synaptic plasticity which
may prove to be of great importance to the functioning of the
brain, and will therefore have to be taken into consideration
in future phenomenological modeling. Most STDP models
assume that the absolute synaptic strength is modified (but
see Senn 2002). However, it may turn out that a formulation
in terms of the release probability is a more accurate descrip-
tion, thus allowing a unified view of short-term and long-term
plasticity. Additionally, STDP has been shown to be sensi-
tive to a number of factors beyond spike timing, for example
active dendritic properties and the location of the synapse on
the dendrite - see Kampa et al. (2007) for a review. There is
also substantial evidence that inhibition is an important phy-
siological feature fine-tuning induction and maintenance of
LTP/LTD. Inhibition gates induction of LTP/LTD as a func-
tion of physiological conditions and physiologically-induced
changes in the activity of networks (Larson and Lynch 1986;
Pacelli et al. 1989; Radpour and Thomson 1991; Steele and
Mauk 1999; Nishiyama et al. 2000; Togashi et al. 2003).
Here, the main challenge is to derive appropriate phenome-
nological models from experiments and detailed biophysi-
cal models. Finally, although some progress has been made
in investigating the interactions of STDP with other plas-
ticity mechanisms such as homeostasis and heterosynaptic
spread of LTP/LTD (van Rossum et al. 2000; Toyoizumi et al.
2005, 2007; Triesch 2007), this complex topic remains lar-
gely unexplored. In this area, the main challenge is to perform
analytical and simulation studies which can identify and cha-
racterize their composite effects, and investigate their func-
tional consequences.
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