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ABSTRACT

Phenomenology of Fermion Production During Axion Inflation

FEBRUARY 2021

MICHAEL A. ROBERTS, B.S., CENTRAL CONNECTICUT STATE UNIVERSITY

M.A., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Lorenzo Sorbo

We study the production of fermions through a derivative coupling to an axion inflaton
and the effects of the produced fermions on the scalar and tensor metric perturbations.
We show how such a coupling can arise naturally from supergravity with an axion-like
field driving large-field inflation and small instanton-like corrections. We present analytic
results for the scalar and tensor power spectra, and estimate the amplitude of the non-
Gaussianties in the equilateral regime. The scalar spectrum is found to have a red-tilted
spectral index, small non-Gaussianities, and can be dominant over the vacuum contribution.
In contrast, the tensor power spectrum from the fermions is always subdominant compared
to the vacuum contribution. The pseudoscalar coupling will favor production of one chirality
of the fermions over the other, and therefore, it is expected that the resulting gravitational
waves will be chiral. However, the parity-odd component of the power spectrum is shown
to be subdominant to the parity-even component. The combined results of the scalar and
tensor spectra allow to lower the energy scale of inflation, effectively lowering the tensor-to-
scalar ratio. Chaotic inflation, in which the inflationary potential is quadratic, is currently
ruled out as it predicts too large a tensor-to-scalar ratio. We show how this fermion-axion
model can allow for quadratic inflation which agrees with all current measurements.

v



Contents

ACKNOWLEDGEMENTS iv

ABSTRACT v

LIST OF FIGURES viii

1 Inflation and cosmological perturbations 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Observables of inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Quantization of the inflaton field and predictions of single-field slow-roll inflation 6
1.4 Models of particle production during inflation and overview . . . . . . . . . . 11

2 Phenomenology of fermion production during axion inflation 15

2.1 Fermion production during inflation . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Backreaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Quartic loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Cubic loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Summary for the power spectrum . . . . . . . . . . . . . . . . . . . . . 31

2.4 Non-Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 The quintic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 The remaining two diagrams . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Summary for the bispectum . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Fermion production and inflation on a steep axionic potential . . . . . . . . . 37
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Gravitational waves from fermion production during axion inflation 41

3.1 Fermion-graviton interactions during axion inflation . . . . . . . . . . . . . . . 42
3.1.1 Starting action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 The action in ADM form . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.4 Explicit form of the fermion action, and fermion-GW interactions . . . 47

3.2 Fermion contributions to the tensor power spectrum . . . . . . . . . . . . . . 50
3.2.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Fermion loop-corrections to the gravitational wave power spectrum . . 52
3.2.3 Scaling of our result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



4 Reviving chaotic inflation and supergravity construction 59

4.1 Fermion production during inflation, and the amplitude of tensor-to-scalar ratio 62
4.2 A model in global supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 The full construction in supergravity . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Equations for fermions in models of supergravity with a stabilizer . . . 69
4.3.2 Quadratic inflaton potential, plus small oscillations – analysis of the

parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A The fermion mode functions and their occupation numbers 80

B Computation of the fermion-gravitational wave interactions 85

C Interaction Hamiltonian 89

References 91

vii



List of Figures

1.1 Planck Collaboration 2018 r − ns plot . . . . . . . . . . . . . . . . . . . . . . 11

2.1 The occupation number, small µ . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The occupation number, large µ . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Two-point function diagrams for δφ . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Three-point function diagrams for δφ . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Parameter space plot for fNL . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Two-point function diagrams for γ . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Parameter space plot for supersymmetry model . . . . . . . . . . . . . . . . . 68

viii



Chapter 1

Inflation and cosmological

perturbations

1.1 Introduction

The standard model of cosmology assumes the cosmological principle: that spacetime is

isotropic and homogeneous. Though the stars, galaxies and small-scale structures of the

universe seem to violate this principle, on large scales, ≫ 10 Mpc, it holds quite well.

The best measurement of the isotropy and homogeneity of the universe comes from the

cosmic microwave background radiation (CMB). The temperature variations in the CMB

are isotropic to about one part in 104 [1] after subtracting the dipole due to our galaxy’s

motion relative to the cosmological rest frame. Measurements of the matter content of the

universe - namely the baryonic, radiation, dark matter, and dark energy - from Planck [1],

have determined that the universe is spatially flat. The spatial curvature of the universe

is characterized the density parameter, Ω ≡ ρ
ρcrit

, the ratio of the energy density of the

universe to the critical density – the density which separates an open universe from a closed

one. Observations show that Ω = 1.00+0.07
−0.03, suggesting a flat universe.

The homogeneity and flatness of the universe are examples of fine-tuning issues which re-

quire very specific initial conditions in the standard big bang cosmology. These observations

are explained by postulating that the early universe underwent a period of rapid expan-

1



sion called inflation [2, 3]. During inflation, any initial spatial curvature or inhomogeneities

would be quickly tamed, leading to the seemingly fine-tuned initial conditions. Further,

quantum fluctuations of the matter fields during inflation will be stretched to superhorizon

scales where they freeze, effectively becoming classical degrees of freedom. These will then

seed density perturbations in the metric, giving rise to the observed inhomogeneities in the

CMB, and in our present universe.

There is strong observational evidence supporting the hypothesis that the early universe

went through a rapid period of accelerated expansion. Inflation provides a simple explanation

for the observed red-tilted, approximately Gaussian and adiabatic density fluctuations [4,

5]. The inflationary scenario also generically predicts primordial gravitational waves, which

can be measured or constrained through the B-mode polarization of the cosmic microwave

background. The relative magnitudes of the power spectra of the tensor perturbations to the

scalar density perturbations is called the tensor-to-scalar ratio, r. Current measurements

restrict this to r . 0.09 [6, 7], which tightens to r . 0.06 when the consistency relation nt =

−r/8, as appropriate for vacuum fluctuations from slow-roll inflation, is imposed. Future

experiments are expected to reach σr ∼ 0.001 [8], which motivates the study of mechanisms

for the inflationary expansion and for the production of the primordial perturbations that

go beyond the most minimal slow-roll inflationary models.

The production of secondary particles during inflation can alter the signatures in the

CMB dramatically. These particles will generate additional perturbations to the metric

which will contribute to the scalar and tensor power spectra. This allows for these theories

to make definite predictions to be compared with measurements. The sourced fields can

also back react on the inflaton, and, in some cases, allow for inflation on steep potentials

[9]. There is a rich range of phenomenology to be studied in this field.

We show in this work how the production of fermions has many novel properties. Due

to Pauli blocking, long wavelength fermions can not be generated in large quantity. As

such, fermion production has been studied comparatively little. However, we give a model

in which the produced fermions fill the Fermi sphere up to a large momentum, therefore

allowing for a large total occupation number. While large production of bosons can lead to

large non-Gaussianities, putting those models in tension with measurements, we find that
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our model of fermion production avoids this. This model is shown to allow for the lowering

of the energy scale of inflation, thereby lowering the tensor-to-scalar ratio. In particular, this

can be used to bring the currently ruled out chaotic inflation back into agreement with all

current measurements. This is significant, as chaotic inflation is among the simplest models

of inflation and can be embedded quite easily in supergravity [10, 11, 12, 13]. This opens

the door for further study not only on chaotic inflation, but to other models of inflation as

well.

1.2 Observables of inflation

The background spacetime metric for a homogeneous-isotropic universe is the Friedmann-

Robertson-Walker (FRW) metric, ds2 = −dt2 + a(t)2δijdx
idxj , characterized by Hubble

parameter H ≡ ȧ/a, where a(t) is the scale factor giving the physical distance between

points. The evolution of the scale factor is determined by the Einstein field equations,

Rµν −
1

2
gµνR =

1

M2
P

Tµν , (1.2.1)

where MP = (8πG)−1/2 = 2.435 × 1018 GeV is the Planck mass. Assuming the matter

content of the universe is an isotropic fluid with energy density ρ and pressure p, this

reduces to the Friedmann equations,

H2 =
ρ

3M2
P

, (1.2.2)

Ḣ = − 1

2M2
P

(ρ+ p) . (1.2.3)

From eq. (1.2.3), we see that if p = −ρ, then H is constant, and the scale factor is

exponential, a(t) = eHt. This can lead to inflation.

The simplest model of inflation is single-field slow-roll inflation, in which inflation is

driven by a scalar field known as the inflaton, φ. A scalar field has energy density ρ =

3



1
2 φ̇

2 + V , and pressure p = 1
2 φ̇

2 − V . In order for the inflaton to drive inflation, it must

have a potential energy which dominates over its kinetic energy, 1
2 φ̇

2 ≪ V , which will lead

to p ≈ −ρ. The suitability for the inflaton potential to support inflation is characterized by

the slow-roll parameters,

ǫ ≡ M2
P

2

(

V ′

V

)2

, η ≡M2
P

V ′′

V
, (1.2.4)

where ′ denotes derivative with respect to the inflaton φ. Inflation requires ǫ, |η| ≪ 1.

Current measurements give the constraints on the slow-roll parameters, ǫ < 0.0042, and

η = −0.0124+0.0033
−0.0052 [1]. The simplest picture of an inflationary potential is one with a high

energy and gradual slope, such that the inflaton will slowly roll down it during inflation –

hence the name slow-roll inflation. Though this feature is present in most models of inflation,

we will show that suitable particle production can act as friction against the inflaton rolling

down its potential, leading to inflation even in steep potentials.

The field φ will have a homogeneous background part, as well as inhomogeneous per-

turbations on top of this, φ(x, t) = φ0(t) + δφ(x, t). These perturbations in the inflaton,

δφ(x, t) will generate perturbations in the metric.

The perturbations are characterized by the correlators of the fields corresponding to the

scalar perturbations, ζ, and tensor perturbations, hij . These are typically given in terms of

the power spectra,

Pζ(k) =
k3

2π2
〈ζ(k1)ζ(k2)〉′ , Pt(k) =

k3

2π2
〈hij(k1)h

ij(k2)〉′ , (1.2.5)

where the ′ denotes correlators without the factor of (2π)3δ(k1 + k2), and k = |k1| = |k2|.

These can be modeled as an approximate power law, P(k) ∼ kn(k), with a generally slowly

varying exponent called the spectral tilt. Conventionally, the scalar and tensor spectral tilts

are defined as
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ns − 1 =
∂ lnPζ(k)
∂ ln k

. nt =
∂ lnPt(k)
∂ ln k

. (1.2.6)

The scalar power spectrum is found to be nearly scale-invariant. Measurements from

Planck find ns = 0.9649 ± 0.0042, where ns = 1 would define a scale-invariant spectrum.

Measurements of the tensor perturbations are generally reported in terms of the tensor-to-

scalar ratio,

r ≡ Pt(k)
Pζ(k)

, (1.2.7)

where Planck constrains r . 0.06.

Non-Gaussianities of the curvature perturbations are found in the higher-order correla-

tors. In this thesis, we consider the bispectrum for the scalar modes, given in terms of the

three-point function,

Bζ(ki) = 〈ζk1
ζk2

ζk3
〉′ . (1.2.8)

The density and inflaton perturbations are related through the gauge relation [14]

ζ = −H

φ̇0
δφ+O(δφ2) . (1.2.9)

Therefore, one can compute correlators of the scalar perturbation in terms of δφ.
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1.3 Quantization of the inflaton field and predictions of single-

field slow-roll inflation

We now examine single-field slow-roll inflation, where inflation is driven by a scalar, φ.

We derive the equations of motion for perturbations of φ in a de Sitter background (an

FRW spacetime with scale factor a(t) = eHt), and show how to quantize the field in such a

background. Finally, we give the predictions for the CMB observables defined in the previous

section for this inflation scenario. The action for the inflaton is

Sφ =

∫

d4x
√−g

(

− 1

2
gµν∂µφ∂νφ− V (φ)

)

. (1.3.1)

First, we will treat φ as a spatially homogeneous field φ0(t) in a background de Sitter

space. This is effectively the infinite wavelength mode of the inflaton. The equations of

motion are

φ̈0 + 3Hφ̇0 + V ′(φ) = 0 . (1.3.2)

We see that the expansion of space acts as a friction term, 3Hφ̇. Since the slow-roll

approximation requires φ̇2 ≪ V , we can expect that φ̈0 is negligible, leaving 3Hφ̇0 ≈ −V ′.

Combining this with the Friedmann equation (1.2.2), 3M2
PH

2 ≈ V , the slow-roll condition

becomes,

ǫ =
M2
P

2

(V ′)2

V 2
≪ 1 , (1.3.3)

reproducing the condition given in (1.2.4). The zero mode of the inflaton drives inflation

so long as ǫ < 1. The rolling of the field down its potential can provide the energy to source

secondary particles and is much of the focus of the remainder of this work. The perturbations

of the inflaton generate the inhomogeneities in the early universe and can have interesting
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interactions with other fields.

The vacuum of quantum field theory is full of fluctuations of particles of all momenta ap-

pearing and annihilating. During inflation, space is expanding exponentially, and therefore,

the wavelength of the quantum fluctuations are also stretched exponentially. The horizon ra-

dius, H−1, remains nearly constant during inflation, and so eventually, the wavelengths will

leave the horizon. When this happens, the modes become "frozen". The modes become clas-

sical in the sense that the commutator vanishes. Inflation expands the universe by a factor

of ∼ eN , where N is referred to as the number of e-folds. In order to explain the observed

homogeneity of the universe, the number of e-folds between when the largest observable

scales left the horizon and the end of inflation needs to be around 50-60. Once inflation

ends, the horizon begins to expand faster than the scale factor and eventually, the modes

reenter the horizon. These density perturbations then seed matter density perturbations.

We now turn to the production of the quantum fluctuations of the inflaton. It will be

convenient to work in conformal time, τ , defined by dt = adτ . Conformal time ranges from

−∞ to 0. Derivatives with respect to conformal time are denoted ′. In these coordinates,

the background metric is ds2 = a2(τ)(−dτ2+ δijdx
ixj), and the scale factor is a(τ) = − 1

Hτ .

We perturb φ about a homogeneous background, φ(x, τ) = φ0(τ)+δφ(x, τ), and expand

the action to second order in δφ. We will examine the case for the nearly massless inflaton,

in which we can ignore the V ′′(φ) term. This gives the equations of motion for δφ,

δφ′′ + 2aHδφ′ −∇2δφ = 0 . (1.3.4)

To solve this, we Fourier transform δφ,

δφ(x, τ) =

∫

d3k

(2π)3/2
δφk(τ)e

ik·x . (1.3.5)

This puts the equation in the form

7



δφ′′k + 2aHδφ′k + k2δφk = 0 . (1.3.6)

By making the substitution δφ = σ/a we can cast this equation into the form

σ′′k +
(

k2 − a′′

a

)

σk = 0 . (1.3.7)

Modes whose wavelength is much smaller than the horizon, that is k
aH = −kτ ≫ 1,

are insensitive to the expansion of space. Therefore we expect that these modes will be

oscillating modes as in Minkowski space. Indeed, in this short wavelength limit, (1.3.7) is

simply σ′′k + k2σk = 0, the Klein-Gordon equation for a massless scalar in Minkowski space.

From this, we require that in the UV limit, the solution to (1.3.7) matches onto

σk(τ) ∼
e−ikτ√
2k

, −kτ ≫ 1 . (1.3.8)

This choice of normalization is known as the Bunch-Davies vacuum. With this boundary

condition, the full solution for the inflaton perturbations is

δφk(τ) =
e−ikτ

a
√
2k

(

1− i

kτ

)

. (1.3.9)

For superhorizon scales, ones which satisfy −kτ ≪ 1, the perturbations become constant,

with magnitude

|δφk(τ)| =
H√
2k3

, −kτ ≪ 1 . (1.3.10)

The inflaton field is quantized in the standard way,

8



δφ̂k(τ) = δφk(τ)ak + δφ∗k(τ)a
†
−k , (1.3.11)

with creation and annihilation operators satisfying the commutation relations, [ak, a
†
−k′ ] =

δ3(k−k′). a†k and ak diagonalize the early-time Hamiltonian. As mentioned in Section 1.2,

the perturbations in the inflaton field generate scalar perturbations in the gravitational field.

These two field perturbations are related by the gauge relation (1.2.9). This then allows to

compute the scalar power spectrum defined in (1.2.5),

Pζ(k) =
H2

8π2ǫM2
P

. (1.3.12)

Since the modes freeze out when crossing the horizon, we evaluate the power spectrum

at k = aH. Since H is nearly constant during inflation, d ln k = dk/k ≈ da/a = (ȧ/a)dt =

Hdt. Therefore, the spectral index for single-field slow-roll inflation is approximately

ns − 1 =
∂ lnPζ(k)
d ln k

≈ 2η − 6ǫ . (1.3.13)

The process is much the same with the tensor modes. The quanta of gravitational

waves are massless spin-2 particles, and as such, have two polarization states, the + and

× polarization states. The field is decomposed into a polarization basis (the sum is over

λ = +,×)

hij(k, τ) =
∑

λ

hλ(k, τ)e
λ
ij(k) . (1.3.14)

Proceeding as was done for the scalar modes, the tensor power spectrum is found to be

9



Pt(k) = 2
H2

π2M2
P

, (1.3.15)

where the factor of 2 reflects the sum over the two polarization states. It is worth noting

that the tensor spectrum only depends on the energy scale of inflation, H2 ∼ V/3M2
P . As

the inflaton rolls down its potential, the energy density decreases, generating a tilt to the

spectrum given by its spectral index,

nt = −2ǫ . (1.3.16)

With (1.3.12) and (1.3.15), the tensor-to-scalar ratio defined in (1.2.7), is

r = 16ǫ . (1.3.17)

We finish this section by discussion the predictions of chaotic inflation [15]. Chaotic

inflation uses a quadratic inflationary potential, V = 1
2m

2
φφ

2, and so is a natural candidate

to investigate. In order for the quadratic potential to be "flat" enough to support inflation,

we must have ǫ ≪ 1 where ǫ =
2M2

P

φ2
. Therefore, chaotic inflation is a "large-field" model,

requiring φ & MP . In particular, to leading order in slow-roll, φ = 2MP

√
N , which for

N = 60, gives φ ∼ 15MP . This then gives ǫ = 1
2N , and similarly η = 1

2N , which comfortably

satisfies the slow-roll condition.

Chaotic inflation predicts a spectral tilt ns − 1 = − 2
N , giving ns ≈ 0.967, which is in

agreement with the measurements from Planck. Unfortunately, the good news ends there.

The predicted tensor-to-scalar ratio is r = 8
N ≈ 0.13, which is too large for the measured

upper limit, r . 0.06 (see fig. 1.1). As such, the simplest model of chaotic inflation is

ruled out by observations. However, we’ve taken the time to discuss it here as in Section

4, we show how when the inflaton is coupled to fermions, this can lead to the possibility of

returning chaotic inflation to within observational bounds. An overview of this process is
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given in the next section.
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Figure 1.1: The current constraints from the Planck Collaboration on the tensor-to-scalar
ratio, r, and the scalar spectral tilt, ns [1]. Note that φ2 inflation is currently ruled out as
it predicts too large a tensor-to-scalar ratio.

1.4 Models of particle production during inflation and overview

The results of the previous section apply to when the inflaton is the only significant source

for gravitational perturbations. When we account for other fields, sourced by the expansion

of space, or by direct coupling to the inflaton, these results will be modified, sometimes

significantly. If the vacuum and sourced contributions to the density perturbations are

statistically independent, the two-point function is 〈ζkζk′〉 = 〈ζvac

k ζvac

k′ 〉 + 〈ζsourced

k ζsourced

k′ 〉.

Therefore, the power spectrum will be the sum of the two contributions, Pζ(k) = Pvac

ζ (k) +

Psourced

ζ (k) [16].

Scenarios where particle production occurs during inflation can allow to decouple infla-

tionary observables from the shape of the potential. In these scenarios, the rolling inflaton

provides the energy necessary for the generation of quanta of a secondary field whose presence

can affect the spectra of scalar and tensor perturbations. A model which has been widely

studied is that involving an additional scalar with an interaction ∆L = g2(φ − φ0)
2χ2 [17,
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18]. As φ rolls down its potential and approaches φ0, the scalar χ momentarily becomes

massless and is produced copiously. This is because during this time, the effective mass

evolves nonadiabatically, causing particle production. While a single event of particle pro-

duction [19] can lead to features in the power spectra, a continuous process can generate an

additional quasi-scale invariant component for the spectrum of scalar perturbations, or even

provide a channel for the dissipation of the inflaton’s energy that can lead to inflation even

if the potential does not satisfy the slow-roll conditions [20, 21, 9, 22].

Production of gauge fields and fermions can occur in axion (or natural) inflation. Slow-

roll inflation requires a flat potential; in axion inflation this flatness is a natural consequence

of an approximate shift symmetry [23]. Originally motivated as a possible solution to the

strong CP problem [24], axions, or pseudoscalar, fields are ubiquitous in string theory, and

monodromy [25, 26, 10, 27, 28] or alignment [29, 30, 31, 32] effects can make them inflaton

candidates, giving rise to vacuum primordial gravitational waves within the reach of future

experiments.

Due to the approximate shift symmetry, the axion inflaton ϕ must couple derivatively

to matter fields. At mass-dimension five, the possible couplings are

∆L =
ϕ

f
FF̃ +

∂µϕ

f
X̄γµγ5X , (1.4.1)

to gauge fields and fermions X, respectively. Here F is the usual gauge-field field-strength

tensor, F̃ is its dual, and f is a scale known as the axion decay constant. This coupling of

the axion to gauge fields leads to exponentially large gauge field amplification, with several

possible phenomenological consequences (see [33] for a review). These include steep inflation

[9], thermal inflation [34, 35], magnetic field production [36, 37, 38, 39, 40, 41], large non-

Gaussianity [42, 16, 43], chiral gravitational wave production [44, 45, 46, 47, 48, 49], instant

preheating [50, 51], and the generation of primordial black holes [52, 53, 54].

The fermionic coupling has not attracted as much attention. Due to Pauli blocking,

fermions cannot undergo the same exponential amplification as the gauge fields. Further-

more, on the one hand, massless fermions are conformal and therefore cannot be created

gravitationally through the expansion of the Universe [55]. On the other hand, very heavy

12



fermions decouple, so that, in the absence of the coupling (1.4.1), only fermions with mass

m ≈ H are produced in sizable quantities. With only one scale in the problem, the Hubble

scale, the energy density is ∼ H4, which is too small to produce observable effects (with the

possible exception of super-heavy dark matter [56, 57]). During axion inflation, however,

this conclusion does not follow due to the presence of the additional scale ϕ̇/f .

The first studies of this system have been performed in reference [58], and, more re-

cently, in references [22, 59, 60, 61]. In that study, solutions of the Dirac equation including

the effects of the homogeneous rolling inflaton mode were obtained along with the occupa-

tion number of the fermions during inflation and the oscillations in the phase immediately

following inflation [58]. The effect of the axion-fermion coupling is to helically-bias the

production of fermions leading to a net helicity asymmetry. This helicity asymmetry then

leads to the possibility that the chiral fermions could lead to successful leptogenesis [62].

Subsequently, ref. [63] studied the possibility that these fermions source gravitational waves

during inflation, and found that in this system a chiral component of the spectrum of pri-

mordial tensors is generated. Finally, ref. [64] found that these chiral fermions can generate

circularly polarized photons, or V-modes after reheating.

In this thesis, we study the regime ϕ̇/f ≫ H. Because fermion modes can be populated

up to k ∼ ϕ̇/f , the energy density can be parametrically larger1 than H4, as first noticed

in reference [58]. We also identify a regime in which the sourced contribution to the power

spectrum dominates the vacuum contribution, yet the non-Gaussianity is beneath current

observational bounds. This behavior is in striking contrast to the analogous effect in systems

with strong bosonic particle production. This difference can be understood by noting that

phenomenologically interesting results require one to populate a large number of fermion

modes since the occupation of these modes is restricted by Pauli exclusion, and their sum

is uncorrelated and becomes increasingly Gaussian by the central limit theorem. Bosonic

systems, conversely, allow for large occupation numbers per mode, which add coherently

leading to sourced n-point functions that are generically related to the two-point function

by 〈δϕn〉 ∼
(

〈δϕ2〉
)n/2

[65]. As the fermion-axion coupling is increased, eventually one enters

1On the contrary, in the opposite ϕ̇/f ≪ H regime the effect of this coupling leads to a fermion energy
density that is much smaller than H4, and thus is negligible.
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a regime of strong backreaction where the evolution of the inflaton zero-mode is controlled

by particle production; this is the fermionic analogue of steep inflation studied in reference

[9]. We expect that the above argument that non-Gaussianity remains small still holds in

the regime of strong backreaction.

This thesis is organized as follows: In Chapter 2 we study the production of fermions dur-

ing axion inflation, the backreaction on the inflaton evolution, and the fermion contribution

to the scalar spectrum and non-Gaussianities. We show that the spectrum is quasi-scale-

invariant and highly Gaussian. In Chapter 3 we calculate the tensor power spectrum of the

sourced fermions and show it to be small compared with the vacuum spectrum. Finally, in

Chapter 4, we show how these results can allow to lower the energy scale of inflation, thus

lowering the tensor-to-scalar ratio. In particular, this allows for chaotic inflation to have a

lower value of r and be in agreement with observation. We give a supergravity construc-

tion of this fermion model with axion inflaton which generates a quadratic potential for the

inflaton.
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Chapter 2

Phenomenology of fermion

production during axion inflation

In this chapter we study the production of fermions through a derivative coupling with

a pseudoscalar inflaton and the effects of the produced fermions on the scalar primordial

perturbations. We present analytic results for the modification of the scalar power spectrum

due to the produced fermions, and we estimate the amplitude of the non-Gaussianities in

the equilateral regime. Remarkably, we find a regime where the effect of the fermions gives

the dominant contribution to the scalar spectrum while the amplitude of the bispectrum is

small and in agreement with observation. We also note the existence of a regime in which

the backreaction of the fermions on the evolution of the zero-mode of the inflaton can lead

to inflation even if the potential of the inflaton is steep and does not satisfy the slow-roll

conditions.

Axion, or natural, inflation is a class of models of inflation in which the flatness of the

inflation potential is protected by an (approximate) shift symmetry [23]. This class of models

naturally gives rise to the relatively large-amplitude primordial gravitational waves targeted

by next-generation experiments (see, for example, [25, 26, 31, 28]). The shift symmetry

that protects the form of the potential is respected by the coupling of the axion to matter,

and requires that the axion couples derivatively to other matter fields in order to facilitate

reheating.
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This model was first studied in [58]. In the present work we study the axion-fermion sys-

tem in a different field basis from that paper. Using an axial transformation of the fermions

ψ → e−iφγ5ψ, we show (see section 2.1 below) that the Lagrangian with a pseudoscalar

derivatively coupled to a fermion is equivalent to a Lagrangian in which the fermion has a

time-dependent mass term mψ̄ e−2iγ5φψ — see eq. (2.1.5). The main motivation for this

reformulation is that it makes the behavior in the limit m → 0 clear. In this limit, the

coupling of ψ to the inflaton manifestly vanishes. In the basis used in ref. [58], the coupling

also vanishes in this limit. However, this vanishing is only apparent after integrating the

interaction by parts, and then using the Dirac equation. While the physics in either basis

must of course be the same, we demonstrate that in the limit of interest (φ̇/f ≫ H) the

Hamiltonian in the basis of ref. [58] does not have a convenient perturbative expansion.

Consequently, the conclusions of this work regarding the occupation numbers are different

to the conclusions reached in the work ref. [58].

The main focus of this chapter is on the contribution that the non-vacuum fermion modes

give to the spectrum and bispectrum of the scalar metric perturbations. We find that, in

the regime µ ≡ m/H . 1, ξ ≡ φ̇/(2fH) ≫ 1, the occupation number of the fermions

scales as µ2/ξ for momenta up to a cutoff ≈ H ξ, so that the total number density scales as

µ2 ξ2. The modification to the power spectrum scales as H4

f4
µ2ξ2 log ξ, and the bispectrum

as H6

f6
µ2

ξ . This implies that in the regime of large µ ξ the system can be in a regime where

the two-point function of the scalar fluctuations dominates over the vacuum contribution

while the parameter fNL, which measures the departures from Gaussianity, is small and in

agreement with constraints from observations. This result is surprising if one considers that

the origin of the sourced spectrum is quadratic in the (Gaussian) fermion field, which might

lead one to expect strong non-Gaussianiaty. However, this result can be explained in terms

of the central-limit theorem: the numerous fermion modes that contribute to the sourced

spectrum sum incoherently, leaving a (quasi) Gaussian signal.

While most of our analysis is performed in the regime where the backreaction of the

produced fermions on the background dynamics is negligible, we consider also the situation

where this is not the case. and we find that strong backreaction effects can allow slow-roll

inflation even if the potential for φ does not obey the usual slow-roll conditions |V ′| ≪ V/MP ,
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|V ′′| ≪ V/M2
P . The argument we have just presented suggests that the perturbations should

also be highly Gaussian in this regime.

This chapter is organized as follows. In section 2.1 we discuss the quantization of ψ on

the time-dependent background provided by the (quasi) de Sitter geometry along with the

rolling inflaton, and we evaluate the resulting occupation number. As expected, the parity-

violating nature of the system implies different occupation numbers for the two helicities of

ψ. We demonstrate that in the limit m → 0 the occupation number of fermions of both

helicities vanishes, as a consequence of the conformal and chiral symmetry of the system. In

section 2.2, we study the backreaction of the fermions on the zero-mode, or homogeneous,

inflaton background. In section 2.3 we analyze the modifications to the inflationary power

spectrum induced by the presence of a nonvanishing occupation number for the fermions,

while in section 2.4 we study the bispectrum. In section 2.5, we explore the possibility of

slow-roll inflation on steep potentials in the limit of very strong backreaction.

2.1 Fermion production during inflation

In this section we study the production of fermions during axion inflation and obtain so-

lutions to the Dirac equation for a fermion coupled to the slowly-rolling (φ̇ =constant)

pseudoscalar. In particular, we compute the resulting occupation number for the right- and

the left-handed components of the fermion.

We consider the theory of a pseudoscalar inflaton φ interacting with a Dirac fermion X

through a derivative interaction with coupling constant 1/f

L = a4
{

X̄

[

i

(

γ̃µ ∂µ +
3

2

a′

a
γ̃0
)

−m− 1

f
γ̃µ γ5 ∂µφ

]

X +
1

2
(∂φ)2 − V (φ)

}

. (2.1.1)

Here the γ̃-matrices in flat Friedmann-Lemaître-Robertson-Walker spacetime with scale fac-

tor a are related to those in Minkowski spacetime by γ̃µ = γµ/a, while γ5 = i a4 γ̃0γ̃1γ̃2γ̃3 =

i γ0γ1γ2γ3. We neglect metric fluctuations1 and treat the background as fixed de Sitter

spacetime.

1More precisely, we study scalar metric perturbations in the spatially flat gauge, neglecting the presence
of the shift and lapse scalar factors which provide slow-roll suppressed contributions to the spectra.
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Throughout this chapter and the following one, we use conformal time and “mostly

minus” signature for our metric, and we use the Dirac representation for the γ matrices.

Specifically,

γ0 =







1 0

0 −1






, γi =







0 σi

−σi 0






, γ5 =







0 1

1 0






. (2.1.2)

The fermions are canonically normalized by redefining Y = X a3/2, so that

L = Ȳ

[

i γµ ∂µ −ma− 1

f
γµ γ5 ∂µφ

]

Y +
1

2
a2ηµν∂µφ∂νφ− a4V (φ) . (2.1.3)

Next, we perform one more redefinition of the fermion field,

Y = e−iγ
5φ/f ψ , (2.1.4)

which yields the Lagrangian

L = ψ̄

{

i γµ ∂µ −ma

[

cos

(

2φ

f

)

− iγ5 sin

(

2φ

f

)]}

ψ +
1

2
a2ηµν∂µφ∂νφ− a4V (φ) .(2.1.5)

The latter field redefinition is motivated by two considerations. First, as discussed in the

introduction, by writing the Lagrangian in terms of ψ it is apparent that the inflaton de-

couples from the fermion in the limit m → 0. This decoupling is not as evident when the

Lagrangian is in the form of eq. (2.1.3). Second, in order to determine the occupation num-

ber for the fermions we resort to the usual technique of the Bogolyubov coefficients, which

relies on the diagonalization of the portion of Hamiltonian that is quadratic in the fields. In

the formulation of eq. (2.1.3) the momentum conjugate to φ, which is needed to compute the

Hamiltonian, is given by Πφ = a2 φ̇− 1
f Ȳ γ

0γ5Y , which contains a term that is quadratic in

the fermion field (this should be compared with the simpler expression Πφ = a2 φ̇ obtained

in the formulation in eq. (2.1.5)). This leads to a different definition of the quadratic part

of the Hamiltonian which, in turn, leads to the unphysical result that certain modes of the

fermion are excited by the rolling of the inflaton even in the limit m → 0, where we would

18



expect these degrees of freedom to decouple. These two issues are related, in the sense

that the perturbation theory based on the quadratic fermion Hamiltonian obtained from eq.

(2.1.3) blows up at a finite time in the massless limit. In what follows, we work with the

Lagrangian in eq. (2.1.5).

In order to determine the Bogolyubov coefficients for the fermions ψ, and therefore

their particle number, we must second quantize ψ in the presence of the time dependent

background induced by the rolling of φ. To do so we first focus only on the ψ-dependent

part of the Lagrangian, approximating φ as a homogeneous, time-dependent background:

φ(x, τ) ≃ φ0(τ). From the slow-roll condition φ̇0 ≃constant,2 we have

φ0(τ) = − φ̇0
H

log (τ/τin) , (2.1.6)

where τin is related to the initial value of φ. We have verified that, consistent with the fact

that the fermion is derivatively coupled to the inflaton, our results do not depend on the

value of τin.

Relegating the details of our derivation to Appendix A, we find that, by decomposing

ψ =

∫

d3k

(2π)
3

2

eik·x
∑

r=±

[

Ur(k, τ) ar(k) + Vr(−k, τ) b†r(−k)
]

, (2.1.7)

with

Ur(k, τ) =
1√
2







χr(k)ur(x)

rχr(k) vr(x)






, Vr (k) = C Ūr (k)

T , C = iγ0γ2 =







0 iσ2

iσ2 0






,

χr(k) ≡
(k + r σ · k)
√

2 k (k + k3)
χ̄r, χ̄+ =







1

0






, χ̄− =







0

1






, (2.1.8)

2We denote ˙ ≡ d/dt, ′
≡ d/dτ , with t cosmic time and τ conformal time. We note that φ̇0 varies at

second order in slow roll, but we disregard this small effect here.

19



(where k3 is the z-component of the vector k), the mode functions are given by

ur(x) =
1√
2x

[

eirφ̂(x) sr (x) + e−irφ̂(x) dr (x)
]

,

vr(x) =
1√
2x

[

eirφ̂(x) sr (x)− e−irφ̂(x) dr (x)
]

, (2.1.9)

which satisfy the normalization condition |ur|2 + |vr|2 = 2, with

sr (x) = e−πrξW 1

2
+2irξ, i

√
µ2+4ξ2

(−2ix) , dr (x) = −i µ e−πrξW− 1

2
+2irξ, i

√
µ2+4ξ2

(−2ix) ,

(2.1.10)

where Wµ, λ(z) denotes the Whittaker W-function. We have also defined

φ̂ (x) ≡ φ0
f

= −2ξ log (x/xin) , (2.1.11)

with

x ≡ −kτ , xin ≡ −kτin , µ ≡ m

H
, ξ ≡ φ̇0

2fH
. (2.1.12)

We work in de Sitter spacetime, a(τ) = −1/Hτ , and disregard subleading corrections in

slow roll.

With the knowledge of the mode functions, we diagonalize the quadratic Hamiltonian

for the fermions, which reads

H
(2)
ψ =

∫

d3x ψ̄
[

−i γi ∂i +mR − iγ5mI

]

ψ , (2.1.13)

where the subscript ψ indicates that we are considering only the fermionic part of the

Hamiltonian and the superscript (2) indicates that we are considering only the part of the

Hamiltonian that is quadratic in the field fluctuations (in section 2.3 below we consider the

cubic and quartic part of the Hamiltonian). The quantities mR and mI are defined as

mR ≡ ma cos

(

2φ0
f

)

, mI ≡ ma sin

(

2φ0
f

)

. (2.1.14)
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Long but straightforward computations show that H
(2)
ψ takes the form

H
(2)
ψ =

∑

r=±

∫

d3k
(

a†r (k) , br (−k)
)







Ar B∗
r

Br −Ar













ar (k)

b†r (−k)






,

Ar ≡
1

2

[

mR

(

|ur|2 − |vr|2
)

+ k (u∗rvr + v∗rur)− i r mI (u
∗
rvr − v∗rur)

]

,

Br ≡
r eirϕk

2

[

2mRur vr − k
(

u2r − v2r
)

− i r mI

(

u2r + v2r
)]

, (2.1.15)

with eiϕk ≡ (k1 + i k2)/
√

k21 + k22. Note that eq. (2.1.15) implies that whenever Br is

nonvanishing, the operators a†r and b†r do not create energy eigenstates. Therefore, they

should not be interpreted as ladder operators associated with a single-particle state. The

matrix appearing in the first line of eq. (2.1.15) can be diagonalized as







Ar B∗
r

BR −Ar






=







α∗
r β∗r

−βr αr













ω 0

0 −ω













αr −β∗r
βr α∗

r






,

ω ≡
√

k2 +m2
R +m2

I , (2.1.16)

where the Bogolyubov coefficients αr and βr read

αr = eirϕk/2

[

1

2

√

1 +
mR

ω
ur +

1

2

√

1− mR

ω
e−irθ vr

]

,

βr = r eirϕk/2

[

1

2

√

1− mR

ω
eirθ ur −

1

2

√

1 +
mR

ω
vr

]

, (2.1.17)

where eiθ ≡ (k + imI)/
√

k2 +m2
I . It is then straightforward to see that the operators







âr(k)

b̂†r(−k)






=







αr −β∗r
βr α∗

r






·







ar(k)

b†r(−k)






(2.1.18)

diagonalize the Hamiltonian, with â†r(k) âr(k) and b̂†r(k) b̂r(k) describing number operators

of, respectively, particles and antiparticles with energy
√

k2 +m2
R +m2

I =
√
k2 +m2a2.
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Figure 2.1: The occupation number of r = −1 (top, solid curves) and r = +1 (bottom,
dashed curves) fermions, Nr as a function of the momentum k, for ξ = 10 and µ = 1 (left
panel) and µ = 0.1 (right panel).

The occupation number of helicity-r particles (and antiparticles) is then

Nr ≡ |βr|2 = 〈0|â†r(k) âr(k)|0〉 = 〈0|b̂†r(k) b̂r(k)|0〉

=
1

2
− mR

4ω

(

|ur|2 − |vr|2
)

− k

2ω
Re (u∗rvr)−

rmI

2ω
Im (u∗rvr) . (2.1.19)

We now discuss the main properties of the functions Nr(k). In figure 2.1, we show the

occupation number of the r = +1 and r = −1 fermions at the end of inflation (τ = −1/H)

for ξ = 10 with µ = 1 (left) and µ = 0.1 (right). First, let us focus on fermions with

r = +1. For those particles the occupation number drops rapidly to zero as k gets larger

than m. The reason for this behavior is that the presence of a nonvanishing mass leads to

the breaking of conformality and the generation of fermions on the de Sitter background.

For momenta larger than m the fermions are approximately conformal and the occupation

number becomes smaller. This phenomenon is purely gravitational and affects both the left-

and the right-handed modes, but for the modes with r = −1 it is overwhelmed by the effects

of nonvanishing ξ. In fact, modes with r = −1 have nonvanishing occupation number for k

as large as 2ξH. We interpret this as the consequence of the fact that the excitation of those

fermion modes is induced by the coupling to the pseudoscalar inflaton.3 We also note that

3These results rely on the assumption that ξ > 0. Changing the sign of ξ has the effect of exchanging
the occupation numbers of the r = + and r = − modes.
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the occupation number of the interesting r = −1 mode displays high frequency oscillations

as a function of the momentum k. The two panels of figure 2.1 show that those oscillations

happen around a value of the occupation number that is approximately given by µ2/ξ.

By evaluating analytically eq. (2.1.19) in various limits we observe that both N+ and

N− vanish as µ2 in the limit µ → 0. This is consistent with the decoupling of ψ from the

inflaton for m = 0. More specifically, one obtains

Nr ≃
µ2

4x2
, µ≪ x≪ 1 . (2.1.20)

In the regime of moderate µ . 1 and large ξ ≫ 1 we find that the occupation number

of the r = −1 modes is oscillating about a constant that is well approximated by µ2/ξ for

modes with x . ξ before dropping as ξ2 µ2/x4 for x & ξ. As a consequence, for this range

of parameters the total number density of the modes with r = −1 scales, for µ . 1, as

µ2

ξ × ξ3 ∼ µ2 ξ2 that can be parametrically larger than unity per Hubble volume.

Moving to the regime of large µ, in figure 2.2 we show the occupation number for the

r = +1 and r = −1 modes for µ = 10 and ξ = 10 (left) and for µ = 10, ξ = 1 (right).

Remarkably, even if the occupation number for the r = +1 modes is smaller than that of

the r = −1 ones, both occupation numbers are of order unity despite the fact that the mass

of the fermions is much larger than the Hubble scale. This means that the coupling to the

inflaton prevents the decoupling of fermions with m ≫ H (for comparison, the occupation

number of fermions with µ = 10 and ξ = 0, not plotted, is at most of the order of 10−5).

Of course, the occupation number of the fermions decreases (as ∼ ξ2/µ2) when µ becomes

much larger than ξ.

A numerical evaluation of the total number density of r = −1 fermions yields

∫

d3k N−(k) ≃ 52H3µ2 ξ2 , ξ ≫ µ , ξ ≫ 1. (2.1.21)

The main conclusion of this section is that a nonvanishing value of ξ leads to nontrivial

behavior of the fermions. Chiral fermions are copiously produced even if m ≪ H (as long

as µ2 ξ2 is large enough), and even very heavy fermions with m≫ H can be produced with
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Figure 2.2: Same as figure 2.1, but for ξ = 10, µ = 10 (left) and for ξ = 1, µ = 10 (right).

large occupation numbers as long as µ . ξ. We now move on to compute the effect of these

fermions on the inflaton.

2.2 Backreaction

In this section we examine the backreaction of the produced fermions on the homogeneous,

or background, inflaton. The equation of motion for the inflaton, derived from the La-

grangian (2.1.5), reads

φ′′ + 2
a′

a
φ′ −∆φ+ a2 V ′(φ) =

2m

f a
ψ̄

[

sin

(

2φ

f

)

+ iγ5 cos

(

2φ

f

)]

ψ . (2.2.1)

We seek to establish the conditions under which the backreaction of the produced fermions

on the background dynamics is negligible. We do this by imposing that the right hand

side of the equation above, evaluated in the Hartree approximation, is much smaller than

a2 V ′(φ). Using manipulations analogous to those of section 2.1 above, the quantity

B ≡ 2m

f a
〈ψ̄
[

sin

(

2φ

f

)

+ i γ5 cos

(

2φ

f

)]

ψ〉

=
2

f a2

∫

d3q d3p

(2π)3
ei(q−p)x〈ψ̄(p) [mI + i γ5mR]ψ(q)〉 , (2.2.2)
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can be written as

B = 4
mH3

f
a2
∑

r

r

∫

y dy

2π2
Im {sr d∗r} . (2.2.3)

Quite remarkably, the integral can be computed analytically after regulating it with a hard

cut-off at a finite and large Λ (see [22] for details). The integral turns out to have a

logarithmic divergence for large Λ. As we discuss in greater detail in subsection 2.3.1 below,

we can deal with the divergence either by simply subtracting the divergent part, or by

adiabatic regularization. The result does not change in the limit of large ξ, and in the

regime µ . 1 ≪ ξ we obtain

B ≃ − 8

π

H4

f
a2 µ2 ξ2 . (2.2.4)

By imposing that the backreaction of the fermions on the zero mode of the inflaton is

negligible, B ≪ a2 V ′(φ) ≃ 3H φ̇ a2, we derive a first condition on the parameter space of

the model:

µ2 ξ ≪ f2

H2
, (2.2.5)

where we emphasize that f should be much larger than H in order for the effective field

theory to be valid at energy scales of the order of H.

As a second condition for negligible backreaction we impose that the energy density of

the produced fermions gives a negligible contribution to the expansion rate of the Universe.

The energy density in fermions is computed in [22] and reads

ρψ = 16π2H4µ2ξ3 , (2.2.6)

so that by requiring it to be subdominant with respect to the energy in the inflaton one

obtains the parametric constraint

µ2 ξ3 ≪ M2
P

H2
. (2.2.7)
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It is easy to check that during slow roll, φ̇ ≪ HMP , this condition is satisfied as long as

eq. (2.2.5) holds.

2.3 Power spectrum

Fermions with a nonvanishing occupation number backreact on the fluctuations of the in-

flaton, therefore modifying the primordial scalar perturbations. In this section we compute

this effect to leading order. As we will show, at the level of approximation that we are using

this modification is scale invariant, and therefore it is unobservable in the spectrum because

it is degenerate with the vacuum contribution generated by the inflationary expansion of the

Universe. However, an observable effect is potentially generated in the bispectrum, which

in single-field inflation is slow-roll suppressed to a currently unobservable level. A precise

calculation of the bispectrum is very challenging, but in section 2.4 below we use the results

of this section 2.3 to estimate its magnitude.

In order to focus on the physics, we only present the main steps of our calculation of the

leading order correction to power spectrum in this section. The details of the calculations

can be found in [22].

We compute the leading order modifications to the power spectrum of the fluctuations

of the inflaton using the in-in formalism (see, e.g. [66]). To do so, we define the perturbation

δφ(x, τ) = φ(x, τ) − φ0(τ) and we expand the interaction Hamiltonian to second order in

δφ

Hint ⊃− 2am

f

∫

d3x ψ̄

[

sin

(

2
φ0
f

)

+ i γ5 cos

(

2
φ0
f

)]

ψ δφ

− 2am

f2

∫

d3x ψ̄

[

cos

(

2
φ0
f

)

− i γ5 sin

(

2
φ0
f

)]

ψ δφ2 ≡ H
(3)
ψ +H

(4)
ψ , (2.3.1)

where we have neglected the contribution from the inflaton self-interactions, whose effects are
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ψ

δφ δφ

δφ δφ
ψ

Figure 2.3: The two diagrams that contribute at leading order to the two-point function of
δφ.

slow-roll suppressed. We then use Hint to compute the modification to the power spectrum

δPζ (τ, k)
∣

∣

∣

−kτ≪1
=

k3

2π2
H2

φ̇20

∞
∑

N=1

(−i)N
∫ τ

dτ1 . . .

∫ τN−1

dτN

×
〈[[

· · ·
[

δφ(0) (τ, k) δφ(0)
(

τ, k′) , Hint (τ1)
]

, · · ·
]

, Hint (τN )
]〉′

,

(2.3.2)

where we have used the relation ζ = −H δφ/φ̇0 between the fluctuations of the inflaton and

the scalar perturbation of the metric, and the prime denotes the correlator stripped of the

δ(3)(k+ k′) associated with momentum conservation.

In evaluating the expression eq. (2.3.2) we use the mode functions for ψ found in sec-

tion 2.1 above, eqs. (2.1.7) through (2.1.10). Regarding the mode functions of δφ, we use

those of a massless field in de Sitter space:

δφ(0) (x, τ) =

∫

d3k

(2π)3/2
eik·x

[

δφ
(0)
k (τ) ak + δφ

(0)∗
k (τ) a†−k

]

, (2.3.3)

with

δφ
(0)
k (τ) =

H√
2k

(

i τ +
1

k

)

e−ikτ . (2.3.4)

The two parts of the interaction Hamiltonian H
(3)
ψ and H

(4)
ψ describe a cubic ψ̄ ψ δφ

vertex and a quartic ψ̄ ψ δφ2 vertex. Those two vertices can be used to draw the two

diagrams shown in figure 2.3, which contribute to eq. (2.3.2) at leading order in the 1/f

expansion. We discuss these diagrams in the next two subsections.
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2.3.1 Quartic loop

The first diagram in figure 2.3 gives

δP
(4)
ζ (τ, k) = i

k3

2π2
H2

φ̇20

2m

f2

∫ τ

dτ1 a(τ1)

∫

d3p d3q d3w

(2π)3

〈[

δφ(0) (τ, k) δφ(0)
(

τ, k′) ,

ψ̄ (τ1, p)

[

cos

(

2
φ0(τ1)

f

)

− i γ5 sin

(

2
φ0(τ1)

f

)]

ψ (τ1, q)

δφ(0) (τ1, w) δφ(0) (τ1, p− q−w)

]〉′

, (2.3.5)

which, with some algebra and in the large scale limit −kτ → 0, can be simplified to

δP
(4)
ζ (τ, k) =

2H5m

f2k3π2φ̇20

∫ τ dτ1
τ1

[cos (kτ1) + kτ1 sin (kτ1)] [sin (kτ1)− kτ1 cos (kτ1)]

×
∫

d3p

(2π)3

〈

ψ̄ (p)
[

cos
(

2 φ̂
)

− i γ5 sin
(

2 φ̂
)]

ψ (p)
〉′

τ1
. (2.3.6)

By inserting the expressions for the mode functions of the fermions into this equation we

finally obtain

δP
(4)
ζ (τ, k)

P
(0)
ζ

=
4H2µ

f2π2

∫

x

dx1
x41

[cos (x1) + x1 sin (x1)] [x1 cos (x1)− sin (x1)]

×
∫

dxp xp
∑

r

ℜ [d∗r (xp) sr (xp)] , (2.3.7)

where we have normalized this contribution to Pζ by the vacuum term P
(0)
ζ = H4/(4π2 φ̇20),

we have introduced the dimensionless integration variables x1 ≡ −kτ1 and xp ≡ −pτ1, and

where the functions dr(x) and sr(x) are given in eq. (2.1.10).

We proceed to evaluate the two integrals that appear in eq. (2.3.7). The integral in dx1

diverges when the lower limit of integration x is sent to 0 (remember that x = −kτ = k/H

as we want to evaluate the power spectrum at the end of inflation, τ = −1/H). In fact one

28



finds

∫ ∞

x

dx1
x41

[cos (x1) + x1 sin (x1)] [x1 cos (x1)− sin (x1)]
∣

∣

∣

x→0

≃ 1

3
log(x) +

3 log 2 + 3 γE − 7

9
+O(x2) , (2.3.8)

where γE ≃ .577 is the Euler-Mascheroni constant. This infrared divergence is a consequence

of the fact that the fermions have a nonvanishing average density that keeps sourcing the

fluctuations of the inflaton even when they are outside of the horizon. This divergence is

regulated by the finite amount of e-foldings between the time when the inflaton mode leaves

the horizon and the end of inflation.

The integral in dxp is much more challenging, and is quadratically divergent in the

ultraviolet. As it was the case for the integral in section 2.2, it is possible to compute it

analytically after introducing a UV regulator that sets the upper limit of integration to some

finite and large Λ (see [22]). The divergent part of the integral reads

∫ Λ

0
dxp xp

∑

r

ℜ [d∗r (xp) sr (xp)] = µ
(

Λ2 −
(

µ2 − 8ξ2 + 1
)

log Λ
)

+O(Λ0) . (2.3.9)

Now, we have at least two different ways of dealing with this divergence. We can subtract

from the exact integral its adiabatic part, or we can simply subtract by hand the part that

diverges when Λ → ∞. The adiabatic subtraction might be problematic, as the adiabatic

contribution turns out to dominate the physical one at momenta of order H [67]. Since

these momenta contribute to the finite part of the integral, adiabatic subtraction can induce

spurious components into our integral.

As discussed in [22], adiabatic subtraction does indeed introduce spurious contribution

which scales as µ ξ2 and is therefore large at large ξ. However, this contribution is subdom-

inant at sufficiently large ξ, as there is a physical contribution which scales as µ ξ2 log(ξ).

In this limit, and setting τ = −1/H to have quantities computed at the end of inflation, we
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get the simple result

δP
(4)
ζ (k)

P
(0)
ζ

∣

∣

∣

end of inflation
≃ 32m2ξ2 log ξ

3π2f2
log(H/k) . (2.3.10)

2.3.2 Cubic loop

The second diagram in figure 2.3 gives

δP
(3)
ζ (τ, k)

P
(0)
ζ

= −2k3

H2

m2

f2

∫ τ

dτ1a(τ1)

∫ τ1

dτ2a(τ2)

×
∫

d3pd3q

(2π)3
(δ(k+ p− q) + δ(−k+ p− q))

×
[

sin

(

2φ0(τ1)

f

)

+ iγ5 cos

(

2φ0(τ1)

f

)]

ij

[

sin

(

2φ0(τ2)

f

)

+ iγ5 cos

(

2φ0(τ2)

f

)]

ab

×
(

δφ(0)(k, τ) δφ(0)(k, τ1)
∗ − δφ(0)(k, τ1)

∗ δφ(0)(k, τ1)
)

×
{

δφ(0)(k, τ) δφ(0)(k, τ2)
∗ 〈ψ̄(p, τ1)i ψ(p, τ2)b〉′ 〈ψ(q, τ1)j ψ̄(q, τ2)a〉′

− δφ(0)(k, τ2) δφ
(0)(k, τ)∗ 〈ψ̄(q, τ2)a ψ(q, τ1)j〉′ 〈ψ(p, τ2)b ψ̄(p, τ1)i〉′

}

, (2.3.11)

where we have already normalized to the vacuum power spectrum. With some work it is

possible to evaluate the fermionic part (details can be found in [22]) and write

δP
(3)
ζ (τ, k)

P
(0)
ζ

=
m2

2 f2 k3

∫ τ dτ1
τ21

∫ τ1 dτ2
τ22

∫

d3p d3q

(2π)3p q
(δ(k+ p− q) + δ(−k+ p− q))

×
∑

rs

(

1 + r s
p · q
p q

)

(sin kτ1 − kτ1 cos kτ1)
{

(−i− kτ2) e
ikτ2 (r s vr(−pτ1) vs(−qτ1)

+ur(−pτ1)us(−qτ1)) (r s v∗r (−pτ2) v∗s(−qτ2) + u∗r(−pτ2)u∗s(−qτ2)) + h.c.} , (2.3.12)

where we recall that ur and vr are given in eqs. (2.1.9) and (2.1.10).

The computation of the above integral is extremely challenging (even an estimate is

challenging, as each term appearing in it is rapidly oscillating), so we must resort to a

number of approximations. First, we approximate the integrand assuming p ≫ k, which

implies p ≃ q. We expect this to generate at most an O(1) error in our final result. At

this point the integral still contains products of four Whittaker functions. To simplify the
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integral we Wick-rotate the time variables and we use simple approximations (that can be

obtained in the limit ξ ≫ 1 by dealing carefully with the branch cuts in the definition of the

Whittaker functions) that bring the mode functions to the form

sr(−iy) ≃ A1,r y
−i
√
µ2+4ξ2 ey +B1,r y

i
√
µ2+4ξ2 e−y ,

dr(−iy) ≃ A2,r y
−i
√
µ2+4ξ2 ey +B2,r y

i
√
µ2+4ξ2 e−y , (2.3.13)

with Ai and Bi constants that depend on µ and ξ. We show in [22] that in the µ . 1, ξ ≫ 1

regime of interest, the r = s = + contribution is exponentially suppressed with respect to

the r = s = − contribution.

We finally recognize that the terms proportional to A1 and A2 correspond to the “vac-

uum” part of the modes we are considering, i.e. the part of modes that do not vanish and

behave as positive frequency only as p → ∞, and we subtract this part by hand from the

mode functions, effectively keeping only the part proportional to B1 and B2 only.

After these manipulations we obtain the scaling

δP
(3)
ζ (k)

P
(0)
ζ

∣

∣

∣

end of inflation
∝ m2

f2
µ2
√

ξ | log(k/H)| (2.3.14)

which in the regime µ . 1, ξ ≫ 1 is subdominant with respect to contribution δP
(4)
ζ found

in the previous subsection.

2.3.3 Summary for the power spectrum

We conclude this section by summarizing our main result: the first diagram in figure 2.3

dominates the modification to the power spectrum of scalar perturbations in this model,

with

δPζ (k)
∣

∣

end of inflation
≃ P

(0)
ζ

32m2 ξ2 log ξ

3π2 f2
log(H/k) . (2.3.15)

The scaling we find is consistent with the fact that the leading contribution to δPζ is

approximately proportional to 1/f2 and to the total number of fermions ∼ µ2 ξ2.
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Figure 2.4: The three diagrams that contribute at leading order to the three-point function
of δφ.

2.4 Non-Gaussianity

As we saw above, the calculation of the fermionic contribution to the two-point function of

the inflaton is challenging, and for the cubic diagram we could only obtain what we consider

to be a reasonable estimate. As one can expect, the calculation of the three-point function is

even more challenging. There is a new operator, besides the cubic and the quartic interaction

Hamiltonians H
(3)
ψ and H

(4)
ψ given in eq. (2.3.1) above, that contributes to the three-point

function. It is a quintic interaction Hamiltonian

H
(5)
ψ = −4ma

3f3
ψ̄

[

sin

(

2φ0
f

)

+ iγ5 cos

(

2φ0
f

)]

ψ δφ3 , (2.4.1)

which leads to a new ψ̄ ψ δφ3 vertex. Using the vertices generated from H
(3)
ψ , H

(4)
ψ , and H

(5)
ψ

we obtain, at leading order in 1/f , the three diagrams of figure 2.4.

2.4.1 The quintic diagram

As we argue below, the first of these diagrams gives the leading contribution to the bis-

pectrum. Fortunately, this contribution can be calculated analytically; after some long

calculations that can be found in [22], we find the following expression

〈δφ(k1, τ)δφ(k2, τ)δφ(k3, τ)〉′ =
3H6m

2f3

∫ τ

dτ1 a(τ1)f(k1, k2, k3, τ1)

×
∫

d3p

(2π)9/2

∑

r

r

−pτ1
ℑ{(d∗r(−pτ1)sr(−pτ1)} , (2.4.2)
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where

f(k1, k2, k3, τ1) =
1

k31k
3
2k

3
3

·
[

τ1
(

k1k2k3τ
2
1 − k1 − k2 − k3

)

cos(τ1(k1 + k2 + k3))

−
(

τ21 (k1k2 + k1k3 + k2k3)− 1
)

sin(τ1(k1 + k2 + k3))
]

. (2.4.3)

Since most of the dynamics occurs at momenta −kτ ∼ ξ ≫ 1, which is well within the

horizon, we expect the non-Gaussianities to be of equilateral shape. Therefore we estimate

the magnitude of the bispectrum by setting k1 = k2 = k3 ≡ k. As in the two-point functions,

the integral in dτ1 is logarithmically divergent as −kτ → 0, giving

〈δφ(k1, τ)δφ(k2, τ)δφ(k3, τ)〉′
∣

∣

∣

equilateral
≃ −3H5m

f3k6
log(−kτ) · 4π

(2π)9/2

×
∑

r

r

∫

dy yℑ{s∗r(y)dr(y)} , (2.4.4)

where the integral in dy is the same one appearing in eq. (2.2.3). This is as expected

because the operator appearing here is the third derivative with respect to φ of the fermionic

Lagrangian, which is identical in form to the one that contributes to eq. (2.2.3); that is to

say, it is identical to the first derivative of that same part of the Lagrangian (times minus

one). As we have discussed above, the integral in dy in the equation above is divergent as

y → ∞; we obtain in the limit ξ ≫ 1, µ . 1

〈δφ(k1, τ)δφ(k2, τ)δφ(k3, τ)〉′
∣

∣

∣

eq
= − 3H6µ2

(2π)7/2f3k6
log(−k∗τ)

[

8πξ2 + 12ξ log (ξ/Λ)

+O(ξ) +O(Λ0)
]

, (2.4.5)

where eventually we drop the logarithmically divergent term.

2.4.2 The remaining two diagrams

Next, we would need to evaluate the remaining two diagrams in figure 2.4. The calculation

of the second of them turns out to be of a complexity comparable to that of the cubic

contribution to the power spectrum. The third one should be even more complicated, so

that a complete evaluation of the bispectrum would be prohibitively difficult. We can,
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however, infer some scaling properties which allow us to claim that, compared to the first

diagram, these two diagrams should give negligible contributions to f eqNL.

Our first observation is that each cubic vertex gives a contribution ∼ m
f ψ̄ ψ, each quartic

vertex gives a contribution ∼ m
f2
ψ̄ ψ, and each quintic vertex gives a contribution ∼ m

f3
ψ̄ ψ.

Our next, and most crucial, observation is that ψ̄ ψ oscillates with amplitude ∝ m
ξ for

momenta up to −kτ ≃ ξ. This implies that each fermionic loop integral, which goes as d3k,

gives a contribution ∼ ξ3.

Once we apply these scalings to the backreaction term of section 2.2 (which would be

represented diagrammatically by a tadpole) we obtain a scaling m
f × m

ξ × ξ3 ≃ m2 ξ2

f which

indeed is the result found in eq. (2.2.4). Next, we can check whether our scalings work in

the calculation of the two diagrams of figure 2.3. For the first (quartic) diagram we obtain

the scaling m
f2

× m
ξ × ξ3 ∼ m2 ξ2

f2
which agrees with result presented in eq. (2.3.10). For the

cubic diagram, on the other hand, we would expect the scaling (mf )
2 × (mξ )

2 × ξ3 ∼ m4

f2
ξ

which is in disagreement; the result (2.3.14) scales ∼ m4

f2

√
ξ. A possible explanation of

this disagreement is that this diagram contains a term ∼ (ψ̄ ψ)2 where each factor ψ̄ ψ

is oscillating with amplitude ∼ 1/ξ, so that interference effects might reduce the overall

amplitude of the integral. Finally, as to the bispectra, we observe that the amplitude

∼ m2

f3
ξ2 of the quintic diagram (2.4.4) agrees with the scalings outlined above, as it emerges

as the product m
f3

× m
ξ × ξ3.

Based on the this discussion, the second diagram of figure 2.4 should scale as m
f × m

f2
×

(mξ )
2×ξ3 ∼ m4

f3
ξ, and the third diagram in that figure should scale as (mf )

3×(mξ )
3×ξ3 ∼ m6

f3
.

This may be further suppressed if the same phenomena that are reducing the amplitude of

the cubic contribution to the spectrum are at work here. Nonetheless, even without this

suppression, both quantities are subdominant with respect to the contribution from the

quintic diagram to the bispectrum. To sum up, the condition µ2 ≪ ξ allows to neglect the

second diagram of figure 2.3 in the computation of the power spectrum, and the second and

third diagrams of figure 2.4 in the computation of the bispectrum.
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2.4.3 Summary for the bispectum

To summarize, we argue that the parameter f eqNL for this model, in the limit ξ ≫ 1, µ . 1

we are interested in, is obtained from eq. (2.4.5) where the divergent part is dropped or

renormalized away by adiabatic subtraction; we expect these to agree when ξ ≫ 1, as

happens for the contribution (2.3.10) (see [22]).

Using the relation ζ = −H δφ/φ̇0 and the relationship

− H3

|φ̇0|3
〈δφ δφ δφ〉′ = 9

10
(2π)5/2fNL

[

H2

φ̇20

(

H

2π

)2(

1 +
32m2 ξ2 log ξ

3π2 f2
log(H/k)

)

]2
1

k6

(2.4.6)

between the bispectrum and the parameter fNL, where we have accounted for the fact that

eq. (2.3.15) is also contributing to the power spectrum, we therefore obtain

f eqNL ≃
40H2µ2ξ3

3πf2
log(H/k)

(

1 + 32H2 µ2 ξ2 log ξ
3π2 f2

log(H/k)
)2 . (2.4.7)

We show the value taken by the non-linear parameter as a function of parameter space

in figure 2.5, where H is determined as a function of m/f and ξ by imposing the measured

normalization of the spectrum of scalar perturbations (Pζ = 2.2·10−9 [68]) and we have taken

log(H/k) = 60. In plotting figure 2.5 we have used the exact expressions of the quartic and

quintic diagrams found in [22]. We see that there is significant parameter space consistent

with f eqNL = −4 ± 43 [69]. In the figure we also show the region where |φ̇0| < f2, and the

effective quantum field theory description of the rolling axion with a fixed decay constant f is

under control (we also need to impose H < f ; this condition is satisfied wherever |φ̇0| < f2).

We note that, for a fixed value of m, the non-Gaussianity first grows with growing ξ, and

then it decreases. To understand this, we recall that fermion modes of chirality r = −1 are

produced with momentum up to ∼ 2 ξH, as we discussed after eq. (2.1.19). Therefore, as ξ

increases we increase the number of fermion modes that are produced, and these then source

the inflaton perturbations. The sourced perturbations are non-Gaussian, which explains the

initial growth of the non-Gaussianity parameter with ξ. However, as ξ keeps growing, the
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Figure 2.5: Contour lines of non-linear parameter fNL evaluated on exactly equilateral
configurations. We indicate the regions of parameter space in which the vacuum and the
sourced perturbations dominate the scalar power spectrum. The figure also shows the region
where φ′ > f2 (where the effective quantum field theory description of the rolling axion with
a fixed decay constant f is inappropriate) and the region µ >

√
ξ, where the diagrams that

we have neglected in the calculation of the power spectrum and bispectrum are not negligible
(see discussion in subsection 2.4.2). The region where the motion of the inflaton is controlled
by the backreaction of the produced fermions (where our analysis of the perturbations is
invalid) lies at large values of m/f & .1, outside of the region of parameter space covered
by this plot.

contributions from the various fermion modes add up in an uncorrelated way to each other,

and their contribution becomes more and more Gaussian (due to the central limit theorem)

as their number grows.4 This argument, and the trend in figure 2.5, leads us to argue that

the perturbations should be Gaussian also in the regime of strong backreaction, where our

computation of the perturbations is invalid.

4We note that this differs from the mechanism of non-Gaussian inflation perturbations sourced by a
vector field [42]. In that case the monotonic growth of non-Gaussianity with ξ is due to the fact that the
amplitude of the gauge modes grows exponentially with ξ.
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2.5 Fermion production and inflation on a steep axionic po-

tential

One might wonder whether the dissipation associated to the production of fermions in

the regime of strong backreaction could allow for inflation on a steep potential, along

the lines of [9]. In particular, we would now like to address the question of whether

fermion production would allow slow-roll inflation when the inflaton has an axionic po-

tential Vax(φ) = Λ4 (cos(φ/f) + 1) where the axion constant f is much smaller than MP . It

is indeed well known that, for f < MP , the axion potential Vax is too steep to support suc-

cessful slow-roll inflation. On the other hand, it is conjectured that potentials like Vax with

f > MP cannot be realized in UV-complete theories involving gravity, so that a mechanism

able to produce enough inflation when f < MP would be of great interest.

We will therefore consider in this section a model with a cosine-like potential V (φ) =

Vax(φ), so that V ′(φ) ≃ V (φ)/f . Also, in this section only, we will denote the coupling

between fermions and the inflaton as α/f with α a dimensionless coefficient. This implies

that ξ = αφ̇/(2Hf). Given the level of approximation of the discussion in this section, we

will set to one all the O(1) and O(2π) factors.

The equation for the zero mode of the inflaton, eq. (2.2.1), including backreaction reads

φ̈0 + 3Hφ̇0 + V ′
ax(φ0) ≃

α

f
H4µ2ξ2 =

α3

f3
µ2H2φ̇20 , (2.5.1)

where we recall that µ ≡ m/H, with m being the fermion mass, and that φ0 denotes the

inflaton zero mode.

We now assume that, in the regime of strong backreaction, the last term on the left hand

side of the equation above is balanced by the term on the right hand side (rather than by

the Hubble friction), so that, using V ′
ax ≃ Vax/f ≃ H2M2

P /f we get the slow-roll equation

φ̇0 =
f MP

α3/2µ
. (2.5.2)

We now must impose a number of conditions for our theory to be valid.
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1. First, in order for the effective field theory to make sense, we must work below the

cutoff f of the theory. This implies, in particular φ̇0 ≪ f2, which gives the first

constraint

α3/2 ≫ MP

f µ
≫ 1 , (2.5.3)

where the second inequality emerges from requiring f ≪ MP and the assumption

µ . 1.

2. Consistency requires 3Hφ̇0 ≪ V ′(φ0), which gives

α3/2 ≫ f2

HMP µ
. (2.5.4)

3. Moreover, the energy density in fermions must be much smaller than that in the

inflaton. The energy density of fermions can be computed directly (see [22]), and we

obtain the scaling

ρψ ∝ H4µ2ξ3 ∼ HM3
P

α3/2µ
, (2.5.5)

which is subdominant with respect to the energy in the inflaton ∼ H2M2
P , as long as

α3/2 ≫ MP

Hµ
. (2.5.6)

Note that this condition is stronger than that of eq. (2.5.3), since f ≫ H.

4. Of course, we must have inflation, which requires φ̇20 ≪ H2M2
P ; this gives the additional

constraint

α3/2 ≫ f

Hµ
, (2.5.7)

which is again automatically satisfied if eq. (2.5.6) is valid, since f ≪MP .

5. Finally, we must impose that we have a sufficient number of efoldings. To have 60
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efoldings the inflaton must span ∆φ = 60 φ̇0/H ≪ f since the inflaton potential has

period ∼ f . This gives the condition

α3/2 ≫ 60
MP

µH
, (2.5.8)

which is stronger by a factor 60 than eq. (2.5.6).

To sum up, we have inflation with the inflaton motion controlled by backreaction in our

model if the two conditions (2.5.4) and (2.5.8) are satisfied. The arguments presented at

the end of section 2.4 lead to the conclusion that the perturbations in this regime are likely

to be Gaussian to a high degree. However, the computations performed in this work are

invalid in this regime.

2.6 Discussion

In [37] it was shown that the (derivative) coupling of a pseudoscalar inflaton to a gauge field

would lead to the exponential amplification of the modes of one helicity of the gauge field.

In the present paper we have discussed how an analogous coupling to fermions can lead to a

fermion number density that is parametrically (although not exponentially) larger than unity

in units of the Hubble radius. This can lead to a rich phenomenology, which is all the more

interesting because fermions, because of Pauli blocking and because of conformality in the

limit m→ 0, do not usually give any relevant effect during inflation. Such a phenomenology

is significantly different from that induced by the amplification of the modes of a gauge

field because the large number of produced particles lives, in the fermionic case, at large

momenta, whereas in the case of the gauge field these modes live close to the horizon scale.

This chapter has focused, in particular, on the effect of the backreaction of the pro-

duced fermions on the zero mode and on the fluctuations of the inflaton in the regime

µ ≡ m/H . 1, ξ ≡ φ̇/(2fH) ≫ 1. The backreaction on the zero mode turns out to be

negligible for µ2 ξ ≪ f2/H2. In the regime in which the fermionic contribution to the power

spectrum of scalar metric perturbations is subdominant with respect to the vacuum contri-

bution, the corrections to Pζ and to the non-Gaussianity parameter fNL scale respectively as
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(H2/f2)µ2 ξ2 and (H3/f3)µ2 ξ3. Remarkably, however, in the regime ξ ≫ 1 the fluctuations

sourced by the fermion become approximately Gaussian, as a consequence of the fact that

many fermion modes with large momenta contribute incoherently to the scalar perturbations.

This leads to the interesting situation where the spectrum of perturbations is dominated by

its sourced component, rather than by its vacuum one, and yet the non-Gaussianities are

small and in agreement with observations. In this regime, the measured power spectrum

does not yield the combination H4/φ̇2, but rather the combination H2m2/f4.

We have also shown that the backreaction of the fermions on the zero mode of the

inflaton can be strong enough to allow for inflation even on a steep scalar potential. This is

especially relevant in models of natural inflation with a cosine potential. Potentials with this

shape are ubiquitous in string theory and enjoy properties of radiative stability that make

them especially attractive. However, these potentials are conjectured to be always too steep

to support successful slow-roll inflation. In the system considered in this paper, however,

it would be possible to obtain 60 e-foldings of inflation on these steep axionic potentials

thanks to the slow-down of the inflaton induced by the production of fermions. The price

to pay for this is a large value of the dimensionless parameter α that appears in section 2.5.

A similar mechanism was discussed in [9], with the fermions replaced by a gauge field. That

work contained also an estimate of the amplitude of the primordial perturbations, which

was found to be too large to agree with observations in the simple case of a single species

of gauge field. We expect that an estimate of the spectrum of perturbations generated in

the regime where fermions strongly backreact on the inflaton zero mode will be even more

difficult. However, given the peculiarities that we have encountered in this study, we can

expect a different parametric dependence of the power spectrum that might lead to better

agreement with observations.
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Chapter 3

Gravitational waves from fermion

production during axion inflation

In this chapter, we present analytic results for the gravitational wave power spectrum in-

duced in models where the inflaton is coupled to a fermionic pseudocurrent. We show that

although such a coupling creates helically polarized fermions, the polarized component of the

resulting gravitational waves is parametrically suppressed with respect to the non-polarized

one. We also show that the amplitude of the gravitational wave signal associated to this

production cannot exceed that generated by the standard mechanism of amplification of

vacuum fluctuations.

Given the rich phenomenology of the scalar perturbations found in Chapter 2, it is

important to characterize how fermions source gravitational waves in the regime where ϕ̇/

f ≫ H. As was noticed in reference [58] and confirmed in reference [22], the produced

fermions have a helicity asymmetry, which was used for leptogenesis in reference [62]. This

helicity asymmetry raises the possibility that the spectrum of sourced gravitational waves

has a chiral component. Sourced production of gravitational waves in this context was

previously studied1 in reference [63]. However, the fermion basis used in that work was

leading to pathologies as m → 0, whereas in this work we use the basis introduced in

Chapter 2, in which perturbation theory remains valid as the fermion mass m becomes

1Gravitational wave production by non-chiral fermions has also been studied in refer-
ence [Figueroa:2013vif].
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small. We review this basis in section 3.1.

This chapter is organized as follows. In section 3.1, we introduce our theory, and working

in the Arnowitt-Deser-Misner (ADM) [70] formalism, we solve the gravitational constraint

equations to second order. We then use these solutions to obtain the interaction Lagrangian

to fourth order in fluctuations. From this interaction Lagrangian, we obtain one O(γΨ2)

vertex and seven O(γ2Ψ2) vertices, where γ and Ψ respectively denote, schematically, the

tensor and the fermion degrees of freedom. In section 3.2, we use these interactions to

compute eight loop diagrams in the in-in formalism [14, 66]. The O(γ2Ψ2) interactions

lead to seven one-loop one-vertex diagrams, which we evaluate in section 3.2.2, while the

O(γΨ2) generates a two-vertex loop, which we evaluate in section 3.2.2. We discuss our

results in section 3.2.3; we show that the chirally asymmetric contribution is subdominant,

and that the total sourced contribution to the tensor-to-scalar ratio is beneath the vacuum

component. Details of our calculations can be found in [59]. We work in natural units where

~ = c = 1, and MPl = 1/
√
8πG is the reduced Planck mass.

3.1 Fermion-graviton interactions during axion inflation

The aim of this chapter is to compute the amplitude of the tensor modes sourced by fermions

in a model where a pseudoscalar inflaton ϕ is derivatively coupled to a fermion X of mass m,

as described in the action (3.1.1) below. At leading order in perturbation theory, fermions

source gravitational wave power at one-loop. At one-loop, diagrams of two topologies are

possible. The first topology—the cubic loop—is a two-vertex diagram that is generated by

two cubic order vertices consisting of one gravitational wave and a fermion bilinear. The

second topology—the quartic loop—is a one-vertex diagram generated by a quartic-order

vertex consisting of two gravitational waves and a fermion bilinear (see figure 3.1 below). To

find the required interactions, we therefore need to expand the full action to quartic order

in fluctuations.
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3.1.1 Starting action

We consider a theory containing a pseudoscalar inflaton ϕ with a shift-symmetric coupling

to a fermion X and minimally coupled to gravity, so that our action, in mostly minus

convention, reads

S =

∫

d4x
√−g

[

M2
Pl

2
R+

gµν

2
∂µϕ∂νϕ− V (ϕ) + X̄

(

iγµDµ −m− 1

f
∂µϕγ

µγ5

)

X

]

.

(3.1.1)

As discussed in Chapter 2, (see appendix A for more details), the use of these fields makes

apparent the shift-symmetric nature of the inflaton-fermion interaction, but it obscures the

fact that such interaction vanishes as m → 0. It is therefore convenient to redefine the

fermion according to

X → Ψ = e
iγ5

ϕ
fX , (3.1.2)

which puts the fermion action in the form

SΨ =

∫

d4x
√−g Ψ̄

[

iγCeC
µ

(

∂µ +
1

2
ωµABΣ

AB

)

Ψ−m cos

(

2ϕ

f

)

+ im sin

(

2ϕ

f

)

γ5

]

Ψ,

(3.1.3)

where greek letters are spacetime indices µ, ν ∈ {0, 1, 2, 3}, capital roman letters are 4D

Lorentz indices A,B,C ∈ {0, 1, 2, 3}. In this paper we will also use lower case roman letters

from the start of the alphabet as spatial Lorentz indices a, b, c ∈ {1, 2, 3}, and finally roman

letters from the middle of the alphabet as spatial spacetime indices, i, j, k ∈ {1, 2, 3}. The

generator of local Lorentz transformations is ΣAB = 1
4

[

γA, γB
]

, and the spin connection is

ωµ
AB = eAν∇µe

Bν , where eAν is the vierbein.

3.1.2 The action in ADM form

Because certain components of the metric are constrained degrees of freedom whose val-

ues depend on the fermion bilinears (as well as the other dynamical degrees of freedom),

gravitationally-mediated fermion-graviton couplings are generated when these constraints
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are eliminated from the action. In order to perform this analysis, it is convenient to decom-

pose the metric using the ADM formalism. The key advantage of this formulation is that

the constrained degrees of freedom enter the theory algebraically; their equations of motion

are algebraic constraints. The metric in ADM form reads

ds2 = N2dτ2 − hij(dx
i +N idτ)(dxj +N jdτ) , (3.1.4)

where N is the lapse and N i is the shift. For the background metric we choose N = a, so that

τ denotes conformal time. Derivatives with respect to τ are represented with primes. The

spatial indices, i, j, k, ... are raised and lowered with hij , so that N i ≡ hij Nj , h
ij hjk = δik.

Finally, det [g] = −N2 det [h].

In these coordinates, the action for the purely bosonic sector of the theory (involving

gravity and the inflaton) becomes

SB =

∫

dτ d3xN
√
h

[

M2
Pl

2

(

(3)R+Kij Kij −K2
)

+
π2ϕ
2N2

− 1

2
hij∂iϕ∂jϕ− V (ϕ)

]

,

(3.1.5)

where πϕ ≡ ϕ′ −N j∂jϕ and

Kij ≡− 1

2N

(

h′ij − (3)∇iNj − (3)∇jNi

)

, K = Ki
i . (3.1.6)

The fermionic action, SF , in these coordinates reads

SF =

∫

d4xLF , (3.1.7)
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where (see appendix B)

LF = a3

{

iΨ̄γ0
[

∂0 +
(

∂iN −N j Kij

)

eb
iΣ0b

+
1

2
eck

(

∂0eb
k −

(

NKk
m −(3)∇mN

k
)

eb
m
)

ηacΣ
ab
]

Ψ

+ iΨ̄
(

γaNea
k − γ0Nk

)

[

∂k −Kikeb
iΣ0b +

1

2

(

eci∂keb
i +(3)Γmike

c
meb

i
)

ηacΣ
ab

]

Ψ

−NmΨ̄

[

cos

(

2ϕ

f

)

+ i sin

(

2ϕ

f

)

γ5

]

Ψ

}

. (3.1.8)

In these expressions, (3)∇i denotes the three dimensional covariant derivative, ηab is the

spatial part of the Minkowski metric, ηAB = diag[1,−1,−1,−1], and the spatial vielbeins

satisfy δabe
a
ie
b
j = hij . The total action is the sum S = SB + SF .

3.1.3 Constraints

When written in terms of the ADM decomposition, one can see that the lapse N and the

shift Ni enter in the action, eqs. (3.1.5) and (3.1.8), without time derivatives (in the case

of the lapse, spatial derivatives are also missing from the action). This implies that the

corresponding Euler-Lagrange equations are constraints. The equation of motion for the

lapse is the Hamiltonian constraint

0 =
δS

δN
=
M2

Pl

2
(3)R− 1

2
hij∂iϕ∂jϕ− V − M2

Pl

2
(KijKij −K2)− 1

2N2
π2ϕ

+
i

2
ea
i(Ψ̄ γa ∂iΨ− ∂iΨ̄ γaΨ)− 1

4
ea
i ebj

(3)∇iec
j ǫabc Ψ̄γ0γ5Ψ

−m Ψ̄
[

cos

(

2ϕ

f

)

+ i sin

(

2ϕ

f

)

γ5
]

Ψ , (3.1.9)

while the equation of motion for the shift is the momentum constraint

0 =
δS

δNi
− (3)∇j

δS

δ((3)∇jNi)
=

1

N
πϕ∂iϕ+

i

2
(Ψ̄ γ0 ∂iΨ− ∂iΨ̄ γ0Ψ)

+
1

4
eaj

(3)∇ie
bj ǫabc Ψ̄γ

cγ5Ψ+M2
Pl

(3)∇j (Kij − hij K) +
1

4
(3)∇j

(

eai e
b
j ǫabc Ψ̄γ

cγ5Ψ
)

.

(3.1.10)
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In these expressions, ǫabc is the “flat” three-dimensional Levi-Civita tensor, with the conven-

tion ǫ123 = +1.

We work in the spatially flat gauge where det[hij ] = a6 and the dynamical scalar fluctu-

ation degrees of freedom are in the fluctuations of the inflaton. We parametrize the tensor

perturbations of the metric as2

hij = a2 (eγ)ij = a2
[

δij + γij +
1

2
γimγmj + . . .

]

, (3.1.11)

where a(τ) is the scale factor. The transverse-traceless nature of the tensor modes, δijγij =

γij,j = 0, implies that det [eγ ] = 1. Similarly, the spatial vielbeins are expanded in terms of

the tensor perturbations as

eai = a δake
1

2
γki = a δak

[

1 +
1

2
γki +

1

8
γkjγji . . .

]

. (3.1.12)

Our goal is to determine the effective cubic γΨ̄Ψ and quartic γγΨ̄Ψ component of the

Lagrangian, where γ schematically denotes the graviton. As is well known, in order to deter-

mine the action to n-th order in the fluctuations, the solutions to the constraint equations

are required at order n − 2; terms of order n and n − 1 simply multiply lower-order con-

straint equations [71]. Thus, to obtain the action up to fourth order in the fluctuations, we

require solutions for the constraints (the lapse and shift) up to quadratic order. Note that

Lorentz invariance means that the fermion fields only begin to contribute to the constraint

equations at quadratic order. We therefore solve the above constraints in eqs. (3.1.9) and

(3.1.10) perturbatively, to second order in the fluctuations, before plugging them back into

the original action.

To facilitate a perturbative solution, we expand the lapse and shift functions as

N = a
(

1 + α(1) + α(2) + . . .
)

,

Ni = ∂iθ
(1) + ∂iθ

(2) + · · ·+ β
(1)
i + β

(2)
i + . . . , (3.1.13)

where the superscript denotes the order of the expansion, and where β
(1, 2)
i are transverse,

2Repeated lower roman indices are summed with the Kronecker delta: xixi ≡
∑

3

i,j=1
δijxixj
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∂
(1, 2)
i βi = 0. We also expand the inflaton as ϕ(τ, ~x) = ϕ0(τ) + δϕ(τ, ~x), and we treat the

fermions as first order quanties, so that fermion bilinears are of second order.

To zeroth order, the Hamiltonian constraint reduces to the Friedmann equation

H2 =
1

3M2
Pl

(

ϕ′
0
2

2
+ a2 V (ϕ)

)

, H ≡ a′

a
, (3.1.14)

while the momentum constraint is automatically satisfied. At first order, we obtain [14]

β(1) = 0 , α(1) =
ϕ′
0

2HM2
P

δϕ , ∆θ(1) = − ϕ′2
0

2M2
PH2

(H δϕ

ϕ′
0

)′
. (3.1.15)

Since we are not interested in the perturbations sourced by fluctuations of the inflaton, we

drop these from now on. Ignoring inflaton fluctuations, the second order constraints read

α(2) = ∆−1

{

1

8H∂j
[

(∂jγℓi)γ
′
iℓ

]

+
ia

4M2
PlH

[

Ψ̄γ0∆Ψ− (∆Ψ̄)γ0Ψ
]

}

,

β
(2)
j = ∆−1

{

1

2
∆−1∂j∂k

[

(∂kγℓi)γ
′
iℓ

]

− 1

2

[

(∂iγ
′
jk)γki + (∂jγℓi)γ

′
iℓ − (∂iγjk)γ

′
ki

]

+
ia

M2
Pl

∂j∆
−1
[

Ψ̄γ0∆Ψ− (∆Ψ̄)γ0Ψ
]

− a

M2
Pl

[

i
(

Ψ̄γ0∂jΨ− (∂jΨ̄)γ0Ψ
)

− 1

2
ǫijk∂i(Ψ̄γ

kγ5Ψ)

]}

,

θ(2) = ∆−1

{

− 1

16H
[

γ′ijγ
′
ij + (∂jγkq) ∂jγqk

]

− ia

4M2
PlH

(

Ψ̄γ0∂0Ψ− (∂0Ψ̄)γ0Ψ
)

− a2

M2
PlH

V (ϕ0)∆
−1

{

1

8H∂j
[

(∂jγℓi)γ
′
iℓ

]

+
ia

4M2
PlH

[

Ψ̄γ0∆Ψ− (∆Ψ̄)γ0Ψ
]

}}

,

(3.1.16)

where ∆ = ∂i∂i is the spatial Laplacian, ∆−1 is its inverse, and we note that ǫ123 = −1. We

have used the linear equation of motion for the fermion to simplify the solution for θ(2); the

details of this calculation are given in appendix B.

3.1.4 Explicit form of the fermion action, and fermion-GW interactions

We insert the solutions to the constraint equations for N and N i to second order (eqs.

(3.1.14), (3.1.15), and (3.1.16)) into the action, eq. (3.1.5) + (3.1.7), and then expand order

by order in the fluctuations. This gives the quadratic action S(2) = S
(2)
γ + S

(2)
F for the free
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gravitons and fermions, the cubic action S
(3)
F describing the O

(

Ψ2γ
)

interactions, and the

quartic action S
(4)
F describing the O

(

Ψ2γ2
)

interactions.

The quadratic action for the gravitons reads

S(2)
γ =

M2
Pl

8

∫

d4x a2
[

γ′ijγ
′
ij − ∂kγij∂kγij

]

, (3.1.17)

while the quadratic action for the fermions is

S
(2)
F =

∫

d4x

[

iψ̄
(

γ0∂0 + γa∂a
)

ψ −ma cos

(

2ϕ

f

)

ψ̄ψ + ima sin

(

2ϕ

f

)

ψ̄γ5ψ

]

, (3.1.18)

where we have rescaled the fermion field according to ψ ≡ a3/2Ψ.

At cubic order we find

S
(3)
F = − i

2

∫

d4x γij ψ̄ γ
i ∂j ψ ≡

∫

d4xL(3) , (3.1.19)

and some straightforward, but lengthy, algebra leads to the quartic order action

S
(4)
F =

∫

d4x

{

i

16
γab γbk

(

ψ̄γa∂kψ − ∂kψ̄γ
aψ
)

+
1

16
γ′ajγjbǫabcψ̄γ

cγ5ψ+
1

16
ǫabcγkc (∂aγkb) ψ̄γ

0γ5ψ

+
i

4

(

1− V

4H2M2
Pl

)

∆−2∂m
(

∂mγkn γ
′
kn

) (

ψ̄γ0∆ψ − (∆ψ̄) γ0ψ
)

− ∆−1

8
(γ′jk ∂jγik − γjk ∂jγ

′
ik − γ′kj ∂iγkj)

[

ǫaic∂a(ψ̄γ
cγ5ψ) + 2 i

(

ψ̄γ0∂iψ − ∂iψ̄γ
0ψ
)]

− i

32 aH

(

∂iγjk ∂iγjk + γ′ijγ
′
ij

)

∆−1
(

ψ̄γ0∆ψ −∆ψ̄γ0ψ
)

− i

16 aH

(

ψ̄γ0ψ′ − ψ̄′ γ0ψ
)

∆−1∂i
(

∂iγkj γ
′
kj

)

}

≡
∫

d4xL(4) ≡
7
∑

i=1

∫

d4xL(4)
i ,

(3.1.20)

where H = ȧ/a is the Hubble parameter and ǫ123 = −1. L(4)
1 , L(4)

2 , L(4)
3 refer to the three

terms in the first two lines of eq. (3.1.20), while the remaining L(4)
i refer to the other four lines

(one term per line). Note that the interactions L(4)
4 , L(4)

5 , L(4)
6 , L(4)

7 arise from integrating

out the non-dynamical constraints (the second order parts of the lapse and shift). From the
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cubic and quartic Lagrangian densities we find the interaction Hamiltonian densities

H
(3)
int (τ) = −

∫

d3xL(3) ,

H
(4)
int,i (τ) = −

∫

d3xL(4)
i , (i = 1, . . . 7) . (3.1.21)

To proceed, we expand the tensors in Fourier space as

γij(x, τ) =
∑

λ

∫

d3k

(2π)3/2
γλk(τ)Π

λ
ij (k) e

ik·x, γλk(τ) =

√
2

a(τ)MPl
tλk(τ), (3.1.22)

where the field tλk is canonically normalized. The sum is over the right-handed (λ = +1)

and left-handed (λ = −1) tensor polarizations, with the polarization tensors satisfying

Πλij (k)
∗ = Π−λ

ij (k) = Πλij (−k) , Πλij (k)Π
λ′
ij (k) = 2δλ,−λ′ , ǫabckbΠ

λ
cd (k) = iλkΠλad (k) .

(3.1.23)

We also Fourier transform the fermions according to

ψ(x, τ) =

∫

d3k

(2π)3/2
ψk(τ) e

ik·x . (3.1.24)

In terms of the fields tλk and ψk, the quadratic action is

S(2) =

∫

dt

[

∫

d3k
(

iψ̄k

(

γ0∂0 + iγaka
)

ψk −ma cos

(

2ϕ

f

)

ψ̄kψk + ima sin

(

2ϕ

f

)

ψ̄kγ5ψk

)

+
∑

λ

1

2

∫

d3k

(

∂0t
λ
−k∂0t

λ
k −

(

k2 − a′′

a

)

tλ−kt
λ
k

)

]

, (3.1.25)

and we note that the kinetic terms are canonically normalized.

Inserting eqs. (3.1.22) and (3.1.24) in the interaction Hamiltonians eq. (3.1.21), we obtain

the Fourier space Hamiltonian densities we report in appendix C.
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3.2 Fermion contributions to the tensor power spectrum

In this section, making use of the interaction Hamiltonians derived in the previous section, we

compute the fermion contribution to the gravitational wave two-point correlation function.

After quantizing the free theory, we introduce the in-in formalism and compute the cubic

and quartic loops generated by the interactions derived in section 3.1. Finally, we end this

section by showing how simple scaling arguments concur with our results.

3.2.1 Quantization

We canonically quantize the theory by expanding the fields into modes

t̂λk (τ) = tλk (τ) a
λ
k + tλ,∗k (τ) aλ,†−k , ψk (τ) =

∑

r=±

(

U rk (τ) b
r
k + V r

−k (τ) c
r,†
−k

)

, (3.2.1)

where the creation-annihilation operators for the tensor modes satisfy the commutation

relations

[

aλk, a
λ′
k′

†
]

= δλλ′ δ
(

k− k′) , (3.2.2)

and the fermionic operators satisfy anti-commutation relations

{brk, br
′

k′
†} = {crk, cr

′
k′

†} = δrr′ δ
(

k− k′) . (3.2.3)

The mode functions tλk (τ), and the spinors U rk (τ) and V r
−k (τ) are solutions of the Euler-

Lagrange equations of motion that follow from the action in eq. (3.1.25). We further de-

compose the 4-component fermionic spinors into helicity states

U rk (τ) =
1√
2







urk (τ) χr(k)

rvrk (τ) χr (k)






, V r

k (τ) = C Ū rk (τ)
T , (3.2.4)
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where C = iγ0γ2 is the charge-conjugation operator, and the spinors χr (k) are explicitly

given by

χr (k) ≡
k + rσ · k
√

2k (k + kz)
χ̄r , χ̄+ =







1

0






, χ̄− =







0

1






, (3.2.5)

where kz is the z−component of k, and σi are the Pauli matrices. Note that χr (k) are

helicity eigenspinors which satisfy k · σχr (k) = rkχr (k). We use the Dirac representation

for the γ matrices,3

γ0 =







1 0

0 −1






, γi =







0 σi

−σi 0






, γ5 =







0 1

1 0






. (3.2.6)

To obtain solutions to the classical mode equations, we approximate the background infla-

tionary spacetime as de Sitter space and take the evolution of the inflaton to be rolling at a

constant speed in cosmic time. This implies ϕ0(τ)/f = ϕin
0 /f−2ξ log (x/xin), with x ≡ −kτ

and xin ≡ −kτin, where τin is some reference time. With these approximations, the mode

functions for the fermion field are given by

ur(x) =
1√
2x

[

eirϕ0/f sr (x) + e−irϕ0/f dr (x)
]

,

vr(x) =
1√
2x

[

eirϕ0/f sr (x)− e−irϕ0/f dr (x)
]

, (3.2.7)

which satisfy the normalization condition |ur|2 + |vr|2 = 2, with [58, 22]

sr (x) = e−πrξW 1

2
+2irξ, i

√
µ2+4ξ2

(−2ix) , dr (x) = −i µ e−πrξW− 1

2
+2irξ, i

√
µ2+4ξ2

(−2ix) ,

(3.2.8)

where Wµ, λ(z) denotes the Whittaker W-function and

µ ≡ m

H
, ξ ≡ ϕ̇0

2fH
. (3.2.9)

3In these expressions, 1 denotes the 2× 2 identity matrix.
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Ψ

γ γ γ γ

Ψ

Ψ

Figure 3.1: The two diagrams that contribute at leading order to the two-point function of
the graviton γ.

In the same approximation, the tensor mode functions read

tλk(τ) =
1√
2k

(

1− i

kτ

)

e−ikτ . (3.2.10)

In both cases, the integration constants have been chosen so that the solutions match onto

the appropriate Bunch-Davies vacuum solution at early times, x→ ∞.

3.2.2 Fermion loop-corrections to the gravitational wave power spectrum

The interaction Hamiltonians derived above allow us to compute the leading order contribu-

tions from the produced fermions to the two-point function of the graviton. These are com-

puted using the in-in formalism, where the correlation function of an operator Ô1 . . . Ôn (τ)

at time τ is given by

〈

Ô1 . . . Ôn (τ)
〉

=
∞
∑

N=0

(−i)N
∫ τ

dτ1 . . .

∫ τN−1

dτN

×
〈[[

. . .
[

Ô
(0)
1 . . . Ô(0)

n (τ) , Hint (τ1)
]

, . . .
]

, Hint (τN )
]〉

. (3.2.11)

The interactions in section 3.1 result in two classes of diagrams: there are seven quartic loop

diagrams, illustrated in the left panel of figure 3.1, one for each of the seven vertices generated

by the quartic action (3.1.20), and one cubic loop diagram with two vertices generated by the

cubic action (3.1.19), illustrated in the right panel of figure 3.1. We discuss these diagrams

in the next two subsections.
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Quartic loops

We begin with the left diagram of figure 3.1. The seven terms in the quartic action lead to

seven quartic contributions to the graviton spectrum of the form

〈

γλ1p1
(τ) γλ2p2

(τ)
〉(4)

i
= − 2i

M2
Pl a(τ)

2

∫ τ

dτ1

〈[

tλ1p1
(τ) tλ2p2

(τ), H
(4)
int, i(τ1)

]〉

, i = 1, . . . , 7 ,

(3.2.12)

where the interaction Hamiltonians H
(4)
int,i are given in eq. (C.0.2). Remarkably, all these

diagrams can be computed exactly. The details of the calculation, as well as the exact

results, are presented in [59]. Here we summarize the main issues one encounters when

performing this calculation. At the end of this section we present the expression of the sum

of the quartic loops in the limit µ≪ 1 ≪ ξ.

First, several of the terms in the interaction Hamiltonian contain the nonlocal operator

∆−1, the inverse of the Laplacian. When evaluating eq. (3.2.12) one often encounters the

expectation value of quantities evaluated at vanishing momentum that, when acted upon by

∆−1, lead to a undetermined “0/0” that needs to be regularized. To deal with this limit we

follow the prescription given in [72]: these undetermined quantities are schematically given

by

1

|q1 − q2|2
f(q1 − q2, p1)δ(q1 − q2) , f(0, p1) = 0 , (3.2.13)

where p1 is an external momentum. We regularize eq. (3.2.13) by setting q1 = q2+ǫ, where

we eventually send ǫ → 0. Since f is a scalar, it depends only on ǫ ·p1, p
2
1, and ǫ2. We then

impose that ǫ approaches zero in a direction that is orthogonal to p1, so that ǫ ·p1 = O(ǫ2).

With this convention, all the operators containing ∆−1 give finite and unambiguous results.

Secondly, many integrals contributing to the graviton two-point function are divergent

in the ultraviolet. We deal with these divergences as we did in Chapter 2, by introducing

an ultraviolet cutoff Λ and by subtracting all the terms that are divergent as Λ → ∞. As

we have discussed in Chapter 2, we expect the result of this procedure to be equivalent to

that obtained by adiabatic subtraction in the limit ξ ≫ 1.
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After long calculations, which can be found in [59], we obtain the leading contribution

from the quartic diagrams

∑

vertices

〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

quartic
≃ −8H4 log(−p1τ)

9πM4
Pl p

3
1

µ2 ξ3 δ(p1 + p2) δ
λ1,λ2 , (3.2.14)

in the limit µ≪ 1 ≪ ξ and for superhorizon modes −kτ ≪ 1. We note that this contribution

is parity-even. Parity-odd terms are associated to the operators H
(4)
int,2, H

(4)
int,3 and H

(4)
int,5,

which contain the Levi-Civita symbol. However, the contributions from H
(4)
int,2 and from

the parity-odd part of H
(4)
int,5 vanish identically after angular integrations, so that the only

parity-odd contribution to the tensor power spectrum is given by H
(4)
int,3 and yields

〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

parity−odd
≃ λ1

H4

3M4
Pl p

3
1

µ2 ξ2 δ(p1 + p2) δ
λ1,λ2 , (3.2.15)

which is sub-leading, by a factor 1/ξ, with respect to the parity-even component.

Cubic loop

Next we consider the cubic loop, shown on the right side of figure 3.1. There is a single

contribution to this diagram, given by

〈

γλ1p1
(τ) γλ2p2

(τ)
〉(3)

= − 2

M2
Pl a(τ)

2

∫ τ

dτ1

∫ τ1

dτ2

〈[[

tλ1p1
(τ) tλ2p2

(τ), H
(3)
int (τ1)

]

, H
(3)
int (τ2)

]〉

,

(3.2.16)

where H
(3)
int (τ) is given by eq. (C.0.1). Unlike those appearing in the quartic loops, the

integrals in the cubic loop are prohibitively difficult to evaluate exactly. Therefore, we apply

the same sequence of approximations developed in Chapter 2 to the present calculation. Here

we outline these approximations; the details of the calculation are presented in [59].

We start by setting the external momenta to zero; as discussed in Chapter 2 we expect

this approximation to generate at most an O(1) error. Next, since the functions appearing

in the integrals are rapidly oscillating, we perform a Wick rotation on the time integration

variables, so that the Whittaker functions appearing in the fermion mode functions now

have real argument and are exponentially increasing or decreasing. Next, we approximate
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those Whittaker functions as linear combinations of monomials times exponentials, with

special attention given to the branch cuts. The explicit form of those approximations are

given in [59], and we have verified their validity in the regime ξ ≫ 1 we are interested

in. These approximate expressions contain a part that behaves like positive frequency (we

schematically denote the coefficient of this part by A) and a part that behaves like negative

frequency (whose coefficient is denoted schematically by B). Explicit expressions for A and

B can be found in [59].

Once the above approximations are in place, the integrals can be computed analytically.

We find a divergence in the limit τ2 → τ1, although it is only present in the A2 term. Since

this term corresponds to positive frequency, “vacuum only” modes, we subtract them. Once

this component is subtracted, we are left with the final result

〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉(3)

∼ O(0.1)× H4δ(p1 + p2)δ
λ1,λ2

M4
Pl p

3
1

µ2 ξ3 log(−p1τ), (3.2.17)

which has the same parametric dependence as the contribution from the quartic loop.

3.2.3 Scaling of our result

The gravitational wave power spectrum is related to the two point function as

〈γλ1p1
(τ) γλ2p2

(τ)〉 = 2π2

p31
Pλ
t δ(p1 + p2) δ

λ1,λ2 . (3.2.18)

The contribution from the produced fermions, using the results eqs. (3.2.14) and (3.2.17)

we derived in the previous subsections, is

δP λt ≃ O(0.01)
H4

M4
Pl

µ2 ξ3 log(−p1τ). (3.2.19)

We now compare this sourced gravitational wave signal to the vacuum contribution,

Pvacuum
t ∼ 0.1H2/M2

Pl. Their ratio can be written as

δPt
Pvacuum
t

≃ 0.1
µ2 ξ3H2

M2
Pl

log(−p1τ) . (3.2.20)
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As discussed in Chapter 2, the quantity µ2 ξ3H2/M2
Pl corresponds to the ratio between the

energy density in fermions and the total energy density in the Universe, which must be much

smaller than unity. We thus conclude that an axion-like inflaton coupled to fermions cannot

produce tensor modes that dominate over the spectrum of vacuum fluctuations, in contrast

to the scenario in which an axionic inflaton is coupled to gauge fields.

More specifically, if we require that the energy in fermions does not exceed O(10%)

of the background energy, then the correction induced by the sourced component to the

amplitude of the tensor spectrum is at most of O(1%), irrespective of the amplitude of

the tensor-to-scalar ratio. This constraint, along with the current observational constraint

r . 0.06, already puts the sourced component below the r ≃ 10−3 sensitivity of Stage-4 [8]

CMB experiments. More importantly, both the sourced and the vacuum contributions are,

to a first approximation, parity-even and scale invariant, so that it would be difficult for

observations to tell from one component from the other. While theoretically the sourced

tensors contain a distinctive parity-odd component, such a component is suppressed by a

factor 1/ξ with respect to the parity even one. Therefore, since ξ & 10, the parity odd

component would make up less than 0.1% of the full tensor spectrum, which sends the level

of parity violation in this model well below the threshold of detectability.

Finally, in Chapter 2 we determined the overall scaling, as a function of the parameter

ξ and µ, of the diagrams that are relevant for the scalar (bi)spectrum. Here we apply

analogous arguments to the diagrams that led to the result in eq. (3.2.19) for the tensor

spectrum.

Our first observation is that the cubic interaction (3.1.19) gives a contribution ∼ γij ψ̄ Γ pψ,

whereas each quartic interaction in eq. (3.1.20) gives a contribution ∼ γ2ij ψ̄ Γ pψ, where p

schematically denotes a quantity that scales as fermion momentum and Γ denotes some

combination of the Dirac γ-matrices (exceptions are L(4)
2 and L(4)

3 which contain no depen-

dence on the fermion momentum, but only on the graviton momentum). The contribution

from 〈ψ̄ γi p̂i γ5 ψ〉 is ultimately zero, due to the asymmetry of the Levi-Civita symbol. A

numerical evaluation shows that the combinations 〈ψ̄ γi p̂i ψ〉 and 〈ψ̄ γ5 γ0 ψ〉 (which appear

in both the cubic and quartic gravitational vertices) oscillate with amplitude µ2/ξ, for mo-

menta up to −kτ ≃ ξ. Moreover, the fermion part of the operators in L(4)
4, 5, 6, 7 can always
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be brought to a form 〈ℑ
(

∂kψ̄ γ
0ψ
)

〉 (see [59]) – here ℑ denotes the imaginary part), which

can also be seen to scale as µ2/ξ for momenta up to −kτ ≃ ξ. (We note for comparison that

the bilinears which appear in the diagrams involving fluctuations of the inflaton, 〈ψ̄ ψ〉 and

〈ψ̄ γ5ψ〉, oscillate instead with amplitude µ/ξ. These were considered in Chapter 2.) Since

all fermion bilinears in the γψ̄ψ and the γγψ̄ψ sector scale as µ2/ξ, each fermionic line in

the diagrams of figure 3.1 contributes µ2/ξ.

We recall that each interaction Hamiltonian (with the exception of L(4)
2 and L(4)

3 , as

noted above) also carries a power of p, and therefore each vertex gives an additional power

of ξ. Furthermore, every fermionic loop integral, which goes as d3k, gives a contribution

∼ ξ3.

Once we apply these scalings to the quartic diagrams, we have a scaling (µ2/ξ) (one

fermion line) times ξ (one vertex) times ξ3, giving an overall scaling (µ2/ξ) × (ξ) × (ξ3) ∼

µ2 ξ3. The quartic diagrams involving L(4)
2 and L(4)

3 are respectively vanishing (as a conse-

quence of the symmetries of the operator) and scaling as (µ2/ξ) × (1) × (ξ3) ∼ µ2 ξ2—the

factor of (1) instead of (ξ) originates from the fact that this vertex does not contain a power

of the fermion momentum. These results are in agreement with the direct calculations

presented in [59].

For the cubic gravitational diagram, a naive implementation of these scalings would

read (µ2/ξ)2 (two fermion lines) times ξ2 (two vertices) times ξ3, giving an overall scaling

∼ µ4 ξ3. This would disagree by a factor of µ2 with the result obtained by the direct (albeit

approximate) calculation in [59]. The different scaling with µ can, however, be understood

as follows. Each fermion line in fact scales as O(1)+O(µ2), although in the quartic diagrams

the O(1) contribution is always divergent and therefore is removed by regularization. The

cubic diagram, with two fermion lines, has terms of order O(1), O(µ2), and O(µ4). The first

is again removed by renormalization, leaving the O(µ2) term which arises from interference.

Given the parity violating nature of the system, one can expect a parity violating tensor

spectrum δP+1
t 6= δP−1

t , which we did indeed find. As mentioned above, however, this is

subdominant by a factor 1/ξ with respect to the parity-even part.
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3.3 Discussion

Axion, or natural inflation is a class of models for slow-roll inflation where the required

flatness of the potential is protected from radiative corrections by an approximate shift

symmetry. This shift symmetry means that any axion-matter couplings must be via deriva-

tives, and the lowest dimension couplings of an axion inflaton to gauge fields and fermions

are given by eq. (1.4.1). These couplings are typically employed for reheating in these mod-

els. The recent literature (see [33] for a review) has shown that the coupling of the axion

to gauge fields can lead to a rich phenomenology during inflation. Analogous studies for

fermions are more scarce [58, 63, 22, 60].

We worked in the ADM basis, in which the nondynamical metric perturbations N and N i

are integrated out via the corresponding energy and momentum constraints. We have solved

these constraints perturbatively in the fermionic field Ψ and in the gravitational waves γ.

We thus obtained the O
(

γΨ̄Ψ
)

and O
(

γγΨ̄Ψ
)

interactions, which we used to compute the

contribution to the gravitational wave spectrum from the diagrams shown in figure 3.1. The

left diagram is technically simpler; after regularizing it we were able to evaluate it exactly, as

described in [59]. The right diagram is much more involved, necessitating the approximations

discussed in [59], analogous to those made for the cubic diagram in reference [22]. Although

the computations were very involved, in section 3.2.3 we presented some simple scaling

arguments that correctly capture the scaling of the result with the parameters, µ and ξ, of

the model.

Our main conclusion is that, in contrast to the scenario in which the axion inflaton is

coupled to vector fields, the gravitational waves sourced by the fermions cannot be greater

than the vacuum gravitational waves. This conclusion holds also in the regime, studied in

Chapter 2, where the strong backreaction of the fermion degrees of freedom controls the

dynamic of the zero mode of the inflaton.
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Chapter 4

Reviving chaotic inflation and

supergravity construction

Having computed the scalar and tensor power spectra for the fermion model in the previous

two chapters, we now present an application of this process to reviving chaotic inflation.

Processes of particle production during inflation can increase the amplitude of the scalar

metric perturbations. We show that such a mechanism can naturally arise in supergrav-

ity models where an axion-like field drives large field inflation. In this class of models one

generally expects instanton-like corrections to the superpotential. We show, by deriving

the equations of motion in models of supergravity with a stabilizer, that such corrections

generate an interaction between the inflaton and its superpartner that can lead to copious

production of fermions during inflation. In their turn, those fermions source inflaton fluc-

tuations, increasing their amplitude, and effectively lowering the tensor-to-scalar ratio for

the model, as discussed in Chapters 2, and 3. This allows, in particular, to bring the model

where the inflaton potential is quadratic to agree with all existing observations.

Cosmological observations restrict the space of viable inflationary models in various di-

rections. The measurement of the spectral index gives ns − 1 ≃ −1/30 with a ∼ 10%

uncertainty, with no appreciable running. This, together with constraints on nongaussiani-

ties (the parameter fNL is about four orders of magnitude smaller than its value in a fully

nongaussian distribution), and with the fact that isocurvature modes are below the 5%
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level [1], severely constrains non-vanilla models of inflation. However, the class of models

of inflation that arguably taste the most like vanilla, those described by a monomial poten-

tial V ∝ ϕn, are either ruled out or under significant pressure from the constraints on the

tensor-to-scalar ratio r . .06 [73]. In particular, the simplest choice for a monomial, the

chaotic inflation with quadratic potential, is ruled out at the ∼ 4σ level.

In this chapter we will argue that particle production can bring the model of chaotic

inflation V (ϕ) = m2

2 ϕ
2 (plus, as we will see, corrections that we will require to be negligible)

to agree with all constraints from observations. This possibility was already considered

in [74, 75], that discussed a system where an auxiliary scalar χ gets an oscillating mass-

squared through a coupling to the inflaton, leading to periodic production of quanta of

χ. Remarkably, in our work we will see that one can resurrect chaotic inflation by simply

embedding it in a supersymmetric setting, and including a small, instanton like correction to

the superpotential. These ingredients – monomial inflation with small instanton corrections

in supersymmetry – are expected in models where the inflaton is an axion-like degree of

freedom whose potential is generated by monodromy [25, 26], see [33] for a review. In

particular, the quadratic form of the inflaton potential is generated in the axion–four-form

system of [76, 10, 27, 77]. Note also that [78, 28] have shown that this axion–four-form

system can be brought to agree with observations by the inclusion of higher dimensional

operators that flatten the potential at large field values, similarly to the effect [25, 26, 79,

80] observed in string theory constructions. In this work we will assume, however, that such

flattening does not occur for the observationally relevant range of field values.

Going into the specifics of our scenario, we will show that the addition of an instanton-like

∼ e−φ component to the superpotential, where φ is a superfield whose imaginary compo-

nent gives the axion-like inflaton, leads to a coupling of the inflaton to its fermionic partner,

the inflatino, that can be written in the form ∼ ψ̄
(

γµγ5∂µϕ
)

ψ. The rolling inflaton thus

provides a time-dependent contribution to the fermionic Lagrangian that leads to the gen-

eration of quanta of ψ [62, 58]. The quanta of ψ, in their turn, source fluctuations of the

inflaton. The phenomenology associated to this fermion-inflaton system has been studied

in [22, 59]. In the first of those papers it was shown that there is a regime where the inflaton

fluctuations sourced by the produced fermions dominate over the standard ones originating
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from the amplification of the inflaton’s vacuum fluctuations. Remarkably, and in contrast

with the case in which gauge fields are amplified by the rolling axion-like inflaton [42], the

statistics of the inflaton perturbations is quasi-gaussian, and in agreement with observations.

Also, as we will see, the spectral index in this model turns out to be the same as in standard

chaotic inflation, and therefore agrees with observations.

The existence of an additional component of scalar perturbations increases, for fixed

values of the parameters, the amplitude of the power spectrum Pζ . If such a component is

sizable, therefore, we must lower the energy scale of inflation in order to fit the observed

value of Pζ . This has the consequence of lowering the amplitude of the tensor perturbations

(in Chapter 3 it was checked that the fermions do not source significantly the tensor modes),

and of bringing the model to agree with the current constraints on the tensor-to-scalar ratio

r. This is one of the main results of this chapter.

As a warm-up, in Section 4.2 we will consider a globally supersymmetric model, with a

superpotential W ∝ φ2, that can lead to chaotic inflation, with a small contribution ∼ e−φ.

While we work directly in the regime of supersymmetry with a single chiral superfield, it is

worth noticing that this same construction can be realized [81] by supersymmetrizing the

axion–four-form system of [76, 10, 27]. Mapping the resulting fermionic Lagrangian to that

studied in [22], and imposing theoretical as well as observational constraints, we find that

this scenario can agree with observations, leading in particular to a tensor-to-scalar ratio

that can be as small as r ≃ .007, about a factor 8 below the current bound.

Given that the inflaton has Planckian excursions, however, the assumption of global

supersymmetry is not appropriate, and one has to go to the full supergravity description.

We perform such an analysis in Section 4.3. We consider models that are free from the

η-problem [82] by choosing a Kähler potential that depends only on the combination [83,

11] Φ+Φ̄, where the inflaton φ is in the imaginary part of the chiral superfield Φ. In order to

design a potential that is dominated by the quadratic term and whose flatness at large values

of the inflaton is not spoiled by the supergravity correction, we consider models of inflation

with a stabilizer [11, 12, 13] superfield S. Since this system features two superfields Φ and S,

we must diagonalize the dynamics of two fermions, the inflatino and the stabilizerino, that

is given in general terms in [84]. We do so by generalizing the analysis of [85, 86] to the case
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where the system contains a pseudoscalar component, but with the simplifying assumption

that, thanks to the presence of the stabilizer, the superpotential vanishes on shell. To our

knowledge, such a calculation is new in the literature, and is our other main result.

After diagonalizing the fermions, and in the regime where the inflaton potential has small

oscillations superimposed to a large monomial component, we find that the dynamics of this

system is identical – up to simple redefinitions of parameters – to the globally supersym-

metric one. Thus the parameter space contains a viable region where the scalar potential is

essentially quadratic, but r can be as small as a factor ∼ 8 below the current constraints,

also in the case in which the model is embedded in supergravity.

4.1 Fermion production during inflation, and the amplitude

of tensor-to-scalar ratio

Let us start by reviewing the results of Chapters 2, and 3. Those chapters contain the study

of a system consisting of a pseudoscalar inflaton ϕ with arbitrary potential V (ϕ) generated

by the breaking of the shift symmetry ϕ → ϕ+constant, along with a fermion Y of mass

mψ. Including the shift symmetric coupling of lowest dimensionality of the inflaton to Y ,

the fermionic component of the Lagrangian takes the form

LY = Ȳ

[

iγµ∂µ −mψ − 1

f
γµγ5∂µϕ

]

Y , (4.1.1)

where f is a constant with the dimensions of a mass. It is convenient to define a new fermion

field ψ, related to Y by

ψ = eiγ
5ϕ/fY , (4.1.2)

in terms of which the fermionic Lagrangian reads

Lψ = ψ̄

{

iγµ∂µ −mψ

[

cos

(

2ϕ

f

)

− iγ5 sin

(

2ϕ

f

)]}

ψ . (4.1.3)

The expression (4.1.3) shows that, in the limit mψ → 0, the fermionic degree of freedom
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decouples from the inflaton. On the other hand, the form (4.1.1) of the fermionic Lagrangian

emphasizes the shift-symmetric nature of the fermion-inflaton coupling.

As shown in Chapter 2, the interaction described above, in a quasi-de Sitter background

with Hubble parameter H, leads to the generation of chiral quanta of ψ with an occupation

number that is constant, and given approximately by .1 (mψ/H)2, for momenta up to ∼

|ϕ̇|/f . The fermions can thus have a very large number density ∼ 10−2
(mψ
H

)2
(

|ϕ̇|
f

)3
≫ H3,

and can affect the dynamics of the inflaton background and of its perturbations. In this

chapter we will be interested in the regime in which the fermions do not affect significantly

the background dynamics, but provide the main source of inflaton perturbations.

An especially interesting result of Chapter 2 is that, even in the regime in which the

component sourced by the fermions dominates the inflaton perturbations, the statistics of

those perturbations is very close to gaussian, and in agreement with the constraints from

Planck [87]. This is due to the fact that, even if the process ψ̄ ψ → δϕ is a 2 → 1 process

that would naturally lead to non gaussian statistics, fermions from a broad set of momenta

participate to the process, and gaussianity is re-obtained as an effect of the central limit

theorem. The bottom line is that the model of Chapters 2, and 3 can lead to a regime where

the perturbations are sourced by the fermions, and still their properties are in agreement

with observations.

Since the amplitude of the sourced perturbations has a functional dependence on the

parameters of the system that is different from the standard case, this set up has the poten-

tial of reviving models of inflation whose potential would be otherwise ruled out by CMB

constraints.

We will focus here on the model of inflation where the potential has the simplest func-

tional form: a quadratic potential. In the standard case in which the perturbations are from

the vacuum, this model’s prediction for the spectral index is in agreement with data, but

is ruled out by the amplitude of the tensor modes, since it predicts r = 8/N , where N is

the number of efoldings, that for N . 60 requires r > .13, whereas Planck/Keck constrains

r < .06.

The presence of fermions in the dynamics in the system naturally calls for a supersym-

metric construction. In the next section we will construct a globally supersymmetric model
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where we obtain the desired features, before moving on to a construction in supergravity

that is more complicated, but more appropriate, since we are discussing large field inflation.

4.2 A model in global supersymmetry

As a warm up, let us consider a globally supersymmetric theory with a single chiral superfield

Φ and superpotential

W =
µ

2
Φ2 + Λ3 e−

√
2Φ/F , (4.2.1)

where µ, Λ and F are parameters with dimensions of mass. The corresponding Lagrangian

reads

L = −∂µφ∂µφ∗ −
∣

∣

∣

∣

µφ−
√
2
Λ3

F
e−

√
2φ/F

∣

∣

∣

∣

2

+ ψ̄

[

iγµ∂µ − µ−ℜ
{

2
Λ3

F 2
e−

√
2φ/F

}

+ iℑ
{

2
Λ3

F 2
e−

√
2φ/F

}

γ5
]

ψ , (4.2.2)

where φ is a complex scalar and ψ is a four-component Majorana fermion.

To proceed, we assume1 that the real part of the field φ is stabilized to ℜ{φ} = 0 and

we thus redefine φ = iϕ/
√
2, obtaining our final Lagrangian

L = −1

2
∂µϕ∂

µϕ− V (ϕ) + ψ̄

(

iγµ∂µ − µ− 2
Λ3

F 2
cos(ϕ/F )− 2

Λ3

F 2
iγ5 sin(ϕ/F )

)

ψ ,

V (ϕ) =
µ2

2
ϕ2 − 2µ

Λ3

F
ϕ sin(ϕ/F ) + 2

Λ6

F 2
. (4.2.3)

The fermionic part of this Lagrangian is analogous, with the identifications F = f/2 and

mψ = 2Λ3/F 2, to the Lagrangian (4.1.3), with the addition of a mass term µ for the fermions

(that, as we will see below, can be neglected), while, neglecting the cosmological constant

∼ Λ6/F 2, the scalar potential is that of chaotic inflation with oscillating corrections.

We thus see that the simple superpotential eq. (4.2.1) can already lead to the kind of

system outlined in Section 4.1 above: a model of quadratic inflation (with small corrections)

1This is by no means a consistent assumption, and we will make it in this section that has only illustrative
purposes. In Section 4.3 below, on the other hand, we will consistently minimize the full potential of the
model.
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with a sizable coupling of fermions to the inflaton, where the power spectrum of scalar per-

turbations may be dominated, in some region of parameter space, by the fermion production

and might thus be in agreement with Planck constraints. To make sure that this is the case,

however, we must explore the constraints on the parameter space available to the system.

We will assume that the potential is dominated by its quadratic part, and that fermions

give a negligible contribution to the background dynamics, so that all the results from chaotic

inflation will carry over. In particular, we will have the approximate slow-roll relations

ϕ̇ ≃ −
√

2

3
µMP , ϕ ≃ 2MP

√
N , H ≃ µ

√

2

3
N , (4.2.4)

where N ≃ 60 is the number of efoldings until the end of inflation.

The strength of fermion production is measured by the dimensionless parameter ξ, that

takes the value

ξ ≡ |ϕ̇|
4FH

=
1

4
√
N

MP

F
. (4.2.5)

We will assume, as is expected to be the case in UV-complete theories of gravity [88, 89],

that the parameter F is sub-Planckian, and small enough that ξ & 1.

Due to the presence of the term proportional to µ in the fermionic sector of the La-

grangian, the present system is different, as discussed above, from that of Chapters 2,

and 3. As shown in Chapter 2, however, fermion production happens for momenta up to

kcutoff ≃ 2Hξ. As a consequence, since slow roll requires µ≪ H whereas, since kcutoff & H,

the effect of the parameter µ does not affect the dynamics of fermions to any significant

level, and we can safely neglect it.

Let us now list the constraints on our parameter space.

• Monotonicity of potential. In order for the oscillating term in the potential not to spoil

the monotonicity of the quadratic part during inflation we require

2
Λ3

F 2µ
< 1 . (4.2.6)
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• Backreaction. One can neglect the backreaction of the fermions on the inflating back-

ground provided the condition m2
ψ ξ ≪ 3π F 2 is satisfied [22]. In our model, this

corresponds to the condition

1

3π
√
N

Λ6MP

F 7
. 1 . (4.2.7)

• Validity of effective field theory. The term proportional to sin(ϕ/F ) in the scalar

potential generates oscillations of frequency ω = ϕ̇/F in the Hubble parameter. By

requiring that physics occurs at scales below the cutoff 4πF of the axionic effective

field theory, we obtain the constraint ω . 4πF , that translates into

µMP . 2
√
6πF 2 . (4.2.8)

• Small mψ approximation. The results of [22, 59] have been obtained assuming mψ ≪

H, that in terms of our parameters reads

Λ3

F 2
≪ µ

√

N

6
, (4.2.9)

that is identically satisfied when the condition of monotonicity of the potential, eq. (4.2.6)

is satisfied. Also, eq. (4.2.9), along with the requirement ξ ≫ 1, implies that a second

condition of perturbativity required in [22, 59], namely that mψ ≪ H
√
ξ, is identically

satisfied.

• Tensor modes. The Planck-Keck constraint [73] r < .06 rules out standard quadratic

inflation. As discussed in [59], the amplitude of tensor modes in our model has essen-

tially the same expression as in the standard case, which gives a constraint

4

3π2
µ2

M2
P

N < .06Pζ , (4.2.10)

where Pζ is the scalar power spectrum.

• No oscillations in scalar perturbations. Oscillations in the potential will induce os-
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cillations in the power spectrum of scalar perturbations. This phenomenon has been

studied in detail in the case in which the scalar spectrum is generated by the stan-

dard mechanism of amplification of vacuum fluctuations of the inflaton. The con-

straint on the amplitude of those oscillations, δns, can be approximately written as

δns . 10−3
√

MP /F [90, 1], where in our model δns ≃ 6
√
2πN1/4 Λ3

µF 2

√

F/MP [91],

which would provide a strong additional constraint on our model. However, these

constraints do not hold in the regime we will be interested in, where the scalar pertur-

bations are sourced by the fermion field. As a consequence, we will not consider them

in this analysis.

• Nongaussianities. There are two potential sources of nongaussianities. First, those

induced by the presence of the fermion bath in interaction with the inflaton, that have

been shown in Chapter 2 to be negligible. Second, there is a possibility of resonant

nongaussianities [91] induced by the small oscillations in the inflaton potential. As in

the point above, however, the existing estimates of the amplitude of this effect do not

hold in the regime of sourced perturbations we are interested in, and we will ignore

them here.

Once we fix the number of efoldings to N = 60, our theory has three parameters, namely

Λ, µ and F . We can eliminate one of them by imposing that the power spectrum takes its

observed value Pζ = 2.2× 10−9, using the expression, valid for our system,

Pζ =
H4

4π2ϕ̇2

(

1 +
8

3π2
m2
ψ

F 2
ξ2N log ξ

)

=
µ2N2

6π2M2
P

[

1 +
2

3π2
Λ6M2

P

F 8

∣

∣

∣

∣

log

(

4
√
N

F

MP

)∣

∣

∣

∣

]

.

(4.2.11)

In particular, it is convenient to use the normalization of the power spectrum to eliminate Λ.

Once we do this, we can plot the constraints enumerated above on a two-dimensional plot,

see Figure 4.1. As one can see, there is a portion of parameter space that satisfies all the

constraints above, and that extends from F ≃ 3 × 10−4MP to F ≃ 10−3MP and where µ

can be as small as 1.3× 10−6MP . This implies, using eq. (4.2.10), that the tensor-to-scalar

ratio in this model of quadratic inflation with corrections can be as small as ∼ .007, i.e.
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Monotonicity

EFT

r

Figure 4.1: The parameter space for the model (4.2.3). The shaded region marked by an
“r” is excluded by the observational bound r < .06 on the amplitude of the tensor modes.
The region labelled “EFT” is excluded by the constraint (4.2.8), and the region labeled
“Monotonicity” is excluded by the constraint (4.2.6).

about an order of magnitude below the present bounds.

Another well-constrained quantity we have not talked about is the spectral index, .961 .

ns . .969 [92]. Its expression for this specific model is essentially the same as the standard

chaotic inflation scenario, ns − 1 = d logPζ/dN ≃ 2/N so that by assuming the standard

value N = 60 the spectral index is automatically in agreement with observations.

To summarize this section, the globally supersymmetric model with superpotential (4.2.1),

with the assumption that the real component of the inflaton is stabilized, leads to a model

of quadratic inflation that, thanks to inflaton-inflatino interactions, is compatible with all

the existing phenomenological constraints.

Of course, this model with global supersymmetry is not quite suitable for chaotic infla-

tion, where the fields can get Planckian values. In the next section we will thus turn our

attention to the more appropriate construction of a model of supergravity where fermions

can source the spectrum of scalar perturbations.
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4.3 The full construction in supergravity

Even before worrying about the role of fermions, the construction of models of inflation in

supergravity is famously [82] a nontrivial task. In this paper we will consider models with a

stabilizer [11, 12, 13], that allow to design essentially any potential. The down side of these

models is that they need at least two superfields – the inflaton and the stabilizer, which

makes the analysis of the fermionic sector quite cumbersome.

In Section 4.3.1 below, we will study in general terms the equations of motion for the

fermionic degrees of freedom in models with an inflaton and a stabilizer superfields. Then,

in Section 4.3.2, we will specialize our equations to the case of a superpotential leading to

quadratic inflation with small oscillations, and we will show that the analysis of parameter

space performed in the globally supersymmetric model of Section 4.2 above can be directly

applied to the full supergravity construction.

4.3.1 Equations for fermions in models of supergravity with a stabilizer

We start from a theory of two chiral multiplets coupling to the supergravity multiplet. Of

the two spin-1/2 matter fields, one is the goldstino and can be gauged away. We are thus left

with two helicity-1/2 fermions, the transverse component of the gravitino, θ = γiψi [93, 94,

95], and the fermion Υ [84], a linear combination of the fermions in the matter multiplets.

The longitudinal, helicity-3/2 component of the gravitino will play no significant role (it gets

a mass proportional to the superpotential [93, 94, 95], which vanishes in the models with

stabilizer we are interested in), and we will ignore it here. The derivation of the equations

of motions for fermions in general supergravity models can be found in [84]. In particular,

eq. (9.20) in that paper provides the equations of motion for the fermions:

(∂̂0 + B̂ + iγikiγ
0Â) θ − 4

αa
k2Υ = 0 ,

(∂̂0 − iγikiγ
0Â+ B̂† + aF̂ + 2ȧ+

a

M2
P

mγ0)Υ +
1

4
aα∆2θ = 0 , (4.3.1)
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where, for a Kähler potential K and a superpotential W , and considering the two superfields

Φi, i = 1, 2, and their scalar components φi and φi = (φi)
∗, one has the quantities

m ≡ e
K

2M2
P W , m ≡ ℜ{m} − iℑ{m} γ5 ,

mi =
(

∂i +
1

2M2
P

∂iK
)

m, mij =
(

∂i +
1

2M2
P

∂iK
)

mj − Γijk m
k ,

∂̂0 = ∂0 −
i

2
AB0 γ

5 , AB0 =
i

2M2
P

(φ′i∂iK − φ′i∂
iK) ,

H2 =
1

3M2
P

(

|φ̇|2 + V
)

, V = mi(g
−1)ijm

j − 3
|m|2
M2
P

, |φ̇|2 ≡ gij φ̇i φ̇
j ,

α = 3M2
P

(

H2 +
|m|2
M4
P

)

, α1 = −3M2
P

(

H2 +
2

3
Ḣ +

|m|2
M4
P

)

, α2 = 2ṁ† ,

Â =
1

α
(α1 − γ0α2) , B̂ = −3

2
ȧÂ+

a

2M2
P

mγ0(1 + 3Â) ,

ξi ≡ mi − γ0gji φ̇j , ∆ ≡ 2

√
V |φ̇|
α

,

PR =
1

2
(1− γ5) , PL =

1

2
(1 + γ5) , Πij =

1

α
(mig

k
j φ̇k −mjg

k
i φ̇k) ,

F̂ = − 4

α∆2 det g

(

ξkPR (g−1)lkmliΠ
ijξ†j + ξkPL(g

−1)klm
liΠijξ

†j
)

, (4.3.2)

where a prime denotes a derivative with respect to the conformal time while an overdot is

a derivative with respect to cosmic time, and where ∂i = ∂/∂φi, and ∂i = ∂/∂φi. Also,

gij ≡ ∂i∂jK is the Kähler metric and Γijk = (glk)
−1∂igj l is the Kähler connection. The

scalars satisfy the equations of motion gji (φ̈j+3Hφ̇j+Γklj φ̇kφ̇l)+∂iV = 0. Further, we have

the relation α2
1 + α†

2α2 + α2∆2 = 1.

We will denote the two chiral superfields by Φ = Φ1, and S = Φ2 (with scalar components

φ and s, respectively), and we choose a minimal Kähler potential for S, but keep a general

potential for Φ,

K(Φ, Φ̄;S, S̄) = K(Φ, Φ̄) + SS̄ . (4.3.3)

For the superpotential, we use a stabilizer model,

W = S f(Φ) , (4.3.4)
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where f(Φ) is an arbitrary function and S is stabilized at 0. A consequence of this is

that m|s=0 = 0, and therefore the mass of the longitudinal helicity-3/2 component of the

gravitino, m3/2 = |m|/M2
P vanishes.

The scalar potential is

V = e
K

M2
P

[

(g−1)ij

(

∂iW
∗ +

∂iK

M2
P

W ∗
)(

∂jW +
∂jK

M2
P

W

)

− 3
|W |2
M2
P

]

= e
K

M2
P

[∣

∣

∣
f(φ) +

|s|2
M2
P

f(φ)
∣

∣

∣

2
+ gφφ|s|2

∣

∣

∣
f ′(φ) +

∂φK

M2
P

f(φ)
∣

∣

∣

2
− 3

|s|2
M2
P

|f(φ)|2
]

. (4.3.5)

Differentiating gives ∂sV |s=0 = 0, ∂2sV |s=0 ≥ 0, and ∂s∂s̄V |s=0 ≥ 0 showing that s = 0

is a stable critical point of the potential. Therefore, from here on we set s = 0, and the

scalar potential is simply V = e
K
M2
P |f(φ)|2.

With these choices, we have

ms = e
K

2M2
P f(φ) , msφ = e

K
2M2

P

[

f ′(φ) + ∂φK
M2

P

f(φ)
]

, mφ = mss = mφφ = 0

ξs = e
K

2M2
P f(φ) , ξφ = −γ0 gφφφ̇∗ , Πsφ = 1

αe
K

2M2
P f(φ)gφφφ̇

∗ ,

(4.3.6)

A bit of calculation shows that

F̂ =
V − |φ̇|2
2V |φ̇|2

(

∂φV φ̇+ ∂φV φ̇
∗
)

+
V + |φ̇|2
2V |φ̇|2

(

∂φV φ̇− ∂φV φ̇
∗
)

γ5 . (4.3.7)

Let us now proceed to diagonalize the equations of motion for the fermions. The system

(4.3.1) can be derived from the Lagrangian [86]

L = −αa
3

4k2
θ̄
[(

γ0∂̂0 + iγikiÂ+ γ0B̂
)

θ − 4k2

aα
γ0Υ

]

+

− 4a

α∆2
Ῡ
[(

γ0∂̂0 − iγikiÂ+ γ0B̂† + aγ0F̂ + 2ȧγ0 +
a

M2
P

γ0mγ0
)

Υ+
1

4
aα∆2γ0θ

]

,

(4.3.8)

where, following [84], we use the convention θ̄ = iθ†γ0 for barred spinors. We canonically
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normalize the fermions defining

θ = 2
iγiki√
αa3

θ̃ , Υ =
∆

2

(α

a

)1/2
Υ̃ . (4.3.9)

The Lagrangian with normalized fields (and taking s = 0) is

L =
¯̃
θ
[(

− γ0∂0 + iγiki
α1

α
− i

2
AB0 γ

0γ5
)

θ̃ + i∆γ · kγ0Υ̃
]

+

+ ¯̃Υ
[(

− γ0∂0 + iγiki
α1

α
+
( i

2
AB0 − aF̂5

)

γ0γ5
)

Υ̃ + i∆γ · kγ0θ̃
]

. (4.3.10)

where

F̂5 =
V + |φ̇|2
2V |φ̇|2

(

∂φV φ̇− ∂φV φ̇
∗
)

. (4.3.11)

Note in particular that F̂5 is pure imaginary, and that it vanishes for real φ.

Let us write the Lagrangian (4.3.10) in the compact form

L = X̄
[

− γ0∂0 + iγ · k N +M
]

X , (4.3.12)

with X = (θ̃, Υ̃)T and N = N1 +N2γ
0, where

N1 =







α1/α 0

0 α1/α






, N2 =







0 ∆

∆ 0






, M =







− i
2A

B
0 0

0 i
2A

B
0 − aF̂5






γ0γ5 .

(4.3.13)

We now redefine the fields in such a way as to remove the factor of N in front of iγiki.

Using the relation α2 − α2
1 = α2∆2, we can see that N †N = N2

1 +N2
2 = 1, so N is unitary.

Therefore, we can define N = e2Ψγ
0

= cos 2Ψ + γ0 sin 2Ψ where Ψ is a 2 × 2 hermitian

matrix [96]. We choose

2Ψ =







0 π − sin−1∆

π − sin−1∆ 0






. (4.3.14)
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It is straightforward to check that cos 2Ψ = N1, and sin 2Ψ = N2. After redefining X =

e−Ψγ0Z, the Lagrangian takes the form

L = Z̄
[

− γ0∂0 + iγ · k + M̃
]

Z , (4.3.15)

where the new matrix M̃ reads

M̃ ≡ eΨγ
0

(M − ∂0Ψ) e−Ψγ0

=
1

2







[

− iAB0 + a (1− α1/α) F̂5

]

γ0γ5 − α
α1
∆′ + a F̂5∆γ

5

− α
α1
∆′ + a F̂5∆γ

5
[

iAB0 − a (1 + α1/α) F̂5

]

γ0γ5






. (4.3.16)

Furthermore, we can remove the γ0γ5 term by redefining the fields as

Z =







eiσ1γ
5

0

0 eiσ2γ
5













ψ1

ψ2






, (4.3.17)

where, in order for the γ0γ5 terms to vanish, σ1 and σ2 must satisfy

∂0σ1 = −1

2
AB0 − i

a

2
(1− α1/α) F̂5 ,

∂0σ2 =
1

2
AB0 + i

a

2
(1 + α1/α) F̂5 . (4.3.18)

Once we choose σ1 and σ2 that satisfy these equations, we are at last left with a coupled

set of fermions with a mass matrix of the form







0 M1 + iM2γ
5

M1 + iM2γ
5 0






, where M1

and M2 are defined below. Such a system can be completely diagonalized in terms of the

rotated fields

χ1 =
1√
2
(ψ1 + ψ2) ,

χ2 =
1√
2
(ψ1 − ψ2) , (4.3.19)
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giving the final Lagrangian

L = (χ̄1, χ̄2)






−γ0∂0 + iγ · k + a







M1 + iM2γ
5 0

0 −M1 − iM2γ
5



















χ1

χ2






, (4.3.20)

where

M1 = − α

2α1
∆̇ cos(σ1 + σ2) +

i

2
F̂5∆sin(σ1 + σ2) ,

M2 = − α

2α1
∆̇ sin(σ1 + σ2)−

i

2
F̂5∆cos(σ1 + σ2) , (4.3.21)

that depend only on the combination

σ ≡ σ1 + σ2 , σ̇ = i
α1

α
F̂5 , (4.3.22)

and where α, α1, and ∆ are given in (4.3.2), and F̂5 is given in eq. (4.3.11). Thus, we see that

we have a system of two decoupled fermions with the same mass. This is a general result,

assuming only a stabilizer model superpotential where the Kähler potential is minimal in S.

The scalar potential and fermion dynamics are determined by the choice of function f(Φ)

and Kähler potential, K(Φ, Φ̄). This allows a great deal of freedom in constructing a model

with fermions coupled to an inflaton with choice of inflationary potential. For example,

taking φ to be real will make M2 = 0 and M1 = − α
2α1

∆.

In the next section, we show how this can be used to recover, in a full supergravity

setting, the Lagrangian of Section 4.2.

4.3.2 Quadratic inflaton potential, plus small oscillations – analysis of the

parameter space

We now show how we can recover the Lagrangian (4.2.3) from the full supergravity theory

in (4.3.20) with the choice

f(Φ) = µΦ+ Λ̂2e−
√
2Φ

F , K(Φ, Φ̄) =
1

2
(Φ + Φ̄)2 . (4.3.23)
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We have three parameters, µ, F , and Λ̂ with the dimensions of mass. Here, we write Λ̂ to

distinguish the parameter of this section from the Λ of Section 4.2. We take φ = 1√
2
(ρ+ iϕ)

so that the scalars are canonically normalized. During inflation, ϕ will act as the inflaton

while ρ will oscillate near its minimum and will not play a significant role in the scalar

potential. The choice (4.3.23) gives the scalar potential

V = e
ρ2

M2
P

[µ2

2
(ρ2 + ϕ2) +

√
2µΛ̂2e−

ρ
F

(

ρ cos
ϕ

F
− ϕ sin

ϕ

F

)

+ Λ̂4e−
2ρ
F

]

. (4.3.24)

We will take there to be a hierarchy of scales, ρ≪ F ≪MP . ϕ. As we will see below,

therefore, ρ will be nonzero, but can be made sufficiently small within a certain parameter

range. As mentioned in Section 4.2, F ≪ MP is motivated by embedding this model in a

UV-complete theory of gravity. The scalar potential is then well approximated by

V ≃ µ2

2
ϕ2 −

√
2µΛ̂2ϕ sin

ϕ

F
+ Λ̂4 . (4.3.25)

This potential is structurally similar to the one given in (4.2.3), namely chaotic inflation

plus small oscillations. Matching gives the relation

Λ̂2 =
√
2Λ3/F , (4.3.26)

so that monotonicity of the potential requires

√
2
Λ̂2

µF
< 1 . (4.3.27)

Once this condition is satisfied, we can use the slow-roll approximation (4.2.4) to describe

the evolution of ϕ at zeroth order.

We can now solve for ρ(t) from the equations of motion obtained after linearizing in ρ

the potential (4.3.24)

ρ̈+ 3Hρ̇+

√
2µΛ̂2

F
ϕ sin

ϕ

F
= 0 , (4.3.28)
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where we will treat ϕ as approximately constant except in the rapidly oscillating sin(ϕ/F )

term where we use the leading order in slow-roll ϕ(t) ≃ ϕ(0) −
√

2
3µMP t. Neglecting the

decaying term from the homogeneous solution of eq. (4.3.28), and requiring

F

MP
≪ MP

ϕ
∝ 1√

N
, (4.3.29)

that is equivalent to the large-ξ approximation, we obtain

ρ(t) ≃ ρ0 +
3√
2

Λ̂2

µMP

F

MP
ϕ sin

ϕ

F
, (4.3.30)

where ρ0 is an integration constant. We have verified, by solving numerically the exact

system of coupled equations for ρ and φ, the accuracy of the approximation (4.3.30) and

that the constant ρ0 is much smaller than F .

The requirement ρ≪ F gives, therefore, the additional constraint

Λ̂2

µMP
≪ MP

ϕ
≃ 1√

N
. (4.3.31)

Now we move on to ϕ(t), for which we want to go beyond the slow-roll approximation.

The function ϕ(t) satisfies the approximate equation

ϕ̈+ 3Hϕ̇+ µ2ϕ

(

1−
√
2
Λ̂2

µF
cos

ϕ

F

)

= 0 , (4.3.32)

that we can solve perturbatively in Λ̂2, defining ϕ = ϕ0 + Λ̂2ϕ1 + O(Λ̂4), [97, 91]. By

linearizing the equation for ϕ in Λ̂2, and keeping the leading terms in the approximation

ϕ &MP ≫ F and in the slow roll approximation, the equation for ϕ1 reads

ϕ̈1 +

√

3

2

µϕ0

MP
ϕ̇1 −

√
2
µϕ0

F
cos

ϕ0

F
= 0 , (4.3.33)

where, again, we treat ϕ0 as constant except inside the rapidly oscillating cos(ϕ0/F ) term.
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The solution, ignoring the decaying mode, is

ϕ(t) ≃ ϕ0(t)−
3√
2

Λ̂2

µMP

F

MP
ϕ0(t) cos

ϕ0(t)

F
. (4.3.34)

We see from (4.3.31) and from F ≪ MP that Λ̂2ϕ1 ≪ ϕ0, therefore, we are comfortably

within the perturbative region.

Now we turn our attention to the remaining quantities in the fermion mass in eq. (4.3.20),

starting with F̂5. Using (4.3.30),(4.3.34), along with the approximations (4.3.31), this gives

F̂5 ≃
−
√
3iΛ̂2

MP

ϕ

F
sin(ϕ/F ) . (4.3.35)

Note that we are using ϕ and not ϕ0 in the above expression. At the order we are

considering, they are equivalent. Continuing with σ, to leading order in slow-roll, α1/α ≃

−1, so that σ̇ ≃ −iF̂5. When integrating σ̇, we will treat ϕ as constant outside of the

sin(ϕ/F ). We will not be interested in the constant of integration as it is simply a constant

phase in the fermion fields, so that we obtain

σ ≃ − 3Λ̂2

√
2µM2

P

ϕ cos(ϕ/F ) . (4.3.36)

Performing the same approximations for ∆, we obtain

∆ ≃
√

2

3

2MP

ϕ

(

1− 2M2
P

3ϕ2
+

3√
2

Λ̂2

µMP

ϕ

MP
sin(ϕ/F )

)

, (4.3.37)

and

∆̇ ≃ 4

3

µM2
P

ϕ2
− 2

√
2
Λ̂2

F
cos(ϕ/F ) . (4.3.38)

Finally, inserting (4.3.35), (4.3.36), (4.3.37), and (4.3.38) into (4.3.21), we get the fermion
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mass,

M1 + iM2γ
5 ≃ µ

(2M2
P

3ϕ2
−
√
2
Λ̂2

µF

(

cos(ϕ/F ) + i sin(ϕ/F )γ5
)

)

. (4.3.39)

By translating to the parameters of Section 4.2 using the identification (4.3.26), we recover

the fermionic part of the Lagrangian of equation (4.2.3). In the supergravity case, the

constant part of the fermionic mass (i.e., corresponding to the term proportional to µ in

the first line of eq. (4.2.3)) is slow-roll suppressed, and we can neglect it here as we did in

Section 4.2.

To conclude, with the redefinition (4.3.26) the plot in Figure 4.1 applies also to the super-

gravity model. In particular, this shows that the supergravity model defined by eqs. (4.3.3),

(4.3.4) and (4.3.23) there is a regime of parameter space where the data can be in agreement

with all CMB constraints while the inflaton potential is, up to corrections that we want to

be negligible, simply quadratic.

4.4 Discussion and conclusions

Standard chaotic inflation is ruled out by experiment. It predicts too large a value for the

tensor-to-scalar ratio. The tensor spectrum is determined by the energy scale of inflation,

which in the simple model of quadratic inflation is fixed by the normalization of the scalar

spectrum. We have shown in this chapter that a source-dominated scalar spectrum can

allow to lower the energy scale of inflation, thereby bringing chaotic inflation back into the

observationally allowed regime.

In Chapters 2, and 3 it was shown that fermions coupled to an axion inflaton can lead

to a source-dominated scalar spectrum and a vacuum-dominated tensor spectrum. More

specifically, since the vacuum perturbations and sourced perturbations of the scalar modes

are statistically independent, the power spectrum is the sum, Pζ = Pvacuum

ζ + Psourced

ζ , and

similarly for the tensor spectrum. Therefore, the fermion-sourced model with 2.2× 10−9 ≃

Psourced

ζ ≫ Pvacuum

ζ ∝ V ∝ Pt, allows one to lower the energy scale of inflation. With Pt
dominated by the vacuum perturbations one can then lower the value of the tensor-to-scalar
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ratio.

This chapter contains two main results. First, we have shown that the model of [22,

59] can be effectively constructed from a globally supersymmetric model with superpoten-

tial (4.2.1). This superpotential generates a quadratic scalar potential (and can be easily

generalized to any potential able to support large field inflation), plus small oscillations.

The fermion sector produces the inflaton-fermion coupling studied in [22, 59] with a negligi-

ble additional fermion mass term. In particular, this applies naturally to the model of [76,

10, 27], that naturally leads to a quadratic inflaton potential using monodromy. Thus, the

analysis from [22, 59] applies, allowing for the lowering of r while maintaining ns unaffected

and without generating large non-Gaussianities. While the model is subject to a number of

constraints, there is a region, in white in Figure 4.1, where those constraints are all satisfied.

Second, we have examined supergravity with two chiral multiplets with one of the scalars

acting as a stabilizer. In Section 4.3.1 we have written down the general equations of motions

for the fermions in this class of models. Remarkably, the two helicity-1/2 states in the

theory behave identically, as fermions with mass M1 + iM2γ
5, where the generally time

dependent terms M1 and M2 are given in eq. (4.3.21). Specializing to the case where the

superpotential consists of a slowly varying component and quickly oscillating term, we have

shown in Section 4.3.2 that the equations for the fermions in the full supergravity theory

reduce to those obtained in the case of the globally supersymmetric model, in agreement

with the intuition from the equivalence theorem [98, 99, 100]. It would be interesting to

see whether these results extend to more general classes, beyond those with a stabilizer, of

models of axion inflation in supergravity. The final result is that, in a class of relatively

simple models of inflation in supergravity, the potential can be essentially quadratic while

the theory is compatible with all existing observations.
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Appendix A

The fermion mode functions and their

occupation numbers

In order to solve the equation of motion of the fermion

{

i γµ ∂µ −ma

[

cos

(

2φ

f

)

− iγ5 sin

(

2φ

f

)]}

ψ = 0 , (A.0.1)

and to evaluate its occupation number in the ψ basis, it is convenient to first solve the

equation of motion of the fermion in the Y basis

[

iγµ∂µ − am− 1

f
γ0γ5∂0φ0

]

Y = 0. (A.0.2)

Eq. (A.0.2) follows from the Lagrangian in eq. (2.1.3). We decompose Y as

Y (x, t) =

∫

d3k

(2π)
3

2

eikx
∑

r=±

[

Ũr(k, t)ar(k) + Ṽr(−k, t)b†r(−k)
]

,

with

Ũr(k, t) =
1√
2







χr(k) ũr(k, t)

rχr(k) ṽr(k, t)






, Ṽr(k, t) =

1√
2







χr(k) w̃r(k, t)

rχr(k) ỹr(k, t)






, (A.0.3)
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where χr(k) is a helicity-r two-spinor, σ · kχr(k) = r k χr(k), which we normalize as

χ†
r (k) χs (k) = δrs, and which can be written explicitly as

χr(k) =
(k + r σ · k)
√

2 k (k + k3)
χ̄r, χ̄+ =







1

0






, χ̄− =







0

1






. (A.0.4)

Courtesy of the invariance under charge conjugation, we can impose Ṽr (k) = C ¯̃U r (k)
T ,

where C = iγ0γ2, which implies

w̃r = ṽ∗−r , ỹr = ũ∗−r , (A.0.5)

where we have used iσ2χ
∗
r (k) = −rχ−r (k).

The Dirac equation, after defining

µ ≡ m

H
, ξ ≡ φ̇0

2 f H
, x ≡ −kτ , (A.0.6)

gives the following system

∂xũr = i
µ

x
ũr + i

(

1 +
2ξ

x
r

)

ṽr ,

∂xṽr = −i µ
x
ṽr + i

(

1 +
2ξ

x
r

)

ũr . (A.0.7)

The system is solved by [58]

ũr =
1√
2x

(sr + dr) , ṽr =
1√
2x

(sr − dr) , (A.0.8)

with

sr = e−πrξW 1

2
+2irξ, i

√
µ2+4ξ2

(−2ix) , dr = −i µ e−πrξW− 1

2
+2irξ, i

√
µ2+4ξ2

(−2ix) ,(A.0.9)

where Wα,β(z) denotes the Whittaker function, and where the integration constants have

been determined by imposing the normalization |ũr|2 + |ṽr|2 = 2 and the positive frequency
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condition

lim
x→∞

ur (x) = lim
x→∞

vr (x) = ei(x+2rξ ln(2x)−π
4
). (A.0.10)

We can now use these results to compute the mode functions of the field ψ. Recalling that

Y = e−iγ
5φ/f ψ , (A.0.11)

and decomposing

ψ =

∫

d3k

(2π)
3

2

eikx
∑

r=±

[

Ur(k, t)ar(k) + Vr(−k, t)b†r(−k)
]

, (A.0.12)

we have

Ur (k, τ) = eiγ
5φ/f Ũr (k, τ) , Vr (k, τ) = eiγ

5φ/f Ṽr (k, τ) . (A.0.13)

Next, decomposing Ur (k, τ) and Vr (k, τ) as we did for Ũr (k, τ) and Ṽr (k, τ) above, we

obtain the relationship

ur(k, τ) = cos

(

φ

f

)

ũr (k, τ) + i r sin

(

φ

f

)

ṽr (k, τ) ,

vr(k, τ) = cos

(

φ

f

)

ṽr (k, τ) + i r sin

(

φ

f

)

ũr (k, τ) , (A.0.14)

which gives the expression of ur and vr in terms of sr and dr presented in eq. (2.1.9) in the

main text. It is straightforward to see that the normalization condition |ũr|2 + |ṽr|2 = 2

implies that also |ur|2 + |vr|2 = 2. Moreover, one can see that the positive frequency

condition (A.0.10) implies

lim
x→∞

ũr (k, τ) = lim
x→∞

ṽr (k, τ) = ei(x+2rξ ln(2x)−π
4
) e−2ξir ln(x/xin) = ei(x+2rξ ln(2xin)−π

4
) ,

(A.0.15)

where we have used φ = (φ̇0/f) log(xin/x), and this shows that the subdominant log(x)

term has disappeared from the exponent.
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We can now use these results to diagonalize the Hamiltonian for the fermions. We define

mR ≡ ma cos

(

2φ0
f

)

, mI ≡ ma sin

(

2φ0
f

)

, (A.0.16)

so that the fermionic part the Hamiltonian reads

Hfree =

∫

d3x ψ̄
[

−i γi ∂i +mR − iγ5mI

]

ψ . (A.0.17)

Using the decomposition (2.1.7), performing long algebraic manipulations, and using

properties such as

χr(−k) = −r eirϕk χ−r(k) , eiϕk ≡ k1 + i k2
√

k21 + k22
; iσ2χ

∗
r (k) = −rχ−r (k) , (A.0.18)

we eventually obtain

Hfree =

∫

d3k
(

a†r (k) , br (−k)
)







Ar B∗
r

Br −Ar













ar (k)

b†r (−k)






,

Ar =
1

2

[

mR

(

|ur|2 − |vr|2
)

+ k (u∗rvr + v∗rur)− i r mI (u
∗
rvr − v∗rur)

]

,

Br =
r eirϕk

2

[

2mRur vr − k
(

u2r − v2r
)

− i r mI

(

u2r + v2r
)]

. (A.0.19)

We next diagonalize the Hamiltonian. We find that the matrix in eq. (A.0.19) above has

eigenvalues ±ω, with

ω ≡
√

k2 +m2
R +m2

I , (A.0.20)

so that the diagonalization will be realized by finding two numbers αr and βr for which







Ar B∗
r

BR −Ar






=







α∗
r β∗r

−βr αr













ω 0

0 −ω













αr −β∗r
βr α∗

r






. (A.0.21)

This transformation can be interpreted as a definition of the operators that create and

annihilate the quanta that diagonalize the Hamiltonian at the time t, see eq. (2.1.18). (The
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coefficients α and β are conventionally denoted as Bogolyubov coefficients.) The above

equation is solved by

αr = eirϕk/2+iλr

[

1

2

√

1 +
mR

ω
ur +

1

2

√

1− mR

ω
e−irθ vr

]

,

βr = r eirϕk/2−iλr
[

1

2

√

1− mR

ω
eirθ ur −

1

2

√

1 +
mR

ω
vr

]

, eiθ ≡ k + imI
√

k2 +m2
I

, (A.0.22)

where λr is arbitrary and real. We get the occupation number

Nr = |βr|2 =
1

2
− mR

4ω

(

|ur|2 − |vr|2
)

− k

2ω
Re (u∗rvr)−

rmI

2ω
Im (u∗rvr)

=
1

2
− µ

2x
√

x2 + µ2
Re [s∗r dr]−

1

4
√

x2 + µ2

[

|sr|2 − |dr|2
]

, (A.0.23)

where the first line corresponds to the expression (2.1.19) in the main text.
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Appendix B

Computation of the

fermion-gravitational wave

interactions

In this appendix we discuss the steps that lead from eq. (3.1.3) to eq. (3.1.8). We begin by

writing down the vielbeins for the line element in eq. (3.1.4), gµν = ηABe
A
µe
B
ν . These are

given by

eAµ =







N 0

N ieai eai






, (B.0.1)

where the spatial components eai satisfy δabe
a
ie
b
j = hij . Starting from (B.0.1), we can also

write

eAµ = ηABe
B
µ =







N 0

N iηabe
b
i ηabe

b
j






, eA

µ =







1
N −Nj

N

0 ea
j






, eAµ =







1
N −Nj

N

0 ηabeb
j






,(B.0.2)

and one can indeed verify that the product gµν = eµAe
ν
Bη

AB is the inverse of the metric in

eq. (3.1.4).
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In terms of the vielbein, the spin connections are obtained from

ωµ
AB = eAν∇µe

Bν = eAν
(

∂µe
Bν + Γνσµe

Bσ
)

, (B.0.3)

where Γνσµ are the usual Christoffel symbols associated with the metric gµν . Using eq.

(B.0.1) and (B.0.2), we find the components of the spin connection in ADM coordinates

ω0
0b =

(

∂iN −N jKij

)

ηabea
i ,

ω0
ab = eak∂0ec

kηbc +
(

−NhikKkm +(3)∇mN
i
)

eaiec
mηbc ,

ωi
0b = −Kkiec

kηbc ,

ωi
ab = eak∂iec

kηbc −(3)Γmkie
a
mec

kηbc . (B.0.4)

Inserting these in the action (3.1.3) we obtain an expanded form of the fermion action in

ADM coordinates

SF =

∫

d4xLF , (B.0.5)

where

LF = a3

{

iΨ̄γ0
[

∂0 +
(

∂iN −N j Kij

)

eb
iΣ0b

+
1

2
eck

(

∂0eb
k −

(

NKk
m −(3)∇mN

k
)

eb
m
)

ηacΣ
ab
]

Ψ

+ iΨ̄
(

γaNea
k − γ0Nk

)

[

∂k −Kikeb
iΣ0b +

1

2

(

eci∂keb
i +(3)Γmike

c
meb

i
)

ηacΣ
ab

]

Ψ

−NmΨ̄

[

cos

(

2ϕ

f

)

+ i sin

(

2ϕ

f

)

γ5

]

Ψ

}

, (B.0.6)

and ΣAB = [γA, γB]/4. The full action is the sum of the bosonic part in eq. (3.1.5) and the

fermionic part in eq. (B.0.5).

We are interested in the interactions between the fermions and the tensor modes of the
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metric, and so we expand the spatial part of the vielbein as

eai = a δake
1

2
γki = a δak

[

δki +
1

2
γki +

1

8
γkjγji + . . .

]

, (B.0.7)

ea
i = a−1 δkaδ

ije−
1

2
γkj = a−1 δkaδ

ij ,

[

δij −
1

2
γij +

1

8
γiℓγℓj + . . .

]

, (B.0.8)

which leads to the following components of the spin connection (expanded here to quadratic

order in tensors)

ω0
0b =a−1

(

∂aN +
H
N
Na

)

ηab , (B.0.9)

ω0
ab =− 1

8
ηacηbd

(

γ′cjγjd − γcjγ
′
jd

)

− a−2

2
(∂dNc − ∂cNd) η

acηbd , (B.0.10)

ωi
0b =

aH
N
ηbc
(

δci +
1

2
γci +

1

8
γ2ci

)

− 1

2aN
ηbc (∂iNc + ∂cNi) +

a

2N
ηbc
(

γ′ic +
1

2
γinγ

′
nc

)

,

(B.0.11)

ωi
ab =− ηacηbd

(1

2
(∂dγic − ∂cγid) +

1

8
(γdk∂iγkc − γck∂iγkd)

+
1

4
(∂dγ

2
ic − ∂cγ

2
id) +

1

4
(γdk∂cγki − γcm∂dγmi) +

1

4
(γck∂kγid − γdk∂kγic)

)

.

(B.0.12)

These relations, along with the expansion of the lapse and shift in eqs. (3.1.13), are inserted

into the constraint equations (3.1.9) and (3.1.10). The part of the Hamiltonian constraint

equation quadratic in field fluctuations is

4HM2
Pl∆θ

(2) +
M2

Pl

4

[

(γ′)ij(γ
′)ij + (∂jγkq) ∂jγqk

]

= −4a2α(2)V (ϕ0)

+ 2a

[

i

2

(

Ψ̄γa∂aΨ− (∂aΨ̄)γaΨ
)

−mΨ̄

[

cos

(

2ϕ0

f

)

− iγ5 sin

(

2ϕ0

f

)]

Ψ

]

, (B.0.13)

while the quadratic part of the momentum constraint reads

0 = 2M2
PlH ∂jα

(2) +M2
Pl

[

−1

2
∆β

(2)
j − 1

4
(∂iγ

′)jkγki −
1

4
(∂jγℓi)(γ

′)iℓ +
1

4
(∂iγjk)(γ

′)ki

]

− a

[

i

2

(

Ψ̄γ0∂jΨ− (∂jΨ̄)γ0Ψ
)

− 1

4
ǫjab∂a

(

Ψ̄γbγ5Ψ
)

]

. (B.0.14)
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Eqs. (B.0.13) and (B.0.14) can be solved to find the quadratic order lapse and shift

α(2) = ∆−1

{

1

8H∂j
[

(∂jγℓi)(γ
′)iℓ
]

+
ia

4M2
PlH

[

Ψ̄γ0∆Ψ− (∆Ψ̄)γ0Ψ
]

}

,

β
(2)
j = ∆−1

{

1

2
∆−1∂j∂k

[

(∂kγℓi)(γ
′)iℓ
]

− 1

2

[

(∂iγ
′)jkγki + (∂jγℓi)(γ

′)iℓ − (∂iγjk)(γ
′)ki
]

+
ia

M2
Pl

∂j∆
−1
[

Ψ̄γ0∆Ψ− (∆Ψ̄)γ0Ψ
]

− a

M2
Pl

[

i
(

Ψ̄γ0∂jΨ− (∂jΨ̄)γ0Ψ
)

− 1

2
ǫijk∂i(Ψ̄γ

kγ5Ψ)

]}

,

θ(2) = ∆−1

{

− 1

16H
[

(γ′)ij(γ
′)ij + (∂jγkq) ∂jγqk

]

− ia

4M2
PlH

(

Ψ̄γ0∂0Ψ− (∂0Ψ̄)γ0Ψ
)

− a2

M2
PlH

V (ϕ0)∆
−1

{

1

8H∂j
[

(∂jγℓi)(γ
′)iℓ
]

+
ia

4M2
PlH

[

Ψ̄γ0∆Ψ− (∆Ψ̄)γ0Ψ
]

}}

,

(B.0.15)

where ∆ = ∂i∂i is the spatial Laplacian, and ∆−1 is its inverse. In deriving these solutions,

we have disregarded fluctuations of the inflaton field because we are only interested in the

interactions between gravitational waves and fermions. The inclusion of inflaton fluctuations

introduces terms that are quadratic in the inflaton fluctuations, as well as terms quadratic

in the first order perturbation to the lapse and shift. We have also made use of the linear

order equation of motion for the fermion. This induces corrections to the action that begin

at fifth order in fluctuations and are thus irrelevant here.

We are now ready to evaluate the action, eq. (B.0.6), on the constraint surface and

eliminate the non-dynamical lapse and shift. Inserting the solutions to the constraints

(B.0.15) into the full action, eq. (3.1.5) + (3.1.8), we expand the result to quartic order.

This results in an action for the dynamical fields, ψ and γ, consisting of a quadratic (free)

part, S(2) and cubic and quartic parts, S
(3)
F and S

(4)
F , which describe the interactions of a

fermion bilinear with one and two gravitational waves, respectively. Because the constraint

equations are derived from the variation of the action with respect to the lapse and shift,

one can use their equations of motion before substituting in their solutions. This results in

the cancellation of a large number of terms, and leaves the result we report above in eqs.

(3.1.19) and (3.1.20).
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Appendix C

Interaction Hamiltonian

In this appendix we write the explicit forms of the interaction Hamiltonian terms eq. (3.1.21),

obtained by inserting the decompositions (3.1.22) and (3.1.24) into the actions in eqs. (3.1.19)

and (3.1.20). For the cubic term, we find

H
(3)
int = − 1

2
√
2MPl

1

a(τ)

∑

λ

∫
∏3
i=1 d

3ki

(2π)3/2
tλk1
ψ̄k2

γcψk3
Πλcj(k1)(k2 + k3)j δ

(3)(k1 − k2 + k3) .

(C.0.1)
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The various terms contributing at quartic order are

H
(4)
int,1 =

1

8M2
Pl

1

a2

∑

λλ′

∫
∏4
i=1 d

3ki
(2π)3

tλk1
tλ

′
k2
ψ̄k3

γcψk4
Πλcm(k1)Π

λ′
mj(k2)(k3 + k4)j

× δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,2 =

1

8M2
Pl

1

a

∑

λλ′

∫
∏4
i=1 d

3ki
(2π)3

[(

tλk1

a

)′

tλ
′

k2
ψ̄k3

γcγ5ψk4
ǫabcΠλaj(k1)Π

λ′
jb(k2)

]

× δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,3 =

1

8M2
Pl

1

a2

∑

λλ′

∫
∏4
i=1 d

3ki
(2π)3

[

tλk1
tλ

′
k2
ψ̄k3

γ0γ5ψk4
λ′k2Π

λ
bk(k1)Π

λ′
kb(k2)

]

× δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,4 =− i

2 aM2
Pl

(

1− V

4M2
PlH

2

)

∑

λλ′

∫
∏4
i=1 d

3ki
(2π)3

[

tλk1

(

tλ
′

k2

a

)′

ψ̄k3
γ0ψk4

(k23 − k24)

× (k1 + k2) · k1

|k1 + k2|4
Πλjk(k1)Π

λ′
jk(k2)

]

δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,5 =− 1

4M2
Pl

1

a

∑

λλ′

∫
∏4
i=1 d

3ki
(2π)3

{

tλk1

(

tλ
′

k2

a

)′

×
[

(ψ̄k3
γcγ5ψk4

)
ǫaic(k3 − k4)a
|k1 + k2|2

− 2i
(k3 + k4)i
|k1 + k2|2

(ψ̄k3
γ0ψk4

)

]

×
[

(k1)jΠ
λ
ik(k1)Π

λ′
jk(k2)− (k2)jΠ

λ
jk(k1)Π

λ′
ik(k2)− (k1)iΠ

λ
jk(k1)Π

λ′
jk(k2)

]

}

× δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,6 =− i

16M2
Pl aH

∑

λλ′

∫
∏4
i=1 d

3ki
(2π)3

[((

tλk1

a

)′ (
tλ

′
k2

a

)′

− k1 · k2

a2
tλk1

tλ
′

k2

)

× ψ̄k3
γ0ψk4

k23 − k24
|k3 − k4|2

Πλij(k1)Π
λ′
ij (k2)

]

δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,7 =

i

8M2
Pla

2H

∑

λλ′

∫
∏4
i=1 d

3ki
(2π)3

[

(

ψ̄k3
γ0∂0ψk4

− ∂0ψ̄k3
γ0ψk4

)

tλk1

(

tλ
′

k2

a

)′

× k1 · (k1 + k2)

|k1 + k2|2
Πλij(k1)Π

λ′
ij (k2)

]

δ(3)(k1 + k2 − k3 + k4) . (C.0.2)
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