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Phenomenological position and energy resolving Lindblad approach to quantum kinetics
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A general theoretical approach to study the quantum kinetics in a system coupled to a bath is proposed.
Starting with the microscopic interaction, a Lindblad master equation is established, which goes beyond the
common secular approximation. This allows for the treatment of systems, where coherences are generated by
the bath couplings while avoiding the negative occupations occurring in the Bloch-Wangsness-Redfield kinetic
equations. The versatility and accuracy of the approach is verified by its application to three entirely different
physical systems: (i) electric transport through a double-dot system coupled to electronic reservoirs, (ii) exciton
kinetics in coupled chromophores in the presence of a heat bath, and (iii) the simulation of quantum cascade
lasers, where the coherent electron transport is established by scattering with phonons and impurities.
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I. INTRODUCTION

The dynamical behavior of quantum systems coupled to a
bath is a central question for a wide range of physical problems.
The classical example is the evolution of a spin in a time-
dependent magnetic field in the presence of thermal excitations
of the hosting material [1]. Other examples, just to mention a
few, are as follows: transport of electrons through quantum dot
systems, where the bath is constituted by connecting electron
reservoirs at given temperature and electrochemical potential
[2–5]; kinetics of excitons in molecular aggregates with their
coupling to the vibrations [6,7]; electron transport in extended
semiconductor heterostructures, such as superlattices [8–10] or
quantum cascade lasers [11,12], where the energy relaxation
due to phonon scattering is crucial.

In general, the state of the quantum system can be described
by the reduced density operator ρ̂ of the system (which is the
full density operator after tracing out the degrees of freedom
from the baths). Thus, the common problem is to determine
ρ̂ on the basis of the system Hamiltonian ĤS in combination
with the bath properties and the specific microscopic coupling
mechanism.

In order to evaluate ρ̂, the coupling to the baths can
be treated perturbatively and a large variety of different
approaches have been suggested. For more recent examples,
see Refs. [13–19] and references cited therein. Starting with the
unmanageable von Neumann equation of the density operator
for the full system, a common strategy is to obtain a similar
first-order differential equation for ρ̂, which is local in time.
In the basis of the eigenstates |a〉 for the system Hamiltonian
ĤS with energies Ea , this equation in general reads as

∂

∂t
ρab = i(Eb − Ea)ρab

+ i〈a|[ρ̂,Ĥext(t)]|b〉 −
∑

cd

Kabcdρcd , (1)

*Present address: Institute for Quantum Electronics, ETH Zürich,
Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland.

where Ĥext(t) describes possible external excitations of the sys-
tem by time-dependent fields. We note that our units are h̄ = 1,
kB = 1, |e| = 1 except in Secs. IV, V, and Appendices D
and E. Standard perturbation theory in the system-bath cou-
plings provides the Wangsness-Bloch-Redfield (WBR) equa-
tions [20,21], and Kabcd becomes the Redfield tensor KRed

abcd .
However, the WBR equations do not guarantee the positivity
of probabilities, which is clearly an unphysical feature albeit
other quantities such as total currents (see Refs. [22,23]) are
often well recovered. In fact, only a special class of first-order
differential equations specified by Lindblad [24] and Gorini
et al. [25] guarantees the positivity of ρ̂. The most general
differential equation for the reduced density operator, which is
local in time and which conserves positivity, is given by (see,
e.g., Chap. 3.2.2 of Ref. [26])

∂

∂t
ρ̂ = i[ρ̂,Ĥeff ]

+
∑

j

Ŵj

(
L̂j ρ̂L̂

†
j −

1

2
ρ̂L̂

†
j L̂j −

1

2
L̂
†
j L̂j ρ̂

)
. (2)

Here, Ĥeff (t) contains the Hamiltonian ĤS + Ĥext(t) as well as
possible renormalization terms from the couplings to the baths.
The dimensionless jump operators L̂j can be chosen without
further restrictions within the Hilbert space of the system and
Ŵj is a real number with dimension of energy.1 For the basis
of eigenstates, this provides a corresponding tensor Kabcd in
Eq. (1), which has special properties as discussed in Ref. [27].

Removing all terms from the Redfield tensor KRed
abcd where

Eb − Ea �= Ed − Ec, which is called secular approximation
(sometimes also rotating wave approximation), renders a
Lindblad-type tensor KSec

abcd together with renormalization
terms in Ĥeff (t) [26]. However, in this case the coherences
ρab for nondegenerate levels just decay (if they are not driven

1There are different ways to write Eq. (2). For example, Ŵj can be
incorporated into L̂j .
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externally), while the populations Pa = ρaa of the states are
solely determined by a Pauli master equation

∂

∂t
Pa =

∑

c

(Rc→aPc − Ra→cPa), (3)

with the transition rates Rc→a . This excludes the description of
a rich field of physics where coherences are actually generated
by the bath couplings. This is relevant for, e.g., exciton kinetics
[27], resonant tunneling in heterostructures [28,29], and carrier
capture [30]. Thus, establishing a Lindblad master equation,
where coherences are fully taken into account beyond the
secular approximation, is a matter of high interest and several
proposals have been made recently [16,27,31,32].

In this paper, we suggest a scheme based on a phenomeno-
logical approach, where we require that the jump operators
carry information on both the spatial and energetic properties
of the jump processes. This position and energy resolving Lind-
blad (PERLind) approach is straightforward to implement and
we demonstrate its versatility to a wide range of systems cover-
ing basic transport physics, chemistry, and device technology.

The paper is organized as follows: In Sec. II we spec-
ify our PERLind approach, which is based on a heuristic
argument. This section is the core of our paper, while the
subsequent sections demonstrate three applications of the
PERLind approach in different fields of physics, chemistry,
and technology. Depending on the interest of the reader, they
can be read independently of each other and highlight different
technical aspects of the approach. In Sec. III we consider
tunneling through a quantum-dot system, where we compare
the PERLind approach with exact results and other common
approximations such as the Pauli master equation and Redfield
kinetics. Moreover, we address the approximate fulfillment
of the Onsager relation here. Section IV discusses energy
transfer in chromophores in direct comparison with a different
approach [27] addressing the same problem. The application of
the PERLind approach to quantitative simulations of quantum
cascade lasers is addressed in Sec. V, where it actually
provides the same type of equations as suggested in Ref. [33].
Several technical details including the relaxation to thermal
equilibrium are provided in the appendices.

II. DEFINING THE POSITION AND ENERGY

RESOLVING LINDBLAD APPROACH

The background for the approach is a general physical
problem in the description of interactions with the bath as
sketched in Fig. 1. In many cases, this interaction requires both
information on spatial and energetic properties of the system.
For example, in quantum-dot systems electrons tunnel from a
lead into the region of the dot, which is adjacent to the lead.
At the same time, the lead only offers electrons with energies
up to its electrochemical potential. This energy information
is contained in the eigenstates φa(r) of the dot, which are,
however, often extended. These two demands imply an inherent
conflict: If the tunneling process is modeled by a jump operator
creating φa(r), the new electron would be observable at quite
a distance immediately, which can lead to inconsistencies. On
the other hand, if the jump operator creates a quantum state of
the dot localized close to the lead, it is not clear which energy
should be used in the occupation function for the lead electrons.

FIG. 1. Scheme of the general problem addressed: The coupling
to the bath (left) affects the quantum kinetics in a system (right),
where three different energy eigenstates with energies Ea , Eb, and Ec,
are depicted. Due to the spatial location of the bath, the transitions
by the jump operator L̂j occur in a particular region of the system
as visualized by the vertical arrow. On the other hand, the transition
strength depends on the spectral properties of the bath coupling fj (E),
which requires energy information of the system states.

The same holds for vibrations of individual chromophores,
which dominantly couple to the local excitations. However, due
to excitonic coupling the energy eigenstates are delocalized
over several molecules. Again, the bath interaction requires
information on spatial and energetic (to match the vibrational
frequencies) properties of the quantum states.

Our phenomenological PERLind approach is based on the
concept of associating the general jump operators L̂j in Eq. (2)
with specific physical processes due to the bath coupling. Here,
the following general procedure is proposed to include both
information on locality and the energy spectrum of the bath
into the jump operators:

(1) Identify the relevant transitions (numbered by j ) in
the system due to the bath coupling and quantify them by
(i) a dimensionless operator L̂j specifying the change in the
system and taking into account the spatial structure of the
bath interaction; (ii) a real dimensionless energy-dependent
function fj (E), where E is the energy the system receives
from the bath (this contains the Fermi-Dirac or Bose-Einstein
distribution for the bath excitations as well as further spec-
tral properties); and (iii) a prefactor Ŵj , so that R

j

i→f =
Ŵjfj (Ef − Ei)|〈f|L̂j |i〉|2 is the transition rate between the

initial state |i〉 to the final state |f〉. Here, R
j

i→f is evaluated by
Fermi’s golden rule from the microscopic bath coupling Ĥcoup,
where Ef − Ei is the energy transfer appearing in the energy
balance.

(2) Determine a basis of energy eigenstates of the system
|a〉, |b〉, etc.

035432-2
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(3) Represent the operators L̂j in this basis L
j

ab =
〈a|L̂j |b〉. For particle exchange with leads, |a〉 and |b〉 have
different particle numbers.

(4) Define L̃
j

ab = L
j

ab

√
fj (Ea − Eb) and use the Lindblad

equation

∂

∂t
ρab = i〈a|[ρ̂,Ĥeff (t)]|b〉 +

∑

j,cd

Ŵj

(
L̃j

acρcd L̃
j∗
bd

−
1

2
ρacL̃

j∗
dcL̃

j

db −
1

2
L̃j∗

ca L̃
j

cdρdb

)
. (4)

This procedure defines an approach for the kinetics of
quantum systems in contact with an environment. The presence
of Ĥeff (t) allows for the inclusion of renormalization effects
similar to the secular approximation [26]. However, we do not
utilize this feature here.

In this context, it is crucial to note that the energy infor-
mation fj (E) is included on the basis of the matrix elements

for the jump operators. If these operators are not dyadic
products of energy eigenstates, this differs essentially from
conventional approaches where L̂j is defined in the form√

fj (Eb − Ea)|�b〉〈�a| (see, e.g., Ref. [34]). As explained
above, these conventional approaches provide jumps towards
energy eigenstates, which do not reflect the spatial properties
of the bath coupling.

Within the first step, the identification of jump operators
can be tricky, if the same bath couples to different transitions
in the system. This can be either understood as different
jump processes for each transition or a combined one, where
all transitions are subsumed in one operator L̂j . For several
situations, we found that the result depends upon this choice:
an example is given in Sec. III. Here, we find consistent results,
if all transitions connected to identical degrees of freedom in
the bath are grouped to a single jump operator L̂j .

We note that our Eq. (4) has the form of Eq. (1) with the
tensor

KPERLind
abcd = −

∑

j

Ŵj

(
L̃j

acL̃
j∗
bd −

1

2

∑

e

L̃
j∗
ed L̃

j

ebδac

−
1

2

∑

e

L̃j∗
ea L̃

j
ecδbd

)
. (5)

By construction, we find

KPERLind
aacc = −

∑

j

(
Rj

c→a −
∑

e

Rj
a→eδac

)
,

KPERLind
abab = −

∑

j

(
Ŵj L̃

j
aaL̃

j∗
bb −

1

2

∑

e

[
R

j

b→e + Rj
a→e

]
)

,

(6)

which are just the terms of the secular approximation for the
Redfield tensor. This shows, that our PERLind approach is
an extension of the well-established secular approximation,
which is complemented by further elements in KPERLind

abcd with
Eb − Ea �= Ed − Ec. We note that the imaginary part of
KRed

abab contributes to Ĥeff as a renormalization of the energies

Occupation

FIG. 2. A simple spin-polarized double-dot structure used to
practically demonstrate the PERLind approach. The energy of the dot
states is shifted by a gate voltage Vg = El = Er . Both dots are coupled
to each other (�) and to one lead each (ŴL and ŴR). The two leads
are described as electron reservoirs with applied bias V = μL − μR ,
which results in a particle current I and an energy current Ė.

Eb − Ea → Eb − Ea − Im(KRed
abab), however, we do not con-

sider such terms in our approach.
Finally, we consider the equilibration of the system in the

limit of weak system-bath coupling. If all baths have the same
temperature (and chemical potential for particle exchange), we
expect that the density matrix relaxes to its equilibrium value
for Ĥext(t) = 0. In Appendix A we show that this is indeed
the case for our approach in the limit of small system-bath
coupling.

III. APPLICATION 1: SPIN-POLARIZED

DOUBLE-DOT STRUCTURE

To demonstrate our proposed PERLind scheme, we con-
sider a system of two coupled quantum dots, where each dot
has a single spin-polarized energy level (indices l and r). Both
dots are coupled to each other and to source (L) and drain
(R) leads as depicted in Fig. 2. We have the total Hamiltonian
[35–38] ĤS + Ĥleads + Ĥcoup with the terms

ĤS = Vg (d̂†
l d̂l + d̂†

r d̂r ) − � (d̂†
l d̂r + d̂†

r d̂l )

+U d̂
†
l d̂l d̂

†
r d̂r , (7a)

Ĥleads =
∑

ℓk

Eℓk ĉ
†
ℓk ĉℓk, (7b)

Ĥcoup =
∑

k

(tLd̂
†
l ĉLk + tR d̂†

r ĉRk) + H.c. (7c)

Here, ĉ
†
ℓk creates an electron with quantum numbers k

in the lead ℓ ∈ {L,R} and d̂
†
i creates an electron in the dot

i ∈ {l,r}. The coupling between left dot (l) and right dot (r)
is given by the hybridization � and the level energies are
given by El and Er . We assume that the level energies are in
resonance and controlled by the gate voltage Vg = El = Er .
Additionally, there can be a charging energy U when both
dots are occupied. The energy dispersion in the leads is given
by Eℓk and the electrons can tunnel between dots and leads
with tunneling amplitudes tL and tR . The coupling to the leads
is quantified by the transition rates Ŵℓ = 2π

∑
k |tℓ|2 δ(E −

Eℓk), which are assumed to be independent of the energy E
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(so-called wide-band limit). We also assume that the leads are
in thermal equilibrium and electron occupation is described
by a Fermi-Dirac occupation function f FD

ℓ (E) = [e(E−μℓ)/Tℓ +
1]−1, where a bias V = μL − μR is applied.

Now, we describe the kinetics of the reduced density matrix
of the double-dot using the four steps defined in Sec. II:

(1) There are four different tunneling processes from the
leads to the dots:

I. An electron enters from the left lead into the left dot:
L̂I = d̂

†
l , fI(E) = f FD

L (E), ŴI = ŴL.
II. An electron leaves the left dot into the left lead:

L̂II = d̂l , fII(E) = 1 − f FD
L (E), ŴII = ŴL.

III. An electron enters from the right lead into the right
dot: L̂III = d̂

†
r , fIII(E) = f FD

R (E), ŴIII = ŴR .
IV. An electron leaves the right dot into the right lead:

L̂IV = d̂r , fIV(E) = 1 − f FD
R (E), ŴIV = ŴR .

(2) The system Hamiltonian HS [Eq. (7a)] has four many-
particle eigenstates:

|0〉, E0 = 0, (8a)

|1〉 = d̂
†
1 |0〉, E1 = Vg − �, (8b)

|1′〉 = d̂
†
1′ |0〉, E1′ = Vg + �, (8c)

|2〉 = d̂
†
1′ d̂

†
1 |0〉, E2 = 2Vg + U, (8d)

where

d̂1 =
1

√
2

(d̂l + d̂r ) and d̂1′ =
1

√
2

(d̂l − d̂r ). (9)

(3) In the basis Eq. (8) the jump operators L̂j are

LI =
1

√
2

⎛
⎜⎜⎜⎝

0 0 0 0

+1 0 0 0

+1 0 0 0

0 +1 −1 0

⎞
⎟⎟⎟⎠, LII = (LI)

T ,

LIII =
1

√
2

⎛
⎜⎜⎜⎝

0 0 0 0

+1 0 0 0

−1 0 0 0

0 −1 −1 0

⎞
⎟⎟⎟⎠, LIV = (LIII)

T .

(4) The jump operators L̂j are weighted by
√

fj (E) to give

L̃
j

ab = L
j

ab

√
fj (Ea − Eb). Thus,

2L̃I =
1

√
2

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0√
f FD

L (Vg − �) 0 0 0√
f FD

L (Vg + �) 0 0 0

0
√

f FD
L (Vg + � + U ) −

√
f FD

L (Vg − � + U ) 0

⎞
⎟⎟⎟⎟⎟⎠

,

L̃III =
1

√
2

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0√
f FD

R (Vg − �) 0 0 0

−
√

f FD
R (Vg + �) 0 0 0

0 −
√

f FD
R (Vg + � + U ) −

√
f FD

R (Vg − � + U ) 0

⎞
⎟⎟⎟⎟⎟⎠

,

and L̃II (L̃IV) is obtained by transposing L̃I (L̃III) and by
replacing f FD

ℓ with 1 − f FD
ℓ .

After inserting Ŵj and L̃j into Eq. (4), we obtain a master
equation for the reduced density matrix. In the long-time limit,
a stationary state is reached, which we determine directly by
setting ∂tρab = 0 in Eq. (4). For this stationary state we can
calculate various observables. In particular, we are interested in
the particle (IL) and energy (ĖL, as relevant for thermoelectric
applications [39]) currents flowing from the left lead into the
system, which are calculated by

IL =
∑

baa′

(
ŴIL̃

I
baρaa′L̃I∗

ba′ − ŴIIL̃
II
baρaa′L̃II∗

ba′

)
, (10)

ĖL =
∑

j = I,II
baa′

Ŵj

(
Eb −

Ea + Ea′

2

)
L̃

j

baρaa′L̃
j∗
ba′ . (11)

See Appendix B for the definition and more details on the
particle current and energy current observables.

We focus on the noninteracting case U = 0, where the trans-
mission formalism [40–42] provides an exact solution (see
Appendix C 1). The analytic solution of the resulting master
equation for the reduced density matrix using the PERLind
approach in the noninteracting case U = 0 is discussed in
Appendix C 2.

The results for symmetric coupling ŴL = ŴR = Ŵ are
shown in Fig. 3. At first, we see that the result of the
PERLind scheme is very close to the transmission result. The
main difference is that the current peaks are slightly lower
and broader in the transmission calculation, which includes
tunneling to all orders and thus takes level broadening into
account. This difference vanishes with increasing temperature,
while for T < Ŵ the discrepancy becomes more substantial.
We also display the result for the Redfield equations, which can
be directly applied to tunneling systems [43] (see Appendix C 3
for more details). This approach works reasonably well, but
agrees less with the correct transmission result than our
suggested approach. It is interesting to note that neglecting
the principal value integrals (Redfield, no P) provides slightly
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FIG. 3. Simulations of the noninteracting double-dot system using different approaches for equal energies E1 = E2 and symmetric coupling
ŴL = ŴR = Ŵ. Other parameters are μL = −μR = Ŵ/4 and T = 2Ŵ. The +/− signs indicate the sign of the energy current.

better results for the used parameters. Finally, we observe that
the Pauli master equation, which has the same stationary state
as the secular approximation, fails for small interdot coupling
� → 0. Here, the current remains finite, which is an artifact
of the neglect of coherences in the basis of eigenstates. The
electrons from the left lead enter one of the eigenstates, which
are distributed over both dots and are allowed to leave to the
right lead immediately. Thus, the current is solely determined
by Ŵ in this case. This issue is well known and appears in
many circumstances [29,44,45]. It is clear that the proposed
PERLind approach correctly treats this problem. Compared to
the Redfield approach, it provides results even closer to the
exact solution and, most importantly, avoids negative proba-
bilities. Lastly, we note that the simulations of the double-dot
structure using PERLind, Redfield, and Pauli approaches were
produced with the QMEQ package [46] using the kerntype

options Lindblad, Redfield, and Pauli, respectively. This
publicly available package allows to perform corresponding
calculations for more complex systems in a straightforward
way.

A. Choice of jump operators

The choice of jump operators, which we made so far, is not
a unique one. This can be seen by considering the tunneling
Hamiltonian (7c) expressed in the eigenbasis (9):

Ĥcoup =
∑

k

[
tL√

2
(d̂†

1 + d̂
†
1′ )ĉLk +

tR√
2

(d̂†
1 − d̂

†
1′ )ĉRk

]
+ H.c.

(12)

We can translate Eq. (12) into jump operators at least in two
different ways. Let us consider the jump processes related just
to the left lead (right lead is analogous):

(i) We use four jump operators, namely, L̂i = d̂
†
1 and L̂ii =

d̂
†
1′ for entering the quantum dots from the left lead as well as

L̂iii = d̂1 and L̂iv = d̂1′ for electrons leaving the quantum dots
into the left lead.

(ii) We subsume these into two jump operators L̂I = d̂
†
1 +

d̂
†
1′ and L̂III = d̂1 + d̂1′ . This corresponds to the same choice

which we did in the beginning of the section.
The choice (i) gives the results of the Pauli master equation

for the double-dot structure, where in the stationary state there
are no coherences. Thus, the case (ii) should be preferred.

A good argument for the choice (ii) is based on another
approach. The left lead provides electrons at a position zL

(e.g., in the barrier between the leftmost dot and the reser-
voir). Thus, the jump operator is actually the field operator
�̂†(zL). Expanding in the state of the quantum dot, we obtain
�̂†(zL) = φ∗

1 (zL)d̂†
1 + φ∗

1′(zL)d̂†
1′ . Assuming an equal coupling

strength for both levels in (12) implies φ1(zL) = φ1′(zL) and we
obtain version (ii) after incorporating φ1(zL) into the tunneling
rate Ŵ.

B. Onsager’s relation

It was recently shown that the Redfield approach also pre-
dicts charge currents that are not consistent with the exchange
fluctuation theorems [47], and that for our considered double-
dot structure Onsager relations relating particle current to heat
current are not satisfied (for more details, see Ref. [48]). This
raises the following question: Does our proposed PERLind
scheme satisfy Onsager relations? Thus, we consider the
deviation �O from the Onsager relation for the particle current
IL and the heat current QL = ĖL − μLIL:

�O = L′
1 − L1 = 0,

L′
1 =

∂QL

∂V

∣∣∣∣
V =0,�T =0

, (13)

L1 = T
∂IL

∂�T

∣∣∣∣
V =0,�T =0

,

where the bias V and temperature difference �T are applied
as μL/R = ±V/2, TL/R = T ± �T/2. Here, L′

1 and L1 are
the Onsager coefficients, which should not be confused with
the jump operators. After using analytic expressions for the
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currents in Eqs. (C8) and inserting them into relation (13) we
obtain for a symmetric coupling ŴL = ŴR = Ŵ

�O = −
Ŵ3

32�̃T
(s + s̄)(f+ − f−)

×[(f̄+ + f̄−)s − (f+ + f−)s̄] �= 0, (14)

where

�̃ = �(1 + γ 2), γ =
Ŵ

2�
,

f± = 1/[e(Vg±�)/TL + 1], f̄± = 1 − f±, (15)

s =
√

f+f−, s̄ =
√

f̄+f̄−.

From Eq. (14) we see that formally the Onsager’s relation
is not satisfied. However, similarly as in Ref. [48] the vi-
olation is of higher order in Ŵ than the currents, and for
sufficiently weak coupling no problem arises. We quantify
this violation by considering the ratio of the peak value
�O,peak = maxVg ,�|�O,peak(Vg,�)| to the peak value L1,peak =
maxVg ,�|L1(Vg,�)| in the (Vg,�) parameter space. For ex-
ample, when Ŵ = T/2 the proposed Lindblad scheme gives
�O,peak/L1,peak ≈ 0.4%. The corresponding violation ratio for
the Redfield approach is 16% and for the no P approach is 3%,
which is higher than for PERLind scheme.

Alicki [49] showed that the Onsager’s theorem is satisfied
for a system described by Lindblad kinetics if the quantum

detailed balance condition is fulfilled [50–53]. One of the
requirements for this is the commutation relation [ρ,HS] = 0
between the density matrix of the system and the system
Hamiltonian [49,54]. For our case this implies that in the
stationary state the coherences between nondegenerate states
to linear order in V and �T have to be equal to zero. This is
not the case for our proposed PERLind scheme when applied
to the double-dot system, as can be seen from Eq. (C7), so that
the quantum detailed balance condition is violated. However,
as argued above, the nonvanishing coherence is essential to
describe the transport in the double dot, as this provides
the spatial information for degenerate dot levels Er = El .
Thus, the violation of quantum detailed balance and Onsager’s
theorem is the price to pay for establishing a Lindblad-type
kinetics, which provides a physically correct result.

C. Asymmetric couplings

Using asymmetric coupling ŴL = (1+b)Ŵ, ŴR = (1−b)Ŵ
for the two leads, we find that our proposed PERLind scheme
provides actually a current flow at zero bias (V = 0, �T = 0):

IL = −
1

2
Ŵγ 2b(1 − b2)(s + s̄)

(f̄+ + f̄−)s − (f+ + f−)s̄

1 + γ 2[1 − b2(s + s̄)2]
.

(16)

As in the case with the violation of Onsager’s theorem, this
current is of order Ŵ3 and thus beyond the relevant perturbation
theory. The first-order Redfield approach also suffers from this
problem, where the current at zero bias is determined by the
principal part P integrals:

IRed
L = −

Ŵ2b(1 − b2)

1 + γ 2(1 − b2)

1

2π
P

∫ ∞

−∞

dEf (E)

(E − Vg)2 − �2
. (17)

Neglecting the principal part integrals, the current becomes
zero for the Redfield approach in this particular case.

IV. APPLICATION 2: EXCITON KINETICS IN A SYSTEM

OF TWO CHROMOPHORES

Here, we apply the PERLind approach to exciton kinetics.
We use the particular example discussed in Ref. [27] where a
different way to obtain a Lindblad equation from a Redfield
tensor is discussed. For comparison, we show our results for
the two two-level chromophore system considered in Ref. [27],
which is described by the total Hamiltonian ĤS + Ĥbaths +
Ĥcoup:

ĤS = E1B̂
†
1B̂1 + E2B̂

†
2B̂2 + V (B̂†

1B̂2 + B̂
†
2B̂1), (18a)

Ĥbaths =
∑

k,i=1,2

Ek â
†
ik âik, (18b)

Ĥcoup = dph

∑

k,i=1,2

B̂
†
i B̂i (âik + â

†
ik). (18c)

Here, B̂
†
i creates an excitation on chromophore i, which

is individually coupled to a local phonon bath. Operator â
†
ik

creates a phonon in a mode k and in a bath i. We note that all
operators satisfy canonical commutation relations [B̂i ,B̂

†
i ′ ] =

δii ′ , [âik,â
†
i ′k′] = δii ′δkk′ . The excitation energies are E1 = 0

and E2 = 46.4×hc/cm, and the coupling strength between the
excitations is V = −71.3×hc/cm. The modes of the phonon
baths have the density of states of overdamped Brownian
oscillator [6]

ν(E) =
2h̄�|E|

E2 + (h̄�)2
ν0, (19)

where � = 1/106 fs−1 is the inverse of the bath correlation
time.

The kinetics of the reduced density matrix for the two two-
level chromophore system is described using the four steps
defined in Sec. II:

(1) There are four different jump processes, which de-
phase the chromophore excitations, with the same rate Ŵ =
2πν0|dph|2 = 2hcλ, where λ = 35 cm:

I. L̂I = B̂
†
1B̂1 , fI(E) = ν(E)

ν0
n(E)θ (E), with n(E) = 1/

[eE/(kBT ) − 1], where θ (E) is the Heaviside step function.
II. L̂II = B̂

†
1B̂1 , fII(E) = ν(−E)

ν0
[1 + n(−E)]θ (−E).

III. L̂III = B̂
†
2B̂2 , fIII(E) = ν(E)

ν0
n(E)θ (E).

IV. L̂IV = B̂
†
2B̂2 , fIV(E) = ν(−E)

ν0
[1 + n(−E)]θ (−E).

(2) The chromophore Hamiltonian (18a) has the excitonic
eigenstates (ĤS = ε1ê

†
1ê1 + ε2ê

†
2ê2)

ê1 = αB̂1 + βB̂2, α = 0.81

ê2 = βB̂1 − αB̂2, β = 0.59 (20)

which are delocalized and which have the eigenenergies
ε1 = −51.7×hc/cm and ε2 = 98.2×hc/cm. We consider the
dynamics of a single excitation in the chromophore system with
the initial condition ρ11 = ρ22 = ρ12 = 0.5 in the basis (20).
The Hamiltonian (18) conserves the number of excitations and
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FIG. 4. Results for the system of Ref. [27] at T = 185 K and λ =
35 cm. Full lines depict the results for the density matrix in our model
(PERLind). Dashed lines show the Redfield approach, dashed-dotted
lines show the secular approximation, and dotted lines show the Lind-
blad model of Ref. [27] (Palmieri), all without principal value parts.
The initial condition is chosen as ρ11 = ρ22 = ρ12 = 0.5 in the basis of
eigenstates.

there is no coupling between the states with no excitation and
two excitations, so it is enough to consider the subspace of a
single excitation.

(3) In the basis (20), the jump operators L̂j are

LI =
(

α2 αβ

αβ β2

)
, LII = LI,

LIII =
(

β2 −αβ

−αβ α2

)
, LIV = LIII. (21)

(4) The jump operators Lj are weighted by
√

fj (E) to give

L̃
j

ab = L
j

ab

√
fj (Ea − Eb).

This provides the tensor KPERLind given in Eq. (D3). Its
secular elements fully agree with the full Redfield tensor given
in Eq. (D1).

In Fig. 4 we show the results of our PERLind approach
in comparison with the secular approximation and another
Lindblad model discussed by Palmieri et al. [27]. We find
that our approach provides oscillating occupations, which only
show a decay in the secular approximation. However, this
oscillating feature is weaker compared to the results from the
approach suggested in Ref. [27] and the Redfield approach. On
the other hand, the coherences obtained from our method are
closer to the Redfield approach than the ones obtained by the
previous method. As we do not have an exact result to compare
with, it is difficult to judge which method is better here.

V. APPLICATION 3: SIMULATION OF QUANTUM

CASCADE LASERS

The quantum cascade laser (QCL) [55,56] is an important
device for the generation of infrared and terahertz radiation. It
is based on optical transitions between quantum states ψα(z)
with energy Eα in the conduction band of a semiconductor
heterostructure (with growth direction z) as depicted in the
inset of Fig. 5. The operation relies on an intricate interplay
of tunneling and scattering transitions under the applied bias.
Laterally, the QCL layers cover an area A, which is assumed
to be homogeneous (after impurity averaging) and large com-
pared to the layer thicknesses, so that quantization in the x,y

direction (expressed by bold vectors r in the following) is not
relevant. Instead, a quasicontinuum of eigenstates 1√

A
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FIG. 5. Current density dependence on bias per period for the
QCL of Ref. [72], with LO phonon scattering only (dashed curve), as
well as with added impurity scattering (solid curve). The temperature
in these simulations is T = 150 K. The inset shows the Wannier-Stark
levels at a bias of 50 mV/period (marked by circles on the current-bias
curves), and the upper laser state (ULS), lower laser state (LLS), and
the injector state (i) are indicated. The energy difference is 13.1 meV
between the ULS and LLS, and 38.3 meV between the LLS and
injector of the next period. The ULS is 1.4 meV above level i.
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wave vector k is assumed, so that the energy of the quantum
state |α,k〉 is Eαk = Eα + Ek. Here, Ek = h̄2k2/(2mc) with
the effective mass mc of the conduction band. Within this basis,
we have the single-particle density matrix

ρβα(k) = Tr{ρ̂ĉ
†
αkĉβk} . (22)

Its diagonal elements are the occupation probabilities fαk =
ραα(k). Of physical interest are the electron densities in the
individual levels (taking into account spin degeneracy)

nα =
2

A

∑

k

fαk , (23)

and the current density

J (z) =
−e

A

∑

k,αβ

Re

{
ρβα(k)ψ∗

α (z)
h̄

mc(z)i

∂ψβ(z)

∂z

}
, (24)

where e > 0 is the elementary charge. Note that both quantities
only depend on the average density matrix

ρβα =
2

A

∑

k

ρβα(k). (25)

In a basis of real wave functions ψα(z), such as the commonly
used energy eigenfunctions, we find that the current solely
depends on the coherences [57]. However, these coherences
can be approximated based on occupations [58] allowing sim-
ulation schemes restricting to the occupation probabilities fαk

(e.g., Refs. [59,60]) or electron densities nα (e.g., Ref. [61]).
Here, the kinetics is given by scattering rates in the form of the
Pauli master equation. This entirely neglects the coherences
and consequently fails to describe resonant tunneling correctly
[29] similar to the tunneling in the double dot of Sec. III.

Considering coherences within the average density matrix
ραβ is frequently done phenomenologically [62–64]. Taking
into account the lateral degrees of freedom, more detailed
Redfield-type schemes for the simulation of ραβ(k) have
been developed [22,23,65,66], which can provide unphysical
negative occupations as discussed in Ref. [22]. The common
solution is to use Green’s function approaches [57,67–70]
allowing for a full consistent treatment at the price of a
high numerical demand. Here, we show that the PERLind
approach provides a viable quantum kinetics for the average
density matrixραβ which is based on the microscopic scattering
interaction.

An important scattering mechanism in QCLs is the electron-
phonon interaction, which enhances the electron transitions
between different subbands. For electron-phonon interaction
we use the Hamiltonian [71]

Ĥel-ph =
∑

α,β

k,q,qz

M
qz

βαgq,qz
ĉ
†
β,k+qĉα,kb̂q,qz

+ H.c., (26)

where q and qz are the in-plane and z components of the
phonon wave vector and b̂q,qz

are the bosonic phonon operators.

Furthermore, we define

M
qz

βα =
∫

dz ψ∗
β (z)eiqzzψα(z) . (27)

Within Fermi’s golden rule this provides the scattering rates
between the states in the heterostructure

Ŵαk→βk′ =
2π

h̄

∑

qz

∣∣Mqz

βα

∣∣2[∣∣gk′−k,qz

∣∣2
δ(Eβk′ − Eαk + h̄ωLO)

× [fB(h̄ωLO) + 1] +
∣∣gk−k′,−qz

∣∣2
δ(Eβk′ − Eαk

− h̄ωLO)fB(h̄ωLO)
]

(28)

for dispersionless phonons with frequency ωLO. Here, fB(E) is
the Bose distribution, assuming that the phonons are in thermal
equilibrium at the simulation temperature T . The average
transition rate for all lateral states is then given by

Rα→β =
∑

k,k′ fα,kŴαk→βk′
∑

k fα,k

. (29)

Assuming that fα,k is a thermal distribution, this can be cast
into the form

Rα→β =
∑

qz

∣∣Mqz

βα

∣∣2
fqz

(Eβ − Eα). (30)

Details are given in Appendix E 1 for polar optical phonon
scattering. We note that M

qz

βα takes into account the spatial
overlap of the states in connection with the perturbation
potential, while fqz

(Eβ − Eα) solely depends on the energy.
This is just the form assumed in step 1 of our general approach:
here, we identify M

qz

βα with 〈ψβ |L̂qz
|ψα〉 and fqz

(Eβ − Eα) is
just the distribution function, where we set Ŵqz

= 1. Defin-
ing L̃

qz

βα =
√

fqz
(Eβ − Eα)Mqz

βα , we thus obtain the PERLind
master equation (4). The tensor (5) obtained in this way has
the same structure as Eqs. (19) and (20) of Ref. [33], where
a slightly different notation and index labeling is used. Going
beyond these results, we also add impurity scattering in the
same way (see Appendix E 2).

We will now use this formalism to show that it can
accurately simulate QCLs. Specifically, we consider the QCL
design published by Li et al. [72] and provide a quantita-
tive comparison with experimental data. This design has a
periodic sequence of 180 modules, each consisting of four
Al0.16Ga0.84As barriers and four GaAs wells (see the inset
of Fig. 5). As this requires far too many states to simulate,
we consider three modules together with periodic boundary
conditions, i.e., assuming that the density matrix is identical,
when shifting all states by one period. The states ψα(z) are
the energy eigenstates which are determined following the
procedure of Ref. [73] and we use the five lowest states per
module (see the inset of Fig. 5), which amounts to 15 states in
total. For our periodic conditions, the density matrix takes into
account coherences within all the states in these three central
modules as well as with the three neighboring modules on
either side. Note that the calculations are based on the nominal
experimental sample parameters and standard semiconductor
material parameters. There is no kind of fitting.

The current density through the QCL is evaluated from
Eq. (24) by using ρs

αβ = ραβ(+∞) obtained from stationary
PERLind equations. Also, we average J (z) over one module
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FIG. 6. (a) Calculated gain spectrum for different simulation
temperatures for the QCL design of Ref. [72] at 50 mV/period bias. (b)
Time-resolved current density at T = 150 K (blue thick curves) and
electric field (green thin curves with oscillation amplitude eFacd =
0.01 meV) at the points of maximum absorption (h̄ω = 3.7 meV)
and gain (h̄ω = 14.1 meV), where the current density is in and out of
phase with the electric field after a transient phase, respectively.

in order to compensate for spatial variations due to the finite
number of basis states. The resulting current-bias relation is
shown in Fig. 5. Taking only into account optical phonon
scattering, we find several sharp current peaks, similar to
Ref. [33]. Adding impurity scattering, these peaks are smeared
out and we observe a current peak of about 900 A/cm2

in accordance with experimental observations [72]. At this
operation point, the injector level is aligned with the upper
laser level, resulting in efficient tunneling as shown in the
inset.

At a bias of 50 mV per module we observe population
inversion between the upper and lower laser states. In order
to determine the optical gain, we include the optical field [with
electrical field strength F (t) = Fac cos(ωt) and frequency
ω/2π ] in the model via

Ĥext(t) = eFacẑ cos(ωt). (31)

For gain simulations, we evolve the PERLind equations in
time, taking the stationary density matrix as an initial condition
ρ(0) = ρs . The field generates an alternating current J (t) ≈
Jdc + Jcos cos(ωt) + Jsin sin(ωt) (after a transient phase) as
depicted in Fig. 6(b). The ratio between induced current and ac
field provides the optical gain [70] by −Jcos/(Fac

√
ǫrǫ0c). This

gain is positive, ifJ (t) andF (t) are out of phase, and conversely
loss prevails when they are in phase. Figure 6(a) shows the
resulting gain spectra for different simulation temperatures.
We find a pronounced gain peak at 14 meV, i.e., 3.4 THz,
which exactly matches the experimental value [72]. The photon
energy slightly surpasses the separation between the upper
and lower laser levels (13.1 meV), which indicates possible
transitions to levels slightly below the LLS. The gain strongly
drops with temperature. For surface-plasmon waveguides, the
threshold requires gain of the order of 30–40 cm [74], which
is achieved for simulation temperatures below 150 K. Experi-
mentally, lasing was observed for heat sink temperatures up to
123 K, which is in good accordance with our simulations. Here,
we note in passing that the simulation temperature should be
several tens of degrees warmer than the heat sink temperature
due to nonequilibrium distributions of optical phonons and
electrons [75–77], which we did not quantify here.

Thus, the PERLind approach allows for realistic simulations
of QCLs both with respect to steady-state transport and gain.
Furthermore, the PERLind approach can also be applied to
arbitrary pulses in the optical field and multimode harmonic
fields containing an arbitrary number of frequency compo-
nents, which allows for a variety of interesting applications.

VI. CONCLUSION

We proposed the position and energy resolving Lindblad
(PERLind) approach for simulation of open quantum systems
by constructing jump operators with a specified energy and
spatial dependence. This approach combines the treatment of
coherences on a microscopic basis, such as in the Redfield
kinetics, with keeping the positivity of the diagonal elements
of the density matrix. It can be easily applied to a large variety
of different physical systems, where we gave specific examples
for tunneling through quantum-dot systems, exciton kinetics in
chromophores, and the simulation of quantum cascade lasers.
Comparison with the exact solution for tunneling through
a double dot and experimental data of a quantum cascade
laser verifies the accuracy of the approach. On the other
hand, one has to keep in mind that the coupling to the bath
is of perturbative nature and the projection of the system
dynamics to a time-local Lindblad equation beyond secular
approximation can violate general conditions. As an example,
PERLind may violate the Onsager relations for strong bath
couplings. This appears to be the price to pay for obtaining
manageable equations for a simple description of realistic
quantum systems with many degrees of freedom, where the
coherences in the steady state are crucial.
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APPENDIX A: EQUILIBRIUM

Here, we investigate whether thermal equilibrium ρ0
ab =

δab exp (βμNa − βEa)/Z provides a stationary solution, when
all reservoirs are Bose/Fermi functions with chemical poten-
tial μ and inverse temperature β = 1/T and Ĥeff (t) is time
independent and diagonalized with the states |a〉,|b〉, etc. We
define ρab = ρ0

ab + δρab and find from Eq. (4)

∂

∂t
δρba = i(Ea − Eb)δρba +

∑

j,c

Ŵj

(
L̃j

acρ
0
ccL̃

j∗
bc

−
1

2
ρ0

aaL̃
j∗
ca L̃

j

cb −
1

2
L̃j∗

ca L̃
j

cbρ
0
bb

)
+ O{Ŵδρ}. (A1)

Due to the Hermiticity of the microscopic bath couplings
[see, e.g., Eq. (7c)], we find that for any matrix ele-
ment L̃

j

ba , there is a unique corresponding one with L̃
j ′

ab =
L̃

j∗
bae

β(Eb−Ea )/2−βμ(Nb−Na )/2. Here, j and j ′ may result from
different jump processes, such as adding or removing a particle.
We also have ρ0

bb = ρ0
aae

βμ(Nb−Na )−β(Eb−Ea ). Renaming j →
j ′ for the terms with 1

2 we obtain

∂

∂t
δρba = i(Ea − Eb)δρba +

∑

j,c

Ŵjρ
0
ccL̃

j
acL̃

j∗
bc

×
[

1 − cosh

(
β

Eb − Ea − μ(Nb − Na)

2

)]

+O{Ŵδρ}. (A2)

Typically, the process j has a defined particle exchange. Thus,
nonvanishing L̃

j
ac and L̃

j∗
bc provide Nb = Na . In the stationary

state, we obtain

δρba =
i

Ea − Eb

∑

j,c

Ŵjρ
0
ccL̃

j
acL̃

j∗
bc

×
[

1 − cosh

(
β

Eb − Ea

2

)]
+ O{Ŵ2}. (A3)

Thus, δρba vanishes with decreasing coupling Ŵ. However, for
β|Eb − Ea| ≫ 1 the strong increase of the cosh appears to
complicate the picture. As we show below, this is compensated
by an exponential decay of ρccL̃

j
acL̃

j∗
bc in β|Eb − Ea| provided

the jump elements L̃ are bounded.
In order to show this, we assume Eb > Ea . We consider the

state m with highest occupation, which has the effective energy
M = Mina(Ea − μNa). Then, we find ρcc ∼ eβ(μNc−Ec−M)

and Eb > Ea implies, Eb − μNb − M � Eb − Ea . Now, we

consider two cases
(1) if Eb − μNb < Ec − μNc then ρcc < eβ(μNb−Eb−M) <

eβ(Eb−Ea )

(2) if Eb − μNb > Ec − μNc then fj (Eb − Ec) ∼
e−β[Eb−Ec−μ(Nb−Nc)]

and we find

ρccL̃
j∗
bc � eβ(μNc−Ec−M)e−β[Eb−Ec−μ(Nb−Nc)]/2L

j∗
bc

< eβ(μNc−Ec−M)/2e−β(Eb−μNb−M)/2L
j∗
bc

< eβ(μNc−Ec−M)/2e−β(Eb−Ea )/2L
j∗
bc .

In both cases, the exponential drop of ρccL̃
j
acL̃

j∗
bc in β(Eb − Ea)

compensates the increase in the cosh term. The case Ea > Eb

is analogous.
For the double-dot structure considered in Sec. III, we

analytically find that in the equilibrium the coherences are
bounded by coupling strength Ŵ. From Eq. (C7) for asymmetric
junction ŴL/R = (1 ± b)Ŵ we find

ρ11′ =
b

2
(γ 2 + iγ )

(f̄+ + f̄−)s − (f+ + f−)s̄

1 + γ 2[1 − b2(s + s̄)2]
, (A4)

which vanish for small Ŵ and in this case the equilibrium is
reached. Here, the notation of Eq. (15) was used.

APPENDIX B: PARTICLE AND ENERGY CURRENTS

The average particle number 〈N̂〉 in the system changes by

∂
∂t

〈N̂〉 =
∑

b

Nb
∂
∂t

ρbb

=
∑

j

Ŵj

(
∑

baa′

NbL̃
j

baρaa′L̃
j∗
ba′

−
∑

bb′c

Nb

2

[
ρbb′L̃

j∗
cb′L̃

j

cb + L̃
j∗
cb L̃

j

cb′ρb′b

]
)

, (B1)

where Nb denotes number of particles in the state b. Here,
we used Eq. (4) together with the fact that the Hamiltonian
Ĥeff (t) does not change the particle number. Now, we rename
the indices b,b′,c by a,a′,b in the second term and by a′,a,b

in the third term of the right-hand side of Eq. (B1), which
results in

∂

∂t
〈N̂〉 =

∑

j,baa′

Ŵj

(
Nb −

Na + Na′

2

)
L̃

j

baρaa′L̃
j∗
ba′ . (B2)

The jump operators L̂j can be classified by the number
�j of electrons they transfer from the leads to the system.
Correspondingly, negative �j means the removal of particles.
Assuming that there are no coherences ρaa′ between states with
different particle number, we can replace Nb − Na+Na′

2 → �j .
Then, all changes due to jump operators related to transitions
with lead ℓ contribute to the current from this lead into the
system:

Iℓ =
∑

j related to ℓ

baa′

Ŵj�j L̃
j

baρaa′L̃
j∗
ba′ . (B3)
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Similarly, we can calculate the energy current through the
system. The energy of the system is defined as

E = 〈ĤS〉 =
∑

bb′

Hbb′ρb′b (B4)

and its change is given by

∂

∂t
E = i

∑

bb′

Hbb′〈b′|[ρ̂,Ĥeff (t)]|b〉

+
∑

j

Ŵj

(
∑

bb′aa′

Hbb′L̃
j

b′aρaa′L̃
j∗
ba′

−
∑

bb′b′′c

Hbb′

2

(
ρb′b′′L̃

j∗
cb′′L̃

j

cb + L̃
j∗
cb′L̃

j

cb′′ρb′′b

)
)

. (B5)

We split the first term with jump operators into two parts with
exchanging b ↔ b′ in one of them and rename b,b′,b′′,c by
a′′,a,a′,b in the second term and by a′′,a′,a,b in the third

term, which results in

∂

∂t
E =Pext(t) +

∑

j,baa′

Ŵj

2

(
K

j

baρaa′L̃
j∗
ba′ + L̃

j∗
baρaa′K

j

ba′

)
,

(B6)

where

K
j

ba =
∑

b′

Hbb′L̃
j

b′a −
∑

a′

L̃
j

ba′Ha′a (B7)

and

Pext(t) = i〈[ĤS,Ĥeff (t)]〉 (B8)

is the power transferred to the system from the outer fields.
Now, if ĤS is diagonal (i.e., ĤS =

∑
b Eb|b〉〈b|) from Eq. (B6)

we find the energy current from the lead ℓ:

Ėℓ =
∑

j related to ℓ

baa′

Ŵj

(
Eb −

Ea + Ea′

2

)
L̃

j

baρaa′L̃
j∗
ba′ . (B9)

APPENDIX C: ANALYTIC SOLUTIONS FOR THE DOUBLE-DOT SYSTEM

1. Transmission formalism

For the double-dot structure with no interactions U = 0 the transmission formalism [40–42] gives the following particle and
energy currents flowing from the left lead (L) into the dots:

IL =
1

2π

∫ ∞

−∞
dE T (E) [fL(E) − fR(E)], (C1)

ĖL =
1

2π

∫ ∞

−∞
dE T (E) E [fL(E) − fR(E)], (C2)

with fL/R(E) = [exp ( E−μL/R

TL/R
) + 1]

−1
. For symmetric coupling ŴL = ŴR = Ŵ, the transmission function is

T (E) =
∣∣∣∣

Ŵ/2

E − (Vg − �) + iŴ/2
−

Ŵ/2

E − (Vg + �) + iŴ/2

∣∣∣∣
2

. (C3)

We note that the above expressions are valid for the leads having an infinite bandwidth.

2. PERLind approach

After inserting Ŵj and L̃j defined in Sec. III into Eq. (4), we obtain for noninteracting case U = 0 such equations:

∂tρ = Lρ, ρ = (ρ00 ρ11 ρ1′1′ ρ22 ρ11′ ρ1′1)
T
, (C4)

with the Liouvillian L

L =
Ŵ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F+ − F− F̄− F̄+ 0 S̄δ S̄δ

F− −F+ − F̄− 0 F̄+
1
2 (Sδ − S̄δ) 1

2 (Sδ − S̄δ)

F+ 0 −F̄+ − F− F̄−
1
2 (Sδ − S̄δ) 1

2 (Sδ − S̄δ)

0 F+ F− −F̄+ − F̄− −Sδ −Sδ

Sδ
1
2 (Sδ − S̄δ) 1

2 (Sδ − S̄δ) −S̄δ −2
(
1 − i

γ

)
0

Sδ
1
2 (Sδ − S̄δ) 1

2 (Sδ − S̄δ) −S̄δ 0 −2
(
1 + i

γ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C5)
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Here, we have introduced the following notations:

Ŵ =
1

2
(ŴL + ŴR), γ =

Ŵ

2�
,

fL(E) = fI(E), fR(E) = fIII(E), f̄ℓ(E) = 1 − fℓ(E),

F± =
1

Ŵ
[ŴLfL(Vg ± �) + ŴRfR(Vg ± �)], F̄± =

1

Ŵ
[ŴLf̄L(Vg ± �) + ŴRf̄R(Vg ± �)], (C6)

Sℓ =
Ŵℓ

Ŵ

√
fℓ(Vg + �)fℓ(Vg − �), S̄ℓ =

Ŵℓ

Ŵ

√
f̄ℓ(Vg + �)f̄ℓ(Vg − �),

Sδ = SL − SR, S̄δ = S̄L − S̄R.

We are interested in stationary-state solution of Eq. (C4). By setting ∂tρ = 0 and imposing normalization condition Tr[ρ] =
ρ00 + ρ11 + ρ1′1′ + ρ22 = 1, we obtain the solution

ρ00 =
1

4
F̄+F̄− −

1

8
[(F+ + F−)Sδ − (F̄+ + F̄−)S̄δ − 4(Sδ + S̄δ)] Re(ρ1′1),

ρ11 =
1

4
F̄+F− +

1

8
[(F+ + F−)Sδ − (F̄+ + F̄−)S̄δ] Re(ρ1′1),

ρ1′1′ =
1

4
F+F̄− +

1

8
[(F+ + F−)Sδ − (F̄+ + F̄−)S̄δ] Re(ρ1′1), (C7)

ρ22 =
1

4
F+F− −

1

8
[(F+ + F−)Sδ − (F̄+ + F̄−)S̄δ + 4(Sδ + S̄δ)] Re(ρ1′1),

ρ11′ =
1

8
(γ 2 + iγ )

(F̄+ + F̄−)Sδ − (F+ + F−)S̄δ

1 + γ 2
[
1 −

(
Sδ+S̄δ

2

)2] , ρ1′1 = ρ∗
11′ .

Using the above expressions for the density matrix elements from Eqs. (B3) and (B9) we get such currents

IL =
1

2

ŴLŴR

ŴL + ŴR

[g+ + g− − (sL + sR + s̄L + s̄R)2 Re(ρ1′1)], (C8a)

ĖL =
1

2

ŴLŴR

ŴL + ŴR

[(Vg + �)g+ + (Vg − �)g− − Vg(sL + sR + s̄L + s̄R)2 Re(ρ1′1)], (C8b)

where the following notation was introduced:

g± = fL(Vg ± �) − fR(Vg ± �), sℓ =
√

fℓ(Vg + �)fℓ(Vg − �), s̄ℓ =
√

f̄ℓ(Vg + �)f̄ℓ(Vg − �). (C9)

3. Redfield approach

After using Eq. (A3) of Ref. [48], we obtain the following Liouvillian for the first-order Redfield approach2:

LRed =
Ŵ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F+ − F− F̄− F̄+ 0 γ ′

γ
− C∗ γ ′

γ
− C

F− −F+ − F̄− 0 F̄+ C∗ C

F+ 0 −F̄+ − F− F̄− C∗ C

0 F+ F− −F̄+ − F̄− − γ ′

γ
− C∗ − γ ′

γ
− C

γ ′

γ
+ C C C − γ ′

γ
+ C −2

(
1 − i

γ

)
0

γ ′

γ
+ C∗ C∗ C∗ − γ ′

γ
+ C∗ 0 −2

(
1 + i

γ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C10)

where

γ ′ =
ŴL − ŴR

2 × 2�
,

C =
1

2πiŴ
[(ŴLψ∗

L+ − ŴRψ∗
R+) − (ŴLψL− − ŴRψR−)], (C11)

ψℓ± = �

(
1

2
+

μℓ − (Vg ± �)

i2πTℓ

)
.

2In nonstationary state, the left-hand side of Eq. (A3) in Ref. [48] is replaced by i∂tρbb′ .
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Here, �(z) denotes the digamma function [79]. We also used the notations introduced in Eqs. (C6) and (C9). For the stationary
state LRedρ = 0, we obtain the solution

ρ00 =
1

4
F̄+F̄− −

1

2
Re (Cρ1′1) −

1

4

γ ′

γ
(−2 − F̄− − F̄+) Re(ρ1′1),

ρ11 =
1

4
F−F̄+ +

1

2
Re (Cρ1′1) +

1

4

γ ′

γ
(−2 + F− + F+) Re(ρ1′1),

ρ1′1′ =
1

4
F+F̄− +

1

2
Re (Cρ1′1) +

1

4

γ ′

γ
(−2 + F− + F+) Re(ρ1′1), (C12)

ρ22 =
1

4
F+F− −

1

2
Re (Cρ1′1) −

1

4

γ ′

γ
(+2 + F− + F+) Re(ρ1′1),

ρ11′ = ρ∗
1′1 =

(i + γ )[4γC − γ ′(F+F− − F̄−F̄+)] − 4iγ ′2 Im C

8(1 + γ 2 − γ ′2)
.

The particle and energy currents are calculated using Eqs. (A9) and (A10) of Ref. [48]3:

IL =
1

2

ŴLŴR

ŴL + ŴR

[g+ + g− − 4 Re(ρ1′1)], (C13)

ĖL =
1

2

ŴLŴR

ŴL + ŴR

[(Vg + �)g+ + (Vg − �)g− − 4Vg Re(ρ1′1)]. (C14)

The Pauli master-equation result is obtained by neglecting the coherence term Re(ρ1′1) in the above expressions. The result with
no principal parts (Redfield, no P) is obtained by neglecting the imaginary part of C in Eq. (C11).

APPENDIX D: KINETIC TENSORS FOR THE TWO-CHROMOPHORE SYSTEM

In this appendix we write the kinetic tensors used to generate the results of Fig. 4. The Redfield tensor is obtained using
Eqs. (370)–(375) of Ref. [6]. We get slightly different numerical values than in Ref. [27] at λ = 35 cm and T = 185 K:

−KRed =

⎛
⎜⎜⎜⎝

−8.6 27.6 52.9 52.9

8.6 −27.6 −52.9 −52.9

2.8 + 6.5i −9.0 − 25.0i −52.5 + 48.5i 18.1 + 48.5i

2.8 − 6.5i −9.0 + 25.0i 18.1 − 48.5i −52.5 − 48.5i

⎞
⎟⎟⎟⎠ × 2πc/cm. (D1)

Here, KRed corresponds to the reduced density matrix expressed as ρ = (ρ11,ρ22,ρ12,ρ21)T . The secular approximation is obtained
by removing all the terms from KRed

abcd where Eb − Ea �= Ed − Ec:

−KSec =

⎛
⎜⎜⎜⎝

−8.6 27.6 0 0

8.6 −27.6 0 0

0 0 −52.5 + 48.5i 0

0 0 0 −52.5 − 48.5i

⎞
⎟⎟⎟⎠ × 2πc/cm. (D2)

We note that in simulations of Fig. 4 we have not used the imaginary parts of KRed and KSec, which correspond to neglecting the
principal part P integrals. Our proposed Lindblad scheme as discussed in Sec. IV gives

−KPERLind =

⎛
⎜⎜⎜⎝

−8.6 27.6 17.0 17.0

8.6 −27.6 −17.0 −17.0

7.4 −26.6 −52.5 15.4

7.4 −26.6 15.4 −52.5

⎞
⎟⎟⎟⎠ × 2πc/cm. (D3)

Lastly, the procedure described in Ref. [27] from Eq. (D1) gives

−KPalm =

⎛
⎜⎜⎜⎝

−8.6 27.6 55.1 55.1

8.6 −27.6 −55.1 −55.1

−30.7 98.7 −52.5 −15.4

−30.7 98.7 −15.4 −52.5

⎞
⎟⎟⎟⎠ × 2πc/cm. (D4)

3In Eqs. (A9)–(A11), (B3), and (B4) of Ref. [48] the minus sign from the definition of the currents, Eq. (2), is missing. There, 2 Im has to be
replaced by −2 Im.
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APPENDIX E: SCATTERING MATRIX

ELEMENTS FOR QCLs

1. Electron-phonon interaction

For the polar interaction with longitudinal optical phonons,
the function gq,qz

in the Fröhlich Hamiltonian (26) reads as
[71]

gq,qz
=

i
√

AL

√
e2h̄ωLO

2ǫ0ǫp

1√
q2 + q2

z

, (E1)

whereL is the normalization length determining theqz spacing,
ωLO is the longitudinal optical phonon frequency, which is
assumed to be constant, and ǫ0 is the vacuum permittivity. Also,
ǫ−1
p = ǫ−1

∞ − ǫ−1
s , where ǫ∞ and ǫs are the relative dielectric

constants evaluated far above and far below ωLO, respectively.
Now, we evaluate Eq. (29) for the emission process. From

the first term of Eq. (28) we find

Ŵem.
αk→βk+q =

2π

h̄

1

A

e2h̄ωLO

2ǫ0ǫp

[fB(h̄ωLO) + 1]

×
∫

dqz

2π

∣∣Mqz

βα

∣∣2

q2 + q2
z

δ

(
�βα,q+

h̄2

mc

k · q+h̄ωLO

)
,

(E2)

where we used the continuum limit
∑

qz
→ L

2π

∫
dqz and

introduced �βα,q = Eβ − Eα + Eq. We assume that the in-
plane electron states have thermal occupations, i.e., fα,k ∝
e−Ek/(kBT ). In such a case, Eqs. (29) and (E2) give the following
emission rate:

Rem.
α→β = C−

∫
dqz

2π

∫ ∞

0

dq

2π

exp
[
− (�βα,q+h̄ωLO)2

4EqkBT

]

q2 + q2
z

∣∣Mqz

βα

∣∣2
,

(E3)

where C± = ±fB(±h̄ωLO) 2π
h̄

e2 h̄ωLO
2ǫ0ǫp

√
mc

2πh̄2kBT
. Here, we per-

formed the k sums using the continuum limit
∑

k →
A

(2π)2

∫
d2k = A

(2π)2

∫ 2π

0 dφ
∫ +∞

0 dk k and by identifying k ·
q = kq cos(φ). Also, the following integral was used:

∫ 2π

0
dφ sec2(φ)e−a sec2(φ) a>0= 2e−a

√
π

a
. (E4)

The emission rate (E3) has the form of Eq. (30) with

f em.
qz

(Eβ − Eα) =
C−

L

∫ ∞

0

dq

2π

exp
[
− (�βα,q+h̄ωLO)2

4EqkBT

]

q2 + q2
z

, (E5)

which agrees with the result found by Gordon and Majer [33]
up to a factor of 2.

For phonon absorption, we need to change the sign of h̄ωLO

in the delta function and change fB(h̄ωLO) + 1 → fB(h̄ωLO),

resulting in

f abs.
qz

(Eβ − Eα) =
C+

L

∫ ∞

0

dq

2π

exp
[
− (�βα,q−h̄ωLO)2

4EqkBT

]

q2 + q2
z

. (E6)

In the simulations of Figs. 5 and 6, we used the standard GaAs
semiconductor material parameters: mc = 0.067me, h̄ωLO =
36.7 meV, ǫs = 13.0, ǫ∞ = 10.89, ǫp = 67.09. Here, me

denotes the mass of electron.

2. Scattering by impurities

For impurity scattering, we have the following momentum-
resolved transition rate:

Ŵαk→βk+q =
2π

h̄
|〈Uβα,q〉|2δ(Eβ,k+q − Eα,k), (E7)

where

|〈Uβα,q〉|2 = AN2D

∑

i

wiV
i
βα,qV

i
αβ,−q (E8)

is an impurity average for electron scattering and N2D is the
total impurity density per period with wi being a normalized
weight function distributing it on different positions zi within
each period. Here,

V i
βα,q = −

e2

2ǫ0ǫsA

exp (−iq · ri)√
q2 + λ2

M
i,q

βα , (E9)

where λ is the inverse screening length and

M
i,q

βα =
∫

dz ψ∗
β (z)ψα(z)e−

√
q2+λ2|z−zi | . (E10)

Using Eq. (29), we perform the thermal average over the in-
plane momentum (fα,k ∝ e−Ek/(kBT )) and obtain

Rα→β =
∑

i

D

∫ ∞

0

dq

2π

∣∣M i,q

βα

∣∣2
fi,q(Eβ − Eα)

=
∑

i,q

∣∣M i,q

βα

∣∣2
fi,q(Eβ − Eα), (E11)

where

fi,q(Eβ − Eα) =
2π

Dh̄
wiN2D

(
e2

2ǫ0ǫs

)2√
mc

2πh̄2kBT

×
exp

[
− �2

βα,q

4EqkBT

]

q2 + λ2
, (E12)

where D is an arbitrary length scale to get the dimen-
sions right. As for phonon scattering, the scattering rate
in Eq. (E11) can thus be generalized to the Lindblad ten-
sors of Eq. (5) with L

i,q

ab = M
i,q

ab and distribution function
fi,q(Ea − Eb). For the simulations we used N2D = 5.16 ×
1010 cm−2, five impurity layers per period with wi = 0.2 at
positions zi ∈ {42.0,44.8,47.7,50.6,53.4} nm, and Lindhard
static screening length of λ−1 ∈ {24.3,30.0,33.5,38.5} nm at
T ∈ {77,120,150,200} K.
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[69] G. Hałdaś, A. Kolek, and I. Tralle, IEEE J. Quantum Electron.

47, 878 (2011).
[70] A. Wacker, M. Lindskog, and D. O. Winge, IEEE J. Sel. Top.

Quantum 19, 1200611 (2013).

035432-15

https://doi.org/10.1103/PhysRev.70.460
https://doi.org/10.1103/PhysRev.70.460
https://doi.org/10.1103/PhysRev.70.460
https://doi.org/10.1103/PhysRev.70.460
https://doi.org/10.1103/RevModPhys.64.849
https://doi.org/10.1103/RevModPhys.64.849
https://doi.org/10.1103/RevModPhys.64.849
https://doi.org/10.1103/RevModPhys.64.849
https://doi.org/10.1103/RevModPhys.74.1283
https://doi.org/10.1103/RevModPhys.74.1283
https://doi.org/10.1103/RevModPhys.74.1283
https://doi.org/10.1103/RevModPhys.74.1283
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1021/cr800268n
https://doi.org/10.1021/cr800268n
https://doi.org/10.1021/cr800268n
https://doi.org/10.1021/cr800268n
https://doi.org/10.1146/annurev-conmatphys-020911-125126
https://doi.org/10.1146/annurev-conmatphys-020911-125126
https://doi.org/10.1146/annurev-conmatphys-020911-125126
https://doi.org/10.1146/annurev-conmatphys-020911-125126
https://doi.org/10.1147/rd.141.0061
https://doi.org/10.1147/rd.141.0061
https://doi.org/10.1147/rd.141.0061
https://doi.org/10.1147/rd.141.0061
https://doi.org/10.1016/S0370-1573(01)00029-1
https://doi.org/10.1016/S0370-1573(01)00029-1
https://doi.org/10.1016/S0370-1573(01)00029-1
https://doi.org/10.1016/S0370-1573(01)00029-1
https://doi.org/10.1103/PhysRevB.72.125347
https://doi.org/10.1103/PhysRevB.72.125347
https://doi.org/10.1103/PhysRevB.72.125347
https://doi.org/10.1103/PhysRevB.72.125347
https://doi.org/10.1126/science.264.5158.553
https://doi.org/10.1126/science.264.5158.553
https://doi.org/10.1126/science.264.5158.553
https://doi.org/10.1126/science.264.5158.553
https://doi.org/10.1063/1.4863665
https://doi.org/10.1063/1.4863665
https://doi.org/10.1063/1.4863665
https://doi.org/10.1063/1.4863665
https://doi.org/10.1103/PhysRevB.77.195416
https://doi.org/10.1103/PhysRevB.77.195416
https://doi.org/10.1103/PhysRevB.77.195416
https://doi.org/10.1103/PhysRevB.77.195416
https://doi.org/10.1063/1.3109898
https://doi.org/10.1063/1.3109898
https://doi.org/10.1063/1.3109898
https://doi.org/10.1063/1.3109898
https://doi.org/10.1103/PhysRevA.79.032110
https://doi.org/10.1103/PhysRevA.79.032110
https://doi.org/10.1103/PhysRevA.79.032110
https://doi.org/10.1103/PhysRevA.79.032110
https://doi.org/10.1140/epjb/e2009-00363-4
https://doi.org/10.1140/epjb/e2009-00363-4
https://doi.org/10.1140/epjb/e2009-00363-4
https://doi.org/10.1140/epjb/e2009-00363-4
https://doi.org/10.1103/PhysRevB.82.235307
https://doi.org/10.1103/PhysRevB.82.235307
https://doi.org/10.1103/PhysRevB.82.235307
https://doi.org/10.1103/PhysRevB.82.235307
https://doi.org/10.1021/jp103369s
https://doi.org/10.1021/jp103369s
https://doi.org/10.1021/jp103369s
https://doi.org/10.1021/jp103369s
https://doi.org/10.1021/jp505771f
https://doi.org/10.1021/jp505771f
https://doi.org/10.1021/jp505771f
https://doi.org/10.1021/jp505771f
https://doi.org/10.1103/PhysRev.89.728
https://doi.org/10.1103/PhysRev.89.728
https://doi.org/10.1103/PhysRev.89.728
https://doi.org/10.1103/PhysRev.89.728
https://doi.org/10.1147/rd.11.0019
https://doi.org/10.1147/rd.11.0019
https://doi.org/10.1147/rd.11.0019
https://doi.org/10.1147/rd.11.0019
https://doi.org/10.1103/PhysRevB.79.165322
https://doi.org/10.1103/PhysRevB.79.165322
https://doi.org/10.1103/PhysRevB.79.165322
https://doi.org/10.1103/PhysRevB.79.165322
https://doi.org/10.1103/PhysRevB.96.085308
https://doi.org/10.1103/PhysRevB.96.085308
https://doi.org/10.1103/PhysRevB.96.085308
https://doi.org/10.1103/PhysRevB.96.085308
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.3142485
https://doi.org/10.1063/1.3142485
https://doi.org/10.1063/1.3142485
https://doi.org/10.1063/1.3142485
https://doi.org/10.1103/PhysRevLett.80.369
https://doi.org/10.1103/PhysRevLett.80.369
https://doi.org/10.1103/PhysRevLett.80.369
https://doi.org/10.1103/PhysRevLett.80.369
https://doi.org/10.1063/1.2136420
https://doi.org/10.1063/1.2136420
https://doi.org/10.1063/1.2136420
https://doi.org/10.1063/1.2136420
https://doi.org/10.1103/PhysRevB.95.165302
https://doi.org/10.1103/PhysRevB.95.165302
https://doi.org/10.1103/PhysRevB.95.165302
https://doi.org/10.1103/PhysRevB.95.165302
https://doi.org/10.1103/PhysRevB.90.125140
https://doi.org/10.1103/PhysRevB.90.125140
https://doi.org/10.1103/PhysRevB.90.125140
https://doi.org/10.1103/PhysRevB.90.125140
https://doi.org/10.1021/acs.jpca.5b12212
https://doi.org/10.1021/acs.jpca.5b12212
https://doi.org/10.1021/acs.jpca.5b12212
https://doi.org/10.1021/acs.jpca.5b12212
https://doi.org/10.1103/PhysRevB.80.195317
https://doi.org/10.1103/PhysRevB.80.195317
https://doi.org/10.1103/PhysRevB.80.195317
https://doi.org/10.1103/PhysRevB.80.195317
https://doi.org/10.1103/PhysRevB.78.054302
https://doi.org/10.1103/PhysRevB.78.054302
https://doi.org/10.1103/PhysRevB.78.054302
https://doi.org/10.1103/PhysRevB.78.054302
https://doi.org/10.1103/PhysRevB.53.15932
https://doi.org/10.1103/PhysRevB.53.15932
https://doi.org/10.1103/PhysRevB.53.15932
https://doi.org/10.1103/PhysRevB.53.15932
https://doi.org/10.1103/PhysRevB.57.6602
https://doi.org/10.1103/PhysRevB.57.6602
https://doi.org/10.1103/PhysRevB.57.6602
https://doi.org/10.1103/PhysRevB.57.6602
https://doi.org/10.1209/epl/i2002-00174-3
https://doi.org/10.1209/epl/i2002-00174-3
https://doi.org/10.1209/epl/i2002-00174-3
https://doi.org/10.1209/epl/i2002-00174-3
https://doi.org/10.1209/0295-5075/107/20004
https://doi.org/10.1209/0295-5075/107/20004
https://doi.org/10.1209/0295-5075/107/20004
https://doi.org/10.1209/0295-5075/107/20004
https://doi.org/10.1088/0957-4484/26/3/032001
https://doi.org/10.1088/0957-4484/26/3/032001
https://doi.org/10.1088/0957-4484/26/3/032001
https://doi.org/10.1088/0957-4484/26/3/032001
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1103/PhysRevB.31.6207
https://doi.org/10.1103/PhysRevB.31.6207
https://doi.org/10.1103/PhysRevB.31.6207
https://doi.org/10.1103/PhysRevB.31.6207
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1103/PhysRevB.80.033302
https://doi.org/10.1103/PhysRevB.80.033302
https://doi.org/10.1103/PhysRevB.80.033302
https://doi.org/10.1103/PhysRevB.80.033302
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1016/j.cpc.2017.07.024
https://doi.org/10.1016/j.cpc.2017.07.024
https://doi.org/10.1016/j.cpc.2017.07.024
https://doi.org/10.1016/j.cpc.2017.07.024
https://doi.org/10.1103/PhysRevB.89.205424
https://doi.org/10.1103/PhysRevB.89.205424
https://doi.org/10.1103/PhysRevB.89.205424
https://doi.org/10.1103/PhysRevB.89.205424
https://doi.org/10.1103/PhysRevB.94.165435
https://doi.org/10.1103/PhysRevB.94.165435
https://doi.org/10.1103/PhysRevB.94.165435
https://doi.org/10.1103/PhysRevB.94.165435
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1007/BF01391504
https://doi.org/10.1007/BF01391504
https://doi.org/10.1007/BF01391504
https://doi.org/10.1007/BF01391504
https://doi.org/10.1007/BF01318974
https://doi.org/10.1007/BF01318974
https://doi.org/10.1007/BF01318974
https://doi.org/10.1007/BF01318974
https://doi.org/10.1007/BF01625769
https://doi.org/10.1007/BF01625769
https://doi.org/10.1007/BF01625769
https://doi.org/10.1007/BF01625769
https://doi.org/10.1063/1.526164
https://doi.org/10.1063/1.526164
https://doi.org/10.1063/1.526164
https://doi.org/10.1063/1.526164
https://doi.org/10.1134/S0001434608070092
https://doi.org/10.1134/S0001434608070092
https://doi.org/10.1134/S0001434608070092
https://doi.org/10.1134/S0001434608070092
https://doi.org/10.1364/OE.23.005167
https://doi.org/10.1364/OE.23.005167
https://doi.org/10.1364/OE.23.005167
https://doi.org/10.1364/OE.23.005167
https://doi.org/10.1103/PhysRevB.73.245320
https://doi.org/10.1103/PhysRevB.73.245320
https://doi.org/10.1103/PhysRevB.73.245320
https://doi.org/10.1103/PhysRevB.73.245320
https://doi.org/10.1088/0022-3719/17/28/017
https://doi.org/10.1088/0022-3719/17/28/017
https://doi.org/10.1088/0022-3719/17/28/017
https://doi.org/10.1088/0022-3719/17/28/017
https://doi.org/10.1016/S0921-4526(99)00274-4
https://doi.org/10.1016/S0921-4526(99)00274-4
https://doi.org/10.1016/S0921-4526(99)00274-4
https://doi.org/10.1016/S0921-4526(99)00274-4
https://doi.org/10.1063/1.2719683
https://doi.org/10.1063/1.2719683
https://doi.org/10.1063/1.2719683
https://doi.org/10.1063/1.2719683
https://doi.org/10.1063/1.124895
https://doi.org/10.1063/1.124895
https://doi.org/10.1063/1.124895
https://doi.org/10.1063/1.124895
https://doi.org/10.1103/PhysRevB.80.245316
https://doi.org/10.1103/PhysRevB.80.245316
https://doi.org/10.1103/PhysRevB.80.245316
https://doi.org/10.1103/PhysRevB.80.245316
https://doi.org/10.1103/PhysRevB.81.205311
https://doi.org/10.1103/PhysRevB.81.205311
https://doi.org/10.1103/PhysRevB.81.205311
https://doi.org/10.1103/PhysRevB.81.205311
https://doi.org/10.1088/1367-2630/12/3/033045
https://doi.org/10.1088/1367-2630/12/3/033045
https://doi.org/10.1088/1367-2630/12/3/033045
https://doi.org/10.1088/1367-2630/12/3/033045
https://doi.org/10.1103/PhysRevLett.87.146603
https://doi.org/10.1103/PhysRevLett.87.146603
https://doi.org/10.1103/PhysRevLett.87.146603
https://doi.org/10.1103/PhysRevLett.87.146603
https://doi.org/10.1109/JQE.2006.869813
https://doi.org/10.1109/JQE.2006.869813
https://doi.org/10.1109/JQE.2006.869813
https://doi.org/10.1109/JQE.2006.869813
https://doi.org/10.1063/1.3272675
https://doi.org/10.1063/1.3272675
https://doi.org/10.1063/1.3272675
https://doi.org/10.1063/1.3272675
https://doi.org/10.1103/PhysRevB.79.195323
https://doi.org/10.1103/PhysRevB.79.195323
https://doi.org/10.1103/PhysRevB.79.195323
https://doi.org/10.1103/PhysRevB.79.195323
https://doi.org/10.1109/JQE.2011.2130512
https://doi.org/10.1109/JQE.2011.2130512
https://doi.org/10.1109/JQE.2011.2130512
https://doi.org/10.1109/JQE.2011.2130512
https://doi.org/10.1109/JSTQE.2013.2239613
https://doi.org/10.1109/JSTQE.2013.2239613
https://doi.org/10.1109/JSTQE.2013.2239613
https://doi.org/10.1109/JSTQE.2013.2239613


KIRŠANSKAS, FRANCKIÉ, AND WACKER PHYSICAL REVIEW B 97, 035432 (2018)

[71] O. Madelung, Introduction to Solid-State Theory (Springer,
Berlin, 1978).

[72] L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G.
Davies, and E. H. Linfield, Electron. Lett. 50, 309 (2014).

[73] M. Lindskog, D. O. Winge, and A. Wacker, Proc. SPIE 8846,
884603 (2013).

[74] S. Kohen, B. Williams, and Q. Hu, J. Appl. Phys. 97, 053106
(2005).

[75] J. T. Lü and J. C. Cao, Appl. Phys. Lett. 88, 061119 (2006).

[76] R. C. Iotti, F. Rossi, M. S. Vitiello, G. Scamarcio, L. Mahler,
and A. Tredicucci, Appl. Phys. Lett. 97, 033110 (2010).

[77] Y. B. Shi and I. Knezevic, J. Appl. Phys. 116, 123105
(2014).

[78] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007), available at
http://matplotlib.org

[79] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (National Bureau of Standards, Washington, DC,
1972).

035432-16

https://doi.org/10.1049/el.2013.4035
https://doi.org/10.1049/el.2013.4035
https://doi.org/10.1049/el.2013.4035
https://doi.org/10.1049/el.2013.4035
https://doi.org/10.1117/12.2024030
https://doi.org/10.1117/12.2024030
https://doi.org/10.1117/12.2024030
https://doi.org/10.1117/12.2024030
https://doi.org/10.1063/1.1855394
https://doi.org/10.1063/1.1855394
https://doi.org/10.1063/1.1855394
https://doi.org/10.1063/1.1855394
https://doi.org/10.1063/1.2172225
https://doi.org/10.1063/1.2172225
https://doi.org/10.1063/1.2172225
https://doi.org/10.1063/1.2172225
https://doi.org/10.1063/1.3464977
https://doi.org/10.1063/1.3464977
https://doi.org/10.1063/1.3464977
https://doi.org/10.1063/1.3464977
https://doi.org/10.1063/1.4896400
https://doi.org/10.1063/1.4896400
https://doi.org/10.1063/1.4896400
https://doi.org/10.1063/1.4896400
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
http://matplotlib.org

