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1. Introductory Comments

Recent progress in lattice phenomenology has been truly impressive, due to improved algo-
rithms and theoretical developments as well as more powerful computing resources. It is clearly
impossible to do justice to the title of this talk by discussing all the exciting new developments and
results and I will not try to do this. At this conference therehave been a number of excellent review
talks on specific topics including those in refs. [1 – 5] as well as many parallel sessions in which
the new ideas and results have been presented explicitly. I will therefore not attempt to make a
systematic compilation of the latest lattice results. I will also not discuss the different formulations
of lattice QCD or effective theories of heavy quarks. Instead I will discuss and give examples of

1. Mature quantities, i.e. ones which have been studied successfullyand with improving preci-
sion for many years. These include the determination of the CKM matrix elementVus and the
BK parameter of neutral kaon mixing, which I will discuss. The natural question which arises
for such quantities iswhat next? Does the phenomenology require us to strive towards even
higher precision or should we set our priorities towards theevaluation of other quantities?

2. Continuing attempts to extend the range of physical quantities for which lattice simulations
can contribute to the quantitative control of the nonperturbative QCD effects. In this context
I will discuss attempts to evaluateK → ππ decay amplitudes and a recent study of theη −η ′

system. I will also briefly mention relatively early attempts to evaluate long-distance effects,
encoded in the matrix elements of time-ordered (non-local)products of operators.

3. Quantities for which we don’t yet know how to formulate thelattice calculation of the corre-
sponding non-perturbative QCD effects. For illustration Iwill discuss two-body nonleptonic
B-decays, a hugely important set of processes for which thereis a large amount of experimen-
tal data and yet lattice simulations are not playing any significant rôle in the phenomenology.

The examples I use in this talk are taken from Flavour Physics, but of course we also need to re-
member the contributions which lattice QCD is making to the development of our understanding
of hadronic structure and to the determination of quark masses and the coupling constantαs. The
mission of precision flavour physics is to play a complementary rôle to largep⊥ experiments in dis-
covering and unraveling the next layer of fundamental physics beyond the standard model. If, as is
expected, or at least hoped, the LHC experiments discover new elementary particles then precision
flavour physics will be necessary to determine the underlying theoretical framework and lattice
simulations will be central to this endeavour, with the specific task of quantifying nonperturbative
hadronic effects. The discovery potential of precision flavour physics also should not be under-
estimated however, with a real possibility that currenttensions within the standard CKM analysis
will be confirmed and become inconsistencies which will haveto be explained bynew physics.
Even restricting the discussion to flavour physics, I have tobe selective and have naturally chosen
to discuss the status of some topics which have been of directinterest to me in recent years, and
which I believe are indicative of the exciting progress and prospects for the subject more widely.

Before proceeding to the discussion of specific processes, Istart with some comments about
the use of continuum perturbation theory which is necessaryto relate renormalization schemes
which can be simulated in lattice calculations and ones based on dimensional regularization (such
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asMS) which cannot, but which are generally used in the perturbative evaluation of Wilson co-
efficient functions. The main point of this discussion is to underline that the precision of current
lattice computations is such that, in order to get the maximum scientific benefit from the results
we need to work with the higher-order perturbation theory community to obtain Wilson coefficient
functions in schemes we can simulate. After this digressionI proceed to a discussion of the status
of the evaluation of a variety of physical quantities, starting with standard ones such asVus andBK,
through quantities which we are beginning to evaluate reliably such asK → ππ decay amplitudes
andη −η ′ masses and mixing and finally to some quantities which we currently do not know how
to evaluate at all (non-leptonicB-decay amplitudes).

1.1 Continuum Perturbation Theory

Lattice simulations are used to compute the long-distance non-perturbative effects in quan-
tities such as the matrix elements of local composite operators or the QCD parametersα s (the
strong coupling constant) and the quark masses. These quantities require renormalization and so
have to be combined with perturbative calculations before they can be used in predicting physical
observables. This is sketched in the following oversimplified picture:

Physics = C × 〈 f |O | i〉
↑ ↑

Perturbative Lattice
QCD QCD

whereC (perhaps a Wilson coefficient function) contains the short-distance physics and is calcu-
lated in perturbation theory and the long-distance effectsare contained in the matrix element(s)
of one or more local operators. The renormalization scheme and scale dependence cancels be-
tween the two factorsC and〈 f |O | i〉 provided that they are calculated in the same renormalization
scheme. Because of its practical advantagesC is usually calculated in a scheme based on dimen-
sional regularization, such as theMS scheme. Unfortunately however, we are not able to perform
lattice simulations in a non-integer number of dimensions and henceMS, while being the scheme
of choice in continuum perturbative calculations, is not directly useful in combining the perturba-
tive and lattice results. In particular, it is not possible to calculate the matrix element in theMS
scheme entirely non-perturbatively.

One possibility for matchingC and the matrix element, as long as the ultraviolet cut-off
(a−1, wherea is the lattice spacing) and the renormalization scale (µ) are both sufficiently large, is
to use perturbation theory to relate〈 f |Olatt(a) | i〉, computed in the bare lattice theory and with bare
operatorsOlatt(a), to the corresponding renormalized operatorsOMS(µ). In addition to the techni-
cal difficulty of performing perturbative calculations in the lattice theory beyond one-loop order, it
is found however, that the series frequently converge poorly. It is therefore preferable to perform
Non-Perturbative Renormalization (NPR), by choosing a renormalization condition which can be
imposed directly in lattice computations [6] and examples of such schemes include the momentum
schemes RI-Mom [6] and its recent generalization RI-SMom [7, 8] and schemes based on the use
of the Schrödinger Functional [9]. Having obtained the matrix element in such an intermediate
scheme, we need to combine it withC calculated in the same scheme or equivalently to translate
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the matrix element from the intermediate scheme toMS. The precision of lattice calculations is
now such that this translation from the intermediate schemeto MS needs to be performed beyond
one-loop order and hence is left most effectively to the professional NnLO perturbation theory
specialists. It is therefore pleasing to see such calculations being performed; this enhances con-
siderably the phenomenological reach of the lattice calculations. In addition to John Gracey, who
has been performing such calculations for some time (see forexample [10]), there have been recent
calculations relating the quark masses in the RI-SMom andMS schemes at two-loop order [11, 12].
Note also the joint work by the HPQCD lattice collaboration and the Karlsruhe perturbation theo-
rists on the evaluation of the charm-quark mass by matching moments of correlators on the lattice
and in the continuum [13].

The principal lesson of this section is that close collaboration with the QCD perturbation the-
ory community is increasingly necessary to optimise the significance of our lattice results.

2. Vus from Lattice simulations

Lattice calculations of the decay constantsfπ and fK are by now standard and from the ratio
fK/ fπ , combined with the experimental leptonic widths, we obtainthe ratioVus/Vud . The current
status obtained from simulations withN f = 2+1 flavours of sea quarks is [14]

fK

fπ
= 1.193±0.006. (2.1)

In the last 6 years or so, following the suggestion of Becirevic et al. [15], it has also become
possible to determineVus precisely by combining the experimental results forK → π semileptonic
decays with lattice determinations of the form factorf +(0) = f 0(0), where the argument 0 in
the parentheses indicates that the four-momentum transferq between the kaon and pion satisfies
q2 = 0 [16 – 18]. The FLAG collaboration summarises the current status of the results for the form
factor as [14]

f +(0) = 0.956±0.008. (2.2)

For both the quantitiesfK/ fπ and f +(0), the calculational techniques are such that we would obtain
precisely 1 in the SU(3) flavour symmetry limit (mu = md = ms) and so it is the difference from
one which we are actually computing. The Ademollo-Gatto theorem implies that these corrections
are small for f +(0), and the main uncertainty for this quantity is due to the chiral extrapolation.
The precision of the results in eqs. (2.1) and (2.2) is truly remarkable when compared to what was
possible just a few years ago.

The recent results are nicely summarized in figure 1, also from FLAG [14], in which are
shown:

(i) the allowed regions from calculations offK/ fπ with N f = 2+ 1 andN f = 2 flavours of
sea-quark (shown separately);

(ii) the allowed regions from calculations off +(0) with N f = 2+ 1 andN f = 2 flavours of
sea-quark (shown separately);

(iii) the allowed regions combining the calculations offK/ fπ and f +(0) with N f = 2+ 1 (red
oval) andN f = 2 (dashed blue oval).
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Figure 1: The plot compares the information for|Vud | and|Vus| obtained on the lattice with the experimental
result extracted from nuclearβ transitions. The dotted arc is part of the circle|Vud|2+ |Vus|2 = 1, representing
the correlation between|Vud | and|Vus| that follows if the three-flavour CKM-matrix is unitary. [14].

Also shown on this plot is the result forVud from super-allowed nuclearβ -decays and an arc of
the circle|Vud |2 + |Vus|2 = 1. Since|Vub|2 is very small compared to the uncertainties in|Vud |2 and
|Vus|2, this circle represents the unitarity condition on the firstrow of the CKM matrix. Although
it would have been more exciting to find an inconsistency, we see that everything is remarkably
consistent with the standard model, a point I underline further in the next subsection.

2.1 Vus within the Standard Model

I’d now like to share a simple analysis, which I learned from my colleagues in the FLAG [14]
collaboration, which determinesVus in the Standard Model without lattice calculations and which
underlines again how remarkably consistent the lattice results for fK/ fπ and f +(0) are with Stan-
dard Model expectations. Experimental studies of leptonicdecays of kaons and pions give us two
precise constraints for the four quantities,Vud , Vus, fK/ fπ and f +(0) [19]:

∣

∣

∣

∣

Vus fK

Vud fπ

∣

∣

∣

∣

= 0.27599(59) and |Vus f +(0)| = 0.21661(47) . (2.3)

Within the standard model, a third equation is provided by the unitarity constraint:

|Vud |2 + |Vus|2 = 1, (2.4)

where|Vub|2 has been dropped from the left-hand side because it is smaller than the uncertainties
in the remaining terms. Now eqs. (2.3) and (2.4) give 3 equations for four unknowns. As the fourth
equation we can take the value ofVud from the recent analysis in ref. [20] based on 20 different
superallowed nuclearβ -transitions:

|Vud | = 0.97425(22) . (2.5)

Combining equations (2.3), (2.4) and (2.5) we obtain:

|Vus| = 0.22544(95), f +(0) = 0.9608(46),
fK

fπ
= 1.1927(59) , (2.6)

in excellent agreement with the lattice results forfK/ fπ and f +(0) in (2.1) and (2.2).
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mπ f 0(q2
max) mπ f 0(q2

max)

670 MeV 1.00029(6) 575 MeV 1.00016(6)
555 MeV 1.00192(34) 470 MeV 1.00272(34)
415 MeV 1.00887(89) 435 MeV 1.00416(43)
330 MeV 1.02143(132) 375 MeV 1.00961(123)

– – 300 MeV 1.01923(121)
– – 260 MeV 1.03097(224)

Table 1: Values of f 0(q2
max) as a function ofmπ obtained by the RBC-UKQCD collaboration with 2+1

flavours of Domain Wall Fermions (left two columns) [16] and by the ETM collaboration with 2 flavours of
twisted mass fermions (right two columns) [17].

2.2 Kℓ3 decays and SU(2) chiral perturbation theory

I end this section with some observations relating to semileptonicK → π decays (Kℓ3 decays)
using SU(2) chiral perturbation theory. Lattice calculations of f +(0) = f 0(0) start with the eval-
uation of f 0(q2

max), whereq2
max = (mK −mπ)2 is the largest physical value ofq2 (whereq is the

momentum transfer) and corresponds to the kinematics in which the initial kaon and final pion are
both at rest. f 0(q2

max) can be calculated with excellent precision as illustrated in table 1, where
the results from the RBC-UKQCD and ETM collaborations are presented as functions of the pion
mass. The reason that I present these results here, is that the entries in table 1 appear to a long
way below the value expected in the SU(2) chiral limit. This value is given by one of the very few
analytic non-perturbative results in QCD, the Callan-Treiman relation, which I present here in the
form

f 0(q2
max) =

fK

fπ
≃ 1.26 (2.7)

where all the quantities are evaluated in the SU(2) chiral limit, mu = md = 0 . It is a little puzzling
that while the values off 0(q2

max) in table 1 are increasing asmπ decreases, they are only doing so
very slowly. In ref. [21], we used SU(2) chiral perturbationtheory to investigate whether the very
slow increase inf 0(q2

max) observed in table 1 asmπ decreases is expected to accelerate towards the
value in eq. (2.7) for smaller values of the pion mass. We found that the one-loop chiral logarithms
have a large coefficient and are of the correct size to accountfor the difference but they have the
wrong sign, implying that the analytic terms (or higher order chiral logarithms) should account
for approximately twice the difference between the resultsin table 1 and eq. (2.7). Of course the
analytic terms (both linear and quadratic inmπ ) are proportional to unknown low-energy constants
(LECs) and hence are not calculable. In SU(3) chiral perturbation theory on the other hand, at
one-loop order the LECs can be expressed in terms offK/ fπ [22, 23]. Estimating the SU(2) LECs
by converting results from SU(3) ChPT suggests that the analytic terms have the correct sign and
(large) magnitude to account for the difference.

It should be stressed here that since, apart from the values of the LECs, the above discussion
relied only on SU(2) chiral perturbation theory and therefore the same features hold forB → π and
D → π semileptonic decays.
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Publication N f B̂K

RBC-UKQCD 2007[27] 2+1 0.720(13)(37)
Aubin et al. 2009 [28] 2+1 0.724(8)(29)
Bae et al. 2010 [29] 2+1 0.724(12)(43)

RBC-UKQCD 2010 [30] 2+1 0.749(7)(26)

JLQCD 2008 [31] 2 0.758(6)(71)
ETMC 2010 [32] 2 0.729(30)

Table 2: A comparison of recent results for the renormalization group invariantB̂K . N f denotes the number
of dynamical quark flavours. In each case, the first error is statistical and the second is systematic.

Of course, we really want to know the chiral behaviour of the form-factor at the standard
reference pointq2 = 0. At this point, the energy of the pion in the rest frame of thekaon is
approximatelymK/2 and so cannot be considered soft in SU(2) chiral perturbation theory. In spite
of the hard external pion, we found that it is possible to evaluate the chiral logarithms, since they
can be calculated from softinternal loops, finding [21]

f 0(0) = f +(0) = F+

(

1− 3
4

m2
π

16π2 f 2 log

(

m2
π

µ2

)

+ c+m2
π

)

(2.8)

f−(0) = F−

(

1− 3
4

m2
π

16π2 f 2 log

(

m2
π

µ2

)

+ c−m2
π

)

, (2.9)

whereF± and c± are unknown LECs. In this way we have some information about the chiral
behaviour of the form factors atq2 = 0. Since the chiral extrapolation of the lattice results is
the largest uncertainty inf 0(0) any information about the chiral behaviour is useful (it would be
very useful indeed if the results in eqs.(2.8) and (2.9) could be extended to two loops in chiral
perturbation theory). Thishard-pion chiral perturbation theory approach has been generalized to
K → ππ decays [24] and toB → π andD → π semileptonic decays [25].

3. BK

One of the very important quantities in particle physics phenomenology for which the pre-
cision of lattice results has improved hugely in recent years has beenBK, the bag parameter of
neutral kaon mixing. It is defined as the suitably normalizedmatrix element of the∆S = 2 oper-
ator (d̄LγµsL)(d̄LγµsL) between an initialK̄0 and finalK0 state (whereL denotes the left-handed
component of the spinor field). As recently as five years ago, Chris Dawson, the rapporteur at
this conference, was reporting results with a 12% error largely due to the fact that there were in-
sufficient unquenched results at light masses [26]. A detailed review of recent results forBK has
been presented at this conference by Jack Laiho [5], for illustration here I tabulate the key results
in table 2. Not only are the errors reduced by a factor of 3 or so, but the results in table 2 were
obtained with a variety of fermion actions and techniques adding significantly to our confidence in
the evaluation of the systematic uncertainties.
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Collaboration(s) ReA0/ReA2 ε ′/ε
RBC [41] 25.3±1.8 −(4.0±2.3)×10−4

CP-PACS [42] 9÷12 (-7÷ -2)×10−4

Experiments 22.2 (17.2±1.8)×10−4

Table 3: Quenched 2001 results on the∆I = 1/2 rule andε ′/ε obtained fromK → π andK → vacuum
matrix elements using the lowest order term in the SU(3) chiral expansion.

Lattice results forBK are an important ingredient in global studies of the unitarity triangle.
Although in general the remarkable consistency of the information from different physical pro-
cesses significantly restricts the possible parameter space for new physics, a number oftensions
have arisen in recent years at the 1.5 – 3 standard deviation level (see for example [33 – 37]), and
the results forBK contribute to these tensions. Calculations ofBK will continue towards 1% preci-
sion, but already with current precision it is necessary to begin considering corrections which had
previously been neglected. For example it has been stressedthat in the theoretical expression for
εK , the parameter monitoring indirect CP-violation inK → ππ decays, we should include terms
proportional to ImA0/ReA0 (whereA0 is theK → ππ amplitude with the two pions in a state with
isospin 0) and recognise that the phase arctan(2∆MK/∆Γ) is not precisely equalπ/4 (∆MK and∆Γ
are the differences of the masses and widths of theKL andKS mesons) [38 – 40]. Necessary theoret-
ical improvements include the evaluation of long distance effects, for which we need to determine
matrix elements of the time-ordered product of two operators (see sec. 6).

4. K → ππ decays

An important challenge for the lattice phenomenology community is the reliable calculation
of K → ππ decay amplitudes in general and attempts to reproduce the the experimental value of
ε ′/ε and to understand the∆I = 1/2 rule (the enhancement of the∆I = 1/2 amplitude by a factor
of about 22 relative to that for∆I = 3/2 transitions) in particular. The non-zero experimental value
for ε ′/ε was historically the first evidence for direct CP-violation. In the past lattice calculations
have tried to estimate the matrix elements by combining computations ofK → π andK → vacuum
matrix elements with the lowest order terms in the chiral expansion and I start with a brief review
of the status of such calculations before proceeding to a discussion of the direct evaluation of the
matrix elements with two-pion final states.

4.1 K → ππ decay amplitudes from K → π and K → vacuum matrix elements

At lowest order in theSU(3) chiral expansion one can determine theK → ππ decay amplitudes
by calculatingK → π andK → vacuum matrix elements. In 2001, two collaborations published
sone interesting quenched results on non-leptonic kaon decays in general and on the∆I=1/2 rule
andε ′/ε in particular (see table 3). In spite of the limitations of these calculations, the authors did
achieve the control of theultraviolet problem, i.e. the numerical subtraction of power divergences
and the renormalization of the weak operators. This is highly non-trivial.
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Figure 2: The mass dependence of theK → π matrix element.ml , mx andmz are the masses of the sea and
valence light quark and the valence "heavy" (strange) quarks respectively.

The RBC-UKQCD collaboration have repeated the calculationin the pion-mass range 240-
420 MeV [43, 44]. For illustration consider the determination of α27, the lowest order LEC for the
∆I = 3/2 (27,1) operator:

O3/2
(27,1) = (s̄d)L

{

(ūu)L − (d̄d)L
}

+(s̄u)L (ūd)L . (4.1)

Satisfactory fits for the mass dependence were obtained using NLO SU(3) ChPT, but the corrections
were found to be very large, casting serious doubt on the approach. This is illustrated in fig.2 where
the dashed curve represents the results in the SU(3) limit (mu = md = ms) and the value of this curve
in the chiral limit is much below the data points, demonstrating that the one-loop corrections are
very large. Thus the use of soft-pion theorems is not sufficiently reliable andK → ππ matrix
elements have to be computed directly. At this conference wehave also heard about a proposed
method to combineK → π matrix elements withK → ππ ones limited to the two pions at rest [45].

4.2 Direct Calculations of K → ππ Decay Amplitudes

From the above discussion we conclude that we must calculateK → ππ matrix elements di-
rectly and the RBC-UKQCD collaboration is now undertaking amajor study. Theultraviolet prob-
lem of the subtraction of power divergences (i.e. of terms which diverge as inverse powers of the
lattice spacing) remains tractable at the expense of significant statistical errors. Theinfrared prob-
lem of extracting the spectrum and amplitudes in a finite Euclidean volume is also understood as
long as we neglect the inelastic contribution (i.e. rescattering into states other than two pions).
Assuming that the rescattering is dominated by the s-wave states, the quantization condition for
two-pion states in a finite volume derived by Lüscher takes the form [46 – 48]

δ (q∗)+ φ(q∗) = nπ (4.2)

whereδ is the physical s-waveππ phase shift,φ is a known kinematic function andn is an integer.
The relative momentumq∗ is related to the two-pion energyE by E2 = 4(m2

π + q∗2). For illustra-
tion, all the formulae in this section are presented in the centre-of-mass frame, but they have also
been generalised to moving frames [49 – 51]. Thus from the measured values of the energies one

9
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can determine the phase-shift. The relation between the measured Euclidean matrix elements and
the physical amplitudes is given by [52, 53]

|A|2 = 8πV 2 m3
K

q∗2

{

δ ′(q∗)+ φP ′(q∗)
}

|M|2 , (4.3)

where the′ denotes differentiation w.r.t.q∗. (4.3) has been generalized to moving frames in [50, 51].

4.2.1 K → (ππ)I=2 Decays

The calculation of decay amplitudes into two pion states with isospin 2 is relatively straight-
forward; there are no power divergences to subtract nor any disconnected diagrams to evaluate.
We will see in section 4.2.2 that these are significant difficulties when evaluating∆I = 1/2 decay
amplitudes. An exploratory quenched study with improved Wilson fermions was completed in
2004 [54], but at that time we had not understood the finite-volume effects at non-zero total mo-
mentum. Results from RBC-UKQCD’s exploratory quenched study with Domain Wall Fermions
were presented in 2009 [55] and this year M.Lightman presented results from dynamical simu-
lations with almost physical pions, but on a course lattice [56]. Before discussing the results I
mention some theoretical points.

There are three∆I = 3/2 operators whose matrix elements need to be evaluated:

O3/2
(27,1) = (s̄ idi)L

{

(ū ju j)L − (d̄ jd j)L
}

+(s̄ iui)L (ū jd j)L (4.4)

O3/2
7 = (s̄ idi)L

{

(ū ju j)R − (d̄ jd j)R
}

+(s̄ iui)L (ū jd j)R (4.5)

O3/2
8 = (s̄ id j)L

{

(ū jui)R − (d̄ jdi)R
}

+(s̄ iu j)L (ū jdi)R , (4.6)

wherei and j are colour indices and(q̄1q2)L,R = q̄1γµ(1∓ γ5)q2. The subscript(27,1) in (4.4)
denotes that the operator transforms as the(27,1) representation of theSU(3)L × SU(3)R chiral
symmetry group.O3/2

7,8 are theI = 3/2 components of the electroweak penguin operators labelled
O7,8 in the standard notation for the∆S = 1 effective Hamiltonian and transform as the(8,8)

representation ofSU(3)L ×SU(3)R.
A significant simplification in the calculation of the matrixelements of these operators is the

use of the Wigner-Eckart theorem to relate the physicalK+ → π+π0 matrix elements to unphysical
K+ → π+π+ ones [57]:

I=2〈π+(p1)π0(p2) |O3/2
1/2|K

+〉 =
3
2
〈π+(p1)π+(p2) |O3/2

3/2|K
+〉 , (4.7)

where the subscript on the operators indicates∆Iz, the change in thez-component of isospin.
Eq. (4.7) is an exact relation in the isospin limitmu = md , so that the evaluation of the matrix
elements of the operatorsO3/2

3/2 andO3/2
1/2 are equivalent, but there are a number of advantages in us-

ing the fully extended|π+π+〉 states. The flavour structure of the operatorsO3/2
3/2 is simply(s̄d)(ūd)

rather than the(s̄d)(ūu− d̄d)+ (s̄u)ūd structure of the operatorsO3/2
1/2 in eq. (4.4) – (4.6).

With theπ+π+-state we can impose antiperiodic boundary conditions on the d-quark say, so
that the ground state is|π+(π/L)π+(−π/L)〉, where the arguments represent the momenta in lat-
tice units (up to finite-volume corrections). In contrast tothe use of periodic boundary conditions,
for which the ground state corresponds to the two-pions at rest, it is not now necessary to isolate an

10
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K π+

π+

O3/2
3/2

s

Figure 3: Schematic diagram illustrating the contractions for∆I = 3/2K → ππ decays in the RBC-UKQCD
calculation [55].

excited state in order to have a decay into two-moving pions.For the physical decay, the minimum
size of the lattice is halved from about 6 fm to 3 fm.

The final theoretical point I wish to make here is that the use of the Wigner-Eckart theorem
also allows us evaluate the Lellouch-Lüscher factor relating the measured matrix elements to the
physical amplitudes directly [58]. In particular, this factor requires knowledge of the derivative
of the phase-shift (see eq. (4.3)). By imposing partially-twisted boundary conditions [59 – 62] on
the d-quark with twisting angleθ (it is sufficient to perform the twist in a single direction),the
two-pion ground state now corresponds to a pion with momentum θ/L and the second pion with
momentum(θ − 2π)/L. The correspondingππ s-wave phase-shift can then be obtained by the
Lüscher formula (4.2) as a function ofθ which allows for the derivative of the phase-shift to be
evaluated directly at the masses being simulated. This procedure was tested in an exploratory
simulation [58] but has not yet been implemented in the main RBC-UKQCD programme.

I now briefly summarise the results from the RBC-UKQCD Collaboration presented at this
conference [56]. The correlation functions which need to beevaluated are illustrated in fig.3. The
simulations were performed on 323×64×32 lattice using a Domain Wall Fermion action for the
quarks and the DSDR (dislocation suppressing determinant ratio) gauge action on a course lattice
(a−1 ≃ 1.4 GeV). The motivation for such a coarse lattice was to enablealmost physical pions to
be simulated, theK → ππ amplitudes were obtained with a partially quenched pion of massmπ =

145(6) MeV (the corresponding unitary pion hasmπ ≃ 180 MeV) and the kaon mass is 519(2) MeV,
both close to their physical values (mπ = 139.6 MeV, mK = 493.7 MeV). The properties of these
ensembles were discussed at this conference by Bob Mawhinney [63].

With the masses given above (mπ = 145.6(5) MeV, mK = 519(2) MeV) and choosing the mo-
mentum of the pions to be

√
2π/L, the energy of the two-pion system is found to be 516(9) MeV so

that the kinematics is almost matched. Sample plateaus for each of the three operators are presented
in fig. 4. The preliminary result for the real part of the amplitude is ReA2 = 1.56(07)stat(25)syst×
10−8 GeV, to be compared to the experimental number of 1.50×10−8 GeV . The non-perturbative
renormalization has not been completed for the electroweakoperators which contribute to Im (A2);
guesstimating the renormalization factors RBC-UKQCD quote Im(A2) = −(9.6± 0.04± 2.4)×
10−13 GeV [56], but after the renormalization is complete the systematic error will decrease from
about 25% to 15%, dominated by the uncertainty in the value ofthe lattice spacing. It appears that
these calculations are possible with good precision.

4.2.2 K → (ππ)I=0 Decays

The evaluation of∆I = 1/2 matrix elements is very considerably harder than that for∆I =

11



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
1
8

Lattice Phenomenology Christopher Sachrajda

0 5 10 15 20 25
1

2

3

4

5

6

7
x 10

−17

t

Q
uo

tie
nt

 o
f C

or
re

la
to

rs

0 5 10 15 20 25
2

4

6

8

10

12

14
x 10

−16

t

Q
uo

tie
nt

 o
f C

or
re

la
to

rs

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5
x 10

−15

t

Q
uo

tie
nt

 o
f C

or
re

la
to

rs

(a) (b) (c)

Figure 4: Sample plateau for the matrix elements (a)(s̄d)L (ūd)L, (b) (s̄d)L (ūd)R and (c)(s̄id j)L (ū jdi)R,
where(s̄d)L (ūd)L,R = (s̄iγµ(1− γ5)di)(ū jγµ(1∓ γ5)d j), andi, j are colour labels.

0 t
V

1

2

4

3

0 0t t 0 t
D C R

2

1 4

3 2

1 4

3 2

1 4

3

Figure 5: The four diagrams which contribute to the two-pion propagator.

3/2 operators. The two-pion state withI = 0 has vacuum quantum numbers and the vacuum
contributions have to be subtracted requiring large statistical cancelations to obtain the exp(−Eππ t)
behaviour, whereEππ is the energy of the two-pion state. To illustrate this, consider the four
diagrams in fig 5 which make up the two-pion propagator. TheI = 2 ππ correlation function is
proportional to D-C whereas theI = 0 correlation function is proportional to 2D+C-6R+3V. The
major practical difficulty is to subtract the vacuum contribution with sufficient precision.

To demonstrate the above, I now present some results from theexploratory study by RBC-
UKQCD on a 163 × 32× 16 lattice with an inverse lattice spacing ofa−1 = 1.73 GeV and an
unphysically heavy pion with mass 420 MeV [64]. To increase the statistical precision, quark
propagators are generated from each of the 32 time slices. The four components of theI = 0 two-
pion correlation function 2D+C-6R+3V are shown separatelyin fig. 6 [64], from which we see that
the error on the 3V component grows significantly at larger times.

In spite of the difficulty of subtracting the vacuum contributions, at this conference Qi Liu
presented the results of a complete calculation ofA0 andA2, albeit at unphysical kinematics with
mπ ≃ 420 MeV and with the pions at rest [64]. There are 6 diagrams, shown in fig. 7 and a total
of 48 Wick contractions. The diagrams labeled by Mix3 and Mix4 in fig.7 are needed to subtract
the power divergences which are proportional to matrix elements of the pseudoscalar density ¯sγ5d.
The results for this unphysical kinematics are [64]

ReA0 = (3.0±0.9)10−7 GeV, Im A0 = −(2.9±2.2)10−11GeV, (4.8)

ReA2 = (5.394±0.045)10−8 GeV, Im A2 = −(7.79±0.08)10−13GeV. (4.9)

The precision is limited by the disconnected diagrams and the vacuum subtraction. At least the
calculation of the real part ofA0 appears to be tractable for this simplified kinematics at heavy
pion masses, whereas for ImA0 we will require more statistics to confirm that there is indeed a

12
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Figure 6: Contribution of the four components to theI = 0 two-pion correlation function.
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Figure 7: Types of correlation function corresponding toK → ππ decays. The blue circles represent the
insertion of a four quark operator appearing in the weak Hamiltonian and the squares that of the pseudoscalar
density.

signal. The greater challenge is now to proceed towards performing the corresponding calculations
at physical kinematics.

5. η and η ′ Mesons

In the previous section we saw the importance of controllingdisconnected diagrams and this is
the case for many important phenomenological quantities. Here I mention one other longstanding
issue, the spectrum and mixing ofη and η ′ mesons. To determine the propagators we need to
evaluate the diagrams shown in fig. 8 and I report here on our recent study on a lattice of spatial
extent 163 and lattice spacinga−1 = 1.73 GeV [65]. Using interpolating operators of the form

Ol =
ūγ5u+ d̄γ5d√

2
and Os = s̄γ5s , (5.1)
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Figure 8: Diagrams contributing to the correlation functions for theη - η ′ system.l ands represent the
light (u andd) and strange quarks respectively. The connected diagrams are denoted byCll andCss and the
disconnected ones byDll , Dss, Dls andDsl (not shown).
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Figure 9: (a) Values of each of diagrams as a function oft. (b) The effective mass plots for theη andη ′

mesons. In each case the results are for the lightest mass in the simulations; see [65] for details.

we calculate the correlation functions

Xαβ (t) =
1
32

31

∑
t ′=0

〈 Oα(t + t ′)Oβ (t ′) 〉 where α ,β = l,s (5.2)

=

(

Cll −2Dll −
√

2Dls

−
√

2Dsl Css −Dss

)

, (5.3)

where the diagrams are defined in fig. 8. The propagators are generated with sources at each of
the 32 time slicest ′. In fig. 9(a) we present the values of the diagrams at the lightest mass used in
the simulations as a function oft, from which we see that the usual expectation that disconnected
diagrams are small does not apply here and also the expected feature that the uncertainties on the
disconnected diagrams are significantly larger than those on the connected ones. The effective
mass plots for the eigenvalues ofX(t) are shown in fig. 9(b), again at the lightest masses used in the
simulations, from which we see a good plateau for theη and a short, but clear, plateau for theη ′.
After the chiral extrapolation we obtain the valuesmη = 573(6)MeV andmη ′ = 947(142) MeV,
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where only the statistical errors are shown, compared to theexperimental values of 548 MeV and
958 MeV respectively.

As explained in ref. [65], it is also possible to determine the mixing angle. Once SU(3) flavour
symmetry is broken it is not clear that the physicalη andη ′ states are simply linear combinations
of the octet and singlet flavour combinations; neverthelessit is a standard phenomenological as-
sumption that they are. Based on this assumption we obtain a value ofθ = −14.1(2.8)◦ (statistical
error only) in agreement with the phenomenological estimates lying in the range−20◦ to−10◦. A
particularly important feature of the calculation is that it is possible to check the orthogonality of
the mixing matrix confirming that it is a good approximation to consider only the symmetric octet
and singlet states in order to understand the mixing.

In spite of the limited precision, our calculation demonstrates that QCD can explain the large
mass of the ninth pseudoscalar meson and its small mixing with the SU(3) octet state and provides a
first benchmark for future calculations. There remains muchto be done now to reduce the statistical
errors and to quantify in detail the systematic uncertainties. Progress in the efficient determination
of all-to-all propagators will be very important in improving the reach and precision of lattice
calculations of physical quantities in which disconnecteddiagrams play an major role.

6. Long-Distance Contributions to Physical Quantities

We are used to calculating the short-distance contributions to physical processes, generally
formulating the calculation as the evaluation of the matrixelement of a local operator. A good
example is the evaluation of theBK parameter in neutral-kaon mixing illustrated by

d

s

s

d
W W = C(MW/µ)

d

s

s

d

.

The determination of the matrix element of the resulting∆S = 2 local operator has been discussed
in the section 3. In many cases the short-distance contribution is the dominant term, but long-
distance contributions are not always negligible, for example if the GIM suppression is logarithmic
or if there is a CKM enhancement (even if the GIM suppression is power like). As lattice results
become more precise, we should try to compute the long-distance contributions effectively and this
represents a new type of calculation. Early thoughts in thisdirection include ref. [66] for rare kaon
decays and ref.[67] for neutral kaon mixing.

6.1 Rare Kaon Decays

In ref. [66], the authors conclude that it is possible in principle to evaluate the long distance
effects forK → πℓ+ℓ− andK → πνν̄ decays. This requires the evaluation ofT -products of the
form

TQ,J(q
2) = NV

∫

d4x d4y e−iq.y 〈π |T [Q(x)Jµ(y)] |K〉 (6.1)

whereQ is one of the four-quark operators appearing in the weak Hamiltonian, J is a weak or
electromagnetic current andNV is a volume factor. The generic lattice calculation is therefore of
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correlation functions of the form

−i
∫

d4x e−iq·x〈0|φπ (tπ ,~p)Jµ
X (x) [Qu

i (0)−Qc
i (0)] φ†

K(tK ,~k) |0〉 , (6.2)

with tπ > 0 andtK < 0. φπ andφK are the interpolating operators for theπ andK mesons respec-
tively (after the three-dimensional Fourier transform hasbeen taken). The main issue discussed in
ref. [66] is that of renormalization, the subtraction of power divergences and the consequences of
contact terms. The authors conclude that, as a result of symmetries and the GIM mechanism, the
power divergences can be removed and they check their general arguments by one-loop perturba-
tive calculations. They believe that their study opens a newfield of interesting physical applications
for the lattice community, although to date no such numerical calculations have been performed.

6.2 Long-distance contribution to the KL-KS mass difference and εK

At this conference Norman Christ presented some interesting ideas how the long-distance
contribution to theKL −KS mass difference andεK might be evaluated [67]. This requires

(i) the calculation of the long-distance contribution to the matrix elements of the product of two
∆S = 1, four-quark weak operators between kaon states;

(ii) the subtraction of the short distance part of this matrix element in a way that is consistent
with the original explicit evaluation of the short-distance contribution;

(iii) a generalization of the Lellouch-Lüscher approach tofinite-volume corrections to second
order in the weak interaction.

Although much work remains to be done to develop these ideas into a practicable method, the main
theoretical steps have now been taken.

7. Non-leptonic B-Decays

I end this talk with a discussion of an important class of processes in flavour physics for which,
up to now at least, little or no progress has been made in formulating a lattice approach, namely
non-leptonicB-decays. A huge amount of precise information, from over 100channels, has been
obtained about decay rates and CP-asymmetries for the exclusive decays ofB-mesons into two light
mesons. Unfortunately, with just a few exceptions (most notably the CP-asymmetry in the golden-
modeB → JψKS), our ability to deduce fundamental information about CKM matrix elements is
limited by our inability to quantify the non-perturbative QCD effects sufficiently precisely.

The operator product expansion can be used to separate the long and short distance physics,
so that the non-perturbative QCD effects are contained in the matrix elements of local operators,
〈M1M2|Oi(0)|B〉, whereOi is a ∆B = 1 operator andM1,2 are light mesons. In contrast toK →
ππ decays discussed in section 4, where it is a good approximation to restrict consideration of
final-state rescattering to two-pion states, the large massof the B-meson means that very many
intermediate states contribute. We do not yet(?) have a theoretical framework for treating this in
simulations in Euclidean space.
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B̄d

π−

π+

b u

d̄

Figure 10: Illustration of näve factorization for the decaȳBd → π+π−. The local four-quark operator
(ūb)V−A (d̄u)V−A is shown as a product of the bilinear operators(ūb)V−A and(d̄u)V−A represented by the
black circles. The two black circles are separated for clarity.

In the past phenomenological approaches to nonleptonicB-decays were based on naïve fac-
torization in which the matrix element was reduced to products of matrix elements ofB → M1 and
vacuum→ M2 and/or vice-versa, depending on the flavour quantum numbers. This is illustrated in
fig. 10, where the matrix element of the local four-quark operator(ūb)V−A (d̄u)V−A is shown as the
product of the matrix elements of the two currents:

〈π+π− |(ūb)V−A (d̄u)V−A | B̄d 〉 ?
= 〈π− |(d̄u)V−A |0〉 〈π+ |(ūb)V−A | B̄d 〉 . (7.1)

The motivation for assuming (7.1) is that the two factors on the right-hand side are known or
calculable (in principle at least). The first factor is proportional to the leptonic decay constantfπ

and the second is proportional to the form-factors of semileptonicB → π decays. On the other hand
the limitations of such a model are clear; the renormalization-scale dependence of the two sides do
not match and rescattering effects are not included.

In 1999, together with Beneke, Buchalla and Neubert, we realised that asmb → ∞, the long-
distance QCD effects do factorise into simpler universal quantities [68 – 70]

〈M1,M2 |Oi |B〉 = ∑
j

FB→M1
j (m2

2)
∫ 1

0
duT I

i j(u)ΦM2(u)+ (M1 ↔ M2)

+

∫ 1

0
dξ dudvT II

i (ξ ,u,v)ΦB(ξ )ΦM1(v)ΦM2(u) , (7.2)

whereFB→M1
j are the form factors forB → M1 transitions, theΦ are light-cone distribution ampli-

tudes andT I,II are short distance contributions and are calculable in perturbation theory.u andv are
the momentum fractions carried by the quarks in the mesons. The significance of the factorization
formula stems from the fact that the non-perturbative quantities which appear on the right-hand
side are much simpler than the original matrix elements. They either reflect universal properties
of a single meson state (the light-cone distribution amplitudes) or refer to aB → meson transition
matrix element of a local current (form factors). Conventional (naïve) factorization is recovered as
a rigorous prediction in the infinite mass limit (i.e. neglecting O(αs) andO(ΛQCD/mb) corrections).
Perturbative corrections to naïve factorization can be computed systematically and the results are,
in general, process dependent. It is a remarkable feature that all strong interaction phases are gener-
ated perturbatively in the heavy quark limit. The factorization formulae are valid up toO(ΛQCD/mb)

corrections and the main limitation of the framework is due to the fact that sincemb is not so large,
CKM and chiral enhancements to non-factorizableO(ΛQCD/mb) terms are important.

17



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
1
8

Lattice Phenomenology Christopher Sachrajda

Although we do not know how to evaluate the matrix elements for B → M1M2 decays directly,
we can ask what can lattice simulations contribute to the factorization formula (7.2)? The moments
of the light-cone distribution functions for the light mesonsM1,2 can and are being computed [71]
as are theB → M form factors. What we do not know how to compute at this stage are the parton
distribution amplitudes ofΦB or its moments and I end this section with a brief explanationof the
reasons for this.ΦB is defined by

ΦBαβ (k̃+) =

∫

dz− eik̃+z− 〈0| ūβ (z)[z,0]bα (0) |B〉
∣

∣

z+,z⊥=0 , (7.3)

where± denote light-cone coordinate and[z,0] represents the part-ordered exponential of gauge
fields betweenz and 0. In evaluating matrix elements,ΦB is convoluted with the perturbative
hard-scattering amplitudeT II

i and the relevant quantity is

√
2

λb
=

∫ ∞

0

dk̃+

k̃+
ΦB(k̃+) . (7.4)

(In higher orders of perturbation theory factors containing log(k̃+) appear.) Although at largẽk+,
φB(k̃+) ∼ 1/k̃+, the convolution in eq.(7.4) is finite. In lattice calculations, at least up to now, we
know how to calculate the matrix elements of local operatorsand the positive moments ofφB(k̃+)

can indeed be written in terms of local operators. However they diverge as powers of 1/a and we
still need to develop techniques to subtract these divergences with sufficient precision.

This discussion underlines the fact that we need new theoretical ideas for lattice simulations to
start contributing to the evaluation of the non-perturbative QCD effects inB → M1M2 decays and
hence to enable fundamental information to be obtained fromthe wealth of experimental measure-
ments of the rates and CP-asymmetries.

8. Conclusions

At this conference we have seen many beautiful contributions to particle physics phenomenol-
ogy, both in improved precision and in the extensions of computations beyond the standard quan-
tities. We readily forget that it was only a few years ago thatresults presented at the annual lattice
symposium were largely in the quenched approximation, withan error which was not possible
to quantify reliably. We then moved on to a brief period with dynamical quarks with masses of
O(500) MeV or so until today we arrive at simulations with almost physical pions. This improve-
ment has to be continued vigorously if precision flavour physics, which has been the focus of this
talk, is to play a complementary role to largep⊥ discovery experiments at the LHC in unravelling
the next level of fundamental physics. As was noted in sec. 7 however, there are quantities for
which a large amount of experimental data is available, and yet for which we do not yet know how
to begin formulating the calculations to make them accessible to lattice studies.

At the previous lattice conference which Guido Martinelli helped to organise which was held
in 1989 in Capri, Ken Wilson made the seemingly pessimistic prediction that it will take about 30
years to have precision Lattice QCD. We only have 9 years leftto fulfill the prediction, but we are
now well on our way.
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