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Abstract
Recent progress in numerical relativity has enabled us to model the non-
perturbative merger phase of the binary black-hole coalescence problem. Based
on these results, we propose a phenomenological family of waveforms which
can model the inspiral, merger and ring-down stages of black-hole coalescence.
We also construct a template bank using this family of waveforms and discuss
its implementation in the search for signatures of gravitational waves produced
by black-hole coalescences in the data of ground-based interferometers. This
template bank might enable us to extend the present inspiral searches to higher-
mass binary black-hole systems, i.e., systems with total mass greater than
about 80 solar masses, thereby increasing the reach of the current generation
of ground-based detectors.

PACS number: 04.70.−s

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The first generation of ground-based gravitational wave detectors [1–3] are currently operating
at unprecedented levels of sensitivity and the LIGO detectors, in particular, have attained their
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design goals over a broad frequency range. The data from these detectors has been used to
search for a wide variety of gravitational-wave sources including coalescing binary black-hole
systems (see, e.g. [4, 5]). In parallel with these experimental and observational achievements,
a series of breakthroughs has occurred in numerical simulations of binary black-hole systems
[6–8]. Long-term evolutions of inspiralling black holes that last for several orbits have been
obtained with several independent codes [9–16], and accurate gravitational-wave signals have
been computed. It is now possible, in principle, to use these numerical-relativity results in
astrophysical searches for gravitational waves. However, the high computational cost of these
simulations makes it unfeasible to numerically generate all the necessary waveforms to cover
the parameter space that needs to be searched. It is therefore necessary, at the present time, to
use results from post-Newtonian (PN) theory to extend the waveforms obtained from numerical
relativity (NR). The issue of matching NR and PN waveforms for equal-mass binary black-
hole systems, and using the numerical-relativity results in gravitational-wave searches, has
been considered previously [17–20]. We generalize this to unequal-mass systems and suggest
a phenomenological template bank parametrized only by the masses of the two individual
black holes. This template bank could be used to search for binary black-hole signals in data
from current and future generations of gravitational-wave detectors. Our phenomenological
approach is motivated by the work of Buonanno et al [21], but using only physical parameters
and generalized to include recent results from numerical relativity.

In this paper, we combine restricted 3.5PN waveforms [22] with results from NR
simulations to construct ‘hybrid’ waveforms for the quasi-circular inspiral of non-spinning
binaries with possibly unequal masses. Restricting ourselves to the leading-order quadrupole
modes, we find that the hybrid waveforms can be approximated by phenomenological
analytical waveforms with fitting factors �0.99 in the total mass range between 30 and
130 M� for Initial LIGO [23]. For our analysis, we use numerical waveforms obtained with
two independent codes: (i) long waveforms (12 cycles) from equal-mass binaries, provided by
the AEI-CCT groups, using their CCATIE code [24] based on the Cactus framework [25] and
Carpet mesh-refinement driver [26]; (ii) waveforms from an unequal-mass parameter study
presented by the Jena group in [27], which have been obtained with the BAM code [13]. An
analysis of these waveforms focusing on ring-down and higher modes has been presented
in [28].

The rest of this paper is organized as follows: section 2 summarizes the numerical
simulations and how numerical waveforms have been computed. In section 3, hybrid
waveforms are produced by matching PN and NR waveforms. In section 4, we propose
a family of phenomenological waveforms in the Fourier domain, and study their impact for
detection and parameter estimation by computing the fitting factors of the phenomenological
waveforms with the hybrid ones. We also parametrize the best-matched phenomenological
waveforms in terms of the physical parameters. Section 5 shows the astrophysical range
of a search using the full coalescence waveforms and a preliminary comparison with other
searches. Finally, section 6 concludes with a summary of our results and plans for future work.

2. Numerical simulations

Both the BAM [13] and CCATIE [24] codes are finite-difference mesh-refinement codes
solving the Einstein equations within the ‘moving puncture’ framework [7, 8, 16, 29].

In the wave zone, sufficiently far away from the source, the spacetime metric can be
accurately described as a perturbation of a flat background metric; let hab denote the metric
perturbation where a, b denote spacetime indices. Let t be the time coordinate used in the
numerical simulation to foliate the spacetime by spatial slices. Working, as usual, in the
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transverse-traceless (TT) gauge, all the information about the radiative degrees of freedom is
contained in the spatial part hij of hab, where i, j denote spatial indices. Let us use a coordinate
system (x, y, z) on a spatial slice so that the z-axis is along the total angular momentum of
the binary system at the starting time. Let ι be the inclination angle from the z-axis, and let φ

be the phase angle and r the radial distance coordinates so that (r, ι, φ) are standard spherical
coordinates in the wave zone.

Working in the TT gauge, the radiative degrees of freedom in hab can be written, as usual,
in terms of two polarizations h+ and h×:

hij = h+(e+)ij + h×(e×)ij , (1)

where e+,× are the usual basis tensors for TT tensors in the wave frame

(e+)ij = ι̂i ι̂j − φ̂i φ̂j and (e×)ij = ι̂i φ̂j + ι̂j φ̂i . (2)

Here, ι̂ and φ̂ are the unit vectors in the ι and φ directions, respectively. The wave, of course,
propagates in the radial direction.

In our numerical simulations, the gravitational waves are extracted by two distinct
methods. The first one uses the Newman–Penrose Weyl tensor component �4 (see, e.g.
[30]) which, in an appropriate gauge, is a measure of the outgoing transverse gravitational
radiation in an asymptotically flat spacetime. By measuring that the peeling property (whereby
�4 falls off as 1/r) is satisfied we have determined that the gauge we are using does provide
a good approximation to within the accuracy required for this study. In the wave zone, it can
be written in terms of the complex strain h = h+ − ih× as [31]

h = lim
r→∞

∫ t

0
dt ′

∫ t ′

0
dt ′′ �4. (3)

An alternative method for wave extraction, which has a long history in numerical relativity,
determines the waveform via gauge-invariant perturbations of a background Schwarzschild
spacetime, via the Zerilli–Moncrief formalism (see [32] for a review). In terms of the even(
Q

(+)
�m

)
and odd

(
Q

(×)
�m

)
parity master functions, the gravitational wave strain amplitude is then

given by

h = 1√
2r

∑
�,m

(
Q+

�m − i
∫ t

−∞
Q×

�m(t ′) dt ′
)

Y−2
�m + O

(
1

r2

)
. (4)

Results from the BAM code have used the Weyl tensor component �4 and equation (3),
with the implementation described in [13]. While the CCATIE code computes waveforms
adopting both methods, the AEI-CCT waveforms used here were computed using the
perturbative extraction and equation (4). Beyond an appropriate extraction radius, the two
methods for determining h are found to agree very well for moving-puncture black-hole
evolutions of the type considered here [16].

It is useful to discuss gravitational radiation fields in terms of spin-weighted s = −2
spherical harmonics Y s

�m, and in this paper we will only consider the dominant � = 2,m = ±2
modes (see [28] for the higher � contribution in the unequal-mass case), with basis functions

Y−2
2−2 ≡

√
5

64π
(1 − cos ι)2 e−2iφ, Y−2

22 ≡
√

5

64π
(1 + cos ι)2 e2iφ. (5)

Our ‘input’ NR waveforms correspond to the projections

h�m ≡ 〈
Y−2

�m , h
〉 =

∫ 2π

0
dφ

∫ π

0
hY−2

�m sin ι dι (6)
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of the complex strain h, where the bar denotes complex conjugation. In the cases considered
here, we have equatorial symmetry so that h22 = h2−2, and

h(t) =
√

5

64π
e2iφ((1 + cos ι)2h22(t) + (1 − cos ι)2h22(t)). (7)

In practice, we choose ι = 0, thus h(t) = 4
√

5
64π

h22(t) ≈ 0.631h22(t).

3. Matching post-Newtonian and numerical-relativity waveforms

Once the PN and NR waveforms are generated, we produce a set of hybrid waveforms by
matching them in an overlapping time interval t1 � t < t2. The obvious assumption in this
procedure is that such an overlapping region exists and that in it both approaches yield the
correct waveforms.

Each time-domain waveform h(t, µ) is parametrized by a vector µ = {M,η, φ0, t0},
where M ≡ m1 + m2 is the total mass of the binary, η ≡ m1m2/(m1 + m2)

2 is the symmetric
mass ratio, φ0 is the initial phase and t0 is the start time of the waveform. We match the
PN waveforms hPN

+,×(t, µ) and the NR waveforms hNR
+,×(t, ν) 8 by minimizing the squared

difference between the respective polarizations, i.e.,

δ ≡ minµ,a

[ ∑
i=+,×

∫ t2

t1

[
h

PN

i (t, µ) − ah
NR

i (t, ν)
]2

dt

]
. (8)

The minimization is carried over the parameters µ of the PN waveform and an amplitude
scaling factor a.9 The hybrid waveforms are produced by combining the ‘best-matched’ PN
waveforms and the NR waveforms in the following way:

h
hyb
+,×(t, ν) ≡




h
PN

+,×(t, µ0) if t < t1

a0τh
NR

+,×(t, ν) + (1 − τ)h
PN

+,×(t, µ0) if t1 � t < t2

a0h
NR

+,×(t, ν) if t2 � t,

(9)

where µ0 and a0 denote the values of µ and a for which δ is minimum, and τ = (t−t1)/(t2−t1)

is a linearly-increasing weighting function, such that 0 � τ < 1.
An example set of hybrid waveforms is shown in figure 1. The numerical waveform

(black line) from an equal-mass (η = 0.25) simulation by the AEI-CCT group is matched
with a 3.5PN inspiral waveform (red line) over the matching region 100M � t < 850M . The
hybrid waveform (dashed line) is constructed by combining the above as per equation (9).

The robustness of the matching procedure can be tested by computing the overlaps between
hybrid waveforms constructed with different matching regions. If the overlaps are very high,
this can be taken as an indication of the robustness of the matching procedure. A more detailed
discussion of this will be presented in [33].

Figure 2 shows the hybrid waveforms of different mass ratios in the Fourier domain.
In particular, the panel on the left shows the amplitude of the waveforms in the Fourier
domain, while the panel on the right shows the phase. These waveforms are constructed by
matching 3.5PN waveforms with the NR waveforms from the unequal-mass (0.16 � η � 0.25)

8 The parameters ν are taken from the same set as µ, but with different values.
9 The amplitude scaling factor was introduced in order to accommodate possible errors in the amplitude of the NR
waveforms due to, for example, the finite radius of the extraction sphere. The best-matched value of a, however, was
found to be 1 ± 0.08.
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Figure 1. NR waveform (black) from an equal-mass simulation, along with the ‘best-matched’
3.5PN waveform (red). The hybrid waveform constructed from the above is also shown (dashed
line).
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Figure 2. Fourier domain magnitude (left) and phase (right) of the hybrid waveforms. Symmetric
mass ratio η of each waveform is shown in the legends.

simulations by the Jena group. In the following section, we try to parametrize these Fourier
domain waveforms in terms of a set of phenomenological parameters.

4. The phenomenological template bank

An obvious issue when using the above-constructed hybrid waveforms directly as detection
templates is that it might be computationally very expensive to compute enough NR
waveforms to cover the entire parameter space densely enough. In this section, we propose
a phenomenological waveform family which has more than 99% overlaps with the hybrid
waveforms in the detection band of the Initial LIGO detectors. We also show how this
phenomenological waveform family can be mapped to the physical parameters (M and η) so
that the template bank, at the end, is two dimensional.

4.1. Phenomenological waveforms

We write our phenomenological waveform in the Fourier domain as

u(f ) ≡ Aeff(f ) ei�eff(f ), (10)
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Figure 3. Fitting factors of the hybrid waveforms with the phenomenological waveform family.
The horizontal axis shows the symmetric mass ratio of the binary, while different colours/markers
correspond to different total masses.

where Aeff(f ) is the amplitude of the waveform in the frequency domain, which we choose
to write in terms of a set of ‘amplitude parameters’ α = {fmerg, fring, fcut, σ } as

Aeff(f ) ≡




(f/fmerg)
−7/6 if f < fmerg

(f/fmerg)
−2/3 if fmerg � f < fring

wL(f, fring, σ ) if fring � f < fcut.

(11)

In the above expression,

L(f, fring, σ ) ≡
(

1

2π

)
σ

(f − fring)2 + σ 2/4
(12)

represents a Lorentzian function of width σ centred around fring. The normalization constant
w is chosen in such a way that Aeff(f ) is continuous across the ‘transition’ frequency fring,
i.e.,

w ≡ πσ

2

(
fring

fmerg

)−2/3

, (13)

where we use fcut as the cutoff frequency of the template and fmerg as the frequency at which
the power law changes from f −7/6 to f −2/3 (as noted previously in [17] for the equal-mass
case).

Taking our motivation from the stationary-phase expansion of the gravitational-wave
phase, we write the effective phase �eff(f ) as an expansion in powers of f .

�eff(f ) = 2πf t0 + φ0 + ψ0f
−5/3 + ψ2f

−1 + ψ3f
−2/3 + ψ4f

−1/3 + ψ6f
1/3, (14)

where t0 is the time of arrival, φ0 is the frequency-domain phase offset and β = {ψ0, ψ2,

ψ3, ψ4, ψ6} are the ‘phase parameters’, that is the set of phenomenological parameters
describing the phase of the waveform.

The fitting factors [34] of the hybrid waveforms with the family of phenomenological
waveforms are shown in figure 3 over the parameter range of 30 � M/M� � 130 and
0.16 � η � 0.25, using the Initial LIGO noise spectrum. It is quite apparent that the
fitting factors are almost always greater than 0.99, thus underlining the effectiveness of the
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Figure 4. Hybrid waveform h(t) and the best-matched phenomenological waveform u(t) in the
time domain for a M = 40M�, η = 0.25 binary system. u(t) is computed by taking the inverse
Fourier transform of the phenomenological waveform u(f ). Both waveforms are normalized with
respect to the Initial LIGO noise spectrum.
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Figure 5. Best-matched amplitude parameters αmax in terms of the physical parameters of
the binary. The horizontal axis shows the symmetric mass ratio of the binary and different
colors/markers correspond to different total masses. Linear polynomial fits to the data points are
also shown.

phenomenological waveforms in reproducing the hybrid ones. As an example, in figure 4,
we plot the hybrid waveform and the best-matched phenomenological waveform from the
M = 40M�, η = 0.25 binary.

4.2. From phenomenological to physical parameters

It is possible to reparametrize the best-matched phenomenological waveforms in terms of the
physical parameters of the hybrid waveforms. In figure 5, we plot the amplitude parameters
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Figure 6. The same as in figure 5 but for the phase parameters βmax.

αmax of the best-matched phenomenological waveforms against the physical parameters of
the binary. Similarly, the phase parameters βmax of the best-matched phenomenological
waveforms are plotted against the physical parameters of the binary in figure 6. The linear
polynomial fits to the data points serve as a numerical ‘look-up table’ to go from the physical
parameters {M,η} to the best-matched phenomenological parameters {αmax, βmax}. Thus, the
template bank lives on a two-dimensional manifold (parametrized by M and η) embedded in
a higher-dimensional space.

It might be worth stressing that the search will be carried out over M and η, and not over
the phenomenological parameters. The phenomenological parameters α and β are constrained
by the numerical look-up tables (see figures 5 and 6), and only serve as an intermediate step
in generating the template waveforms.

5. The astrophysical range and comparison with other searches

The template family proposed in this paper can be used for coherently searching for all the
three stages (inspiral, merger and ring-down) of the binary coalescence, thus making this
potentially more sensitive than searches which look at the three stages separately. Figure 7
compares the sensitivity of the searches using different template families. What is plotted
here is the distance at which an optimally-oriented, equal-mass binary would produce an
optimal signal-to-noise ratio (SNR) of 8 at the Initial LIGO noise spectrum. The dotted line
corresponds to a search using PN templates truncated at the Schwarzschild innermost stable
circular orbit (ISCO), the dashed line corresponds to a search [35] using ring-down templates
and the solid line corresponds to a search using all the three stages of the binary coalescence
using the template bank proposed here. The horizontal axis reports the total mass of the binary,
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Figure 7. A preliminary assessment of the phenomenological template bank. This figure plots, as
a function of the total mass, the distance to an optimally-oriented, equal-mass binary which can
produce an optimal SNR of 8 at the Initial LIGO noise spectrum. The dotted line corresponds
to a search using PN templates truncated at ISCO, the dashed line corresponds to a search using
ring-down templates and the solid line corresponds to a search using the template family proposed
in this paper. The ring-down horizon distance is computed assuming that ε = 0.7% of the
black-hole mass is radiated in the ring-down stage. Since the value of this parameter has some
amount of uncertainty in it, we have also included the shaded region in the plot corresponding to
0.18% � ε � 2.7%.

while the vertical axis reports the distance in Mpc. It is quite evident that, for binaries with
50 � M/M� � 140, the ‘coherent search’ using the new template family is considerably
more sensitive than any other search considered here. In a forthcoming paper [33], we will
quantify and extend this comparison to include other approaches which model all the three
stages of black-hole coalescence such as, for example the effective one-body approach [36],
or alternatively, combining the results from separate inspiral and ring-down phases using a
coincidence analysis (see, e.g. [37]). It is worth pointing out that regardless of the sensitivity,
a coherent template bank, such as the one proposed here, is likely to be technically easier to
implement than the inspiral–ring-down coincidence analysis. While the method proposed here
is just another template bank search, the inspiral–ring-down coincidence would require tuning
the individual inspiral and ring-down searches, as well as finding the appropriate coincidence
windows and other pipeline parameters.

However, while this looks promising, we emphasize that it is important to treat figure 7
as only a preliminary assessment; fitting factors are not the only consideration for a practical
search strategy. It is also very important to consider issues which arise when dealing with
real data. For example, false alarms produced by noise artifacts might well determine the
true sensitivity of the search, and these artifacts will inevitably be present in real data.
This is however beyond the scope of the present work, and further investigation is required
before we can properly assess the efficacy of our phenomenological template bank in real-life
searches.
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6. Summary and outlook

Making use of the recent results from numerical relativity, we have proposed a
phenomenological waveform family which can model the inspiral, merger and ring-down
stages of binary black-hole coalescence. We first constructed a set of hybrid waveforms
by matching the NR waveforms with the analytical PN waveforms. Then, we analytically
constructed phenomenological waveforms which approximated the hybrid waveforms. The
family of phenomenological waveforms that we propose was found to have fitting factors
larger than 0.99 with the hybrid waveforms in the detection band of Initial LIGO. We have
also shown how this phenomenological waveform family can be parametrized in terms of
the physical parameters (M and η) of the binary, so that the template bank, at the end, is
two dimensional. This phenomenological waveform family can be used to densely cover the
parameter space, avoiding the computational cost of generating numerical waveforms at every
grid point in the parameter space. We have also compared the sensitivity of a search using this
template family with other searches. This search might enable us to extend the mass range of
the present inspiral searches to higher mass (>80M�) systems. In the mass range 50M� to
140M�, this search could be significantly more sensitive than the search using the standard
PN inspiral templates and quasi-normal mode ring-down templates.

The numerical ‘look-up tables’ to go from the physical parameters to the
phenomenological parameters (see figures 5 and 6) can be replaced by analytical functions
of M and η. This makes it easier to compute the parameter space metric used for template
placement [38] and will be studied in future work. Our plans for future work also include the
study of the robustness of the matching procedure used to construct the hybrid waveforms by
considering different matching regions and PN waveforms of different order, and of course,
to eventually construct a realistic search pipeline which incorporates numerical-relativity
waveforms in gravitational wave searches.
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[13] Brügmann B et al 2006 Preprint gr-qc/0610128
[14] Scheel M A et al 2006 Phys. Rev. D 74 104006
[15] Herrmann F, Hinder I, Shoemaker D, Laguna P and Matzner R A 2007 Preprint gr-qc/0701143
[16] Koppitz M et al 2007 Preprint gr-qc/0701163
[17] Buonanno A, Cook G B and Pretorius F 2006 Preprint gr-qc/0610122
[18] Baumgarte T et al 2006 Preprint gr-qc/0612100
[19] Baker J G et al 2006 Preprint gr-qc/0612024
[20] Pan Y et al 2007 Preprint gr-qc/0704.1964
[21] Buonanno A, Chen Y and Vallisneri M 2003 Phys. Rev. D 67 024016
[22] Blanchet L, Damour T, Esposito-Farese G and Iyer B R 2004 Phys. Rev. Lett. 93 091101
[23] Abramovici A A et al 1992 Science 256 325–33
[24] Alcubierre M et al 2003 Phys. Rev. D 67 084023
[25] http://www.cactuscode.org
[26] Schnetter E, Hawley S H and Hawke I 2004 Class. Quantum Grav. 21 1465
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