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The phenomenological rules governing the values of electrical barriers between
metals, and semiconductors or insulators are reviewed. The barrier energies on
ionic insulators are shown to vary strongly with metal electronegativity, while in
the case of covalent semiconductors, the barrier energies are relatively independent
of the metal. The barrier energy from the metal Fermi level to the conduction
band of the semiconductor is shown to be approximately two thirds of the
semiconductor band gap with certain exceptions. The success of a simple barrier model

in accounting for the properties of the barrier are reviewed. The variation of
barrier energy with electrical field is reported for Al-SiO,, Al-GaSe, and
Al-GaAs and compared with simple theory including image-force lowering and
field penetration into the metal. Transport through interfacial barriers is illustrated
by discussing transport through metal-GaSe-metal structures and metal-InAs

Schottky barriers.

. INTRODUCTION

The study of electrical interface barriers dates back to
1874, when K. F. Braun! observed that an interface
formed by a metal wire brought into contact with a
lead sulfide crystal carried current more easily in one
direction than in the other. While this result was rather
puzzling at the time, it can be explained by postulating
that a certain energy is required to take an electron from
the Fermi energy of the metal and place it in the conduc-
tion band of the lead sulfide crystal. This energy is
called the interfacial barrier energy ¢s. Since that first
observation, interfacial barriers have been studied
extensively by a large number of workers.? In this paper
we would like to summarize some of the results of these
investigations and place them in a form to highlight
their importance in theoretical considerations of this
phenomenon.

We divide our discussion into three parts. First, we
summarize a series of empirical rules which tell how the
magnitude of the barrier energy varies as we change the
metal on a given insulator or semiconductor, and how
large the barrier energies are on a covalent semicon-
ductor. Second, we discuss the variation of the barrier
energy with electric field. Finally, we summarize the
various modes of current transport across (or through)
interfacial barriers.

il. EMPIRICAL RULES FOR BARRIER ENERGIES

From the study of the size of ¢p for a rather large
number of semiconductors and insulators, two empirical
rules have been noted. The first of these rules deals
with the variation of ¢ on a given insulator or semi-
conductor as we change the metal electronegativity.
The second deals with the magnitude of ¢ for metals
on covalent semiconductors.
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Let us start with the first of these two rules. Simple
considerations of how the barrier forms® suggests that
¢n should be written as the difference of two quantities:
one characteristic of the metal vacuum interface, and
the other characteristic of the insulator-vacuum or
semiconductor-vacuum interface. The first of these
is the work function of the metal ¢w, the energy re-
quired to take an electron from the Fermi energy of the
metal into the vacuum; and the second is the electron
affinity of the insulator or semiconductor x., the energy
gained by taking an electron in vacuum and placing
it at the bottom of the conduction band of the semi-

Fi1G. 1. Barrier energies
of various metals on
Si0;, GaSe, and Si
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conductor or insulator. That is,
¢$p= dw— Xs (1)

The work function characterizes the metal-vacuum
interface and is not ideally suited to the metal-solid
interface. For this reason and the fact that accurate
values of ¢w* are not readily accessible for all the
metals of interest, we will use the electronegativity?
of the metal Xm. The values of ¢w are closely related
to those of X'u except for a constant. This substitution
has no important effect on the results that are to follow.
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F16. 3. Barrier energies for zinc-blende materials as a function of

the band gap of the semiconductor (after Ref. 14).
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Hence, we have that
¢B=Xm—xs+const. (2)

This simple argument would lead us to conclude that the
barrier energy should increase linearly as we vary the
electronegativity of the metal with a slope of unity.
More generally, we might write that

¢3=SXwm+const., (3)

where Sis the slope of the variation of the barrier energy
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FiGc. 4. Al-SiO, barrier energy as a function of the square root of
the electric field in the SiO; (after Ref. 16). The dashed curve is
given by the first and second term in Eq. (5). The solid curve
includes all the terms in Eq. (5).
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F1G. 5. Al-GaSe barrier energy as a function of the square root of

the applied bias (after Ref. 17). The solid curve is the values
obtained from Eq. (5).

with the electronegativity of the metal. The simple
theory would suggest that S should be unity.

In Fig. 1, we have plotted the values of ¢ vs Xu
for three different insulators or semiconductors SiO,,
GaSe, and Si. In the case of SiO,, the slope S is approxi-
mately one. While in the case of GaSe, it is 0.6; and in
the case of Si, it is approximately zero. This shows that
the values of S can be quite different from the simple
theory; and, since SiO; is more ionic than GaSe which
in turn is more ionic than Si, it suggests that the value
of .S depends upon the ionicity of the semiconductor or
insulator. To illustrate this point further, we take as a
measure of the ionicity of an AB compound?®*$ the
difference in the electronegativities of the two consti-
tuents

AX=Xu—Xa, 4)

where X, is the electronegativity of the species A and
X p is the electronegativity of the species B. Then if we
plot S vs AX, we obtain the rather surprising results
shown in Fig. 2.7 The value of S is quantitatively
determined by AX with S remaining small for AX <0.7
and then changing rather rapidly to a value of S equal
to unity for AX >0.7. That is, for ionic materials where
AX>0.7, ¢p varies directly with the electronegativity
of the metal. While for AX <0.7, ¢ depends rather
weakly on the electronegativity of the metal.

Since the behavior of the more ionic materials can
be understood qualitatively in terms of the simple
ideas mentioned above, most theoretical effort’—1
has been concentrated upon accounting for the behavior
of the more covalent materials and explaining why an
abrupt transition in behavior should occur when
AX =0.7.

The second empirical rule for barriers deals with the
magnitude of the barrier energy of a metal on covalent
semiconductors. If one studies the size of ¢p for the
covalent semiconductors, one finds with a few exceptions
that the barrier energy is at approximately % the band
gap E.'* To illustrate this point, Mead and Spitzer
have plotted the barrier energy of Au on a number of
different covalent semiconductors as a function of the
band gap of the semiconductor in Fig. 3. The straight
line in the figure is the line ¢ =2F,/3.
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Fi1G6. 6. The change in the Al-GaAs barrier energy as a function of
the electric field at the interface (after Ref. 18). The two methods
of experimentally determining the barrier energy are discussed
in Ref. 18. The curve labeled image force is that obtained from
Eq. (5). The curve labeled surface states includes an exponential
charge density in the GaAs as discussed in Ref. 18.

In summary, the barrier energy varies according to
Eq (2) for metals on ionic materials and is relatively
independent of the metal for metals on covalent semi-
conductors. For metals on covalent semiconductors,
the barrier energy is approximately 2 of the band gap.

lll. VARIATION OF BARRIER ENERGY WITH
ELECTRIC FIELD

When an electric field is applied to the metal-insulator
structure, we might expect that the electrical barrier
would be dependent upon the size of the electric field.
The simplest theory includes the image force potential
of an electron in the insulator and the field penetration

Fig. 7. Energy band
diagram of an Al-GaSe-
Au structure under zero
applied bias (after Ref.
17). Hole energy in-
creases downward E,
is the bandgap of GaSe,
2.0 eV. ¢a1 is the
Al-GaSe barrier energy,
1.05 eV. ¢au is the
Au—GaSe barrier energy,
0.52 eV. Ep is the
Fermi level.
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F1G. 8. Current—voltage characteristic of an Al-GaSe—Au structure
(after Ref. 17). The dots are experimental data; the solid line is
calculated as described in Ref. 15. The insets show the partial
band diagram of the Al-GaSe-Au structure and illustrate the
various bias conditions.

into the metal.’® This theory gives

gE ¢}
¢=¢o—(—) —KL\E, (5)
7I'€4KH

where ¢, is the zero field barrier energy; Ky and K1,
are the high- and low-field dielectric constants, respec-
tively; and M is the Thomas—Fermi screening distance
in the metal. While there is not a lot of data available
on the field dependence of the barrier, there have been
measurements on Al-SiO, (ionic),'* Al-GaSe (inter-
mediate),'” and Al-GaAs (covalent).18

The data on AI-SiO, (Fig. 4), and that on Al-GaSe
(Fig. 5) are in good agreement with Eq. (5). The data
on Al-GaAs (Fig. 6) is in definite disagreement with
Eq. (5). Better agreement can be obtained by postu-
lating a charge distribution in the GaAs which is
exponentially damped away from the Al-GaAs inter-
face. This charge distribution is attributed to occupied
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interface states. While the data are incomplete in that
only a few materials have been measured, and the
experiments are rather difficult to perform and are
subject to a number of unknowns such as dopant
charge distribution in the semiconductors, these results
do suggest that there is a correlation between deviation
from Eq. (5) and the covalency of the material.

IV. ELECTRICAL TRANSPORT OVER AND
THROUGH INTERFACIAL BARRIERS

The electrical barrier at the interface between a
metal and an insulator or semiconductor can be ex-
plored experimentally by studying the transport of
current through the interface. This can be accomplished
in two ways: First by exciting electrons over the barrier
using light and studying the photocurrent,? and second
measuring the current transport due to electrons which
are thermally excited over the barrier!” or due to elec-
trons which tunnel through the barrier.®¥~2 In this paper
we concentrate upon the second of these two methods.

One of the simplest ways of studying the influence
the interfacial barrier on current transport is to make
samples in which the current transport is limited by
the interfacial barrier. One such structure consisting of
Al, a thin layer of GaSe, and Au is shown in Fig. 7.
In this case the barrier energies are measured from the
Fermi level of the metal to the valence band of the
GaSe. The values of the various parameters relevant
to GaSe are given in Ref. 17.

If the thickness of the GaSe layer is greater than a
few hundred Angstroms, then the current is carried by
carriers which are thermally excited over the barrier.
Hence the current should vary as the number of carriers
which have a thermal energy large enough to surmount
the barrter. That is,

J~Jyexp(—oesi/knT), (6)

where ¢.¢; is the barrier height limiting the current
flow. Current—voltage characteristics, /-V, like those
given by Eq. (6) are observed in Au—GaSe—Al struc-
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FiG. 9. Theoretical (normalized) current distributions for a
reverse biased 600 A thick Al-GaSe—Au structure (after Ref. 17).
The solid curves illustrate the shape of the image-lowered potential
barrier; the dotted curves represent the distribution, as a function
of hole energy E, of the injected carriers.
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F1G. 10. Current as a function of 1000/T for the Au electrode
buried +0.75 Volts on a 600 A-thick Al-GaSe-Au structure (after
Ref. 17). The dots are experimental data ; the solid line is calculated
as described in Ref. 15.

tures as shown in Fig. 8. In the “low forward” the cur-
rent flow of holes from the Au is limited by the Al-GaSe
barrier which is reduced in value with respect to the
Fermi level of Au. In the “high forward” the current
flow of holes from the Au is limited by the Au—-GaSe
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barrier which in the first approximation does not move
with respect to the Fermi level of the Au. However,
once the image in the metal of the carrier in the insulator
is included in the calculation of the barrier shape, the
barrier becomes field dependent and lowers slightly
with increasing bias.!” This leads to the observed
increase of current with voltage.

In the ‘“‘reverse direction’ the current is due to holes
from the Al and is limited by the Al-GaSe barrier. As
in the case of the ‘‘high forward” the barrier height
should vary slowly with bias due to the image lowering
of the barrier. However, the current increases more
sharply than predicted by the simple-image lowering.
The rather large rate of increase of the current with
applied bias is due to the fact that the barrier can be-
come so sharply peaked at high biases that holes can
actually tunnel through the top of the barrier. This
phenomenon is illustrated in Fig. 9, where we have
plotted the distribution of current due to holes as a
function of the hole energy along the barrier shape.
As can be seen from this figure, the current at a small
bias is carried mainly by carriers coming over the top
of the barrier. While at a large bias, the current is due
mainly to the electrons which have been thermally
excited and then tunneled through the top of the
barrier.

One simple experimental verification of the current
expression given in Eq. (6) is the temperature de-
pendence of the current. One would expect that the
current for fixed voltage should decrease exponentially
with 1/T with a slope given by the barrier energy
divided by Boltzmann’s constant. In Fig. 10 we have
the results of measuring the temperature dependence
of the current when the sample is biased in the ‘“high

3
(0% "easwe EXPERIMENT 574
THEORY Al-GaSe-Au

J (cmps/cmz)

vV
Au P

S Al
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Fi1G6. 12. Current—voltage curves, for both directions of applied
bias, of a number of Al-GaSe-Au structures (after Ref. 19). Solid
symbols represent experimental data. The solid lines are theoretical
curves generated in a manner described in Ref. 19.
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Energy distributions of tunneling electrons and corresponding band diagrams for two Al-GaSe—Au structures (after Ref. 19).

The calculation of these distributions is described in Ref. 19. The number beneath the peak of each distribution indicates the absolute
magnitude of the peak relative to the peak of every other distribution in the figure.

forward.” The correct exponential activation of the
current is observed.

For very thin samples, less than 100 A, the current—
voltage characteristic of the devices is different from
those observed for devices with thicker insulators.
In this case the current is due to the tunneling of
electrons through the insulator. One might expect that
the wavefunction of the tunneling electron would be
exponentially attenuated as it passes through the
insulator. The attenuation would in the simplest case
(of relatively small electric field) be dependent upon the
energy of the electron relative to the valence band.
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Hence, we would expect that the probability of an
electron in the metal with a given energy E tunneling
would be given by

P(E) =exp[—2 / k(e)dx], )

where k(e) is the decay constant for a given energy e
measured with respect to the valence band or conduction
band of the insulator, and the integral is taken over
the distance x in which the electron is in the forbidden
gap of the insulator. We can distinguish two cases:
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Fi1G. 14. Experimental current-voltage curve of an 83 & thick
Cu—~GaSe—Au structure is shown by the solid symbols (after Ref. 19).
The solid curve is the theoretical current—voltage curve described
in Ref. 19.

One in which the electron has an energy such that
it is in the forbidden gap of the insulator during the
entire distance across the insulator, and one in which
the electron has an energy such that it is in the forbidden
gap of the insulator only during part of the distance
across the insulator. We discuss the former case first.

In this case, the total current density J would be
given by the integral over those electrons which are
below the Fermi energy of one metal and above the
Fermi energy of the other metal.’® That is

J=A/dE P(E), €]

where A is approximately constant.” In the case of
GaSe, all the tunneling characteristics can be explained
by using the function k(e) given in Fig. 11. (The zero
of energy is taken at the valence band edge in this
figure.)

Typical experimental current—voltage, I-V, char-
acteristics as a function of thickness are shown in Fig.

TUNNELING
PATH

Fi1G. 15. Energy dia-
gram of a thick metal
insulator-metal struc-
ture under high applied
bias. Note that the tun-
neling distance is ¢/F.
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F16. 16. Fowler Nordheim plot of the current voltage character-
istics of SiO;~Mg (after Ref. 21). The current is normalized such
that it is one at the lowest fields.

12. In this figure we have also included the current-
voltage characteristic to be expected from an equation
similar to Eq. (8).1® The agreement of the experimental
I-V with the theoretical I-V for a number of different
thicknesses using a single function k(e) verifies at
least qualitatively that the tunneling model gives a
good account of the I-V characteristics. To give some
idea of the dependence of the distribution of tunneling
electrons upon the thickness of the insulator, we have
plotted the current distribution for a few voltages in
Fig. 13. From this figure one can see the big difference
in the current distributions for the two different thick-
nesses. Finally, we consider the result of changing one
of the interfaces. That is, we replace the Al by Cu and
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measure the I-V characteristic of an Au-GaSe—Cu
structure. The resulting I-V characteristic is shown
in Fig. 14 along with the theoretical I-V curve com-
puted from Eq. (7). The agreement is quite good.

When the potential applied to the sample is large
enough, we have a second type of tunneling called
Fowler—-Nordheim tunneling.?® In this mechanism of
current flow, an electron near the Fermi energy of the
metal tunnels into the insulator and then is trans-
ported across the insulator into a second collecting
metal (see Fig. 15). In this situation the current is given
by the probability that the electron tunnels through
the uppermost triangular part of the barrier. The
distance that the electron has to tunnel is given by
¢/F, where F is the applied field (see Fig. 15). Hence,
the current-voltage characteristic should go as

—2¢k
J=J, exp[— , (8)
F

where k is the average decay constant of the wave-
function in the insulator at energies from ¢ to the con-
duction band. An experimental I-V characteristic for
Mg-SiO, interface? is given in Fig. 16 where the log
of J is plotted as a function of the reciprocal of the
field. The agreement is quite good between theory and
experiment.

Finally, one can observe tunneling in Schottky
diodes made with fairly heavily doped semiconductors.
Parker and Mead? have studied this phenomenon in
Au-InAs, Cu-InAs, Al-InAs Schottky diodes. In these
experiments, they find that the I-V characteristics are
accounted for by assuming that the electronic wave-
function for energies in the forbidden gap is attenuated
exponentially with an attenuation constant versus
energy as shown in Fig. 17. This attenuation coefficient
vs energy is that expected from the bulk band structure
of InAs.
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V. SUMMARY

In summary we have reviewed some of the empirical
rules governing the barrier energies at metal-semi-
conductor and metal-insulator contacts and found
that there are some striking regularities in the variation
and magnitude of the barrier energies. We have also
reviewed the change in the barrier energy with field
and the various modes of current transport through
interfaces and shown that there is quite good qualita-
tive, if not quantitative, agreement of the experimental
results with highly simplified model theories of transport
through interfaces.
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