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local energy, momentum and charge conservation; but also additional equations for evolution of

non-equilibrium variables. These equations with precisely determined phenomenological param-

eters can be obtained by the AdS/CFT correspondence. On the gravity side of this correspon-

dence, for vanishing chemical potentials, these phenomenological equations give all solutions of

pure gravity in AdS which have regular future horizons. We also discuss field-theoretic grounds

for validity of these phenomenological equations.
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1. Introduction and outlook

Modelling the space-time evolution of the matter created by ultra-relativistic heavy ion colli-

sions is a great challenge. Experiments at RHIC suggest the validity of the following picture [1] :

(i) a large fraction of the initial kinetic energy of the colliding ions is thermalized astonishingly fast

(in time ≤ 1 fm) forming a locally equilibrated hot and dense fireball parametrized by a profile of

the hydrodynamic variables - namely the temperature, four-velocity and chemical potential fields,

(ii) the strongly interacting fireball undergoes hydrodynamic expansion 1, and (iii) the initial trans-

verse hydrodynamic flow at the time of local thermal equilibration in most cases vanishes. Most

of the data at RHIC is in good agreement with this simplistic picture especially in the mid-rapidity

region, i.e. for the most central collisions at the highest beam energy of
√

sNN = 200 GeV. How-

ever, despite the success in explaining the transverse momentum spectra of hadrons, the elliptic

flow coefficient, etc., this does not reproduce pion interferometric data like HBT radii leading to

the well-known RHIC HBT puzzle.

It is necessary to have a better phenomenological model for the space-time evolution of the

fireball to explain the data completely, and also to reduce theoretical uncertainties. The best the-

oretical tool at hand for studying evolution of strongly coupled matter of gauge theories in real

time is the AdS/CFT correspondence. It is well-known that the AdS/CFT correspondence gives

η/s = 1/4π [2], while the current analysis of experimental data suggests 1 < 4π
(

η/s
)

< 2.5 for

temperatures probed at RHIC [3]. In fact, the AdS/CFT correspondence also predicts systematic

hydrodynamic corrections to the Navier-Stokes equation (for a review see [4]).

Here we will propose that the AdS/CFT correspondence can be used to develop a complete

phenomenology for the evolution of the strongly coupled matter, describing both the late stages

of local thermalization and the subsequent hydrodynamic expansion in an unified framework.

These phenomenological equations involve a closed set of equations for evolution of the energy-

momentum tensor and the baryon number charge current alone.

The advantage of our proposal is that there is a very natural way to connect the expansion of

the fireball with any model which describes the early stages of the collision process, as for instance

the parton cascade model [5]. All that is needed is to match the evolution of the energy-momentum

tensor and conserved charge currents before and after the matter enters in the strongly coupled

phase of evolution. The entry into the strongly coupled phase can be traced through the temperature

field given by the energy-momentum tensor itself as we will discuss later. Importantly, the matching

with the initial regime does not require the energy-momentum tensor to be hydrodynamic.

2. Field-theoretic grounds

Before we use the AdS/CFT correspondence to obtain the phenomenological equations for

strongly coupled irreversible processes, it will be useful to see on what field-theoretic grounds

we can use only the energy-momentum tensor and conserved charge currents to construct these

phenomenological equations. To keep the discussion simple, we will assume the baryon chemical

potential is zero all throughout the evolution. It is in principle straightforward to include the charge

currents.

1This is usually modelled by the relativistic Navier-Stokes equation.
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It is known that the Boltzmann equation with a collision kernel determined by two body parton

scattering and fragmentation processes can capture all perturbative non-equilibrium processes in

non-Abelian gauge theories [6]. It can be shown that the relativistic semiclassical Boltzmann equa-

tion has special solutions, named "conservative solutions", and are such that they can be determined

by the energy-momentum tensor alone [7]. In this approximation, the energy-momentum tensor is

parameterized by the first ten velocity moments of the parton distribution functions in phase space.

It can be shown that all the higher velocity moments of the parton distribution functions have spe-

cial algebraic solutions of their equations of motion, such that they are algebraic functions of the

energy-momentum tensor and its derivatives, having no independent dynamics. These algebraic

functions can be expanded systematically in the hydrodynamic derivative expansion and the non-

hydrodynamic amplitude expansion, to be discussed later. The energy-momentum tensor follows a

closed system of equations of motion, which includes the conservation of energy and momentum,

but also equations for evolutions of the non-equilibrium variables giving its complete evolution.

These equations can be obtained from the Boltzmann equation, and all phenomenological param-

eters including transport coefficients can be obtained from the collision kernel. Obviously, any

solution of these equations can be lifted to a unique full solution of the Boltzmann equation.

Furthermore, any arbitrary solution of the Boltzmann equation at sufficiently late time can

be approximated by an appropriate conservative solution, and any conservative solution becomes

purely hydrodynamic at late time [7]. The purely hydrodynamic solutions of Boltzmann equation

are known as "normal solutions" in literature [8]. So, we indeed get a field-theoretic justification

for using phenomenological equations involving the energy-momentum tensor alone in order to

describe general irreversible processes. Also these phenomenological equations describe transition

to hydrodynamic regime.

3. General phenomenology and AdS/CFT

In the strong coupling regime, the phenomenological equations of the evolution of the energy-

momentum tensor should be obtained from gravity. Using consistent truncations of equations of

motion of gravity, it can be shown that any solution of Einstein’s equation with negative cosmo-

logical constant maps to a non-equilibrium state in the gauge theory via AdS/CFT correspondence,

provided the solution has a regular future horizon. Furthermore, these solutions are determined

uniquely by the boundary energy-momentum tensor [9], which by the AdS/CFT dictionary maps

to the expectation value of the energy-momentum tensor in the dual state. It can be expected

that when the energy-momentum tensor follows phenomenological equations with right values of

the phenomenological parameters, the solutions in gravity will have regular future horizons - thus

gravity should determine uniquely all phenomenological parameters.

To construct the general phenomenological equations for the energy-momentum tensor, we do

not need either the Boltzmann equation or gravity, the latter are required only for determining the

phenomenological parameters [7, 10]. Any arbitrary energy-momentum tensor can be written in

the Landau-Lifshitz decomposition as :

tµν(x) = e(T (x))uµ(x)uν(x)+ p(T (x))Pµν(x)+πµν(x), with (3.1)

Pµν(x) = uµ(x)uν(x)+ηµν and uµ(x)πµν(x) = 0.
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The four-velocity uµ(x) is the local velocity of energy-transport. The non-equilibrium part πµν(x)

therefore is orthogonal to the four-velocity field and thus have six independent components; so

including the velocity and temperature fields we have ten independent variables. Conformality

requires e(x) = 3p(x) and πµν(x) to be traceless. We will also normalize the temperature such that

e(x) = (3/4) · (πT (x))4
.

The constraints of Einstein’s equations automatically gives the conservation of energy and

momentum :

∂ µtµν = 0. (3.2)

Without loss of generality, πµν can be split into a purely hydrodynamic part π
(h)
µν and a non-

hydrodynamic part π
(nh)
µν which cannot be determined by hydrodynamic variables alone. Thus,

πµν = π
(h)
µν +π

(nh)
µν . (3.3)

The hydrodynamic part, π
(h)
µν has a purely hydrodynamic derivative expansion, the expansion pa-

rameter ε is the ratio of the typical length scale of variation to the mean-free path. Requiring

conformal invariance, and using the AdS/CFT correspondence to obtain the transport coefficients,

we get up to second order in derivative expansion [4],

π
(h)
µν = −2(πT )3σµν +(2− ln2)(πT )2

Dσµν +2(πT )2

(

σ
α

µ σαν −
1

3
Pµνσαβ σ αβ

)

(3.4)

+ ln2(πT )2(σ
α

µ ωαν +σ α
ν ωαµ)+O(ε3),

where σµν is the shear-stress tensor, ωµν is the velocity-vortex, and D is the Weyl-covariant con-

vective derivative.

The non-hydrodynamic part π
(nh)
µν has an additional amplitude parameter δ , which is the ra-

tio of the typical non-hydrodynamic shear-stress to the equilibrium pressure. However, unlike the

hydrodynamic variables, in a local inertial frame where the energy flow vanishes, close to equilib-

rium π
(nh)
µν is slowly varyiing in space but not in time. So, at every order in amplitude expansion we

must sum over all time-derivatives, or to state in a Lorentz and Weyl covariant manner - all Weyl-

covariant convective derivatives D . Furthermore, it should be possible to set consistently π
(nh)
µν to

zero as we know that the purely hydrodynamic sector exists in both the Boltzmann equation and

gravity. Putting all these requirements together, and expanding both in ε and δ we get the most

general Weyl and Lorentz covariant phenomenological equation for π
(nh)
µν [10]:

(

∞

∑
n=0

D
(1,n)
R (πT )n

D
n

)

π
(nh)
µν =

(πT )λ1

2

(

π
(nh)α
µ σαν +π

(nh)α
ν σαµ −

2

3
Pµνπ

(nh)
αβ σ αβ

)

(3.5)

+
(πT )λ2

2

(

π
(nh)α
µ ωαν +π

(nh)α
ν ωαµ

)

−(πT )4
∞

∑
n=0

n

∑
m=0

n+m is even

D
(2,n,m)
R (πT )n

n

∑
a,b=0
a+b=n
|a−b|=m

[

D
aπ

(nh)α
µ D

bπ
(nh)
αν

−1

3
Pµν D

aπ
(nh)
αβ D

bπ(nh)αβ

]

+O(ε2δ ,εδ 2,δ 3).
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It is very hard to give a general proof of validity of this equation in gravity, nevertheless it

has been shown that it reproduces the gravity solutions dual to homogeneous relaxation [10]. In

such cases, the hydrodynamic variables are constant in space and time, while π
(nh)
µν is spatially

homogeneous. Such solutions also exist in the Boltzmann equation. It describes well the transition

to local equilibrium. It has been found that the future horizon is regular, provided all convective

derivatives are summed over at each order in the amplitude expansion as expected. Furthermore,

we obtain a complicated recursion relation for the phenomenological parameters D
(1,n)
R and D

(2,n,m)
R ,

the first few terms being [10]:

D
(1,0)
R =−1, D

(1,1)
R =−(π/2)− (1/4) ln2, etc.; D

(2,0,0)
R = 1/2,etc. (3.6)

In order to obtain other parameters in (3.5) like λ1, λ2, etc. it will be necessary to consider

more general inhomogeneous configurations. Proving that the eqs. (3.1), (3.2), (3.3), (3.4) and (3.5)

give all solutions of pure gravity in AdS with regular future horizons for right phenomenological

parameters, which have been partially determined here, will give us further confidence in these

phenomenological equations 2 .
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2In practice, one needs to use these equations in a coordinate system better adapted for the late equilibrium state of

the fireball which is an ideal fluid undergoing boost-invariant expansion. This coordinate system comprises of the proper

time coordinate τ of the late time expansion, the coordinate y parameterizing rapidity, and the two transverse coordinates

x1 and x2.
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