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We investigate the generalized cubic covariant Galileon model, a kinetically driven dark energy model

within the Horndeski class of theories. The model extends the cubic covariant Galileon by including power

laws of the field derivatives in the K-essence and cubic terms which still allow for tracker solutions. We

study the shape of the viable parameter space by enforcing stability conditions which include the absence of

ghost, gradient and tachyon instabilities and the avoidance of strong coupling at early time. We study here

the relevant effects of the modifications induced by the model on some cosmological observables such as

the cosmic microwave background (CMB), the lensing potential autocorrelation and the matter power

spectrum. For this goal, we perform parameter estimation using data of CMB temperature and polarization,

baryonic acoustic oscillations (BAO), redshift-space distortions (RSD), supernovae type Ia (SNIa) and

Cepheids. Data analysis with CMB alone finds that the today’s Hubble parameter H0 is consistent with its

determination from Cepheids at 1σ, resolving the famous tension of the cosmological standard models. The

joint analysis of CMB, BAO, RSD and SNIa sets a lower bound for the sum of neutrino masses which is

Σmν > 0.11 eV at 1σ, in addition to the usual upper limit. The model selection analysis based on the

effective χ2eff and deviance information criterion is not able to clearly identify the statistically favored model

between ΛCDM and the generalized cubic covariant Galileon, from which we conclude that the latter

model deserves further studies.

DOI: 10.1103/PhysRevD.101.064001

I. INTRODUCTION

The late time cosmic acceleration is one of the most

puzzling phenomena in modern cosmology. Its modeling

within general relativity (GR) through the cosmological

constant (Λ) results in the Λ-cold-dark-matter (ΛCDM)

scenario. Although the latter gives a precise description of

the Universe, it is known that it still contains a number of

unresolved problems [1]. These lead researchers to look for

alternatives in the forms of an additional dark fluid, namely

dark energy (DE) or modifying the gravitational law at

cosmological scales, for example by including additional

degrees of freedom (dofs), defining the so called modified

gravity theories (MG) [1–10]. One of the most studied

proposals of MG is the Horndeski theory (or Galileon

theory) [11,12], characterized by the presence of four free

functions, namely ½G2; G3; G4; G5�½ϕ; X�, where ϕ is the

extra scalar field, whose dynamics is settled by second

order equations of motion, and X ¼ ∂μϕ∂
μϕ. Recently, a

proposal in cubic-order Horndeski theories, the Galileon

ghost condensate model [13], showed to be statistically

preferred over the standard ΛCDM scenario due to a

suppression in the integrated-Sachs-Wolfe (ISW) tail and

a different behavior in the expansion history [14]. Another

promising proposal is the generalized covariant Galileon

model [15], which extends the covariant Galileon [16] by

considering in the Lagrangians power laws functions of X

(Gi ∝ Xpi , where pi are free constant parameters). The

chosen form of the Gi functions allows for the existence of

tracker solutions [15,17–19]. This model has a viable

parameter space, free from ghosts and Laplacian instabil-

ities [15]. Cosmological constraints at the background level

show that the DE equation of state wDE can take values very

close to −1, allowing for the tracker to mimic ΛCDM [20].

Furthermore, the additional freedom given by the param-

eters pi might overcome the large enhancement of pertur-

bations of the covariant Galileon model which is proven to

be disfavored by cosmological measurements [21–23].

After the multimessenger observation of the binary

neutron stars merger event GW170817 [24–26], all MG

models which predict a modification in the speed of

propagation of gravitational waves (GWs) larger than

10−15 are strongly disfavored [27–32]. In detail the quintic

Horndeski Lagrangian is ruled out and G4ðϕÞ reduces to be
a standard conformal coupling to the Ricci scalar [27,29].
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Applying the GWs constraint to the generalized covariant

Galileon model, it further restricts the Lagrangians to

contain solely the K-essence Lagrangian (G2), the

Cubic one (G3□ϕ) and a standard Einstein-Hilbert term.

Hereafter, we will refer to this model as generalized cubic

covariant Galileon (GCCG). The GCCG model keeps

the tensor speed unchanged and, additionally, a previous

cosmological analysis shows a positive ISW-Galaxy cross-

correlation [33], contrary to what found for other cubic

covariant Galileon models [21,34,35].

The aim of the present work is to extend previous studies

on GCCG and perform a thorough investigation of its

phenomenology at linear level. To this purpose we will

make use of the effective field theory (EFT) of dark energy

formalism [36,37] and its implementation in the Einstein-

Boltzmann code EFTCAMB [38,39]. We will also provide

cosmological constraints on the model and cosmological

parameters at both background and linear level using

present day data. An additional novelty in the analysis

will be the inclusion of massive neutrinos. The latter can be

constrained using cosmological data as they leave precise

and measurable effects on cosmological observables

[40,41]. Since such effects are similar to those observed

in DE and MG scenarios: thus we will investigate the

degeneracy between massive neutrinos and the GCCG

model. Furthermore, we will use appropriate combinations

of datasets in order to explore whether the GCCG model

can ease the tension arising within the ΛCDM model

between cosmic microwave background radiation (CMB)

measurements and the local estimate of the present day

Hubble constant (H0). The significance of such tension is

rather high (4.4σ) when comparing Planck with measure-

ments of H0 based on the cosmic distance ladder [42–44].

Baryon acoustic oscillations (BAO) measurements from

BOSS and SDSS show a 2.5σ discrepancy in H0 with

Planck [45]. Such tension is reduced by DESmeasurements

[46,47] and by calibration of the tip of the red giant branch

applied to SNIa in the Large Magellanic Cloud [48]. We

notice that in the latter case a different estimation of the

Large Magellanic Cloud extinction can yield again to a

large discrepancy [49]. Phenomenological DE and MG

models seem to be very promising in reducing this tension

[50–59]. Alternatively, it has been argued that the discrep-

ancy can be due to the impact of the local density

inhomogeneity on the calibration of SNIa distances with

the Cepheids and the anchors [60].

The manuscript is organized as follows. In Sec. II we

present the GCCG model and the procedure we adopt to

solve the corresponding background equations. In Sec. III,

we illustrate the methodology: we introduce the EFT

formalism and we derive the mapping relations needed

for the implementation in EFTCAMB. We also present the

stability analysis of the model and its departures from

ΛCDM in the cosmological observables. Then, in Sec. IV

we present the cosmological datasets used for the Markov

Chain Monte Carlo (MCMC) analysis and we show the

results. Finally, we conclude in Sec. V.

II. THE MODEL

Let us consider the cubic Horndeski action [61, 62]

S ¼
Z

d4x
ffiffiffiffiffiffi

−g
p �

m2

0

2
Rþ L2 þ L3

�

þ Sm½gμν; χi�; ð1Þ

with

L2 ¼ G2ðϕ; XÞ; L3 ¼ G3ðϕ; XÞ□ϕ; ð2Þ

wherem2

0
is the Planck mass and R is the Ricci scalar, gμν is

the metric and g is its determinant. Sm is the matter action

for all matter fields, χi.

On a flat Friedmann-Lemaître-Robertson-Walker (FLRW)

background of the form

ds2 ¼ aðτÞ2ð−dτ2 þ δijdx
idxjÞ; ð3Þ

where aðτÞ is the scale factor and τ is the conformal time, the

Friedmann equations associated to the action (1) are

3m2
0
H2 ¼ a2ðρm þ ρϕÞ; ð4Þ

m2

0
ð2 _HþH2Þ ¼ −a2ðpm þ pϕÞ; ð5Þ

where H ¼ d lna=dτ is the Hubble rate in conformal time,

dot stands for derivatives with respect to τ, ρm and pm are the

density and pressure of the matter fluids and

ρϕ ¼ 2XG2X − G2 − 6XHϕ0G3X − XG3ϕ; ð6Þ

pϕ ¼ G2 þ 2X

�

_H

a
ϕ0 −H2ϕ00

�

G3X − XG3ϕ; ð7Þ

are the density and pressure of the scalar field. Here the prime

is the derivative with respect to the scale factor, GiX ¼
∂Gi=∂X and Giϕ ¼ ∂Gi=∂ϕ. As usual we consider the

continuity equations for the matter fields which we assume

to be perfect fluids. The equation of evolution for the scalar

field is obtained by varying the action (1) with respect to ϕ

and at background level it reads

H

a3
d

da
ða3JÞ ¼ P; ð8Þ

and

J ¼ −2Hϕ0G2X − 6
H

a
XG3X þ 2Hϕ0G3ϕ; ð9Þ

P ¼ G2ϕ − 2X

�

G3ϕϕ − 2

�

_H

a
ϕ0 −H2ϕ00

�

G3ϕX

�

: ð10Þ
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For the present analysis we consider the GCCG model

[15] specified by the following forms of G2 and G3 [15]
1
:

G2 ¼−c2α
4ð1−p2Þ
2

ð−XÞp2 ; G3 ¼−c3α
1−4p3

3
ð−XÞp3 ; ð11Þ

with ci, αi, pi being constants, in particular

α2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

H0m0

p

; α3 ¼
�

m
1−2p3

0

H
2p3

0

�

1

1−4p3 ; ð12Þ

where H0 is the Hubble parameter at present time. This

model generalizes the cubic covariant Galileon model (G3)

[16]. The latter is obtained in the limit p2 ¼ p3 ¼ 1.

Hereafter we will fix c2 ¼ 1=2 without loss of generality

[21,63,64].

The GCCGmodel shows a tracker solution given by [15]

�

H

a

�

2qþ1

ψ2q ¼ ζH
2qþ1

0
; ð13Þ

where ζ is a dimensionless constant. For convenience we

have introduced a dimensionless quantity:

q ¼ ðp3 − p2Þ þ
1

2
; ð14Þ

and a dimensionless scalar field:

ψ ¼ 1

m0

dϕ

d ln a
: ð15Þ

Thus, for a fixed q the tracker attracts solutions with

different initial conditions to a common trajectory.

We solve the background equations for the GCCGmodel

along the tracker solution, thus the Friedmann equation (4)

can be rewritten as

�

H

aH0

�

2þs

¼Ω
0

ϕþ
�

Ω
0
cþΩ

0

b

a3
þΩ

0
r

a4
þΩ

0
ν

ρν

ρ0ν

��

H

aH0

�

s

; ð16Þ

where s ¼ p2=q,
2
Ω

0
i ¼

ρ0
i

3m2

0
H2

0

are the density parameters at

present time of the cold dark matter (c), baryons (b),

radiation (r) and massive neutrinos (ν) with density ρν. In

the above equation we have also used the solutions of the

continuity equations for the cold dark matter (ρc ¼ ρ0c=a
3),

baryons (ρb ¼ ρ0b=a
3) and radiation (ρr ¼ ρ0r=a

4). We

have also identified the density of the scalar field at present

time as

Ω
0

ϕ ¼ 1 −Ω
0
m ¼ c3ð2sqþ 2q − 1Þζsþ1 −

1

6
ð2sq − 1Þζs;

ð17Þ

by considering Eq. (4) at present time.

Once the Friedmann equation (16) has been solved forH

the scalar field is completely determined trough the tracker

solution Eq. (13).

Now, it remains to consider the equation for the scalar

field. Using the tracker solution in Eq. (8) and evaluating

the latter at present time, we get a constraint equation

−sqþ 3c3ζð2sqþ 2q − 1Þ ¼ 0: ð18Þ

We can combine the Eq. (17) and the above constraint to

eliminate two parameters, ζ and c3, then:

ζ ¼ ð6Ω0

ϕÞ
1

s; c3 ¼
1

3

sq

ð6Ω0

ϕÞ
1

sð2sqþ 2q − 1Þ
: ð19Þ

We conclude, that the resulting GCCG model has two

additional free parameters, i.e., fs; qg, with respect

to ΛCDM.

III. METHODOLOGY

A. Effective field theory for dark energy

The primary goal of the present investigation is to study

the linear cosmological perturbations and perform cosmo-

logical constraints of the GCCGmodel. In particular we will

be interested in the evolution of scalar modes since the tensor

modes are left unmodified with respect to GR. To this

purpose we will use the EFT approach [36,37,65–68]. The

advantage in using this approach relies on the possibility to

use the publicly available EFTCAMB/EFTCosmoMC package

[38,39]
3
which with minor modifications allows to perform

the desired analysis. In the following we will briefly discuss

the necessary steps (see Ref. [69] for additional details).

Within the EFT framework it is possible to write the

linear perturbed action around a flat FLRW background

and in unitary gauge for all DE and MGwith one additional

scalar dof. Here, we will consider the restriction of the EFT

action to the subclass of Horndeski theory with luminal

propagation of tensor modes which reads

S ¼
Z

d4x
ffiffiffiffiffiffi

−g
p m2

0

2

�

½1þΩðτÞ�Rþ 2ΛðτÞ
m2

0

−
2cðτÞ
m2

0

a2δg00

þH2

0
γ1ðτÞða2δg00Þ2 −H0γ2ðτÞa2δg00δK

�

; ð20Þ

where δg00 and δK are the perturbations respectively of the

upper time-time component of the metric and the trace of
1
The notation slightly differs from that in Ref. [15] because we

adopt a different definition for X.
2
Let us note that the definition of the s parameter in this work

and that in Ref. [33], differs by a factor 2, i.e., s̃ ¼ s=2.
3
Web page: http://www.eftcamb.org.
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the extrinsic curvature. fΩ; c;Λ; γ1; γ2g are the so called

EFT functions. Λ and c can be expressed in terms of Ω, H

and the densities and pressures of matter fluids by using the

background field equations [36,37], thus we are left with

three free functions of time. The latter can be specified

following the mapping procedure, i.e., given a specific

covariant theory it can be rewritten in the EFT language as

discussed in details in Refs. [36,37,65,70–73]. For the

GCCG model using the tracker solution (13) we obtain:

γ1 ¼
s

4
Ω

0

ϕ

�

aH0

H

�

s
�

12q2 þ 1 −
_H

H2

�

; ð21Þ

γ2 ¼ −2sqΩ0

ϕ

�

aH0

H

�

1þs

; ð22Þ

andΩ ¼ 0. The above EFT functions will be fully specified

once the Eq. (16) is solved. We have implemented the

above mapping and the background solver described in

Sec. II into EFTCAMB. After these modifications, the code

evolves the linear perturbation equations for the GCCG

model and computes the relevant linear cosmological

observables.

At the level of perturbations only the γ2 functions will

alter the cosmological observables. This modification is

related to the braiding effect which is due to the mixing

between the metric and the DE field [61]. From the above

relation we notice that both s and q have a relevant role. On

the contrary γ1 has no measurable effect being its con-

tribution to the observables below the cosmic variance [74].

However it is important in defining the viable param-

eter space.

B. Stability

A physically viable theory needs to satisfy specific

requirements: the no-ghost condition to prevent the devel-

opment of dofs with a negative kinetic term, the no-gradient

condition to avoid the presence of modes with a negative

speed of propagation, cs, and the absence of tachyonic

instabilities which appear when the perturbations are not

computed about the true vacuum of the theory. Both the no-

ghost and no-gradient conditions are high momenta (k)
statements while the tachyonic instability is relevant at

low-k. So that, they identify a theoretically rigorous set of

conditions that guarantees stability of the theory at all

cosmological scales. When studying cosmological pertur-

bations, the matter fields and their mixing with the scalar

field cannot be neglected as they can change the viability

space of the theory. For example in the Gleyzes-Langlois-

Piazza-Vernizzi theory [75] the scalar and the matter fields

do not decouple at high-k and their speeds of propagation

are modified [75–79]. In Horndeski theory the matter fields

are involved only in the tachyonic condition [79] and its

impact on the viability space has been widely investigated

[80]. Since this theory introduces an extra scalar dof, the

new no-ghost condition associated to it, leads also, auto-

matically, to an additional condition, that we will discuss

later on, meant to avoid strong coupling problems.

In this section we will discuss the theoretical viability

requirements which guarantee the GCCG model does not

develop any pathological instability. They are

(i) no-ghost condition: In order to find such condition,

we choose to study the kinetic term for the field

ϕ ¼ ϕðτÞ þ δϕ, and we define Qs so as to have

L ∋ 1=2a2Qs
_δϕ2 4

Its expression reads [33]

Qs ¼
6ðΩϕsþ 2ÞΩϕsq

2ðH=aÞ2m2
0

ð _ϕ=aÞ2ðΩϕsq − 1Þ2
> 0; ð23Þ

where Ωϕ ≡ a2ρϕ=ð3m2
0
H2Þ, which implies s > 0.

(ii) no-strong coupling condition: In order to avoid

Qs → 0 at early times, we also require [33]

qs − 1

qð2þ sÞ ≤ 0; ð24Þ

which follows from Qs ∝ Ω
ðqs−1Þ=½qð2þsÞ�
ϕ .

(iii) no-gradient condition: the avoidance of any poten-

tial gradient instabilities at high-k requires a positive

speed of propagation, c2s > 0. For the model under

consideration it gives [79]

c2s ¼
ð2qðsþ2Þ−1Þð1− _H

H2Þ−2q2sΩ0

ϕðaH0

H
Þsþ2

6q2ð1þ s
2
Ω

0

ϕðaH0

H
Þsþ2Þ

> 0:

ð25Þ

(iv) no-tachyonic condition or mass condition: the ta-

chyonic instability occurs when the Hamiltonian is

unbounded from below at low-k. This occurs when
the negative mass eigenvalues of the Hamiltonian

are much larger, in absolute value, than the Hubble

parameter [79], i.e.,

jμiðγ1; γ2; ρmÞj < β2
H2

a2
; ð26Þ

where the eigenvalues μi are expressed in terms of

the EFT functions and matter fields and β is a

4
More in detail, after choosing a gauge (e.g., the flat gauge, but

this choice in not special), adding two fluids to model matter
fields (representing the relativistic and dust matter fields), and
removing all the auxiliary fields, we can diagonalize the three by
three kinetic matrix, in order to find the no-ghost conditions. This
can be done my making field redefinitions for the matter fields
δm;r (such as δm ¼ δnewm þ CðτÞδϕ, where C is chosen as to
diagonalize the kinetic matrix). Then, two out of three no-ghost
conditions refer to the matter fields and are trivially satisfied. On
the other hand the no-ghost condition for the scalar field δϕ, in
the high-k regime, requires Qs > 0.
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constant defining the rate of allowed instability.

Because of the length and complexity of the expres-

sions of the mass eigenvalues we refer the reader to

Ref. [79], where these conditions have been derived.

Among the stability requirements the mass condition

is in general the less severe [80]. Equation (26) in

some cases can be quite conservative for β ¼ 1 since

there might be cases in which the instability does not

occur even requiring jμij < 102H2=a2. In the follow-
ingwewill investigate the impact of such condition on

the viable parameter space.

Let us note that the above conditions apply only to the

scalar sector because the tensor modes are not modified

neither in the speed of propagation (by construction c2t ¼ 1

[61]) nor in the kinetic coefficient ðQt ¼ 1=2Þ. These

conditions are implemented in EFTCAMB and are used as

viability priors in EFTCosmoMC.

In Fig. 1 we show the effects of the different stability

filters on the s − q parameter space. The no-ghost, no-

gradient and strong coupling conditions identify the same

parameter space as in Ref. [33] and we also recover the

hyperbole sq ¼ 1 given by the strong coupling condition

which separates the stable and unstable region. Here we

also include the cut of the mass condition for β ¼ 1 which

modifies the parameters space for small values of both q
and s. In Fig. 2 we show the different shapes of the stable

parameter space when different mass cuts are applied.

These correspond to different choices of the β parameter.

We notice that the parameter space does not change for any

value of β ≤ 10. Larger values of β allow for an extended

viable region with a peculiar shape. In particular we see that

for a very large value of β (β ¼ 100) a small unstable area

within the stable one is identified. We have verified that

values of q and s within such area would indeed lead to the
evolution of unstable modes. While large part of the

parameter space cut off by β ¼ 1, 10 is actually stable.

For this reason, when constraining the model parameters

against data we will consider the case in which the mass

condition is switched off because we prefer to sample the

larger viable parameter space at our disposal, thus we

consider as baseline stability conditions the no-ghost, no-

gradient and strong coupling condition. However, we will

also discuss how the constraints on the cosmological and

model parameters will change if the mass condition (with

β ¼ 1) is included on top of the baseline conditions.

C. Cosmological implications

We will now perform a thorough analysis of the

cosmological implications in the GCCG model. Let us

introduce the perturbative flat FLRW metric written in

Newtonian gauge

ds2 ¼ aðτÞ2½−ð1þ 2ΨÞdτ2 þ ð1 − 2ΦÞdx2�; ð27Þ

where fΨðτ; xiÞ;Φðτ; xiÞg are the gravitational potentials.

For MG models the Poisson and lensing equations can be

written in Fourier space as follows [81,82]:

−k2Ψ ¼ 4πGNa
2μða; kÞρmΔm; ð28Þ

FIG. 1. The stable parameter space of GCCG is shown in white,

while different filled regions represents cuts due to the stability

conditions, discussed in Sec. III B, as shown in the legend. For

the mass condition we have set β ¼ 1.

FIG. 2. We show the impact of the mass condition on the parameter space of the GCCG model for different values of β. The stable

parameter space is shown in blue, while the region undergoing mass instability is white. For these plots we choose four different mass

instability rates β ¼ 1, 10, 50, 100.
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−k2ðΨþΦÞ ¼ 8πGNa
2
Σða; kÞρmΔm; ð29Þ

where GN is the Newtonian gravitational constant, Δm is

the total matter density contrast, μ and Σ define respectively

the effective gravitational coupling and the light deflection.

The GR limit is recovered when fμ;Σg ¼ 1. In general MG

models are characterized by an anisotropic stress term

given by Φ ≠ Ψ. Because the GCCG model does not have

any modification in the speed of propagation of GWs nor a

running Planck mass, there is no anisotropic stress term and

the two gravitational potentials are equal. From this follows

that μ ≃ Σ.

Using the quasistatic approximation (QSA) and for

subhorizon perturbations it is possible to explicitly write

the functional forms of μ for the GCCG model which reads

μðaÞ ¼ 1þ
s2q2ðΩ0

ϕÞ2ðaH0

H
Þ2ðsþ2Þ

Qsc
2
sð1 − sqΩ0

ϕðaH0

H
Þsþ2Þ2

: ð30Þ

According to the above relation, μ ≥ 1 for any viable value

of q and s and hence the gravitational interaction is always

stronger than in GR. We expect modifications in the lensing

potential (ΦþΨ) and thus in the ISW effect, being the

latter sourced by _Ψþ _Φ, and finally in the growth of

structures. While Eq. (30) is very useful to grab some

preliminary information about the physics of the model, in

the following we will not rely on the QSA but we will solve

the complete set of linear perturbation equations.

We analyze the dynamics of linear cosmological observ-

ables and quantify the deviation with respect to the standard

scenario. We will always show for reference the ΛCDM

and G3 evolutions. In Table I we list the parameters

defining the models. They are chosen such that GCCG1

shares the same background evolution of G3 but a different

value for q, while GCCG2 evolves differently at the

background level while having the same value for q as

in G3. We also include the cases with and without massive

neutrinos. The sum of neutrino mass is chosen to be

0.85 eV which is the 1σ constraint for G3 obtained in [22].

In Fig. 3 we show the evolution of the effective

gravitational coupling at k ¼ 0.01 Mpc−1. We notice devi-

ations from GR only at late times for a > 0.4. As already

mentioned, for all the cases considered we recover μ > 1.

The largest deviation is obtained for G3 which reaches

today μ0 − 1 ¼ 0.91. It is followed by GCCG1 with μ0 −

1 ¼ 0.57 and finally GCGG2 with μ0 − 1 ¼ 0.52. We note

that in the range 0.4 < a < 0.7 the effective gravitational

coupling for GCGG2 is larger than the one for GCCG1. It is

only for a > 0.7 that μðGCCG1Þ rapidly grows more. The

inclusion of the massive neutrinos lowers the deviation with

respect to ΛCDM of about 4%.

In Fig. 4 we show the differences relative to ΛCDM for

the CMB temperature-temperature (TT), lensing potential

auto-correlation and matter power spectra. A different

evolution of the gravitational potentials leads to modifica-

tions in the gravitational lensing power spectrum. In the

bottom left panel of Fig. 4 we notice that the lensing power

spectra for the modified cosmologies show an enhancement

with respect to the ΛCDM scenario. This is expected as

Σð≃μÞ > 1. In both the GCCG models however the

fluctuations of this observable are suppressed for l < 200

with respect to G3. The deviations relative to ΛCDM are

around 20% forl > 100 and growup for smaller values ofl.

In particular they reach ∼68% for GCCG2, ∼80% for

GCCG1 and larger than 100% for the G3 model.

In the upper left panel we note that both the GCCG

models can predict an ISW tail suppressed with respect to

G3 and for appropriate values of the parameters even with

respect to the ΛCDM model. GCCG1 shares the same

background expansion history of G3, however a lower

value of q can suppress the ISW tail of about 15% with

respect to ΛCDM. Changing s toward smaller values it is

also possible to lower the low-l tail in the TT power

spectrum, for example in GCCG2 the suppression with

respect to ΛCDM reaches the 28%. In the upper right panel

TABLE I. Values of s and q for the cubic Galileon (G3) and the

two GCCG models presented here. For each case we also

consider a cosmology with massive neutrinos. The sum of the

neutrino masses adopted is the 1σ constraint for G3 obtained in

Ref. [22]. The standard cosmological parameters are chosen to

be: Ω
0

bh
2 ¼ 0.0226, Ω

0
ch

2 ¼ 0.112 with h ¼ H0=100 and

H0 ¼ 70 km=s=Mpc. All the values satisfy the theoretical con-

ditions discussed in Sec. III B.

Model s q
P

mν (eV)

G3 2 0.5 –

G3þ ν 2 0.5 0.85

GCCG1 2 0.35 –

GCCG1þ ν 2 0.35 0.85

GCCG2 1.3 0.5 –

GCCG2þ ν 1.3 0.5 0.85

FIG. 3. Evolution of the effective gravitational coupling μ as

function of the scale factor a at k ¼ 0.01 Mpc−1 for the test

models in Table I.
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we show the difference with respect to ΛCDM in the TT

power spectra for large angular scales. The modification of

the gravity force shifts the peaks and troughs to higher

multipoles with respect the ΛCDM. This effect is mostly

due to a change in the expansion history which alters the

distance to the last scattering surface. We note that the shift

in the peaks for G3 and GCCG1 is ∼30% while in the

GCCG2 is <25%. The larger the shift the wider is the

deviation in the background evolution compared to ΛCDM

as shown in Fig. 5. Finally, in the bottom right panel we
show the relative difference in the matter power spectra. We
observe an enhancement of the growth of structure between

10% and 20% for k > 10−3 hMpc−1 and a suppression for
very small k which for the GCCG1 model is ∼10%.

Regardless of the observable we consider, the impact of

the massive neutrinos goes in the direction of suppressing

the MG effects as already noticed in Fig. 3. Thus massive

neutrinos push the GCCG model toward ΛCDM.

From this analysis we can deduce that the GCCG model

shows a very interesting phenomenology. The additional

freedom given by s and q generates MG effects on observ-

ables that can be less strong than G3 ones. This feature might

allow the model to fit the data better than G3. The latter has

been ruled out at 7.8σ using ISW data [21] afterwards such

result was confirmed by a Bayesian model comparison

involving several datasets [22]. Furthermore, the possibility

to have a suppressed ISW tail with respect to ΛCDM might

provide a better fit to data and drive model selection criteria

toward the preference of GCCG over ΛCDM, as already

noticed for the Galileon ghost condensate model [14].

IV. COSMOLOGICAL CONSTRAINTS

AND MODEL SELECTION

A. Datasets

In the present cosmological analysis, we employ the

Planck 2015 measurements [83,84] of CMB temperature

FIG. 4. Percentage differences of the test models in Table I relative to ΛCDM in the power spectra. Upper panel: Differences in the

CMB temperature-temperature power spectrum DTT
l

¼ lðlþ 1ÞCTT
l
=ð2πÞ at low multipoles (left) and large angular scales (right).

Bottom panel: Differences in the lensing potential autocorrelation power spectra D
ϕϕ
l

¼ lðlþ 1ÞCϕϕ
l
=ð2πÞ (left) and matter power

spectra PðkÞ (right).

FIG. 5. Relative difference in the expansion history of the test

models in Table I with respect to ΛCDM. G3 overlaps with

GCCG1 as they share the same background evolution.
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and polarization on large angular scales, limited to multi-

poles l < 29 (low-l TEB likelihood) and the CMB tem-

perature on smaller angular scales (PLIK TT likelihood,

30 < l < 2508). We also vary the nuisance parameters

used to model foreground as well as instrumental and beam

uncertainties. Given the similarities between the 2015 and

2018 releases, we do not expect that our results would

change significantly if we employed the data presented in

[85]. We complement the Planck dataset with measure-

ments of baryon acoustic oscillation (BAO) from the 6dF

galaxy survey [86], the BAO scale measurements from the

SDSS DR7 Main Galaxy Sample [87] and the combined

BAOand redshift space distortion (RSD) data from theSDSS

DR12 consensus release [88]. We also include data coming

from the Joint Light-curve Array “JLA” Supernovae (SNIa)

sample, as introduced in [89].We consider the above datasets

in two combinations: Planck alone and Planckþ BAOþ
RSDþ SNIa (hereafter PBRS). Where mentioned, we

also consider a Gaussian prior on the Hubble constant

H0 ¼ 74.03� 1.42 km=s=Mpc, as estimated in [44] using

three anchors: cepheids in the Large Magellanic Cloud, the

MilkyWay cepheid parallaxes, and themasers inNGC4258.

We will consider such measurement in combination with

Planck and we will refer to it as PlanckþH0.

For the MCMC likelihood analysis with the above

datasets we use the EFTCosmoMC code [39]. We impose

flat priors on the two models parameters: q ∈ ½−10; 10� and
s ∈ ½−10; 10� and we test that the results are insensitive on

the choice of the prior volume.

B. Results and discussion

In this section we present and discuss the constraints of

the cosmological and model parameters in the GCCG

model for two case studies: GCCG model with and without

massive neutrinos. For the cosmological parameters we

show the present day values of the matter density Ω
0
m,

Hubble parameter H0, the amplitude of the linear power

spectrum at scale of 8 h−1Mpc, denoted by σ0
8
and the sum

of neutrinos mass Σmν. We include in Table III, the

marginalized constraints for the two combinations of

datasets (Planck and PBRS). From here on, all the reported

error bars represent the 95% confidence level (C.L.), unless

otherwise stated. For reference we also show the constraint

values for the ΛCDM model.

We note that GCCG prefers slightly higher central values

of σ0
8
with respect to ΛCDM for both the combination of

datasets, while the model with massive neutrinos prefers

lower values. We note that assuming a ΛCDM scenario a

tension at 3.2σ in the estimation of σ0
8
between Planck data

and KiDS+VIKING-450 combined with DES-Y1 exists

[90]. In GCCG such tension is still present and to

definitively settle the controversy, the current analysis

should be completed by using datasets of weak lensing

measurements, e.g., KiDS [91]. This would require to

consider nonlinear effects in the MCMC analysis, which is

beyond the scope of this paper. In the case of Ω0
m we notice

that the PBRS datasets makes its central value the same for

both models. Planck data instead prefers lower values of

Ω
0
m compared to ΛCDM. The inclusion of massive neu-

trinos slightly increases it central value in both models. The

bounds on the present day value of the Hubble function,

H0, in the case of Planck alone are

H0 ¼ 68� 2 km s−1Mpc−1 for ΛCDM; ð31Þ

H0 ¼ 72
þ8

−5
km s−1Mpc−1 for GCCG: ð32Þ

Direct measurements ofH0 at low redshift set its value to be

H0 ¼ 74.03� 1.42 km s−1Mpc−1 [44], whereas the results

of the Planck Collaboration obtained by combining CMB

data from the temperature and polarization maps and the

lensing reconstruction, in the context ofΛCDM favor lower

values of H0, H0 ¼ 67.4� 0.5 km s−1 Mpc−1 [85] with a

discrepancy which can reach the 4.4σ [44]. In Fig. 6, we

plot the two-dimensional observational contours at 68%

and 95% C.L. for H0 and Ω
0
m constrained by the Planck

alone data (temperature and polarization) for both ΛCDM

(solid black lines) and GCCG (red), we also include the low

redshift measurement ofH0. From this figure it is clear that

although the bounds on H0 for ΛCDM and GCCG are

consistent with each other within the errors, the GCCG

FIG. 6. The marginalized 2-D joint distribution for the cos-

mological parameters Ω0
m and H0, obtained from the analysis of

the Planck dataset with GCCG (in red) and with ΛCDM (in

black). The inner region of the distribution represents the

68% confidence level, while the outer region cuts the distribution

at 95%. The vertical grey band represents the 1 and 2σ constraints

obtained by the local measurements [44].
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model, unlike ΛCDM, is able to alleviate the tension of H0

between the Planck CMB data and its local measurements,

which are compatible within 1σ. The constraint we found

on H0 is also fully compatible with the estimation obtained

with the tip of the red giant branch in the Large Magellanic

Cloud, H0 ¼ 72.4� 2 km s−1 Mpc−1 [49]. The eased ten-

sion in the estimation of H0 in the GCCG model is due to a

difference in the late time background evolution, which is

enhanced at low redshift, with respect to ΛCDM, as shown

in Fig. 5. We note that if the tension between CMB data and

low redshift measurements of H0 disappears for the GCCG

model, another tension arises which now is between the

latter and BAO data as shown in Fig. 6 with yellow

contours. In this case we note that BAO data assume a

fiducial flat ΛCDM cosmological model. Although BAO

data can be used to constrain changes in the distance scale

relative to that predicted by the ΛCDM model, the specific

scenario we are investigating in this work involves a

modification of the gravity force which might affect the

result in a non-negligible way [92]. In this regard a further

investigation is required.

Generally, we notice that the effect of massive neutrinos

on the cosmological parameters of GCCG is to push their

central values close to ΛCDM ones. This is due to the fact

that they act in the direction to relieve the MG features as

discussed in the previous section. In Fig. 7 we show the

marginalized 2-D joint distribution for H0 and
P

mν in

both ΛCDM and GCCG. In the case of ΛCDM both

datasets only set the upper bounds:
P

mν < 0.70 eV for

Planck and
P

mν < 0.23 eV for PBRS. For the GCCG

model the Planck data alone constrain the sum of neutrino

masses to be < 0.62 eV. and also in this case the PBRS

dataset a lower upper bound, which is
P

mν < 0.45 eV.

We note that the full dataset is also able to detect a lower

bound for the sum of neutrino masses which is

Σmν > 0.11 eV at 1σ: ð33Þ

This result could be potentially interesting for present

and future experiments which aim to find the absolute mass

scale of neutrinos, such as KATRIN (see e.g., [93]). We

also note that this feature was already present in the

covariant Galileon model [22]. In Fig. 7, we also note

that the BAOþ RSDþ SNIa data in both cosmologies

have the power to break the degeneracy between H0

and
P

mν.

Let us now discuss about the cosmological constraints on

the model parameters q, s. They are constrained to be

strictly positive in agreement with the stability conditions.

The data we use are able to constrain the parameter s to be

0.6þ1.7
−0.6 . with Planck alone, while PBRS cuts the larger

values so that s ¼ 0.05þ0.08
−0.05 . The latter is due to the

inclusion of BAO data which strongly constrain s at

background. When massive neutrinos are included the

bound for the complete dataset is looser while it does

not change in the case of Planck alone. The parameter s
shows a degeneracy with q as it can be seen in Fig. 10. Thus
because s is close to zero q can span from 0 to very large

values and as such it only shows lower bounds. We also

note another degeneracy between s and H0 parameters (see

right panel in Fig. 8). According to which higher values of

H0 select higher values of s and vice versa. We then

analyzed the constraints when on top of the Planck data we

also include the H0 data point in [44]. The analysis with

PlanckþH0 introduces a lower bound s > 0.13. Because

of the degeneracy between the two GCCG parameters, the

latter translates into the upper bound q < 6.2. We notice

that this is the only dataset that sets a constraint on q, since
even in the analysis with the full PBRS this parameter is

always unconstrained.

The cross-correlation between the ISW signal and the

matter (galaxy) distribution is known to be a powerful tool

to test gravity [94–96]. For the GCCG model, it has been

identified a viable region in the parameter space that allows

for positive ISW-Galaxy cross-correlation [33]. In this

work we use the methodology in [33] where it is assumed

that only the model parameters q and s are free parameters

and the other cosmological parameters are fixed. In our

study we set the values of the cosmological parameters to

the best fit values in Table III. In Fig. 9 we show the results

for the sign of the ISW-Galaxy cross-correlation in the

fs; qg-plane where the black dashed area identifies the

parameter space with negative cross-correlation. We over-

lap the marginalized 2-D joint distributions of the para-

meters fs; qg for the PlanckþH0 and PBRS datasets.

FIG. 7. The marginalized 2-D joint distribution for H0 and
P

mν, obtained from the analysis of GCCG with the Planck

dataset (in red) and PBRS (in blue). The ΛCDM results are shown

with solid black lines for PBRS and dashed white lines for

Planck. The inner region of the distribution represents the

68% confidence level, while the outer region cuts the distribution

at 95%.
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We note that the constraints obtained with the complete

dataset lay in the region with a positive ISW-Galaxy cross-

correlation, while for PlanckþH0 data the negative ISW-

Galaxy cross-correlation cuts a part of the contours. We

have verified that these results are independent of the

chosen values for the cosmological parameters within their

errors.

In order to quantify the preference of the GCCG model

with respect to ΛCDM we make use of the deviance

information criterion (DIC) [97]:

DIC ≔ χ2eff þ 2pD; ð34Þ

where χ2eff is the value of the effective χ
2 corresponding to

the maximum likelihood and pD ¼ χ̄2eff − χ2eff , here the bar

indicates the average of the posterior distribution. The DIC

accounts for both the goodness of fit (χ2eff) and for the

Bayesian complexity of the model (pD), disfavoring more

complex models. The two cosmologies can then be

compare by computing the following quantity

ΔDIC ¼ DICGCCG − DICΛCDM: ð35Þ

A negative ΔDIC supports the GCCG model over

the ΛCDM one. In Table II we show the values for both

the Δχ2eff and ΔDIC, computed from the analyses with the

Planck and PBRS datasets. We notice that, in both cases

GCCG produces a lower χ2eff compared to ΛCDM: this is

due to the fact that the model is able to lower the low-lISW

tail of the CMB TT power spectrum, as shown in Fig. 4 top

left panel. In fact, when analyzing CMB data alone we see

that the DIC favors the GCCG model (ΔDIC ¼ −3.7).

Nevertheless, when considering the more exhaustive data-

set PBRS we found that the improvement in χ2eff is not

enough to compensate the increased model complexity of

GCCG. In this case ΛCDM becomes the preferred cosmol-

ogy (ΔDIC ¼ 1.1). We notice the same trend in the

analyses with massive neutrinos.

We conclude this section discussing the recent theoreti-

cal bound [98] on the braiding function αB which is

FIG. 8. The marginalized 2-D joint distribution for the cosmological parameters H0 and Ω
0
m and model parameters S and q, obtained

from the analysis of the Planck dataset (in red). In blue we show the results of combining the CMB measurement with the local value of

H0 [44]. The inner region of the distribution represents the 68% confidence level, while the outer region cuts the distribution at 95%.

FIG. 9. Sign of the ISW-Galaxy cross correlation in the fs; qg-
plane compared with the marginalized distributions obtained in

the present work. The black dashed area represents the para-

meter space which is related to a negative sign of the ISW-Galaxy

cross correlation. The latter has been calculated following the

procedure in [33] and using the best fit values in Table III.

The marginalized 2D distributions are plotted in blue for

Planck þH0 and in green for the PBRS dataset.

TABLE II. Values of Δχ2eff and ΔDIC computed between

GCCG and ΛCDM for the Planck and PBRS datasets with

and without massive neutrinos.

Dataset Δχ2eff ΔDIC

Planck −4.9 −3.7

Planck þ ν −6.5 −3.4

PBRS −0.1 1.1

PBRSþ ν −0.6 1.1
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characteristic of Horndeski models with G3ðXÞ ≠ 0. GWs

of sufficiently large amplitude produced by typical binary

systems might generate ghost and gradient instabilities in

the dark energy perturbations for values of jαBj≳ 10−2.

This would lead to exclude models with cubic term such as

the one considered in the present investigation for which

αB ¼ −γ2aH0=H. We would like to notice that the fre-

quency considered in [98] lies on the cutoff of the EFT

description. In this regards the EFT parameters could be

dependent on the energy scale in such a way that their

values measured at low-energy scales may receive correc-

tions when approaching larger frequency. Indeed, the latter

has been shown to be the case of the tensor speed of

propagation [99]. Furthermore, the results of [98] seems to

imply that we cannot neglect higher order perturbations

terms compared to lower order ones. It would be interesting

to study if such an instability exists in the context of a fully

self-consistent second-order cosmological perturbation

theory (i.e., considering all dynamical terms) and inves-

tigate how it depends on the parameters of the theory. For

all these reasons, we think more analytical work is needed

to understand the possible influence of such a phenomenon.

In the present work at low energy and present time we find

α0B > 0 for Planck and PBRS. This is due to the degeneracy

between s and q and to the fact that q is unconstrained.

When including the H0 data point to Planck we find the

constraint α0B ¼ 0.8� 0.1 at 1σ level. Such bound is one

order of magnitude larger than the upper limit found in

[98]. Our constraint shows a completely independent

bound on α0B based on cosmological data only.

C. Impact of mass condition on cosmological constraints

In Sec. III B we discussed how the parameter space

changes when including the mass condition as prior on top

of the baseline stability conditions. In this section we

discuss the impact of such condition on the cosmological

and model parameters when β ¼ 1. We notice that such

condition does not affect the constraints on the cosmo-

logical parameters, while it has an effect only on the model

parameters. We show in Fig. 10, the confidence regions for

q and s obtained using the Planck CMB temperature and

polarization data when only the baseline stability condi-

tions are imposed (red) and the case in which the mass

condition is included (green). As expected the constraints

follow the shape of the stability cut induced by the mass

condition. As previously discussed, the parameter space of

s and q does not change when considering higher values of

β (β ≤ 10), thus the green contours in Fig. 10 hold also for

such values of β. From our analysis we note that Planck

alone does not add much information to the stability

condition q > 0, while the inclusion of BAO data in the

complete dataset push the lower bound to an higher value,

q > 3.3 for the model without massive neutrinos and q > 2

with massive neutrinos. The higher lower bound on q
obtained with the extended datasets is motivated by the fact

that BAOþ RSDþ SNIa data (in particular BAO) strongly

constrain the s parameters at background level. For this

case we obtain s ¼ 0.44þ1.5
−0.44 with Planck alone, while

PBRS give the tighter constraint s ¼ 0.082þ0.083
−0.053 . The

marginalized constraint on s with massive neutrinos does

not change for the PBRS data, while its central value with

Planck data alone is smaller s ¼ 0.25þ0.73
−0.25. Thus BAO data

push the values of s toward zero and as consequences they

select higher values of q. The latter is a consequence of the
mass condition according to which small value of s select
higher values of q.

V. CONCLUSION

In this work we have performed a thorough investi-

gation of the impact on the cosmological observables

of the modification induced by a specific class of Galileon

models, the generalized cubic covariant Galileon (GCCG).

Compared to ΛCDM the model introduces two extra

parameters fs; qg of which only s affects the background

dynamics, while both introduce modifications at linear

perturbation level. We have identified modifications in the

ISW effect, the gravitational lensing, the rate of growth of

structure and temperature-temperature power spectrum at

large angular scales. While both the lensing and the matter

power spectra are in general enhanced with respect to

ΛCDM, the low-lTT power spectrum can be either

enhanced or suppressed and the high-l peaks are shifted

due to a modified background evolution. We found that the

inclusion of massive neutrinos generally brings down the

deviations of GCCG from ΛCDM. We have performed

cosmological constraints considering data from CMB,

BAO, RSD, SNIa and Cepheids (H0) in different combi-

nations in order to identify how different datasets contribute

FIG. 10. The marginalized 2-D joint distribution for the model

parameters s and q obtained from the analysis of the Planck data.

The inner region of the distribution represents the 68% confidence

level, while the outer region cuts the distribution at 95%.

Different colors shows the effects of different stability cuts: in

red we show the results when no-ghost, no-gradient and strong

coupling conditions are applied, in green the results of adding the

mass stability condition.
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to the parameter bounds. The results are shown in Table III.

Notably, we found that GCCG is able to ease the tension in

the estimation of the present day value of the Hubble

parameter H0 between Planck and low-z measurements

which arises within ΛCDM. However the tension is again

present when we include BAO data. This case needs a

further investigation as BAO data might be biased toward

ΛCDM-like models [92]. We found that the tightest

constraints for s ¼ 0.05þ0.08
−0.05 at 95% C.L are for the

PBRS dataset, while q shows only a lower bound

q > 0.8. The joint analysis with Planck and H0 instead

is able to set the upper bound q < 0.62. We also found a

lower bound for the sum of the neutrino masses to be

>0.11 eV at 1σ along with the usual upper bound. This is

an interesting result which should be further considered in

light of future results from experiments measuring the

neutrino mass.

The model selection analysis shows that the extended

model is favored over ΛCDM when considering the Planck

data alone, because the GCCG is able to better fit the ISW

tail. Nevertheless, the complete dataset points toward the

standard cosmological model with a DIC value that

indicates a mild preference for the latter. These results

suggest that further work is needed in order to asses the

statistical preference of one cosmological model over the

other and it will be the subject of upcoming projects.

This study is a further proof that Galileon models cannot

be definitely excluded with respect to ΛCDM. Indeed

besides the model investigated here there is another case

in which the data support the Galileon cosmology over

ΛCDM, the Galileon ghost condensate model [14]. In this

regard it will be essential to test Galileon models with next

generation surveys, which will offer us the possibility to

test gravity at cosmological scales with unprecedented

accuracy.
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