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1. - INTRODUCTION

The possibility of carrying out direct Yei collisions at the Stanford
Linear Collider (SLC) has recently been noticedl). It is proposed teo use a
laser beam (with energy EY < 5 eV) in order to produce an intense and high
energy (EY < 40 GeV) photon beam from backward Compton scattering 02 cne et
bunch of the SLC. This second photon beam then interacts with the e bunch
going in the opposite direction (Ee = 50 GeV) so one gets Yet collisions
with total energy vs < 90 GeV in their centre-of-mass. The luminosity is ex-
pected to be only slightly weaker than the designed e'e” luminosity of the

SLC, i.e., of the order of 10%° cm™* sec=!.

This should be compared with another way of doing yet collisions, i.e.,
ete”™ inelastic scattering with gquasi-real photon exchange (Fig. 1}; in this case
the effective lumincsity is the preduct of the luminesity L of the eTe” stor-
age ring times the quasi-real emission factor K. With L = 10%! to 10°? cm” 2
sec™ and <X(E,2)> = 1070 for E = 2B, = 100 to 200 GeV and z = V5/E =

A
= 1/2 one gets an effective vye~ luminosity at least comparable to the above

1t

one. However, a realistic comparison should take into account detection effic-
iency and background problems which depend on the kinematics of each channel

+
that one wants to study. Direct vye~ collisions may appear more appealing be-

cause of their simpler kinematics.

+
Independently of the device to be used, the physics of vye™ collisions is
very interesting. Cne would have new ways of studying the behaviour of electron
and photon interactions at high energies, the deep structure of electroweak in-

teractions and the possibility of new currents and new particles.

First there are well-known reactions like Compton scattering or lepton pair
production which provide interesting tests of QED in kinematical domains which
have not yet been explored, being different from those accessible in ete”
annihilation. For example, one can study the behaviour of the electron prop-
agator in the {s channel) time-like region; one can look for the formation of
*)

an excited lepton (e which would appear here as a simple resonance. These

QED reactions will also be useful for monitoring and for initizl vy and e

polarization analysis.

+
Weak interactions can first be studied through the production of Z and W™
bosons (ye - Ze and vye -+ wtve); as soon as vs > M, or M+ the cross-

section is sizeable . This is especially interesting for W% production which
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will be rather difficult to do in e’e” or hadronic collisions. Ye > Wive
als¢ offers the possibility of studying the yWW vertex and its Yang-Mills

form.

There is a large class of interesting electroweak reactions going via one
boson exchange (y,z,w*). The simplest one with the largest cross-section is
obviously the quasi-real vy exchange process that one can express in terms of
vy cellisions. For this study the advantage of direct Yei collisions with
respect to e*e”  inelastic scattering is the simpler kinematics. The bosonic
state (B) coupled to yy is produced along the incident v direction in a
simple two-body ve + (B)e. All the interesting features {(C=+1 resonances,
exotic states, boson and fermicn pairs, leptons and quarks,...)} looked for in vy
collisions can be observed here this way. At a lower level one has 7 and wi
processes which are also interesting to study in the form of +vZ and ywi col-
lisions. They appear as true weak processes, but the backgrounds can be reduced
if one looks for parity or charge conjugation violating terms (using ye+fye—

cemparisons and polarized beams).

The final and perhaps most exciting process is the hunting of new currents
and new particles. There are several possibilities for them to appear here. New
fermions can be formed in the direct channel or exchanged in the u channel;
new bosons can be exchanged in the t channel; both of them can appear in two-
body reactions +vye -+ B + F. Such reactions will occur copiously if vertices
like ~eF, +vyB, Yw*s*, eeB?, eFB, evBi,... exist. There is a large set of pre-
dictions for such particles in recent models based on unified theories, super-~
symmetry or subconstituents. For example, one can think of neutral o¢r charged
Higgs bosons, elementary fermions and scalars, new bound states, pseudo-Goldstone
bosons,... . It is very cften asserted that several new phenomena, and in par-
ticular the production of new kinds of states, should appear at a scale of the
order of 100 GeV (the weak interaction scale). In this energy range the elec-
tron could appear as a compeosite object. It is possible that some aspects of this

+
new physics show up in +vye™ collisions,

For these reasons we have thought it valuable to develcp the phenomenological
aspect of these ccllisions which have not received much attention so far. 1In
this paper we examine systematically the 1list of simple reactions which can be
obtained from yei collisions. We give the basic phenomenclogical tocls for
their descripticn and the results for the c¢ross-sections. These results are
given in the case of polarized beams, transversally or longitudinally polarized

+
e” and circularly or linearly polarized vy. We treat simultaneously the cases
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of ye~ and ye® collisions. Many interesting effects can come out of the
Ye+/ye' comparison with different pclarization states. These results are applic-
able to the case of direct Yei collisions as well as to the case of guasi-real
Yet collisions in e¥e” inelastic scattering using the corresponding photon

emission factor.

The organization of the paper is as follows. Kinematical generalities,
notations and relations between inelastic e'e” scattering and quasi-real Yei
collisions are given in Section 2; technical details can alsc be found in
Appendices A and B, Section 3 is devoted to QED reactions (Compton scattering,
QED violations, e* effect, lepton pair production). In Section 4 we give the
cross=-sections for z° and w* production. Boson exchange processes are ex-
tensively studied in Section 5 with application to single boson and to particle
pair production, particularly in the quasi-real vy limit. In Section 6 we
collect a list of simple reactions where new currenis and particles can appear
and we give in each case the expression of the cross-section in terms of coup-

lings written in a rather general form,
This is obviously only a first phenomenolegical approach to the subject
+
which should receive many physical and technical developments when <ye™ have

been planned.

2. - KINEMATICAL GENERALITIES

+
2a. Definitions and notations for ye™ collisions

We shall generally describe Yei collisions in the centre-of-mass (c.m.)

frame depicted in Fig. 2.
The ei and vy c.m. momenta are respectively:
~ 0 h
g = (20,0, ¢) k,_(k,a/o_/—k)

with k = & = 8% (if m, = 0 is used); see Appendix A for tensorial notations

and metric.

We define s = (4+k)? and o* = (a+k)¥ = /5,0,0,0). Electron spin states
are described by spinors u(l,E) [and v(e,£} for positroné] with the beam den-

sity matrices:
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e b4y

Qe = 1 is the electric charge of et in unitas of e,

The et polarization four-vector containing longitudinal and transverse

components is defined according to Fig. 2b:
t 4 ) (2.2)
5 = (nTe_‘PL Freosp | Bosing, —'_P

In general we set m, = O except in the expressions of the propagators of photon
or electron exchange processes which control the forward or backward peaking of
the angular distributions. Photon polarization states are described by the four-
vector e"(k,A), with ﬁ||—OZ, A = *¥1 being the helicity states in the c.m.
frame of Fig. 2. One has:

s 4 ;
& (&, _—_—-(o N -1 o)
()) VZ F AR /
Photon beam density matrices will be used in the helicity basis:
A+§2_ ";S'H';»l
- _ A=
;5 §4 SZ

with the Stokes vector components ¢, the linear polarization along (OXz0Y),

L, = X the mean helicity and Z, the linear polarization along 0X or OF.

{2.3)

f;'.:.

BN

In configuration space we also use

NI R 5 2507 -is €7
L e (g Lty )+ (8- Zz) S G ~L5 € kg 5.4
with
QF.V:: 4 (n"n” hhn")-—i S, (“ e ﬁﬂ)
;J—z—_;ﬂ;c 3@3 )

ng (i=1,2,3) being a three-~basis of unit vectors associated with & such that
n,[[-0X, A,|[0Y and A,|[k||-02. So we get the helicity components:
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EON)=EREBNE = 1 [S + 20000 +i 2 0x) *2o = (2.5)

Photon ei cross~-sections will be calculated with the usual normalization:

o~=(zrr4me_fdf1e lR;u\ (2.6)

with the phase space

N dsb
ds, = e e ) % (1)

and N =m o¢or 1l/2 for fermions or bosons.

For vye or Ye+ collisions we shall write the amplitude as Bfi z
= eufuu(i,i) or Rp. = EHG{R,E}tu; the polarization dependence of the cross-

sections will appear through
2 kv
mgal =EF T (f)e. Trn))

i =t kt t i .
with Tuv vtu or tutv respectively

The unpeclarized case is cbtained by putting PL’ PT, X and 3 to zero.

Neglecting m, //" means that if no other massive lepton appears in the pro-
¢ess and if no flnal polarization is measured, the initial e transverse polar-
ization PT will not appear; only the longitudinal component PL remains.

The integrated cross-section of any process +ve » (f) giving a final state (f)

will have the general form:
=06, + G?Q-Fi_ + Gy A+ 0y >‘T1- (2.7
without e* transverse or v linear polarization terms.

Differential cross-sections (for example two-body reactions vye » A + B)
will in general have PT and E dependences associated with azimuthal terms

{cosd, sing, cos2d, sin2¢).

For two=body reactions ye » B+ F where B and F represent bosonic and

fermionic states, we shall use the kinematical invariants:
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- ~r m
b:(k-ﬁ)=[€~i—') , u:(k-F) = (1 B) ; s+b+u LIRS
In the +ye centre-of-mass frame of Fig. 2, (8,¢) being the angles of the direcw

ction of the fermion momentum ﬁ, we have:
2 2
b= 2 (F-Feos®) = mZ 20 (B°-Beos &)

w = Yn; 28 (Fo-t-Fc.os 9) = Yné W (B8°+Bcos 9) ;

It will be convenient to compare the magnitude of vye cross-sections with the
point-like cross-section defined in e'e” annihilationz) o = 4ma?*/3s and to
use units of R = 0/0,. The simplest QED reaction in vye cgllisions, i.e.,
Compton scattering vye -~ ye, as well as several other simple reactions, appear
to have cross-sections with a magnitude ¢f the order of co(le). In order to

appreciate numbers given later on let us recall that

o~ 37mb le. o n35,44,9 pb for 5= 50, 80,100 GeV
S
(6e¥*)

(1 'ﬁb = 403Pb = 40-33071\2') v

In Appendices A and B more technical details are given such as Dirac matrices,
standard electroweak couplings and Lorentz transformations from the +ve c.m.

frame to other frames.

2b. Quasizreal ye”_collisions in_e’el inelastic scattering
- +
The one-photon exchange process in e'e” inelastic scattering [e'+e” -
+
-+ e'+(Fi)] indirectly allows +ye~ to be reached, see Fig, 1. It will be in-
+
teresting to compare the advantages and drawbacks of direct vye™ collisions at
+ -
linear colliders with those of quasi-real vye™ collisions at conventional ete

storage rings.

The e'e” inelastic process becomes important when at least one lepton (e')
is scattered forwards; in this case the photon propagator is very large because
k? = (p-p'i2 = 2m; - 2p°p'® + 2pp'cos® almost vanishes. The final sEate (F%)
of the +vye~ collision propagates in the direction of the incident e~ beam with
a total momentum |§| = (E®~s)/2E, E being the total energy in the e'e” c.m.

+ +
and Vs the invariant mass of the vye or (F ) system.

L I T Ly T VR P
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We write the amplitude corresponding to the process of Fig. 1 as:

Re: = -

would correspond to the subamplitude of the Yei collision and Q' is

) N )
QZQ Tp) Y w(p) ‘j-rk . (2.8)
et
the charge of the lepton e' which emits the photon. For each Yei > (F*) sub-
process for which J is known, one can calculate exactly the cross-section

+ +
of e'e- =+ e'F:

10 kY

o 2Tme (o L, TT (2.9)

dslp' - EZ F k
with

/ i Y, » ) ’ f o
Lo = BB+ P ~# P80 HO B Epuger F 210

P! being the longitudinal polarization of the incident lepton ¢!, In any case
L

2)-4) for the estimation of the cross-

one can use the quasi-real approximation
section integrated over the polar angle 6 of the scattered lepton; it consists
of retaining only the components of JIJ transverse %o ku and taking their

values at k? = 0. The result can be written

-3
2 2 o2 - E¥(E%s)
o« | @E>s)Y+s T ]_95_
fzz[__gﬂ___ o ~28 P (2E s)crT in Log———-—-——mé =< (2.11)
where

O'“_r_-_— ji' [0‘(-\-) ¥ G‘C—)] , BTT': .iz'. [5‘(.,_)_. o-(_ﬁ

are respectively
yet cross-gsections with unpeclarized and circularly polarized quasi-real photons.
See Section 5 for a similar application and more details about the guasi-real
approximation. The linear photon polarizaticn dependence disappeared during the
integration over the azimuthal angle of the scattered lepton e'(p'}. The cir-
cular photon polarization exists only when the incident lepton e' is itself

longitudinally polarized.

In the simplest unpolarized case let us write:

ds_ K(Ez) o3 (2.12)
42
with 2 22
22 =z E é&—Zi)
Kz=)= 22 [0 5 Jlo s
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the quasi-real photon emission factor with =z = Vs/E. K{E,z) is a rapidly
decreasing function of =z for E fixed. The same factor will be studied in
Section 5 (see Fig. 14 and replace E? by s and gz by x). For E = 100 GeV
and z = 1/2, K(E,z) = 0.1. This expression supposes noc experimental angular cut-
off, no strong k? dependence of the Yei cross-sections and it neglects m,

everywhere except in the photon propagator.

In the case of a single fermion Fi of mass MF' spin J = 1/2 and

+ +
partial decay width Fye for F” > ye™ one can write:

G'(e)e-i——‘-?&":t) =%7;2— Cx 5 K(E,Z> (2.13)
£

with 2z = MF/E.

If one considers the particular case of Yei + {B} + eJ’r itself going through
one photon exchange (see Section 5) the corresponding inelastic process ete™ »
+ete” 4 (B) goes through a double quasi-real photon exchange. Instead of ap~
plying the single photon emission factor [K(E,Z)K(s,x)] twice one can use

directly the vy luminesity factor in ete” scatteringa)—q):

et e'e(B) v ¥ —>(B)
is LK 5y 2w
dy ¥y
with

2.
K, (69) =2 [0 3 g5 - L pe)(3es®)] (RLea )

for y = W/E, W being the +yy invariant mass. In the case of a single boson

B of mass M, spin J and vy decay width FYY:

et st B 2
427+ 4) T
& = ( - ¥ .‘an»(E;S) (2.15)

with v = M/E.

For each yei + (Fi) reaction using the above approximation it is now easy to
compare cross-sections of direct Yei collisions with those of e'e” » eF Fi)
going through quasi-real photon exchange. With a high energy storage ring {total
c.m. energy FE = 100 to 200 GeV) the obtainment of high energy Yei collisions
(/5 = 50 to 100 GeV, i.e., z > 1/2) costs a factor X less than 0.1. This
may be compensated for by a higher initial luminosity. The designed ete”
luminosity is fixed between 103! and 10%% em™? sec™ 3 for the storage ring

projects, whereas for direct Yei collisions at the SLC the luminogity was
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estimated to be around 10%° cm™? sec™ 1) on the other hand, the kinematics
-+

of direct ye~ collisions is simple. So it is only with a precise estimation

of detection efficiencies and background problems that one will be able to con-

clude that one way is better than the other for each particular Yei + (F%)

channel.

3. - QED REACTIONS

3a. Compton scattering
+
At lowest order in QED the reaction Yei + ve” 1is described by the two
diagrams of Fig. 3. With the standard couplingsz) one gets the differential

cross-section

de . [ t CA"'-;?L)"‘EL:(A’IP’-) + ZJ . (3.1)
AL 2s

. + . . - - -
There is no effect of e® transverse polarization or of vy 1linear polarization

because m, = G. The u and s poles can be killed by choosing longitudinal

photon and electron polarizations X = PL or X = —PL respectively. The un-
polarized cross-sectioné):
NP 2
de _ % (54»—:—4-2.) (3.2)
- = o w
di 25

is strongly peaked backwards. This peak provides for the major part of the
integrated cross-section. Keeping the electron mass term in the propagator

l/u—mg, one gets:
LU 3
¢ = E;—V*2J$é@+mg)]- (3.3)

For example, at s = 100 GeV one gets GNP ~ 330 pb (i.e., R = 36); the

large angle contribution 30° <9 _5_1500 is only GNP = 47 pb (i.e., R = 5.3).
This reaction provides tests of QED for fermionic channels. It is complementary
to the crossed reaction e'e” vy (with u and t channel electron exchanges) .
Here we have the new feature corresponding to electron formation with s large

and time=like.

The discussion of QED violations done for ete” » vy can be applied to

ye + ye in a similar way. For example, cne can look for modified electron

% .
exchange amplitudes, eeyy seagull terms and excited electron (e') effectsr)’g)

+
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3b. Intrinsic QEg_ggolations

Modifications of the electron exchange amplitude can be carried out provided
that Ward identities and gauge invariance are satisfied. This has been studied

7). We give here the simplest application. Let us try to

for a long time now
modify the s channel and u channel amplitudes of Fig. 3 by functions Fs(s)
and Fu(u) respectively; gauge invariance regquires the introduction of a seagull
term (Fig. 4) and the complete amplitude is now:

2 2 - e’
R.F;::_e‘ u(f’)au(e) Kftz & V(e)o—tr( )

(in the case of e~ and e’ respectively)

with:

v ¥ y 23 - , *
0= A& £y o EXX € 1y Eﬁ_?;_'iﬁ’ﬁ.y*(,(,xj_zs.k;g ek 2] ;
7:[—1—::-3{#/:’ , 72—_8’-(: f—él

and

Folu) - £(s)
——_d--___—

regular at t = 0. Functions Fs(s) and Fu(u) can be different for e and

-+ - . -
for e . The resulting cross-section is now:

2. sihal) wlu~s)
de .;*_.5 |gcs>11[ wloel 5p sleo ]

RO 2 .2._ -2 3P 5(“'”]

£ru ut (3.5)

s
+2 ee, F(S)F(a) [iﬁf- 1 + AP [’“‘ %._)j

A simple QED departure satisfying the preceding requirements can be described

with a scalar parameter A:
F(s)= b 2 C —= 4 oennn-
(8)= 1_ e +

z {3.6)

TRURT L LD MU SR T R MR I IS S I e s e A0 e R e s R TR PR I 4 e e eeng e eree 1




- 11 -

which gives:

QEP 2 _—
do— _ -0_19: Ac {;_Z_..Sa-e-)\PLH“"S)]*'”' (3.7}

—

Ir'i T AR SA4

The violations do not appear at order 1/A% 4). Tn the case of e'e” = vy the

9)

present experimental status is
p 4
CRNE)
/\4 ~ 50 6V .

Notice that like e'e” > vy there is no weak effect expected to appear at second

10)

order in the vye > ye amplitude .

3c. Excited electron (e¥)

effegEg

If such a state exists it can appear in exchange processes (u channel) and
in formation processes (s channel) (Fig. 5). Let us write the gauge invariant

* .
yee coupling as:

L= —i* b)Y, B 4 hoc (3.8)

Ml

This form generalizes the one first introduced by Lowll). L will be charge

conjugation invariant if a and b are real and will be CP invariant if a 1is

real but b purely imagihary.

We have calculated the complete cross-section of Yei - Yei due to the four
diagrams of Figs. 3 and 5 (sguare terms and interference terms). Its expression
is given in Appendix C for the polarized case. The new features with respect to
the QED part is the appearance of ei transverse polarization terms and of vy
linear polarization terms asscciated with the e* mass. Differences between
ye~ and Ye+ cross-sections also appear with ¢ violating terms cdd in the b

coupling constant and always associated with polarizations.

In the unpolarized case the differential cross-section has a simpler

expression:

2
W e s -m2) J_‘——]
N E & L 2L 4
dU" .5; +-—s-" +2 +2 (lll*“,l )[(s-n)’-_fn"'ﬁl u-m* (3.9)
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2 w®
_ (12 1p12) (su *”LDIW T fwd?
w2
- Q(Im db) (Su l"”)[s M2) L mird ? (u_mz)?-] (3.9
cont.,
_amisut (s-mY [(;..[z+|],;z)z- 4(I'na,b+)2]}

(u-ml)[Cs -mOE M

%
M and [ being the mass and total width of the e . If M is much larger than
the available energy (M>>/s) the e* effect will simply look like an intrinsic
QED violation. The first-order correction term can be identified with Eq. (3.7)

as:
o lafami®

Notice that a and b are magnetic and electric dipole transitions with dimen-

sion M-l. It is in this way that experimental limits are presently giveng) on

the e" effect in e¥e™ + yy. They can be written as

lal® 162 - (-—_‘-——)4
M2 ~ 50 GV {3.11)

But the peculiar interest of +vye scattering is the possibility of observing the

e* as a resonhance if one can reach the energy ¢s = M. 1In this case the cross-

section is dominated by the Breit=-Wigner form:

(M e.'b’) (3.12)
5 (MO, M T

with the partial width of e* + ey:

3
oy = ’ig_(la-l%lbl‘) : (3.13)

o~

For a narrow object the observation of the resonance peak will be possible if the

energy resolution A 1is not too high. For T < A the integrated spectrum

_fc-dd"' 4“' Tey (3.14)

will be comparable to or larger than an = 1 flat background if

Ma
oy = P o, & (3.15)

e e R L L L T L o
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‘:_g =, (S'kQV)A
(A being expressed in GeV).

The &* production could alsc be remarkable in e’e” inelastic scattering

- +
(ete” » exe*’). A direct computation of the vy exchange process of Fig. 1 using

the couplings (3.8) gives:

é_g“_ - O'(Z(S B M{) [Ia.L"+ H=Iz+2@e?l_Iua.L+J(2. Us+ Ml(._r" Ml))
PAYE ST

— QR [2@Im ab'+ P ( albl2) | M (U~ S)

+
"‘Q’?z_' P MYS (5-M? S;ue[(m‘-m‘)ws((s-y)+z Keab sm(ﬁ-?il (3.16)

using notations of Section 2 and S = 4E2, T = {p-p')?, U = (2-p") 2.

This angular distribution of the scattered lepton e'(p') is obvicusly
strongly peaked forward because of the 1/T photon propagator. The integrated

cross-section agrees with the quasi-real approximation given in Section 2b using

TeY given above:
e.*:‘—-pe_ie*:‘: o2 {3.17)
o 0
=Sy 2 KE2)
with
M
T s
E

The observability {(for M < E) is again controlled by the magnitude of T

- ey’
- +
For example, slete™ » ee®*) will be larger than the point-like cross-section
o, if:
3
M o
C,o> . ° (3.18)
= .

e¥ g ZKCE,Z)

il.e.,

FB, =, (5'0 keV)M

{M expressed in GeV).
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This limit may appear less interesting than the corresponding one for direct
yei collisions, but one should take into account other factors such as initial

luminesities (see discussiocn at the end of Section 2b).

3d. High order processes
+
At third order in QED ye~ can do bremsstrahlung {ye =+ vyye) and pair pro-
duction (ye = L'L7e); see Ref. 12) and standard books on QED, At higher orders
one finds all possibilities of radiative corrections, purely electromagnetic ones

like in e'e” = Yy 13 as well as general electroweak radiative correctiocns with

virtual 2, Wi and Higgs boscn effectslo).

At the present stage of this study we treat only the case of pair produc-
tion., It may be especially interesting for monitoring the collisions, for vy
pelarization analysis as well as for the search for new lepton pairs. Pair produc-
ticn can appear through two kinds of processes - photon exchange and virtual
Compton depicted in Figs. 6a and 6b (both of them are separately gauge invariant).
Photon exchange processes are largely dominant and in the following we only dis-
cuss their contribution.

In the polarized case the expression of the cross-section is given in Appen-
dix D. Tt can be useful for analyzing the initial photon linear polarization
using e'e” or u+u' pair production. In order to estimate the rates one now
specifies the unpolarized case wlth a pure che-photon exchange. The totally dif-

ferential cross-section of ye + LYL7e™  is:

“i?:""* ﬁf':?'ﬁ'(:)z EXAYE )2 (EpL e Lp b)) 1‘6(4mq'qkj/(1'
Awisnaqt Ts 5 W (k"

+ [pt']

-}2[_:-,8%?.;,!:'-{»’#&8 FP’I:' U’},P}J b'0p)em’ +h (pap?)

SO lmt ok Grp etk )] Sy )grmt) {22

where L' 1is the final = momentum with solid angle § in the Yei C.m,
2 =(S—W2)/2/§; kt* =4 - ¢': p and p' are the momenta of L~ and LY with
three-momentum p and solid angle QF* in the vy or L'LT c.m.; p* =

- +
= ((wz/q)—mz)l/a; Y is the invariant mass of the L7L pair; nm 1is the L™ mass.
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Because of the photon propagator 1/%'?  the pair is mainly produced along
the incident photon direction. In Section 5, Eg. (5.27), we shall give an approx-
imate expression of the cross-section using the dominance of quasi-real photon
exchange. The cross-section is a rapidly decreasing function of W. For a given
lepton mass m, dg/dW? peaks just above the threshold W = 2m. For very light
fermions (ei,pi) its magnitude is very high. For example, c reaches several
millibarns in the case of ete” pairs., However, this is not very interesting
except perhaps for monitoring, because their invariant mass is very low., For
leptons with masses in the range of a few GeV the cross-section is of the order
of the nanobarn, and for m = 20 GeV it is still of the order of 10pb for
/3 = 100 GeV (see Section 5S¢ and Fig. 19 for more details). All these features
are similar to those of pair production by vy collisions in e'e” -+ ete LT
processes. Again the cross-sections of direct yet collisions are larger by an
order of magnitude, but one should take into account initial luminosities and
background problems. The search for heavy leptons in vy collisions has been

particularly discussed in the high energy storage ring project reportss)

4, - 2° and W PRODUCTION

This reaction is similar to Compton scattering except for the occurrence
of vector and axial couplings at Zee vertices and for 2 mass effects. With

the two diagrams of Fig. 7 one gets the differential cross-section:

is:.: ﬁ [a.-Lb —1—?.9«.1;:6]).1 L][.Z-U' M'Z) Z”Z (44- ?msz}o Ssu..zya)]
Ao sis

{4.1)
2
- s-u
P3[R (a201) +2ab Q] {1z O
su
where p = (s—Mi)/2/§ and a and b are the Zee coupling constants whose
values in the standard case are given in Table 1.
As compared to Compton scattering (obtained with a = -1, b =0, MZ = Q)

one observes <y linear polarization effects with azimuthal ces2¢ and sinZd
dependences associated with 2 mass terms. Electron and positron cases differ

also by C violating terms linear in the axial coupling b. The angular
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distribution is again strongly peaked backwards, see Fig, 8. This is due tc the
dominance of the u channel diagram which can be viewed as an almost real

e’e” - Z annihilation after the ¥ > ete” pair c¢reation. At high energy the
Z decay products will be found along the incident ei direction. In the un-

polarized case the integrated cross-section is given by:

Nt Wdz(awl)g‘l . % 2‘ 7(”2)4.2.1 2 & +2 ——)J Q(ZLT?)MZ) } ;-2

It gets its maximum Just above the threshold (/_ M + 2.5 GeV) with a value
of 0.09 nb., At higher energies it reaches (|a]? + |b|2) times the Compton
cross-gection {see Fig. 9}, i.e., a factor 0.38 if one uses sinzeW = (0,215,
This corresponds to R = 8 between +s = 100 GeV and 150 GeV.

For 2Z° productiorn this reaction should not be competitive with direct
e'e” annihilation. It nevertheless gives independent tests of 2% couplings

14)) the absence

and Z° structure. For example, it can check (as in e'e” = yZ
of anomalous +vyyZ or vYZZ couplings which would occur in (y,Z} exchange

diagranms in the £ chanrel.

e e

+
W™ production proceeds via the two diagrams of Fig. 10. With the Yang-Mills
YWW and the V-A Wev, couplings [see Appendix A and Ref. 2)] the resulting

cross-section is:

. s
de X (4+O'F)»J"{("+@e)‘)I2'('1“ J)"Lg(bﬁﬁ;)]
ds. 35 sSw Bw
L2 [_Zus_é(m,@')})(_&ﬂ_z_bf,?‘smzé (143 cos 24 - 3 55"\‘?’)_—‘
(t-M2 ) 20 50w s ! (4.3)
B e AR GO R R
s(t-M3)

v —astWB(MS e - Smapﬂ}

The factor (1+QePL) refliects the V-A structure of We\)e couplings; the cross-

section vanishes for right-handed electrons ¢r left-handed positrons. Further

e R R L T R B R T e PO
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Qex factors reflect the C viclating axial terms. There are also vy linear
polarization dependences coming from the +yWW coupling and the W exchange
¢iagram. We have here interesting possibilities of testing the Yang-Mills
form of - yWW couplings.

it moderate energies the reaction vye + Wy has a behaviocur somewhat dif-
ferent from the <ye - Ze one because both W and electron exchanges are far
from mass-shell. The angular distribution of +ye » Wv is slightly peaked
forward due to l/t-Mﬁ terms as shown in Fig. 11. The integrated cross-section

is alsc weaker than the one of vye + Ze. In the unpolarized case it can be

writtenl)l5)
’ > 2y, MLB nz n MJ‘L M;
g d@EI“‘«‘i’(—s—“')*ré(gn“’) --2(.3_”)-1- .3"_1(2 + -s—w-t(s—)) e J (4.4)
- 2
using oiE - : .
4ﬁﬂdswx W

One gets o = 1.7 pb for ¥3 = 100 GeV and 8 pb for V3 = 140 GeV. It is
cnly at very high energies (Vs >> Mw) that the W exchange diagram strongly
dominates and leads to an asymptotic constant value of 44 pb (see Fig. 12).

This may nevertheless be an interesting way of producing single Wt bosons
and testing YWW Yang-Mills couplings with energies less than those required
for pair production in ete” > W (/5 > EMW). The case of single wi produc-
tion in inelastic e'e” scattering e'e” - e i~ had already been studied

5)'16). An exact calculation can be found

for high energy storage ring projects
ipn Ref. 17) with a cross-section appearing to be about 30 times lower than the
present cne for +ye + Wy. Questions of initial luminosities and backgrounds

will be important particularly for such small cross-sections.

5. = BOSON EXCHANGE PROCESSES

ba. Generalities
-+
In vye~ collisions there is a large class of interesting processes going
+
through one boson exchange (b = v, Z or W-). When b = y they can be ex-~
pressed in terms of the so-called yy collision processes. These have been
studied in detail for e*e” inelastic scattering e'e” ~ e'e” + (B) especially

2)=4}.

e
in the double quasi-real photcn limit In the case of direct +ye™
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collisions one can reach real Yy quasi-real vy collisions. This is the main
+

aim of this section although we treat +yZ and W~ on the same footing

(Fig. 13). |

A& rough comparison of orders of magnitude in e+e" inelastic scattering
and in direct yet collisions can be made using the vy emission factors given
in Section 2Zb. For the case of pure v exchange in Yei collisions the com-
parison can be made using the +vy luminosity factor KYY of Eq. (2.14) for

e'e” scattering.
We restrict this study to the cases ye » (B) + (F) whose (F) is a single
fermion (e or ve). The more general cases with inelastic e + (F) transi-

tions could also be considered,

The final fermion distribution has the general form:

0"de Tt R <’
= v I
d}e} s I}(k;)P. IL‘ TT (5-1)
where =MV - euev* (with its expression given in Section 2) ,
! ! ,tn' ! '
Ltc_: [f&|2+lbl"+zq>e?,_ﬁ’u.b*] (ﬂ’tﬂt.ﬂ ft_. N. th ) (5.2)

't-c’r"" ]
[P s vi) + 20, Keab™] €7 L L

is the leptonic tensor due to the ebF vertex using the couplings
N vk
L=-eVY (a-blff)"f’e_#) + hoc. (5.3)
F ®
with standard coefficients a and b given in Table 1.

s .
Notice that there is no transverse e~ polarization dependence because we

neglect m, and e and we sum over final F spin states.

—_
an)rt’ = ﬂfg _’;t [Pr’

represents the +yb collision process whose amplitude is e

T. . .
e TuT’ de‘ is the
phase space of final state (B). D(k') is the virtual boson propagator (k'?2

+
for b=y, k'? am? for b=2Z or W). We shall sometimes use helicity
states in the b c.m, frame, A for the incident photon and n for the virtual

boson b {see Appendix B for b c.m. variables). 1In this case one can write
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10 *
_e..f‘.ﬁ = 2tk W __ ST EGN) o (aNbh) L (55
4, ¢ s (@™ | D|* ANGY (5.4)

or

{
4o z_f_jﬁi—-— = L) e (NbY) L(b5)
dwin sEEm3 DO AW (5.5)

(0 is the solid angle of the direction of the final fermion momentum E‘ in the
ye c.m,; W and k¥ are the invariant mass znd the photon momentum in*the
1
vb c.m., E(AX') is given by Eq. {B.1) of Appendix B; L{mm") = NnNn‘eT (n)eT
(n')LTT, ig given in Eg. (B.2) and Table 2
4 /
hig )
~(Npp)= BT MONDY)
4K°W
with

* %
MpNby) = et ew e w) Mee’

will be called the +yb collision correlation., Its diagonal part (A = A', 7 =
= n') is exactly the polarized «yb -+ (B) cross-section o{An).

In the case of a single bosonic particle (B) of spin J and mass M one

can use the B » yb decay correlation:

* h V¥ . % | +
YOA'by) = x gyeo)eers) T T (5.6)
S ME(2T+1)

and write the angular distribution of +ye > BF as:

de (23+4)52M2‘€" ' N, !
. S g ¥ LY (5.7)
AL arksis IDORIE apy

The diagonal part of the decay correlation averaged over angles coincides with

the polarized partial decay width of B > yb:
A
rOw) = Z;fds?_* Y(Ab)) .

Single v exchange:

With the couplings a = -1, b = O, the leptonic tensor is independent of
the ei charge but still depends on the longitudinal et polarization PL'

Parity invariance of the yy(B) amplitude will constrain the form of the correla-

tion: MONbY) = M(3->"Hb)
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y and Z exchange:

With Z exchange we have a and % couplings given by Table 1 for the

standard model. Parity vicolation can also appear in the vZ(B) amplitudes,

If one wants to take into account both v and Z exchange terms and their

interference one has just te replace in Egs. (5.4) and (5.5) the product

a(x\'bs’) L (hb?)

[ D (k)<

by
S- D“ﬁ(ﬁ(g)«'bb’) Lﬂ(fs(bbo
%5 R (k1) D (k!)

B

where o and B both run over vy and Z {for example L™  comes from a®

and b% coupling constants).
+
W~ exchange

In this case the final state F is Vg or G;; the V-4 structure of the

Weve vertex gives simply:

A+4D ?L
[al+ibl? 12 CD!?L eto.lo* =2 Qeak*-pQE'FL (talzq-ﬂal’-) = ke

4 Simzew

left
This fact can be used for background suppression.

Obviously the reaction proceeds only for e or ¢ polarization states.

e+
righ

Quasi-real «yy scattering:

In the case of single <y exchange one can use the dominance of the k'? =~ g

region (forward ¥ scattering) in order to approximate Eq. (5.5) by the

contribution of quasi-real exchanged photons cnly., We keep only mn, n' = #1
helicities and take the collision amplitudes at k'? = Q. We neglect mé factors
everywhere except in the expression of D(k'} = k'?, Integrating Lirm*")/|D(k")|?
over df and using parity invariance for G(Axnn') one gets the leading log
result, with x = WA/s :
FAY S
4 N 21t Tast S(A-XY
A - X"/ =6 —_ 5
4 4] 6.2.
where . c_;(w)z -‘5[0‘(++++)+°“(+*"'7]5 3 (G' + )

O—:\'(W) Eg__{ﬁﬁu)— O‘(H--')] = 42 (G‘O”U})
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are purely transverse vy - (B) cross-sections taken at k'? = 0. OT{W) is the
spin averaged vyy cross-section, ET(W) is the difference of vy cross-sections
with total helicity A -n=0 and A ~n = 2. This last quantity is associated

with longitudinal e® and circular v polarizations.

The log term is the result of the approximation which cconsists of neglecting
terms proportional to m;, k'? dependence in the vy cross-gections and ex-
perimental angular cut-cffs. Notice alsc that linear photon polarizaticn depend-
ence has disappeared in the azimuthal integration. In the unpolarized case we can
write:

do- . K(s,%) O“_‘T;(W) (5.9)

—

d x

with
5(4 -x2)*

4
A- KLo
k;(slx)'— ( X ) é ‘n xq
the quasi-real emission factor that we can also call the yy luminosity factor
in direct +ve collisions. It is a rapidly decreasing function of x for s

fixed as shown in Fig., 14.

In the case of a single bosonic particle B® of mass M and spin J we

can use the yy decay widths:
-t [dRT = Yom)
4w Ab +4
(the factor 1/2 being introduced because of Bose statistics for real photons)

and
[wc++++) b’(++—->]-"{ ¥z~ n’]

We get the integrated cross-section for ye » Ble:

ES
Bwet(2744) [, 2 x4 kN -xt "'—ﬁ.]LO M"
5 [(-x% L) T - QAT (2-%0)x 1y [Log we 2% (5.0

with x = M/YsS. In the unpolarized case it reduces to:

rT
& = 4n(2T+D) —i—i—: x K, x) . (5.11)
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Equations (5.9} and (5.11) can be used for the estimation of the cross-sections
in terms of any particular +yy collision process, for example those already

studied for ete” + e*e” + (B) processesz)_h}.

In direct yei collisions the level of the cross-sections seems interesting.
For example, in the case of a single particle with a decay width FYY of the order
of 1 keV the cross-section is zappreciable up to very high mass values. For

Vs =50 to 100 GeV and M in the range of a few GeV:

7 (keV)
6 (3%) (2T+1) a;i
(6ev)

(5.12)

There are several kinds of C = +1 states that cne begins to observe in YY

processes or that one would like to observelS):

Qg resonant states (e,f°,Ag,...),
heavy gquark states (nc,xc,...,nb,xb,...), exotic states like glueballs or multi-
quark states, elementary bosons, etc, In Table 3 we give a few examples of ex-
pected cross-sections in direct Yei collisions. Again these cross-sections
appear one order of magnitude larger than the ones of ogle*e”™ + e¥e™B). For M

in the range of a few GeV and o of several nanobarns there will surely be no
special problems of detection. For very high mass states and cross-sections of

the order of picobarns, questions of luminosities and backgrounds will again be-

come important,

In the following subsections we give more details about the distributions

of single bosons and of boson and fermion pairs produced by one-boson exchange

5b. Examples of single hoson production

e e g e B o B § 5 28 £k o o = e o o o it e s o m e o o o

Spin zero boson:

We censider the case where B is a scalar or a pseudoscalar particle (Fig.l15}.

In the general case (without parity conservation) we have the YbB couplings:

2 kVse f ' ) )
= [Lg 2 E,,lz,efkc,\ + g'(s.ele.k- &k e.k)] _ (5.13)

*
They apply to the neutral (b=y,Z) as well as to the charge case (b=W")., In
the case of photon exchange with parity conservation the g c¢oupling occurs for
pseudoscalar production (B:no,n,nc,...) and the g' coupling occurs for scalar

production (B:e,5°,xz,...). A direct computation gives the cross-section in the

polarized case:
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} 2 2.0t .
de_ me?t Tt b1+ 20,7,  Rab (131G £ (2su -On-t1)- STV Jser)
A siE D)2

+ 19| (* (250 ~(m- F)2) 4 S50 (5,2 - 5, siaz)
’)te‘ﬁzf*ﬁsz u?) + J.Imgi 529'?'51:-«23(} 5m2§o+} wn? 90]

> ' .14
* [?L(‘“lz’f 1B1) + 2 @agcab‘_][%(w;- E)u-s)(131%+19 IZ) (5.14)

+2Reqq™ (w2t (mi-H)]

For pure vy exchange this formula simplifies to:

4 el { E(ng 29 2 L% sizp) +3 P _( -s)(mg- b)} (5.15)
d; s‘_tll%\l sku (m i‘) [ Y 36‘;&72? 345 7—?’)"’ u-5)

(for pseudoscalar production +ye + Pe) and

j;: :;_te j:llésfu-_ B‘-t-)".rs‘s‘f':id.\‘efﬁzmz?-}"s\;«iga)-l-';?l_-s(u—s)(‘rﬂ;-f)} (5.16)

(for scalar production ye = Sel.

The unpolarized cross-sections have the same expressions in the case of P or 3
{one has just to replace g by g'}). The integrated cross-sections agree with

the quasi-real approximaticn and Eq. (5.11) using the partial widths:

2.
I;,w = 1‘;—"; (iﬁl‘ nt;w‘) . (5.17)

The only difference between P and S production is the sign of the ¥y linear

polarization term which reflects the change of intrinsic parity.

+
In the case of pure Z or W exchanges the magnitude of the cross-sections

corresponds typically to a ratio

Fzzg (1&{3+ibl‘)|filz

where g is a dimensionless coupling constant which depends on mass ratios. For
heavy bosons B one can expect to have R=~1, i.e., cross-sections ¢f the order

of & few picobarns for /E = 100 GeV. For the separation of such weak channels from
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the background it may be especially interesting tc use polarized beams and to
construct longitudinal polarization asymmetries or ye+ - ve  asymmetries which

vanish in the case of pure electromagnetic interactions.

Spin one boson

B Dbeing a vector or axial particle there are in general four YbE couplings.

The vertex is written

= g1,
i=4,4
with

. hop * VeI k€
Iyziek € bk, &V, T- vk &k ke, 5 18)

I,-&eVih-s0"ek I,-ek (€Vhe-eB Vik)

BY ang vH being the four-momentum and the polarization of the spin one boson.
In general, the cross-section can be computed using Eq. (5.7), Table 2 and the

correlation:

x
Sy, + 18174 mZ N8, L

* (L b
Bly) = 2 - 2 (W), 8,

ho AhAb
B
+ 14, k(S Y ,\5‘ - —Zs ”’;ay v)- 4, Z(—{‘é)”ltm NEITINA
3
+ e“?,?:k ™8 (343) 840 8y, —Keg, 34 (’" "'L)ﬁ"*‘) ob%  (5.19)
3 ' ' S
- ms b [{'\*A)ﬁj 3, +40- A)I”’?ﬂ ] @rﬁg(maé)k;sé\:\’gag’i}

‘fm ,\/)":i.rf and éjﬁlr- 1,0 .

+ + +
It applies directly to W™ exchange in processes such as ye© = Vv and
+ ok o+ & _x gy + Lk R ¢
ye© > A7y, with VT = 07, K7, D™,... and AT = AT, K,7,... . [The case vye »
+
- W‘ve requires the gauge invariance constraint with the Compton-like diagram
and has been calculated in Section Ab.] Notice that photon linear polarization

appears only with Imgzgt [use E(A') given by Eq. (B.1)].
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In the case of Z exchange with first class (CP=+1) electroweak currents
and CY = -1 only Il and I2 couplings are allowed, so only the first fwo
terms of y(AA'Tm') remain. They control the reactions <ye - Vle, ye » Ale
(v® and A° being elementary or bound vector and axial states) and eventually

ve + Ze 1if anomalous ZZy couplings existh).

In the case of v exchange with parity conservation only ve -+ 4% (and
eventually +ve + Ze) 1s allowed for virtual (t=k'?#0)y exchange. The con-
tribution vanishes in the quasi-real limit (because of Bose statistics), so one
loses the benefit of the log s/mé factor and the cross-section becomes smaller

by one order of magnitude.

5¢. Palr production

+
Photon exchange processes (and Z, W exchanges at a weaker level) are an

12)). Any kind of charged

interesting source of pair production (Bethe-Heitler
particle pair can be produced (spin zero, spin one, charged fermions, leptons,
quarks,...). In general, the reaction proceeds via boson exchange processes

and boson preoduction processes (Compton-like) which can interfer (see Figs., 6a and
6b). The photon exchange process is largely the dominant one when the quasi-

real limit is allowed. In this case the pair is produced along the incident photon
direction. In this sub-section we treat only this class of process going through
boson exchange. The cross-section of any of these boson exchanges can easily be
computed using Egs. (5.1) -~ (5.5), the phase space de of the pair and the amp-
litudes TuT of b > p+p'. We now illustrate the charged spin zero and the

fermion cases.

. . + +.=
Charged spin zero pair: ye~ > B Be

The subprocess p? +~ B*B” is controlled by the three diagrams of Fig. 16
Y

whose amplitude 1is
T hpfe  php™  px 20
—T-IhL = -:Zefﬂ_[.vfﬂfi + liﬁt_ - g ] , (5.20}
Pk plk

For b°? = v the quantity g 1is equal to QE = 1 the sguare charge of BlL in

units of e. g would have different values for b® = 2% depending on the model
and the nature of the particles. On the helicity basis we can compule Fi{An} =

= M T .
= e {(A) e (n) TUT'
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-r"O‘ bJP A 1
F[Ab)-ag{)\bf sucd [;-I-*ﬂ] +a$>'b
{5.21)
"'” o ;* Y o "'[""
go wa e ? A+ kcoa Pﬁ i
J-. 5o P s [ M J

(all variables are here +yb? c.m. variables).

The general form of the cross-section can then be obtained using Table 2,
Egs. (5.4) and (5.5) and M({AA'nn') = 1/4(27)°® -(p*/W}IdQ*F(An)F*(A'n'). In the

case of unpolarized photons the result is simply:

!
dﬁ" - p(!'gZP*e [’IMJ._’_!HI_*;_ @e'ﬁ_e%ab‘:(
dwigds®  drswis IR (5.22)

| g2ty Bt 2ty by omtUy g gt klrer)-bp!
Sl [FS o Jealtptphlphy ) =Rt L

(It still applies to y or Z° exchange.)

In the case of guasi-real vy dominance we can usez)’3):

Ao «2p* “ 46'L
T XP o gt (5.23)

dt W ( ~pPease)?

and we get [Eq. (5.9)]

0'____6"' = KCSIX) G:r.

with dx
gl UL ULt N 0 i )J
o= e P e = oo
.3 wl

P= -—._na .

The magnitude of dg/dx depends on the position of the threshold W = 2m. In
Fig. 17 we give a few illustrations for /s = 100 GeV and different m values.
The cross-section is sizeable up to rather high values of the spin zero boson
masses. For example, for m = 20 GeV dg/dx culminates around GSpb for x =

= Q.43 {just above the threshold).

B e L T T
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Applications can be done for the search of charged Higgs bosons, of scalar
guarks or leptons,... a3 well as of scalar bound states like hadrons as long as
the Born terms of Fig. 16 are a good approximation.

+ .
Fermion pair: +ye~ =+ ff &~

The subprocess yb =+ ff (with b =y or Z) is now given by the diagrams

of Fig., 18 whose amplitude is:

I da
pT 1 (vnd-,}( X)) ( Ys) 3"'(4*_5,*3’5)[1»+,K-—/¥)3’ v (5.25)
T =€ £ 'FI 2pk ¥ '_i_li'?_[—-‘# J £

In the case of W exchange {which we shall not develcp here) only one diagram

would exist for e¢ach case yW+ > £re0 or YW > f £'%, The differential cross-

section of Yei + ff ei is given in Appendix D for arbitrary vy and e-t polariza=-

ticng and vy or 7% exchange. We have already used it for lepton pair produc-

tion in Section 3d. If one restricts oneself to the case of unpolarized ?ncident
21,3

photons and gquasi-real vy exchange (ap = Qf, bf = 0), ocne can use ' the

vy > fT cross-section:

4 .2
2. * (5.26)
do_ i w s . R St )
At - 3 L 2 wt *’-" lg"

W I,'-P“ %
and one gets

_4_2'_‘ - K(5,x) o
dx
with

4
0“_1_-- ﬁgﬁ— {- it*(4+ ﬁz)+2.(4+4_“1_§1‘_)bg(:,{,+u " )}, {5.27)
W* Lk Wwe
Several numerical examples are illustrated in Fig. 19. The cross-section is
higher than the one for spin zero pair production especially for very light
particles for which the term log W/m dominates (it vanishes in the case of a
light spin zero pair). For m = 20 GeV the fermion pair production cross-sec-
rion do/dx culminrates around 20pb for x = 0.48. We have here a way of pro-

ducing any kind of new fermion pairs, heavy lepton pairs, heavy quark pairs, etc.
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6. - SEARCHES FOR NEW CURRENTS AND PARTICLES

In this section we study several simple channels ye » B + F which seen
particularly interesting for the search for new currents and particles, The
bosons B can represent normal states like Yy, Z, W or hadrons as well as
new states like Higgs bosons (neutral or charged)}, scalar leptons, scalar quarks,
new composite states like pseudo-Goldstone bosons, etc., The fermions F  can alsc
be normal leptons like et or v, and others as well as new fermicnic states
like heavy leptons, supersymmetric partners of gauge bosons or of Higgs bosons,
excited states, etc. Such particles are predicted to exist in various models

19) C) 21)

based on unified theories or subconstituents .  There

, supersymmetry2
alresady exist lower limits for the masses of such objects. They come from the ab-
sence of signals in e'e” annihilation at Petra and Pep energiesez). In the case
of elementary charged particles {bosons like charged Higgs bosons or supersym-
metric scalar leptons or fermions like heavy leptons or excited leptons) the ab-
sence of pair production in e‘e” annihilation via one photon gives a lower

limit of the corder of 15 GeV. In other cases, the limits depend both on the
masses and the coupling constants; these are, for example, the cases of neutral
heavy leptons, technipions, single excited lepton effects,... . In these cases
cne generally concludes that if the corresponding dimensionless coupling constant
has a standard megnitude, the masses should be larger than a few Gev22). This

P sy * s
leaves room for many possibilites in high energy vye cellisions,

+
We develop the following study for the case of direct vye~ collisions
and it is extensible to e+e" inelastic scattering as explained before. We de—

compose this study into five parts.

+ +
We start by the neutral spin zero particle production yeo > B%* or ve -+
+ i +
+ BF" (where F~ # e isa heavy fermion). The first case would occur if the
diagonal eeB® coupling exists with a reasonable magnitude, if not, one still

has the second possibility,

+ + + +
We then consider the charged case e > B‘ve or vye~ + B7F° requiring

% + * + . . .
e veB or e F'B couplings, F® being a new neutral fermion.

We then develop the description of more general processes going through one
fermion fermation, one fermion exchange or one scalar boson exchange. New fermion
(f) formation in Yei collisions could appear if there is an appreciable wvef
coupling (this generalizes the case of e* formaticn). New fermion exchange may

occur even if there is no +yef coupling, but if yfF and efB couplings exist,
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f, F and B being two different fermions and one new boson. Scalar ({3) boson
exchange {with S neutral or charged) will occur if there are YSB and eFS
couplings (S and B on the one hand and e and F on the other being identical
or not). This may be interesting when there is no appreciable +yyB coupling

allowing for a more copicus B production.

+ +
6a, Neutral spin zero_particle production _ye_ 7 Bf”

e e it e Ll e e e e s e e el e e e =

This process is described by the diagrams of Fig. 20. The formulae apply
to both cases whether f is an electron or not, The yee and yff couplings

are standard QED ones. We take the efBY couplings as

L= Q'We (e-<d b/s)\}:e d)B +he. (6.1)

{again C invariance holds if ¢ and d¢ are real, but CP invariance holds if

¢ is real and d is purely imaginary), and one gets:

2
j‘_[j: - it_E_ {[(1:.&‘4-1«1\’*)(41\;?‘_)-2@6 (i+?L)1mcd;l 1";‘2_;_&_.
dn sUs
+ A IIC\LHM?'-Z@Q_?LIWCd“_](f f*"%"-“)+(“"“;)|=‘zs‘;“25 (4+53°°°"f"3,15642?9
=

—5X my pFsunb [29::.01*5@{(5-{0) —(lcll_ldi‘-)as(ﬂ’%)]

- % Qe [:_Imc.d X QQ?L(IcIi.'.Id{&)] ({'n_s-u) (-,..—F’-_ b)f{“*ﬂ'\;){u.ﬁ;“{Z}ﬂ
(6.2)
4 [ [lcizudll_z CDQ’PLImcd‘j(s(m;_u)-sl,zs;,s@(a fjsmup _54 SC‘"‘S"D

+._.._--

M"‘""f) % .
-5—):mle b P_Ls(...e [z Cecd sun (M,) -(:c}l-ldtl)ms(ﬂ‘?ﬂ

--iQe T:Z.Imcd . Qe_?l_(tciﬁ-ldl"ﬂ (srng—(u-wg-)(n;— u)):(

+
The e and v longitudinal polarizations contrel the C violating terms and

+
the e Ltransverse polarizations with vy circular polarizations control the

other Recd® and (jc]? - |d|®} combinations.
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In the unpolarized case the cross-section depends only on (|e]? + |d]?).

The integrated cross section becomes:

oo 2mp (et nd) [25«:_5;* fjﬁﬁ(_":'_:_)[pgﬂi] (6.3)
52 P "t

with
o Samf-ml2 o °
pe ST BT g
y
Ay
In Fig. 21 we illustrate this result, factorizing out (|c|? + [d|?*) which is

dimensionless and could be of order one if the couplings are first order allowed

ones, One can discuss two extreme cases.

+ + + +
First, if 7 = e” (i.e., ye~ » B%") one has a situation comparabdble to

ve * Ze with a strong backward peaking due to the electron exchange diagram

and consequently the log term is important in o. The cross-section is then rather

large even for very massive B? bosons:
R « 40 (1e1t +1d12)

for m =~ 10 to 40 GeV,

BG
+
If ~ 1is a heavy fermion, the situation is obviously different ~ the log
term is inefficient, the backward peaking is small and the level of the cross-
section is weaker, i.e., R = (|c|? + |d{?), which will be of order one for

standard couplings.

6b. Charged spin zero particle production: ye® » B'r?
We now have ¢ channel and s channel diagrams of Fig, 22. The neutral
fermion f°® can be either a (massless) neutrino v, o°or a heavy neutral lepton.
+ 4+
We use the QED B B~ couplings and the same form of efB couplings as in the

neutral case. The resulting cross-section is:

d

——
—

2 . .
& { [it%+ 1412-29, P, Tmed] ML Yl (145 e 2p -3 30 2p)
dse sfs - ¢

m r)®
& (6,4)
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3 [(N-\"Hdl") (‘H':PL) 'QQQINLJ.‘CX—* P;_)] v:f_;_.,

—

A [ [ictreid13-2Q. P Tmed¥[spsud (1 *3}&6?&'\‘9 - Ssuiap)
s(i-—m;)

+$§“F FP.LS‘:\AG (leeCdx.‘l;u(ﬁ-P) _,écl«?_ld[l)m((s _so)) (6.%)
cont,
~XQp [2 Tmed*-Qe T, et di)] (k=g m{zﬂ |

The polarization structure of do/dQ is comparable to that of the neutral case,

We now have linear vy polarization associated with the t channel boson exchange

diagram.

Ir the unpolarized case the integrated cross-section becomes:

zvo("P(lcl‘-HdI‘) [ ¢+ 4(“‘;.2"“31) 3°L p+B° 42] (6.5)
= — - ——t
s ey + ‘“"—g— ( P 53 me

(same notations as in the necutral case), Illustrations are given in Fig. 23. The
light fermion case {f°§ve) no longer has any special property. The angular
distribution is slightlz peaked forward if oy is not too high; but as we do not
know any light boson B~ the corresponding log term is less important than in
the preceding neutral case with a light fermion., The cross-section is then at

most of the order of R = (|c|? + |d]|%).

6c. More general fermion formation processes

We aiready considered the case of ¢* formation in ye > e* > ve 1n Sectiecn

3b, We now treat a more general case, <vye > f -+ final state (F), =see Fig. 24.
We again use the general gauge invariant yef coupling

L:_e;:f c'w(a--'.bxg)’? Foo +he. (6.6)
2 f €

We write the general form of the fermion propagator correcticn‘factor f=(F)=>F¢

O

as;:

. A-BT1(C -DXS)(X—Mg) (6.7)
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and for the antifermion:
0f=—ﬁ+gb's+(ﬁ’+“f)(a+5xs) (6.8)
with a priori no symmetry relation between ABCD and ABTD.

The resulting integrated cross-section of vye + f » (F) is then:

- = 2w S {(HSPL)I(MJQMLI‘-) (Z;NIF A +C($"""{,2J)+ 2 @-‘mab“)J) (s_m_g)]

| Dt
+OQCS‘-+PL)[(MIZ.+!E,L)D(S-“;)+ Z(Imab“)(zn{_ﬂ«bC(s-m#&)z]lg -
where (A,,,.,) should be replaced by (Z,...) in the case of positrons; and
[Dpl? = (s-m$)?® + mirZ. The partial width Eﬂr is given by:
Feey= AL & (s-m;) . (6.20)
f=>F me

Notice that the total widths Ff and T? (summed over all F states) are

equal due to CPT invariance, but this is not necessarily the case for partial widths

if C or CP are not conserved. The polarized partial width g is:
—>e-’Y

d7n3 - _
? o = = LW 1610 E) 42 G (Tmab®) (X4R)] . (6.11)
> 3

2

In the vicinity of s = me

and in the unpolarized case one recovers the Breit-

Wigner form:

o mD
n
Gz 2T TEEF F faed (6.12)
s IDpi2
with
r oty
{>eY = .._g_icla,laq-!b}‘) ’
The cross-section at the peak peak =(8n/s)B B corresponds to a value of
cross- p o] =(8m frey EsF p ue
R equal to: ek,
i R™: &8
S xE g
if one sums over the deminant F channels, For example, one reaches Rpeak = 1

. . : ~ -5
if the ey branching ratio reaches Bf+eY = 1077,
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If f is a narrow state one may use the expression of the integrated spec-

2,
£t

?;fcrd{? L 4T . (6.13)

- hu? £reY

trum around s = m

- +
The measurability of ¢ depends on the energy resclution A of the e and

y beams. T is comparable to an R = 1 flat background when

z
™
l}_ﬂ}: 4—,;%-0;&

For me = 100 GeV and A= 1 GeV one needs T = 5 keV,

frey

Equation (6.9) for the cross-section can be applied Lo any kind of final
state F for which the quantities A, B, C, D can be computed. For example,

in the case vye > et -+ vye of Section 3¢ one has:
A & %S (lag Ibl® T = ws Imab”
A:A;Cmf_ C:C:Z(lﬂl+lb’)}3=b=°<5 map . (6.14)
/

In the unpolarized case, g only measures the € conserving combinaticns; longi-

tudinal polarizations are needed in order to be sensitive to C violating terms.

We give another example with the decay of the new fermion f into spin ©

and spin 1/2 states (Fig. 25). Using the fBf' coupling

| - e@;l(c-cd‘(s)% +hoe. (6.15)

(again one has € invariance if ¢ and d are real but CP invariance if ¢

is real but d purely imaginary) one gets the differential cross-section

/
do 8P ] [tate B3R, ) 426G, Tmab (R4 [y s 1419+ (53 ook £ et

df2 -{;1F?F' - / !
+Q1mca*[(ule+nuia)(i+&)+z@eImJ=“a+>fi>] (2 flsemi)-2s 9-f

+ 205 @, Tmed %p Fsib [faft1bi2)( 3 eotfs +)=5 sin (@ 44))
it b1e) (3 s 1)+ 3, (400

(6.16)
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. + . . . .
Notice the e transverse and v linear polarization dependences associ-

¥
ated with me mass terms and the C wviolating terms Tmab® and Imcd The

integrated cross-section can be written in the form of Eg, (6.9) with

—_ L, — lpy
AzA= C‘M{_ * o({f:n‘*-(‘cie-ldl&) C=C= .ﬁj (“—ll'”dlt)
5 )

1210 " {6.17)
D:fz_i{_g—zlmcd .

6d, More general fermion exchange processes

Here we consider the reaction vye > F + B vwhere a fermion f (different

from F)} is exchanged (Fig. 26). We again use the +vfF couplings
PITEN TP SN ENY
L=eV o (a-b¥ )“{'e Fov +hec. (6.18)
z F '
and in the case of spin zero BY particle the efB° couplings:

L= e«?ﬁ(c-cd '1("")’4*{l qBB yhoc. (6.19)

The formulae given below apply to the cases where £* is either different from

+
or identical to e,

Ji{smz‘mb-m‘:m&"

A6\ = o(zP(m;-u_)_. [la’{%! Ull{-lh QcI'ma,,L’f][ldl-p}dll-Z@: ﬁ__I’MCd
a3 S{?E(WW&-ual :
‘f.

3

- 2y hamim x
+ [—’-@elmau'lv"+,\(m’iﬁlhﬂ‘):[E’-QI'"‘dx’f":.("“*”“g -t 2_& ——

+5mep Bl 5i0d (Reed Soin(p-g) + (rc12-1412) em3 (g '/‘))]j (6.20)
.20

Notice the absence ¢f <y linear polarization terms but the presence of et
transverse polarization terms associated with Meo
If the exchanged fermion f 1is a heavy one, the cross-section has a standard
magnitude, i.e., R =[([a"]2 + |b'|2)([c|? + |d[2)t 4Ima'bi+In cd*M?  (a' and
b' have dimension M-l; M is scme heavy mass scale). If the exchanged fermion
f‘i is the et, i.e., if the ~vyeF and eeB® couplings exist, the cross-section
is obviously larger by the factor log s/mg corresponding to the backward peaking.
Notice that in these cases one should independently observe the B® production
through the process +vye -+ eB? of Section 6a and the Fi formation Yet > Ft

of Section &c.

e R L I ..
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6e. More general scalar boson exchange processes

We can develop the formalism of scalar boson exchange {Fig. 27) in a way
similar to the case of vector boson exchange treated in Section 5. We again take
the lower efS vertex as given by L= e@e(c—idys}wF ¢S + h.c. (for chargesd
or neutral S exchange) with F being a massive or a massless fermion identical

or not to & or Vg

The upper 3 c¢ollision amplitude iz written EUTU and corresponds to the

cross-section:

¢ e —m— E M Vv
{>a") Y p (6.21)
. *
with M;‘v _ fdfs T Ty

and

M) = £ €00 My

The final fermion spectrum now has the general form:

e“’dﬁ" . Z('ﬂ! [[d-‘-.,.ld[i..a@eﬂ_ IW‘CA*J E M
A3E’ 2s [D(k')["

k1= (k= mg )

or

(6.22)

l
de_ SEUWIED [letepidt- ZO(,PLI‘”CAJ = EOx) o).
dwdn 2(zw)sr IDCENIZ

{6.23)

In the case of a single boson production (S =+ B} we can use the decay correla-

tion:
*
® v *-
YON) = k £ONE T T, 6.21)
ML CTH0 ’
B
and write the final fermion angular distribution:
/
A 7w )EMg 8/ (me- Dcl"-}ld!" 267, Imd"jz EGN)FOWN) (6.25)

0\57—- LR SVS D (RD®

where y(A\) coincides with the polarized decay width T {x) when averaged over

By
angles.,



- 36 -

The case where the final boson B is a spin zero particle exists only if
B 1s charged (there is no vyS°BY coupling for spin zero particles). We have

already treated this case in Section 6c with its gauge invariance constraint.

We now treat the case where B is a spin one particle. In the general form

(without parity conservation)} the ~SB vertex is written:

NEPS o A o o .
e,{tgé Enkyel b7 4 g/ (g€ hop - Sy L)} (6.26)

The resulting cross-section is:

do-_ < ng-t)(mg-t) [ttt 2@ Imed*] [32 41323 Rea g ] .o
AL &sfs (mi-B)*

If the exchanged scalar $ particle is a heavy one (light ones would already

have been secen in e'e” collisions) the angular distribution will almost be
isotropic when mg» Mg and mB have comparable values, The integrated cross-
section will then be of standard magnitude, i.e., R = (|c|? + |d|2)(|g]? + |g'|?)
in the unpolarized case. Longitudinal ei polarizations can measure C violating
terms Imcd® at the eFS vertex., With parity conservation at the vySB vertex

one only has the g coupling irf PS = P, and only g' irf PS = =P, and hence

B B
no vy helicity dependence., This formula applies to the case where B is a

neutral or charged elementary or composite spin one boson.
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APPENDIX A: NOTATIONS

We use the metric g"¥ (g% = +1, g~ = ~1; i = 1,2,3) and the anti-sym-

. VDo . .
metric tensor e P9 (g912% - i1), Dirac matrices are

, { e T
e [T © ) i (o‘ & ) s . fy2y3 ( )
X:(o_x X: -t 0 D,=JX°XH X-— T O
Other notations for fields and couplings are standard ones [see, for example,

Ref. 2)] .

For gauge boson couplings with fermions we take the standard form:
N vk 5
Lz-e VY (“;"*’;.“0')"'}’ A# (A.1)

with
- Q b = 0
A-F ‘F ; -F for’ the photon
a; ot J

given in Table 1 for the Z

4
2 bp =
= f 2Esdwew

+
for W
We use sinzew = 0,215 in numerical applications. For yW+W— or ZW'W vertices
we take the Yang-Mills form:

{4.2)

L= ag [ﬁt (-r'uq)g.»gw({wq)a g‘f(_#_'_f;)hj Apfﬁ) W:(f”) Moﬂ(f’)

Au(q), w;(p'), w;(p) being polarization vectors of incoeming Yy oOr 7 and out-

going wt bosons; g =1 for the y and cotgew for the Z.
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APPENDIX B: TECENICAL DETAILS FOR BOSON EXCHANGE PROCESSES

In Section 5 we considered the reaction yei + (B) + F where F is a light
fermion (et or ve) with momentum L' and (B) a bosonic state with invariant
mass W, This reaction is supposed to proceed by the exchange of 2 boson b in
the t channel. We define the yb c.m, frame depicted in Fig, 28b; +b c¢.m.
variables will generally be labelled by a star. The b momentum is along the
1M

Oz axis: k'™ = (k'°*,0,0,k*) and the Y momentum is opposite it:
# % . % hx TR Jr* .

= (k,0,0,-k™). The Oxz plane contains k", k'*, &° and momenta with

anglesg 6% between E* and f’* and o between Kk'¥ and E'*. Useful

relations (needed for exploiting Table 2) are:

ot E EY E-9e08)  p¥n® khoin 8 ks A8V

W A-y2 v
/ .
oL Kk and gk Eenda kT i b
= R +kvanx =
o Va-ort
with
! / -
_...L —_ L o = {ern - ¢ L crd .
W= Va-vr
fs_-glo ﬁ--gro k’ A-vof

In thiz yb c.m. we should use the boson b and photon helicity states:

el = £¢h) = (0,-£,%,0)  fon p=24
¥ ¥
e#(o)z(_“__}o/o) £

T Iz

These states are normalized to

e .5 ) = e (b) = Wye ot o p= 27

and

A%
€ e (o)= M= +1 ff"f-“-'o

The transformation of the vye c.m. frame (Fig. 28a) into the yb c.m. frame
(Fig. 28b) contains a rotation of azimuthal angle ¢ around 0Z, a boost along
E‘ in order to bring (B) to rest and a rotation of angle (a*—e*) around the

normal to the Oxz plane in order to bring the 0Oz axis from T* to k¥,

As a result we have, in terms of b c.m. helicity states,

E(aW)= E"b)é”("’) Epw = %{gm’ + % [cen 2 (AN=1) +4'(x->«')941¢9°] (B.1)

UL 0 PR M AR O e e
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. . (B.1)
& é"_ [‘(4_)0!)/&.0\2(‘0 -}-4[)-).’):5‘329:] + SZ ()«"‘ >‘i) E . cont.
2 =z
The elements of the leptonic vertex L{nn') defined in Section 5 are calculated

in this b frame:

L(bb')

H

S e’
My " ()€ (5L v/
[ialést612420, F eakst]Ulbh)- (% faits 1619429 Rt ] Z0Y')

(B.2)

with Ui{mm') arnd I{mm') given in Table 2.
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APPENDIX C: COMPLETE e* EFFECT IN COMPTON SCATTERING

de _ =5) L3R )+EG-SR) 42
(75
’_-_5_(_9__'1‘_)(5 [s241612429,F, Tmab' ]+ (c-w) % LR (al+1612) + 26 rmbf])
| |
+ 2u ( w12t 1b1%4 29, F, Twab™] N3) [’P (01241b1%) + 2 @, IM.;L*_])

zs‘n i
1D, s

L8 bR sing (2f?cdo B a(pe)-3 sm (s49)] (a’ JH‘)B sia(pep)+$ mfrw)l)
- l-l_;;‘ ((ut‘.p el (su M) (ate151)(1+ 3R ) 3 290 (347, ) Imab* ]

; 420, Tmabfsu - M) 0004 319 (R 47) 42 Qe (1437, ) Imab¥]
+3QeReab* Tm ob?sMpT.sin [33 siu(pes) £ el vp)]

-4 Qe (i) Inal*sm pP s, '9[3_;,, (1549) -5, sou(ps+ p)])

( (us -EMD[29, Tmab's- B, fraite it} 2. Tmab® + X (iai tr 1612]]

(u-—M )l
=~ {us +bﬂ‘)[u(‘+ lblt 4+ 2 T, I\-;L*]Dﬂ‘f bli+2q, A Inzb*_])

*ZSM(S M”) ML—[([- S)AP u][ ('n.t‘ﬂbl‘!)z 4 (Imab*) ]
(u-m*) 1D |2

~ 4G Imab*Rab usp P sinb {335& (+h) + 3 ao(34p )]
— (a1 tbi#)spT,ciu8 (‘ [ e s shu(as)] « b [erai-p) ¢ wo(psrp)
-3 w(ﬂﬂn)]))

= —{1a)t+1b1¢) ( (1a1®- (b1 )u [ 3 Sun(foty )+ 3 e (3 t4)]

—2 Reak® [m(p ) +33m 3 f{-)-a 4"'."(5 "?)]) }

2M%s pr'f’ swmb
(u.-ﬂ") l:D |2

ID1¥= (S-M‘)L-)- mers
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APPENDIX D: DIFFERENTIAL CROSS-SECTION CF Yei -+ f'f‘ei

In the case of vy or 7% exchange the differential cross-section obtained

by the subprocess of Fig. 18 and Egs. (5.1) - (5.20) takes the general form:
} L4
do R Q; N, N __N___ ]
= 2 2
dwimdss answis oo - & (ep) Ckpkp (®.1)
with
4
N= (3 +b1)[(aab‘+za}:0"’,_)9 L\"")( JEARVRS TR LAl
_“ﬂa _\,z Y[ eb?r2ab QT ) S fr(—z??') 2(2ab8, +?(MW)A =0 ;} rﬁvo—]
+zaﬁ[(¢¢+bﬂz,.1,¢v y ARLPOX PRI (a2+bt)) §" )j'r);uw] (D.2)

NN (pemt’, er-be)
N " (‘;*&‘L)[(ﬂ"w‘*hb 6%, )SWU "X }Bwro' -(2eb Q.+ F (‘"l*b‘)) AN:ZPFY :'rf‘ ]

el b vt aab QR4S y, - Uk, )
&
~2(20bQ,+ T, (a-‘+b‘)) [A*"TZ'? [Pkkfavrp f{, ff :’F"‘))] {D.3)

-z‘f‘?[(ahb‘uawP)A"'U'X’{ +(zab Gyt R (rb))SME" prr]

and the tensors

ha 4 v v

AL s AN YT e S |
v = lﬂ’i"" (D.4)
A" '} "r 1
Ut ores, 0%’ S 0/gt e

=7 sPPp L]
PJ/S
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A

f !
Kipe= kp Chobede ~bpo%pe "9 kp poe 43,9 ) b0, bt P Ab Gy e

XZ

_ / f , ’
bre = e happ Vbbbl og g by U Tt o

A

Y

P"’f“"z /"'I’Pa-g,ur ~2pp fykwsﬁf thfykfh‘*&f‘,%kraﬂd‘ Zkf""t e Uup

z:pr = kb, fpe bR, 'ﬂf'ﬁ"ﬂ?’,s
3
X#*’r o=tk [31,.,5, bt -2 b dpth b Lo b Yo~ Fridre)
P bbb bty b thg) ot
e (b oot gpo) s bk Bk o2 p b po - Pt P

4
L VR SN L Ty LR N
- krht E(M'Ufs’ "x ﬂ-{ ZP’-B‘, ér,(yrs,"u ﬁ# ‘-r”’o_fhpw( ‘ ﬁ,‘_"ﬁ Ef'-‘\'f/‘ 4‘(,’/;
]
b b FE Y Ty et iy s 4T b o P

3 /
yh"rr = f{k['#r“r dvp ~2f)py Y 'zﬁ"’?ﬁf 3yr)*4'?/[(:‘4-7»'0:‘”"'9")

+ ﬂ I
y""f" = ‘ & "'rf,ﬂ" 4/'/"’ ‘"“'/'ﬁ/“ i/a" ‘-‘o-sr"/’f 4 *&/’i fr«f/‘ fdk
“2hby “MPF “‘k?f ‘fI"""“é +heby ‘E}l-rF/’L fy f)”q'ﬂ'%l-r

thbe oxffs kf bt oxfss f(“éi'fhfm” P+ ,/y feawsl’/"*/; . Yip).

(D.5)
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This very long expression can only be useful with the help of a computer. Neverthe-
less, a lock at its structure is interesting. The symmetric tenscr sHV gives the
unpolarized and the photon linear polarization contributicns. The antisymmetric

tensor Auv gives the photon circular polarization contributien.

In the case of pure v exchange {a?z 1, b = 0, a, = Qq, by = 0) only the
SU and Ay types of combination remain because of parity conservation. This
means that circular photon polarization 1s always associated with ei longi-
tudinal polarization {XPL) but linear photon polarization can be analyzed with
out ei polarizaticn through the orientation of the production plane (E,E‘) of
the fT pair. In the case of Z% exchange, parity violating terms (ab,afbf)

introduce different combinations (AU and SI) with new polarization correlations.

In the case of unpclarized incident photons this expression simplifies to:

N- ["‘l*bl* ab Qeﬁj i(q’z\\b{z) [(3"'*’1”’)(“"*'?‘?," el (4'pme)) + (g€ plp'ellp't. l')}
e}

RPTPIE YARe; P e, GO YRS U SUL

h
N - [o.abz,, “"’W’L]{ @\ca +b_‘_.’-)[ {’.U(t.;.ﬁ*zm‘k.k’“w(,. r'-m'-)—Z(“'-)'*“")('-’-f#'f’-r'-h\"?‘!')

N { 20 Gop ald ’ oehl bz *;)] (D.8&)
-2 kplwt)(2bptp-w 0e)-(Lplyletip'tp -ty )lpr'-eb-t-24

- 8n‘a{a {E‘-PP-P'-!-E‘-#'P.‘; -0t 'rrl)
- “"‘(q‘tt"’gl) (2 f't’(‘i’-f"*q"*}')*éﬁkp'r . (‘ei*‘“{rlp‘rf)}

+[2b Qe 18, (etsbti[degky { ph(ey'tp-Lptipr) (e kel p £}EK)
ave(0kplepele)-mi( ekl Lpelk )eplk (04 p- 0451 pp Ll -t elp')
N R R e.ypzu)}
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If we now restrict ourselves to pure vy exchange in the unpolarized case

the simplest form is given by

Nz 2(3meq 0Pty o (tqr)(tlp e Cpltp) -t (44 ge2q'pr)
{D.7)

t

N <2 {-apphly-atp0y/klp - (04l G/ Ep)(antsktoren)

+ 2O [ P Cemt 4k (prpr) + mi k' (Pﬂ”)}} .
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v e u d
(25in26 Ja | 1 | -le4sin®e, | L-ysin’e, |-l+gsiney
(2sin26 )b, | 1 -1 1 1
Table 1l: Standard Zff coupling constants
Ulzt)=101%| 2sinZo® 400"
Ults)=—|2"¥|2sin?a®
* P O%_ y 0¥ * ¥4.2
U(OO):2(k' % kK'77g "cosaT )T g gt
k12
_2n£'*sina*(k'*£‘°*—k‘°*2'*cosa*)

U(On)=U(n0)=
Ve

5 (er) =5k ¥R 0¥t ¥ i ¥eosa™)

n(x7)=£(00)=0

t2
2(0n) =2(n0) =/~ ¢ ¥sina”

Table 2: Helicity compenents of the leptonic

vertex Linn')
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vy luminosity factor Ki(s,W) for vye collisions.
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Diagrams for +yy + ff (fermion pair).
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Diagram for vye + £+ B + ',
Diagram for ye = B + F through f{ exchange.
Diagram for scalar boson exchange.

Reference frames
a) in y-e c.m.,

b) in y-b c.m. (for b exchange processes),
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