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Abstract

Genetic association studies often examine features independently, potentially missing 

subpopulations with multiple phenotypes that share a single cause. We describe an approach that 

aggregates phenotypes based on patterns described by Mendelian diseases. We mapped the clinical 

features of 1,204 Mendelian diseases into phenotypes captured from the electronic health record 

(EHR) and summarized this evidence as phenotype risk scores (PheRS). In an initial validation, 

PheRS distinguished cases and controls of five Mendelian diseases. Applying PheRS to 21,701 

genotyped individuals uncovered 18 associations with rare variants and phenotypes consistent with 

Mendelian diseases. In 16 patients, the rare genetic variants were associated with severe outcomes 

such as organ transplants. PheRS can augment rare variant interpretation and may identify subsets 

of patients with distinct genetic causes for common diseases.

Classically, Mendelian diseases are thought to be rare, caused by variants with large effect 

sizes, and associated with significant morbidity and mortality. Many are characterized by a 
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range of clinical phenotypes, often affecting multiple organ systems. Several lines of 

evidence suggest that genes known to cause Mendelian disease also harbor variants that 

contribute to complex disease.(1) Studies have identified clinical overlap in patients co-

diagnosed with Mendelian and complex disease(2), and SNPs found in genome-wide 

association studies (GWAS) are enriched for Mendelian loci.(3) A review of evidence from 

GWAS and whole exome sequencing studies found a striking overlap between primary 

immunodeficiency genes and complex inflammatory diseases.(4) Collectively, this evidence 

suggests that variants in Mendelian disease-causing genes may be an under-recognized 

contributor to complex disease.

Until very recently, the phenotypic effects of rare genetic variants were ascertained primarily 

in family-based studies of patients with distinctive and often severe phenotypes. Population-

level techniques, such as GWAS and phenome-wide association studies (PheWAS)(5, 6), are 

not easily applied to rare variation since most studies are underpowered. Cohorts large 

enough to support GWAS of rare variants have only recently been assembled and have 

demonstrated the potential impact of rare variants on complex traits such as height, finding 

rare variants with effect sizes much greater than those of common variants.(7)

Estimating the pathogenicity of rare variants remains a challenge and a barrier to use in the 

clinical setting.(8) Many algorithms have been developed to predict variant pathogenicity,

(9–11) and consortia such as ClinGen(12) are aggregating knowledge to enable expert 

determinations. Resources such as ExAC(13) have helped refine variant interpretation. Some 

variants previously interpreted as pathogenic are too common in some populations to cause 

rare, life-threatening disorders,(14) while others thought to be completely penetrant do not 

always cause disease.(15) Initial studies suggest that electronic health records (EHRs) linked 

to genetic data may help drive genomic discovery and define clinical phenotypes associated 

with rare variants.(16–18)

We have developed an approach that increases the power to detect rare variant associations 

by leveraging the phenotypic patterns of Mendelian diseases. By mapping the clinical 

manifestations of a Mendelian disease to phenotypes extracted from the EHR, we can 

compute a “phenotype risk score” (PheRS) that expresses the degree to which an 

individual’s symptoms overlap with a Mendelian disease. We defined a PheRS as a weighted 

aggregation of genetically-related phenotypes, analogous to the genetic risk score approach 

for analyzing multiple variants against a single phenotype. PheRS was validated against 

clinically diagnosed cases and controls, and a genetic association study of PheRS profiles for 

1,204 Mendelian conditions identified both known and novel associations with variants in 

target genes. The approach presents a method for measuring the phenotypic impact of rare 

variants and for identifying the heretofore under-recognized contribution of Mendelian 

disease genes to common medical conditions.

Constructing a phenotype risk score

The Online Mendelian Inheritance in Man (OMIM) provides clinical synopses for thousands 

of monogenic diseases(19) which have been annotated using the Human Phenotype 

Ontology (HPO).(20) We created a map from HPO to consolidated billing codes from the 
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EHR called phecodes. Phecodes enable high-throughput ascertainment of EHR phenotypes, 

and have been widely used to replicate known genetic associations and discover new ones.

(21–23) By mapping HPO terms to phecodes, we can express “phenotype syndromes” 

patterned after Mendelian diseases in OMIM in terms of clinical phenotypes that can be 

rapidly derived from the EHR. The PheRS for a given Mendelian disease is defined as the 

sum of clinical features observed in a given subject weighted by the log inverse prevalence 

of the feature.

Validating PheRS

We computed the PheRS of clinically diagnosed cases to matched controls for six Mendelian 

diseases. PheRS was a very strong predictor of case status for five of the diseases (Wilcoxon 

rank-sum test; p=8×10−42 to 5×10−320) (Fig. 1A and 1B). The exception was 

phenylketonuria (p=0.28), which effectively served as a negative control since newborn 

screening and dietary avoidance of phenylalanine essentially eliminates disease 

manifestations in affected individuals.(24) The PheRS for each Mendelian disease 

demonstrated specificity for the target disease, as the cases for different Mendelian diseases 

had similar PheRS distributions as controls (Fig. 1C). The lone exception was that the 

PheRS for hemochromatosis (HH) was significantly elevated for cystic fibrosis (CF) cases 

versus controls. However, even in this instance, CF cases had 3-fold higher PheRS for CF 

compared to HH. A review of controls with a PheRS greater than the 75th percentile 

identified one individual (PheRS >99th percentile) who was diagnosed with HH in the six 

months following the case/control ascertainment. Thus, for this individual, the PheRS 

suggested the diagnosis before it was made by providers.

PheRS identifies potentially pathogenic variants in Mendelian disease 

genes

We conducted an association analysis based on a cohort of 21,701 adults of European 

ancestry genotyped on the Exome BeadChip (Table S1). In this cohort, we computed PheRS 

for 1,204 Mendelian diseases (1,096 causative genes) for which we had sufficient genotype 

data. We tested for association between PheRS and 6,188 rare variants (minor allele 

frequency [MAF] < 1%) using linear regression, assuming a dominant genetic model. We 

only tested the PheRS for a particular Mendelian disease against variants in the gene or 

genes known to cause that disease. We found 18 significant associations between rare 

variants and PheRS (q<0.1; Table 1). All significant results had a positive beta coefficient, 

indicating the variants were associated with an excess of Mendelian disease phenotypes. 

Four of the genes had an established dominant mode of inheritance, while the remaining 13 

genes were known as exclusively or primarily recessive. Four were annotated in ClinVar as 

“pathogenic” or “likely pathogenic,” and the Human Gene Mutation Database (HGMD) 

provided evidence of pathogenicity for an additional three variants.(25) The phenotypic 

impact of the remaining nine variants have not, to our knowledge, been previously 

described.

Clinical chart review revealed that eight of the 807 individuals with statistically significant 

variants were diagnosed with the target Mendelian disease. Seven individuals with one of the 
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two CFTR variants (p.G542* and p.R553*) were diagnosed with CF. Clinical genetic testing 

confirmed the variants called on the Exome BeadChip, including one homozygote for 

p.G542*, and established compound heterozygosity with ΔF508 for five others (Fig. 2A and 

Table S2). All individuals diagnosed with CF had a PheRS greater than four standard 

deviations from expected values. Additionally, the highest scoring heterozygote for p.E168Q 

in HFE was diagnosed with hemochromatosis on the basis of clinical findings. The diagnosis 

of HH was considered but never confirmed for another p.E168Q heterozygote who died of 

end-stage liver disease.

While the majority of patients with significant variants were undiagnosed, these individuals 

had a high burden of severe endpoints related to the Mendelian diseases. Of the 40 

heterozygotes for HFE p.E168Q, four had liver transplants (10% versus 1.2% in 

background; p=2.1×10−3; Fisher’s exact). Individuals with variants in two genes associated 

with renal failure had elevated rates of kidney transplant: five of 36 (14%) patients with 

AGXT p.A295T were transplanted (another is awaiting transplant), as well as two of 15 

(13%) patients with DGKE p.W322* (versus 3% in background; p=6.9×10−3 and p=0.088, 

respectively; Fisher’s exact). Four of 69 TG p.G77S heterozygotes underwent 

thyroidectomies (6% versus 2% of non-carriers; p=0.039; Fisher’s exact). These are end-

stage phenotypes, potentially resulting from the effect of these variants, and did not have an 

increased prevalence in other significant variant carriers (Table S3). Additionally, we found 

the population attributable fraction for the constituent PheRS phenotypes averaged 0.5% 

with a maximum of 4.5%, suggesting that common diseases in adult populations may, in 

some cases, be attributed to variants in Mendelian genes (Fig. S1).

An examination of PheWAS results using Fisher’s exact for variants identified in the 

discovery analysis revealed that constituent phenotypes were often marginally significant 

(p<0.05), while not crossing the Bonferroni correction level for a single PheWAS. For CFTR 
p.G542*, three features used in the PheRS for CF achieved marginal significance 

(bronchiectasis, disease of the pancreas, and chronic airway obstruction) (Fig. 2B). 

However, the constituent phenotypes for CF were only statistically significant when they 

were analyzed collectively as a PheRS. The association with p.G542* and the PheRS for CF 

was similar to the association with the phenotype of CF itself (PheRS by linear regression 

p=3×10−8 vs. CF diagnosis by Fisher’s exact 8×10−7). Similarly, while individuals with 

variant p.W322* in DGKE had an excess of nephrotic syndrome features (Fig. 2C), these 

phenotypes were not significantly associated on their own in the PheWAS analysis (Fig. 2D). 

A similar pattern was observed for the remaining variants identified in the discovery analysis 

(Figs. S2–17). A PheWAS analysis of all 6,188 variants tested in the discovery analysis and 

1,734 phecodes did not yield any significant associations q<0.1.

Replication of novel associations

We attempted to replicate significant associations from the discovery analysis in two 

independent cohorts: a European ancestry cohort from Marshfield Clinic (n=9,441) and a 

non-European ancestry cohort from Vanderbilt (n=3,820; Tables S4–5). Each was tested as 

in the discovery cohort, using linear regression assuming a dominant model, adjusting for 

age and sex. Only variants with at least 10 heterozygotes or homozygotes for the rare allele 
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were tested. In the Marshfield cohort, both attempted associations replicated: p.G77S in TG 
with thyroid dyshormonogenesis PheRS (p=5.0×10−4) and p.R507H in FAN1 with 

karyomegalic interstitial nephritis PheRS (p=8.2×10−3, Table S6). In the Vanderbilt non-

European ancestry cohort, we replicated two of three associations: p.A993A in KIF1A with 

spastic paraplegia PheRS (p=1.9×10−3), and p.A295T in AGXT with primary hyperoxaluria 

type 1 PheRS (p=3.9×10−3). The association between p.R507H in FAN1 and karyomegalic 

interstitial nephritis PheRS did not replicate in the non-European ancestry cohort, potentially 

due to the small number of individuals with the allele in the replication cohort (n=15).

Sequencing individuals with novel variants

To test for additional rare variants segregating with high PheRS individuals, we analyzed the 

whole exome sequences (WES) of 84 individuals from the discovery analysis for seven of 

the significant variants (Tables S7), including individuals with elevated (n=36) and non-

elevated PheRS (n=48). A total of four individuals were found to carry a second rare, 

nonsynonymous variant in the target gene (Fig. 3, Tables S8–9). Two were possible 

compound heterozygotes (phase could not be determined in this analysis) (PLCG2 and 

AGXT) and two were homozygotes for the variant identified in the discovery analysis 

(DGKE and AGXT, confirming the results from genotyping). Three of the four individuals 

with confirmed second variants had the highest PheRS for their respective diseases among 

those selected for WES.

The heterozygote for AGXT p.A295T who was found to have an additional rare AGXT 
variant through WES (p.R381K) had the highest PheRS for primary hyperoxaluria type 1, a 

recessive condition characterized by nephrocalcinosis and oxalate nephrolithiasis; an EHR 

review revealed he had calcium oxalate crystals on urinalysis. The second highest scoring 

individual, a confirmed heterozygote, was diagnosed with hyperoxaluria which was 

attributed to his Crohn’s disease. The p.A295T homozygotes in the discovery and replication 

cohorts were no more symptomatic than their heterozygous counterparts. This evidence, 

along with the persistence of the signal after removing individuals with second variants, 

suggests that p.A295T may act as a strong risk factor for hyperoxaluria, with more severe 

manifestations occurring in individuals with additional genetic or environmental risk factors.

The highest scorer for familial cold autoinflammatory syndrome 3 (FCAS3), a dominant 

condition caused by variants in PLCG2, presented in the emergency room with a systemic 

“urticarial type rash” for which a cause was never identified, and continued to present with 

blistering rashes and lip and tongue swelling. WES revealed this patient harbors a second 

rare variant (p.R687S) in the SH2 domain of PLCG2. A nearby variant (p.S707Y), also in 

the SH2 domain, has been implicated in a related dominant disease that has overlapping 

features with FCAS3 [OMIM #614878].(26)

The confirmed homozygote for p.W322* in DGKE, a recessive gene that causes nephrotic 

syndrome type 7, was diagnosed with hemolytic uremic syndrome as a child and received a 

kidney transplant in his teens; a genetic etiology for his symptoms was never explored.
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Sequencing confirmed the variants called on the Exome BeadChip for SUOX, SH2B3, 

SPTBN2, and TG and did not reveal any additional rare variants in the target genes. For 

SH2B3, the lack of a second variant is consistent with an established dominant inheritance 

pattern, as well as the high proportion of heterozygotes in our cohort (20 of 22) with at least 

one feature of familial erythrocytosis. Individuals without a second variant in AGXT and 

DGKE, both associated with recessive conditions, also had elevated PheRS (Fig. 3). This 

stands in contrast to the heterozygotes for the CFTR variants, who did not have a 

significantly elevated PheRS (p=0.51, linear regression assuming a dominant model adjusted 

for age and sex), consistent with a recessive inheritance model. These findings suggest a 

blurring of the distinction between dominant and recessive labels for some genes.

Sequencing did not reveal any additional rare nonsynonymous variants in the 36 individuals 

with non-elevated PheRS. In general, individuals with the highest PheRS were more likely 

to be clinically diagnosed or have additional genetic variants related to their symptoms (Fig. 

S18).

Biologic validation of SH2B3, TG, and SUOX associations

We selected three candidate novel associations for biologic validation: SH2B3, SUOX, and 

TG. SH2B3 is a negative regulator of cytokine signaling in hematopoietic cells that operates 

via a direct interaction between its SH2 domain and JAK2 to attenuate JAK2-mediated 

activation of proliferative pathways.(27) The variant identified in this study, p.E395K, is 

located in a region of the protein that is critical for its inhibitory function(28) and is near 

known disruptive variants.(29) HEK293T cells stimulated with Erythropoietin (EPO) 

showed an increase in pERK levels that was quenched in the presence of wildtype SH2B3 

but not quenched with both the known p.R392E variant and our p.E395K variant (Fig. 4A, 

4B).

Splicing prediction programs suggested a probable reduction in 5′ donor strength for SUOX 
p.R76S and possible generation of an exonic cryptic splice acceptor site by TG p.G77S. 

SUOX p.R76S is located at the conserved −1 position of the 5′ donor of exon 5. We 

demonstrated the SUOX variant caused a decrease in exon inclusion from 96% to 35% 

(unpaired two-tailed t-test, p<0.001, Fig 4C). No transcripts aside from the exon-included 

and exon-skipped transcripts were detected. Similarly, TG p.G77S resulted in altered 

splicing. The basal rate of exon inclusion was reduced from 65% for the wildtype TG exon 

to only 26% inclusion in the p.G77S exon (unpaired two-tailed t-test, p<0.001). These ratios 

were consistent across a range of cDNA concentrations and PCR cycle numbers (Fig. 4C, 

4D).

Comparison of PheRS to existing methods to determine variant 

pathogenicity

Across all PheRS variant associations with nominal p < 0.05 (n=454), functional annotations 

were significantly correlated with PheRS effect size (Wilcoxon rank-sum test); splice donor/

acceptor and stop-gain variants tended to have the largest effect size, followed in decreasing 

order by missense, splice region, synonymous, and intron/UTR variants (Fig. S19A). 
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Thirteen of 14 functional prediction methods trended or associated with the probability of 

finding associations with the PheRS; predictions from CADD, SiPhy,(30) and Polyphen2 

HVAR(10) were statistically significant (p<0.05 using Fisher’s exact; Fig. S19B).

Discussion

In our validation study, PheRS was very effective in identifying patients with diagnosed 

Mendelian disease using only the phenotypic signatures. Applying PheRS to a genotyped 

population, we found an increased burden of phenotypes among individuals with rare 

variants in Mendelian disease genes. Sequencing identified or confirmed second rare 

variants in four individuals, three of whom had the highest PheRS among all heterozygotes 

or homozygotes for that variant. In vitro studies provided supporting evidence of 

pathogenicity for all three variants tested.

While our approach relies on many decades of accumulated knowledge about the phenotypic 

imprint of Mendelian disease, the method itself is simple to implement. Our ability to 

replicate in an external cohort suggests that it is portable and would therefore be applicable 

to datasets like the Million Veteran Program, UK Biobank, and the All of Us Research 

Program.1 Applied to such large populations, this method could facilitate the discovery of 

pathogenic variants, refine estimates of penetrance across diverse populations, and provide a 

more nuanced understanding of inheritance patterns, which this study suggests may be more 

complex than merely “recessive” or “dominant” for some genes. Incorporation of richer 

EHR data, such as laboratory results and clinical notes(31), could increase the resolving 

power of PheRS. Furthermore, this method may be used with other combinations of 

phenotypes that do not follow established Mendelian patterns, perhaps based on 

undiagnosed patients with unusual presentations.

The American College of Medical Genetics and Genomics established guidelines for variant 

interpretation that reflect the need to combined multiple lines of evidence, including 

population-based genotype-phenotype correlations.(32) Our method provides a high-

throughput means to generate such evidence. Using these guidelines, ten of the variants from 

the discovery analysis were interpreted as having “uncertain significance.” By adding data 

from the PheRS analysis, in combination with evidence from our in vitro studies, four of 

these variants could be converted to “likely pathogenic” or “pathogenic” (Tables 1, S10).

Our findings suggest that the phenotypic burden of rare variants in Mendelian genes may be 

greater than previously thought. A combination of PheRS and sequencing identified 

symptomatic individuals with genetics consistent with established inheritance patterns – 

heterozygous individuals for dominant genes (SH2B3, PLCG2) and individuals with 

confirmed second variants in recessive genes (DGKE, AGXT) – none of whom were 

diagnosed with a genetic condition. A much larger number of individuals were heterozygous 

for variants in genes with a presumed recessive inheritance, and yet still had symptoms 

consistent with the Mendelian disease pattern. While we cannot exclude the possible 

influence of structural or non-coding variants, the evidence suggests that these variants 

1Precision Medicine Initiative and All of Us are service marks of the U.S. Department of Health and Human Services.
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increase risk in heterozygotes. These individuals tend to have disease that is mild compared 

to the classic presentations, but severe relative to the general population. For example, 

homozygous pathogenic mutations in TG are associated with congenital goiter which often 

progresses to thyroid carcinoma; our most severely affected heterozygote received a 

thyroidectomy at age 26 for goiter and thyroid carcinoma.

This work adds to the evidence that Mendelian and complex disease are not dichotomous, 

but rather exist on a spectrum. As a method that is both high-throughput and sensitive to the 

vast knowledge already acquired, PheRS is a tool that may help bridge the gap between 

Mendelian and complex disease. A consequential question is whether the treatments 

designed for a Mendelian condition could be effective in individuals with non-traditional 

molecular presentations. Of the 17 diseases represented among those patients with suspected 

but undiagnosed Mendelian disease, 11 have specific treatments available (Table S11), some 

of which could alter the long-term course of the disease.

The impact this approach will have on accelerating precision medicine depends on three 

interrelated challenges. First, we must integrate statistical associations generated with 

PheRS into guidelines used for variant interpretation. Second, as we collect stronger 

evidence for the phenotypic effects of rare variants, we must learn to rapidly and effectively 

integrate that knowledge into clinical care. Third, we must determine if PheRS can be used 

to prospectively identify patients whose symptoms are caused by variants in Mendelian 

genes. If these challenges are addressed, approaches like ours may ultimately enable the 

conversion of big data not just to knowledge but also to improved care and outcomes for 

patients.
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One Sentence Summary

A method to aggregate Mendelian disease phenotypes from the electronic health record 

finds that complex disease may be explained by a single gene variant in some patients.
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Fig. 1. Phenotype risk scores capture the diagnostic fingerprint of Mendelian disease in EHR 
data
Scores for six Mendelian diseases were calculated for clinically diagnosed cases and 

controls matched by age, sex, race, and record length. (A) Boxplots of PheRS for cases and 

controls for each disease. (B) Number of cases and statistical significance between cases and 

controls (Wilcoxon rank-sum test) for each disease. (C) Matrix of standardized differences 

in location (pseudomedian) of the PheRS between cases and controls (by row) and for each 

Mendelian disease definition (by column).
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Fig. 2. Phenotypes and PheWAS for two variants associated with PheRS for cystic fibrosis and 
nephrotic syndrome
For phenotype grids (A) and (C), each row corresponds to a phenotype used in the PheRS; 

each column represents an individual who is heterozygous or homozygous (starred) for the 

variant. The bar on the left of the grid indicates the relative risk for each phenotype 

compared to wildtype. In grid (A), individuals clinically diagnosed with cystic fibrosis are 

enclosed by a blue box. PheWAS plots (B) and (D) show the PheWAS for the variant 

(Fisher’s exact p-value). The constituent phenotypes that define the PheRS are starred. All 
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associations with p<0.001 are labeled. The horizontal red and blue lines show the Bonferroni 

correction threshold for an individual PheWAS and the nominal (uncorrected) p=0.05, 

respectively.
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Fig. 3. Whole exome sequencing reveals second variants among individuals with high PheRS and 
demonstrates disease risk in heterozygotes
Each point represents an individual who is heterozygous or homozygous for the variant 

labeled on the left. The x-axis represents the z-score for the PheRS relative to what is 

expected given age and sex (using the residual from the PheRS). All individuals carry at 

least one copy of the variant indicated on the left; additional variants identified by whole 

exome sequencing or clinical chart review are labeled for each individual; homozygotes 

confirmed by sequencing are labeled “HOM.” Additional CFTR variants were ascertained 

from clinical testing in the EHR; all other individuals were sequenced for this study. 

Clinically diagnosed individuals are squares; all others are circles. Where additional variants 

were found, the association test from the discovery analysis was repeated after dropping 

individuals with a second variant (p-values generated using linear regression assuming 

dominant model adjusted for age and sex), and the p-value is recorded under the gene/

variant label.
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Fig. 4. PheRS enriches for variants with altered function in vitro
Representative Western blots (A) and mean phospho-ERK2 levels normalized to EPOR 

expression (B) in EPOstimulated HEK293T cells transiently transfected with wildtype (WT) 

versus variant SH2B3 constructs, EPOR, and JAK2. As expected, known variant SH2B3-

R392E fails to inhibit EPOstimulated ERK phosphorylation. Similarly, SH2B3-E395K 

shows approximately 1.8-fold elevation of EPO-stimulated ERK activation at 10 min relative 

to wildtype SH2B3. RT-PCR analysis (C) and quantification (D) of WT versus variant 

splicing of SUOX and TG exons in HEK293T cells transiently transfected with empty 

minigene vector pET01, pET01 containing exons of interest flanked by 100 bp of intronic 

sequence, or negative control pIRES2-EGFP. Absolute change in the percent of exon-

inclusion was −61% for SUOX-VAR and −39% for TGVAR. Means ± SEM; n = four (A, B) 

or five (C, D) independent experiments; unpaired twotailed t test; *p=0.003, **p<0.001.
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