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Phenotypic analysis of Myo10 
knockout (Myo10tm2/tm2) mice lacking 
full-length (motorized) but not 
brain-specific headless myosin X
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Hyun-Woo Jeong  6, Ralf H. Adams  6, Martin Bähler1 & Peter J. Hanley1

We investigated the physiological functions of Myo10 (myosin X) using Myo10 reporter knockout 

(Myo10tm2) mice. Full-length (motorized) Myo10 protein was deleted, but the brain-specific headless 
(Hdl) isoform (Hdl-Myo10) was still expressed in homozygous mutants. In vitro, we confirmed that Hdl-
Myo10 does not induce filopodia, but it strongly localized to the plasma membrane independent of 
the MyTH4-FERM domain. Filopodia-inducing Myo10 is implicated in axon guidance and mice lacking 
the Myo10 cargo protein DCC (deleted in colorectal cancer) have severe commissural defects, whereas 
MRI (magnetic resonance imaging) of isolated brains revealed intact commissures in Myo10tm2/tm2 mice. 

However, reminiscent of Waardenburg syndrome, a neural crest disorder, Myo10tm2/tm2 mice exhibited 
pigmentation defects (white belly spots) and simple syndactyly with high penetrance (>95%), and 24% 
of mutant embryos developed exencephalus, a neural tube closure defect. Furthermore, Myo10tm2/tm2 

mice consistently displayed bilateral persistence of the hyaloid vasculature, revealed by MRI and retinal 

whole-mount preparations. In principle, impaired tissue clearance could contribute to persistence of 
hyaloid vasculature and syndactyly. However, Myo10-deficient macrophages exhibited no defects in 
the phagocytosis of apoptotic or IgG-opsonized cells. RNA sequence analysis showed that Myo10 was 
the most strongly expressed unconventional myosin in retinal vascular endothelial cells and expression 
levels increased 4-fold between P6 and P15, when vertical sprouting angiogenesis gives rise to deeper 
layers. Nevertheless, imaging of isolated adult mutant retinas did not reveal vascularization defects. In 

summary, Myo10 is important for both prenatal (neural tube closure and digit formation) and postnatal 
development (hyaloid regression, but not retinal vascularization).

Unconventional myosins expressed in humans and mice are divided into classes (I, III, V, VI, VII, IX, X, XV, XVI, 
XVIII and XIX), and individual myosins typically exhibit class-speci�c functions. For example, class V myosins 
have been implicated in vesicular tra�cking1 and class IX myosins are RhoGAPs (Rho GTPase-activating pro-
teins)2. However, the function of myosin X (Myo10), the only class X member, is largely unknown. It belongs 
to the group of MyTH4-FERM (myosin tail homology 4 - band 4.1, ezrin, radixin, moesin) myosins, which 
includes classes VII and XV. MyTH4-FERM myosins localize to structures containing bundled actin, such as 
�lopodia (Myo10)3,4, stereocilia (Myo7a and Myo15)5,6 and microvilli (Myo7b)7,8. �e MyTH4-FERM domains of 
class VII myosins are implicated in linking actin to cadherins, through adaptor proteins, which provide linkages 
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Figure 1. Myo10 reporter knockout (Myo10tm2/tm2) mice lack full-length (motorized) Myo10, but express the 
brain-speci�c headless isoform. (A) Schematic diagram showing the reporter knockout (tm2) targeting strategy. 
Insertion of the targeting sequence by homologous recombination causes loss of 9594 bp, including exon 19 and 
part of intron 19. Notably, the headless Myo10 isoform begins at exon 20. �e gene trap, polyadenylation (pA) 
signal, is harbored in the IRES:lacZ cassette (IRES stands for internal ribosome entry site). (B) Southern blot 
analysis. DNA was fragmented using the restriction enzyme EcoRI or BamHI. �e position of the radiolabeled 
hybridization probe at the 3′-end is indicated. Labeled DNA fragments were detected using X-ray �lm. (C) 
Western blot analysis. Lysates of HEK293T cells overexpressing full-length mouse (m) Myo10 (plasmid, pCMV-
Tag2B-mMyo10) or headless (Hdl) mouse Myo10 (plasmid, pCMV-Tag2B-Hdl-mMyo10) were used as positive 
controls (blot on the le�). Whole brain lysates obtained from P10 mice were used to screen for expression of 
full-length and Hdl-Myo10 (blot on the right). (D) Level of Hdl-Myo10 protein expressed in Myo10tm2/tm2 
mouse brain (n = 3) relative to wild-type (WT) brains (n = 3), and mouse Hdl-Myo10 transcripts obtained from 
the National Center for Biotechnology Information (NCBI), National Institutes of Health (NIH). �e accession 
pre�x NM_ denotes con�rmed protein-coding transcripts, whereas the pre�x XM_ indicates predicted protein 
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between adjacent stereocilia (Myo7a) and microvilli (Myo7b)9. Myo15 is important for elongation of stereocilia 
and heterologous expression of GFP-tagged Myo15 induces �lopodia formation10. Notably, mutations of Myo7a 
or Myo15 (human ortholog MYO15A) cause deafness11. �e MyTH4-FERM domain of Myo10 may facilitate 
�lopodium-cell or �lopodium-ECM (extracellular matrix) adhesion by binding cadherins12,13, β-integrins14 or 
DCC (deleted in colorectal cancer)15. Heterologous expression of Myo10 robustly induces �lopodia formation, the 
most conspicuous function of Myo10, and the motor protein localizes to the tips of these structures16. Structural 
studies indicated that Myo10 dimerizes antiparallel via its CC (coiled-coil) domain17, which may allow the motor 
protein to crosslink and move along parallel actin tracks. In addition to MyTH4-FERM and CC domains, Myo10 
contains PH (pleckstrin homology) domains, which confer binding to membrane phosphoinositides18.

�e physiological functions of the MyTH4-FERM- and PH domain-containing protein Myo10 are not clear. 
Since the �rst detailed description of full-length Myo10 in 200019, Myo10 has been implicated in diverse func-
tions, including spindle assembly20, endothelial tube formation21, melanosome transfer22 (which involves �lopo-
dia formation), axon guidance23, cell motility24,25 and phagocytosis26. Here, we report the phenotypes of Myo10 
reporter knockout mice, which turn out to lack full-length (motorized) Myo10, but still express the brain-specifc, 
headless isoform. While preparing this manuscript, the phenotypes of Myo10tm1d/tm1d mice27, which lack both 
full-length and headless Myo10, as well as Myo10tm2/tm2 mice28, the mutant strain used in this study, were reported.

Results
Myo10 reporter knockout mice. �e reporter knockout (tm2) targeting strategy for Myo10 is shown in 
Fig. 1A. Insertion of the targeting cassette causes deletion of exon 19 and part of intron 19, and introduces both 
a reporter (lacZ gene) of endogenous gene expression and a gene trap (SV40 (simian virus 40) polyadenyla-
tion (pA) signal). Notably, the mutant (Myo10tm2) allele cannot be converted to a conditional allele. Instead, Cre 
recombination would delete the loxP-�anked selection cassette, whereas Flp recombination would produce an 
exon 19 deletion allele without reading frame shi�. Southern blot analysis using the hybridization probe shown 
in Fig. 1A con�rmed correct targeting (Fig. 1B). Western blot analysis con�rmed that full-length Myo10 was 
deleted in mouse postnatal (P10) brain (Fig. 1C). However, the headless (Hdl) isoform of Myo10 (Hdl-Myo10) 
could be clearly detected in homozygous mutants. Notably, lysates from HEK293T cells overexpressing full-
length mouse Myo10 (mMyo10) or mouse headless Myo10 (Hdl-mMyo10) were used as positive controls for the 
anti-Myo10 antibody (Fig. 1C). On the one hand, lack of Hdl-Myo10 deletion in mutant mice is not completely 
surprising since the transcript for Hdl-Myo10 is downstream from exon 1929. On the other hand, as alluded to 
previously27, the 5′ untranslated region (5′-UTR) of one of the two con�rmed transcripts (NM_001353141.1 and 
NM_001353142.1) corresponding to Hdl-Myo10 is predicted to be disrupted in the Myo10tm2 allele (Fig. 1D). 
�e a�ected transcript (NM_001353142.1) lacks exons 20 and 21, suggesting that it may encode a minor isoform 
of Hdl-Myo1030 (Fig. 1D). In any case, Western blot analysis revealed no signi�cant di�erence in relative mouse 
brain Hdl-Myo10 levels: blot densities (Fig. 1D). �us, the Hdl-Myo10 isoform encoded by NM_001353141.1 
may be the major Hdl-Myo10 isoform in mouse brain or it may be upregulated in response to loss of the tran-
script NM_001353142.1 in the Myo10tm2 allele.

Viability of homozygous Myo10 reporter knockout (Myo10tm2/tm2) mice. Homozygous, but not 
heterozygous, Myo10 reporter knockout mice consistently exhibited pigmentation defects, white belly spots 
(Fig. 2A). Otherwise, homozygous mutants appeared healthy and fertile. However, mating of heterozygous (HET) 
mice (HET × HET) or heterozygous and homozygous (HOM) mice (HET × HOM) produced less homozy-
gous mutant mice than expected by Mendelian inheritance (Fig. 2B). �is discrepancy could be explained by the 
development of exencephalus, a neural tube closure defect, in 24% of Myo10tm2/tm2 embryos (Fig. 2C). Failure 
of the neural tube to close causes the neuroepithelium to protrude (exencephaly), which through degeneration 
progresses to anencephaly31.

Whole-mount E14.5 Myo10tm2/tm2 (Fig. 2C) and Myo10+/tm2 (not shown for E14.5) embryos were stained with 
X-gal to visualize Myo10 expression (X-gal becomes intensely blue following cleavage by β-galactosidase, the 
enzyme encoded by the reporter gene lacZ). Myo10 expression (X-gal staining) could be clearly detected in the 
developing skin and hair placodes (Fig. 2D). At E8.5 - E9.5, Myo10 was expressed in the �rst and second branchial 
arches, as well as in the otic vesicle and somites (Fig. 2E). Myo10 was not detected in the heart (E9.5). Transverse 
sections of a para�n embedded and X-gal stained E10.5 Myo10tm2/tm2 embryo revealed Myo10 expression in the 
developing epidermis and dorsolaterally in the dermis (Fig. 2F).

Headless Myo10 localizes to the plasma membrane independent of the MyTH4-FERM 
domain. �e domain structures of the mouse Myo10 (mMyo10) and EGFP-tagged truncation constructs 
used to explore the subcellular localization of headless Myo10 (Hdl-mMyo10) are shown in Fig. 3A. Cells were 
�xed, stained with Alexa Fluor 594-conjugated phalloidin (an F-actin probe) and imaged by superresolution 
structured illumination microscopy. As expected from earlier work29,30, transfection of HEK293T cells with 
full-length EGFP-tagged mouse Myo10 (EGFP-mMyo10) induced �lopodia formation, whereas transfection 
with EGFP-Hdl-mMyo10 failed to induce �lopodia (Fig. 3B). However, EGFP-Hdl-mMyo10 impressively local-
ized to the plasma membrane suggesting that the tail PH domains readily recruits the protein to membrane 

transcripts. Green (vertical) bars are exons (ranging from 1 to 41; indicated above) and red bars are 5′-UTRs 
(5′ untranslated regions), preceding the coding sequence. Notably, the 5′-UTR of Hdl-Myo10 transcript 
NM_001353142.1, which lacks exon 20 (labeled blue) and exon 21, is disrupted by insertion of the cassette 
(L1L2_Bact_P) used to generate the Myo10tm2 allele.
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phosphoinositides, possibly due to loss of head-tail autoinhibition. Consistent with this notion, deletion of the 
MyTH4-FERM domain had no e�ect, whereas deletion of the PH domains completely blocked membrane locali-
zation (Fig. 3B). In living cells stained with the �uorescent plasma membrane probe CellMask Orange and trans-
fected with various deletion constructs, we con�rmed using quanti�ed linear pro�le plots that EGFP-Hdl-mMyo10 
and Myo10 lacking the MyTH4-FERM domain (EGFP-mMyo10-∆MF) strongly localized to the plasma mem-
brane, whereas Myo10 lacking PH domains (EGFP-Hdl-mMyo10-∆MF-∆PH1-3) did not localize to the mem-
brane (Fig. 4A,B). Furthermore, deletion of one of the PH domains (EGFP-Hdl-mMyo10-∆MF-∆PH3) reduced 
membrane localization (Fig. 4A,B). �us, Hdl-Myo10 is probably strongly recruited to the membrane due to the 
absence of head-tail inhibition. �is mechanism would complement the head-tail interaction model proposed by 
Umeki et al.32 in which phospholipid binding to Myo10 disrupts head-tail interactions and promotes dimeriza-
tion, converting the myosin into a �lopodial cargo transporter. Head-tail interactions, otherwise, maintain the 
inactive folded conformation.

Figure 2. Homozygous Myo10 reporter knockout (Myo10tm2/tm2) mouse embryos develop exencephaly. (A) 
Pigmentation defects in homozygous mutants. Image of an adult Myo10tm2/tm2 mouse showing white belly spots. 
(B) Genotype frequency of o�spring derived from HET (heterozygous) x HET and HET x HOM (homozygous) 
matings. HOM o�spring were produced at less than expected frequency, indicated by dashed lines and asterices. 
(C) Two examples of X-gal stained, homozygous Myo10 mutant embryos at E14.5, with (le�) and without 
(right) exencephalus, caused by failure of the cranial neural tube to close. �e white arrow on the le� indicates 
everted cranial neural folds, a hallmark of exencephalus. About 1 in 4 (24%) of homozygous Myo10 mutant 
(Myo10tm2/tm2) embryos developed exencephalus. Neural tube defect is abbreviated NTD. (D) Enlarged view 
from panel C (yellow square) and skin histological section showing Myo10 expression in the skin and hair 
placodes (blue spots). (E) Whole-mount X-gal staining. Myo10 is expressed in the head and the �rst and second 
branchial arches (labeled 1 and 2, respectively) of the developing embryo (E8.5 and E9.5). (F) X-gal staining and 
histology (E10.5) reveals expression of Myo10 in the ectoderm and dorsal regions, but not in the neural tube. ht, 
heart; ov, otic vesicle; s, somite; nt, neural tube; D, dorsal; V, ventral; L, lateral.
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Myo10tm2/tm2 mice do not phenocopy Dcc and Ntn1 knockout mouse models. DCC (encoded by 
Dcc), a member of the immunoglobulin superfamily of cell adhesion molecules, is involved in the guidance of 
axons towards sources of the ligand Netrin-1, encoded by Ntn1. Notably, �lopodia are important components of 
growth cones and the axon guidance machinery33. In mice lacking either the transmembrane protein DCC34 or 
its ligand Netrin-135, the corpus callosum and hippocampal commissure appear to be absent, and the anterior 
commissure is negligible34,35. In structural studies, the MyTH4-FERM domain of Myo10 has been shown to bind 
the cytosolic tail domain of DCC15,36, a cargo protein, as schematically shown in Fig. 5A. We con�rmed that 
DCC localized to the tips of Myo10-induced �lopodia in HEK293T cells transfected with both human DCC and 
EGFP-tagged human Myo10 (Fig. 5B). DCC was labeled with mouse monoclonal antibodies which recognize the 
extracellular domain of human DCC.

Using high-resolution MRI (magnetic resonance imaging), we investigated whether Myo10tm2/tm2 mice had 
defects in the commissures of the brain (Fig. 5C). MRI of �xed brains isolated from WT and Myo10tm2/tm2 mice 
revealed that full-length Myo10 is not critical for the formation of the corpus callosum, anterior commissure 
and hippocampal commissure (Fig. 5C), in contrast to Dcc (DCC) and Ntn1 (Netrin-1) knockout mice34,35, as 

Figure 3. Headless mouse Myo10 (Hdl-mMyo10) strongly localizes to the cell periphery independent of the 
MyTH4-FERM domain. (A) Schematic representations of the domain structures of N-terminal EGFP-tagged 
mouse Myo10 (EGFP-mMyo10), Hdl-mMyo10 (EGFP- Hdl-mMyo10) and truncated variants thereof. (B) 
Images of �xed HEK293T cells a�er transfection with EGFP-mMyo10 or various EGFP-tagged Hdl-mMyo10 
constructs. Cells were counterstained with Alexa Fluor 594-conjugated phalloidin, a red �uorescent F-actin 
probe, and imaged via a Zeiss Plan Apo 63/1.4 (oil-immersion) objective lens by superresolution structured 
illumination microscopy. Scale bars: 10 µm.
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Figure 4. Localization of headless Myo10 to the plasma membrane requires pleckstrin homology (PH) 
domains. (A) Fluorescence images of living HEK293T cells transfected with EGFP-tagged, full-length mouse 
Myo10 (mMyo10-EGFP) or various EGFP-tagged headless mouse Myo10 (Hdl-mMyo10) constructs. Cells were 
counterstained with the red �uorescent plasma membrane marker CellMask Orange. Images were obtained 
by spinning disk confocal microscopy via a Nikon Apochromat TIRF 60x/1.49 (oil-immersion) objective lens. 
Scale bars: 10 µm. Plots of gray value intensity for the superimposed lines (dark yellow lines in the middle 
column) are shown on the right. In the plots of intensity along the lines, peaks of the CellMask Orange (red) 
traces serve as plasma membrane markers. (B) Pro�le data quanti�cation. Plot of relative plasma membrane 
localization, indexed as the ratio of the maximum of the plasma membrane (PM) peak to mean cytosolic 
intensity.
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Figure 5. Mice lacking full-length Myo10 have intact brain commissures. (A) Schematic diagram illustrating 
the interaction of the cargo protein DCC (deleted in colorectal cancer) with the cargo-binding FERM domain 
of Myo10. (B) Colocalization of DCC and Myo10 to the tips of �lopodia. HEK293T cells were transfected 
with human DCC and EGFP-tagged human Myo10 (hMyo10-EGFP), and subsequently �xed and labeled with 
anti-DCC antibodies which recognize an extracellular domain. Scale bar: 10 µm. (C) Coronal and horizontal 
sections of isolated and �xed mouse brains obtained by MRI (magnetic resonance imaging). Scale bars: 1 mm. 
CC, corpus callosum; AC, anterior commissure; HC, hippocampal commissure. (D) Schematic summary 
diagram. Mice lacking DCC (encoded by Dcc) or the DCC ligand Netrin-1 (encoded by Ntn1) have absent or 
negligible commissures, whereas commissures are intact in mice lacking the DCC transport protein Myo10.
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summarized in Fig. 5D. In coronal views, for example, the corpus callosum had a mean midline thickness of 
0.28 ± 0.02 mm in both WT and Myo10tm2/tm2 brains (n = 3 for each group).

White belly spots are devoid of melanocytes. Myo10 has been implicated in the transfer of mela-
nosomes from melanocytes into epidermal keratinocytes22. If Myo10 was important for melanosome transfer, 
deletion of full-length Myo10 would be expected to produce a coat color phenotype similar to Myo5a-de�cient 
mice37, which have widespread hypopigmentation. Instead, Myo10tm2/tm2 mice have white belly patches, useful 
as an indicator of the homozygous genotype (Fig. 2A), and infrequently a dorsal white patch (Fig. 6A). We con-
�rmed using histological skin sections and antibodies against DCT (dopachrome tautomerase), a melanocyte 
marker, that the hair follicles in white patches were not populated with melanocytes (Fig. 6B).

Phenotype of syndactyly in Myo10tm2/tm2 mice. Mice lacking full-length Myo10 exhibited simple (so� 
tissue) syndactyly with high penetrance (Fig. 7A). Typically, digits 2 and 3 and/or digits 3 and 4 were completely 
fused (frequency of 31: 7: 1 for fusion of digits 2/3, 3/4 and 2/3/4, respectively; n = 14 mice). �e rare combination 
of syndactyly and pigmentation defects in Myo10tm2/tm2 mice is reminiscent of variations of Waardenburg syn-
drome (type 3), a neural crest cell disorder which is usually associated with hearing loss38,39. We con�rmed using 
µCT (micro-computed tomography) that the syndactyly phenotype of Myo10tm2/tm2 mice did not involve osseous 
fusion (Fig. 7B; the µCT scans shown in Fig. 7B correspond to the photographed paws shown in Fig. 7A and can 
be matched by the Roman numerals in the lower le� corner of each image).

X-gal staining of E10.5 - E13.5 embryos revealed Myo10 expression in the developing limb bud and digit 
primordia (Fig. 7C). At E12.5 and E13.5, there was clear X-gal staining (Myo10 expression) of autopod condensa-
tions (Fig. 7C). Histological sections of the footplate at E14.5, when digit separation was nearly complete, revealed 
X-gal staining in the developing perichondrium and joints (Fig. 7D).

Persistence of hyaloid vasculature. �e hyaloid vasculature extends from the optic disc and spans the 
vitreous to supply blood to the growing lens. In mouse, this vasculature is extensive in the �rst few postnatal 
days, but almost completely regresses in the following 2–3 weeks, with marked regression already apparent at 
postnatal day 8 (P8)40. High-resolution MRI of �xed enucleated eyes revealed that the hyaloid vasculature persists 

Figure 6. White belly spots of Myo10tm2/tm2 mice are devoid of melanocytes. (A) Histological section of dorsal 
skin containing dark hair taken from a Myo10tm2/tm2 mouse and stained with anti-DCT antibodies (red; DCT 
(dopachrome tautomerase) is a melanocyte marker) and hematoxylin (blue). (B) Section of skin taken from a 
white belly spot of a Myo10tm2/tm2 mouse and stained with anti-DCT antibodies and hematoxylin.
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in adult Myo10tm2/tm2 mice (Fig. 8A). Persistent hyaloid vessels could also be seen in retinal whole-mount prepa-
rations labeled with anti-collagen, type IV antibodies (Fig. 8B). Lobov et al.41. elegantly deduced that regres-
sion of the hyaloid vasculature is initiated by macrophages and requires Wnt7b signaling from macrophages 
to target vascular endothelial cells, which express the Wnt receptor Fzd4 (frizzled class receptor 4) and its 
co-receptor Lrp5 (low density lipoprotein receptor-related protein 5). Notably, mice lacking the receptor Fzd4, 
the co-receptor Lrp5 or the ligands Wnt7b or Norrin exhibit persistence of the hyaloid vasculature41–44, sche-
matically illustrated in Fig. 8C. To test whether overexpression of Myo10 enriches Fzd4 at the tips of �lopo-
dia, we cotransfected HEK293T cells with EGFP-tagged mouse Fzd4 (Fzd4-EGFP) and mCherry-tagged bovine 

Figure 7. High penetrance of simple syndactyly in Myo10tm2/tm2 mice. (A) Examples of normal paws in WT 
mice (top panel) and syndactyly in Myo10tm2/tm2 mice (lower panel). Typically, digits 2 and 3 or digits 3 and 
4 were fused. �e frequency (n = 25 mice) and variations (assessed in n = 24 mice) of the phenotype (simple 
syndactyly) are shown in the pie charts. As indicated below the pie charts, the unusual combination of 
pigmentation defects and syndactyly has been sporadically reported in cases of Waardenburg syndrome, type 3, 
which usually includes loss of hearing (not tested). (B) �ree dimensional (3D) micro-computed tomography 
(µCT) images of mouse paws. �e µCT images were obtained from the same paws shown above (Roman 
numerals indicate the matching images). (C) X-gal staining of whole-mount Myo10+/tm2 embryos showing 
Myo10 expression in the developing limb bud (E10.5) and digit primordia (E12.5 and E13.5). �e inset at E10.5 
shows an X-gal stained (control) WT embryo. (D) Histological section of an X-gal stained autopod (and distal 
zeugopod) at E14.5. �e section was counterstained with eosin (pink).
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Myo10 (mCherry-bMyo10). Fzd4-EGFP localized to the plasma membrane and �lopodia, but it was not enriched 
at �lopodial tips (not shown). In contrast, HEK293T cells transfected with TurboGFP-tagged human Wnt7b 
(Wnt7b-tGFP) did not exhibit plasma membrane labeling (not shown).

In addition to persistence of the hyaloid vasculature, mice lacking the Norrie disease protein (Ndp) Norrin, 
encoded by Ndp, develop retinal hypovascularization, which is phenocopied in mice lacking Fzd4 or Lrp5 
(Fig. 8C). We therefore investigated whether mice lacking full-length Myo10 develop retinal hypovasculariza-
tion in addition to persistence of the hyaloid vessels (Fig. 9). RNA sequence analysis (next generation sequenc-
ing) of ribosome-bound RNA isolated from postnatal retinal endothelial cells at P6, P10, P15, P21 and P50, 
respectively, revealed that Myo10 (full-length isoform) is the most abundantly expressed unconventional myosin 
(Fig. 9A). Between P6 and P15, Myo10 expression increased more than 4-fold (Fig. 9A), when vertical sprout-
ing angiogenesis drives the formation of a deep vascular plexus (P7-P12), followed by intermediate vascular 
plexus formation (P12-P15), as schematically illustrated in Fig. 9B. We speculated that Myo10 may be impor-
tant for the formation of �lopodia at tip cells, the cells at the tips of vascular sprouts45. However, imaging of 
whole-mount retinas by �uorescence stereomicroscopy and spinning disk confocal microscopy did not reveal 
impaired vascularization in adult retinas (Fig. 9C,D). Deeper vascular layers could be clearly detected in retinas 
from Myo10tm2/tm2 mice (Fig. 9E,F). �us, Myo10tm2/tm2 mice show persistence of the hyaloid vasculature without 
retinal hypovascularization.

Macrophages from Myo10tm2/tm2 mice do not have impaired Fcγ receptor-mediated phagocytosis.  
We recently reported that resident peritoneal macrophages from Myo10tm2/tm2 mice generate less nascent 
�lopodia compared to wild-type cells, but have no defects in the phagocytosis of zymosan or immunoglobulin 
G (IgG)-coated polystyrene beads46. �is was surprising since Myo10 had been previously implicated in Fcγ 
receptor-mediated phagocytosis26. Since macrophages can ingest unopsonized polystyrene beads, used in our 
previous study, we re-investigated Fcγ receptor-mediated phagocytosis using an alternative assay in which mac-
rophages are presented with freshly isolated human red blood cells (hRBCs) coated (opsonized) with mouse 
anti-CD235a antibodies (mIgG; illustrated in Fig. 10A). Notably, we con�rmed that mouse peritoneal mac-
rophages do not ingest unopsonized hRBCs. In assays using macrophages isolated from NOTAM mice, which 
harbor a γ-chain mutation47, or Fcer1g-de�cient mice, we have con�rmed that mIgG-hRBCs are engulfed exclu-
sively via Fcγ receptors (unpublished data). Using time-lapse spinning disk confocal microscopy, we found that 

Figure 8. High penetrance of persistence of the hyaloid vasculature, without retinal hypovascularization, 
in Myo10tm2/tm2 mice. (A) High-resolution MRI (magnetic resonance imaging) of enucleated and �xed eyes 
from adult wild-type (WT) and Myo10tm2/tm2 mice (representative of 6 eye scans for each genotype) reveals 
persistence of the hyaloid vasculature in mutant mice. �e hyaloid artery emerges from the optic disc and 
extends towards the lens, as schematically illustrated on the right. Scale bars: 1 mm. (B) Whole-mount retina 
from an adult WT and Myo10tm2/tm2 mouse stained with anti-collagen, type IV antibodies. Hyaloid vessels 
can be seen emerging from the central optic disc of the Myo10tm2/tm2 retina. Scale bar: 1 mm. (C) Schematic 
diagram showing putative roles of Myo10 in macrophage-to-endothelial cell Wnt signaling, and knockout 
mouse models in which hyaloid persistence phenotypes, with or without retinal hypovascularization, manifest. 
Notably, Wnt7bd1 is a hypomorphic allele, implying that there is reduced, but not absent, Wnt7b gene function 
in Wnt7bd1/d1 mice. PU.1 null (PU.1−/−) mice lack macrophages.
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Figure 9. Myo10 expression in retinal vascular endothelial cells and retinal vascularization in Myo10tm2/tm2  
mice. (A) Expression pro�le of the myosin superfamily in postnatal retinal endothelial cells. Notably, RNA 
sequence analysis revealed increased expression of Myo10 between postnatal day 6 (P6) and P15 (n = 3 
independent preparations per group). (B) Schematic diagram showing vascularization of the deeper layers of 
the retina between P7 and P15. (C) Whole-mount retinas from wild-type (WT) and Myo10tm2/tm2 mice stained 
for blood vessels (representative of 6 preparations for each genotype). �e white arrow indicates persistent 
hyaloid vessels. Quantitative analysis of the vascularization of WT versus Myo10tm2/tm2 retinas is shown on 
the right (n = 6 retinal preparations (from 3 mice) for each group). Vascular area is the percentage of area 
covered by the vascular network and lacunarity is a measure of heterogeneity. Scale bars: 1 mm. (D) Higher 
magni�cation images of isolectin B4-stained retinal blood vessels. Quantitative analysis of vessel branching 
(branch points/unit area) is shown on the right. Scale bars: 500 µm. (E) Higher magni�cation images (obtained 
using a 20x/0.45 objective lens) of retinal vascular layers, color coded blue (deep plexus), green (intermediate 
(inter.) plexus) and red (super�cial (superf.) plexus). Scale bars: 50 µm. (F) Side-view projections of 3D 
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macrophages isolated from Myo10tm2/tm2 mice had no defects in phagocytic cup formation or the ingestion of 
mIgG-hRBCs (Fig. 10A,B). �us, Fcγ receptor-mediated phagocytosis is not impaired in macrophages lacking 
full-length Myo10.

Next, we tested whether Myo10 is important for the engulfment of apoptotic cells. We induced externalization 
of phosphatidylserine, an “eat me” signal, in human red blood cells by incubation with 5 µM A23187, a Ca2+ iono-
phore, for 50 min at 37 °C (Fig. 11A). A�er a wash step, the red blood cells were resuspended in annexin-binding 
bu�er (Fig. 11A). �is protocol consistently led to phosphatidylserine externalization, con�rmed by incubating 
cells with Alexa Fluor 594-conjugated annexin V (Fig. 11A). We did not use N-ethylmaleimide to enhance phos-
phatidylserine externalization, as described by Closse et al.48, since we found that this compound is highly toxic to 
mouse macrophages. Human red blood cells with externalized phosphatidylserine adhered to macrophages, but 
only a small subset of particles were engulfed (Fig. 11B–D). �is suggests that exposure of the phospholipid phos-
phatidylserine alone is probably not su�cient to trigger phagocytosis, a controversial issue49. Similar to wild-type 
cells, Myo10tm2/tm2 macrophages sporadically ingested human red blood cells with phosphatidylserine exposure 
(Fig. 12A–D). �e example in Fig. 12 nicely shows how the phagosomes of two ingested human red blood cells 
fuse (insets in Fig. 12C), such that the two blood cells become pressed together (Fig. 12D). �ere were no signif-
icant di�erences, wild-type versus Myo10tm2/tm2 macrophages, in the number of adherent human red blood cells 
per macrophage and the rates of phagocytic cup formation, although phagocytic events were infrequent in both 
groups (Fig. 12E).

Discussion
We investigated the in vivo function of the MyTH4-FERM myosin Myo10 using Myo10 reporter knockout 
mice. �e Myo10 reporter knockout allele (Myo10tm2) lacks exon 19 and harbors a gene trap. We con�rmed that 
full-length (motorized) Myo10 was deleted in homozygous mutant (Myo10tm2/tm2) mice, but the headless isoform 
of Myo10 was still expressed in the brain, even though one (namely, NM_001353142.1) of the two con�rmed 
Hdl-Myo10 transcripts is expected to be marginally truncated at the 5′-UTR in the Myo10tm2 allele (Fig. 1D). 
�us, Myo10tm2/tm2 mice are not simply Myo10 null mice, but selectively lack the full-length, motorized isoform. 
Myo10tm2/tm2 mice exhibited four phenotypes (percent penetrance indicated): (1) exencephalus (24%), a cranial 
neural tube closure defect, (2) pigmentation defects (white belly spots; >95%), (3) simple syndactyly (>95%), 
and (4) persistence of the hyaloid vasculature (>95%). As alluded to in the Introduction, the phenotypes of 
both Myo10 null (Myo10tm1d/tm1d) mice27 and Myo10tm2/tm2 mice28 were recently reported. �ese studies nicely 
con�rmed that Myo10 is important for neural tube closure27, and that Myo10 de�ciency leads to pigmentation 
defects, syndactyly and persistence of the hyaloid vasculature27,28. We discuss each of these phenotypes below, as 
well as putative roles of Myo10 in other contexts.

Exencephalus. Neurulation, the folding of the neural plate to form a neural tube, involves expansion of the 
mesoderm and elevation of the neural folds, followed by dorsolateral bending50. At E8.5, the folds close at the 
hindbrain-cervical boundary (closure 1) and zippering spreads rostrally and caudally. A second closure (clo-
sure 2) at the forebrain-midbrain boundary initiates a second site of zippering. Failure or disruption of closure 
2-mediated zippering leads to exencephalus50. We speculate that susceptibility to exencephalus in Myo10tm2/tm2 
embryos may be due to impaired adhesion of opposing neural fold apices since cell-cell adhesion molecules 
implicated in tube closure, including cadherins, are known cargo proteins for Myo1012,13,51. Moreover, numerous 
�lopodia, the hallmark of Myo10, have been shown to extend from the non-neural ectoderm and bridge opposing 
neural folds52; see also review by Nikolopoulou et al.53. Genetic experiments in mice have strongly implicated 
N-cadherin (neural cadherin) in neural tube closure. N-cadherin null embryos rescued by cardiac N-cadherin 
expression, as well as neural crest-restricted N-cadherin knockout embryos, exhibit exencephalus due to failed 
closure of the anterior neuropore54,55. In this context, it would be interesting to test whether neural crest-restricted 
deletion of Myo10 predisposes to, �rstly, exencephalus, due to loss of N-cadherin transport, and, secondly, pig-
mentation defects, due to decreased generation or migration of neural crest-derived melanoblasts. Interestingly, 
the incidence of exencephalus is higher (68% versus 24%) in Myo10 null (Myo10tm1d/tm1d)27 versus Myo10tm2/tm2 
mice28. �us, headless Myo10, which strongly localizes to the plasma membrane (see Figs 3 and 4), may partially 
compensate for loss of full-length Myo10 during neurulation. X-gal staining for Myo10 expression in Myo10tm2 
embryos appeared negative at the neural fold (see Fig. 2E). However, the expression of headless-Myo10 is prob-
ably not reported in Myo10tm2 mutants since the lacZ reporter gene is located 5′ upstream of headless Myo10 
transcripts (see Fig. 1), whereas both full-length and headless Myo10 are expected to be reported by X-gal staining 
in Myo10tm1a embryos27.

Pigmentation defects (white belly spots). During neural tube closure, neural crest cells delaminate 
from the apices of the neural folds and undergo epithelial-to-mesenchymal transition. Neural crest cells are 
highly migratory and give rise to diverse cell lineages, including melanocytes (pigment-producing cells), under 
the control of a network of regulatory transcription factors and downstream e�ector genes56. Neural crest-derived 
melanoblasts, the precursors of melanocytes, migrate dorsolaterally, populate the ectoderm and subsequently 
colonize hair follicles, where the cells produce the pigment melanin. Myo10tm2/tm2 mice consistently showed white 
belly spots, and histology con�rmed that the spots are devoid of melanocytes (see Fig. 6). Myo10 is expressed in 

reconstructions of retinal vessels, obtained by spinning disk confocal microscopy (via a 20x/0.45 objective lens). 
Anti-collagen, type IV, stained the super�cial plexus (red), whereas all vessels were labeled with isolectin B4 
(green). Scale bars: 100 µm.
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neural crest cells57 and has been reported to be a signature gene of epidermal neural crest stem cells58. However, 
aside from white belly spots, Myo10tm2/tm2 mice did not exhibit major neural crest-related disorders, such as cran-
iofacial defects or megacolon (intestinal aganglionosis)59. We speculate that Myo10 may be an e�ector gene for the 
transcription factors specifying the melanocyte lineage, such as Sox10, Pax3 and Mitf, and may confer motility. 

Figure 10. Myo10 is not important for Fcγ receptor-mediated phagocytosis. (A) Model system for Fcγ 
receptor-mediated phagocytosis. Time-lapse images (XZ and reconstructed 3D views), obtained by spinning 
disk confocal microscopy, of a Myo10 knockout (Myo10tm2/tm2) macrophage engul�ng freshly isolated hRBCs 
(human red blood cells) opsonized with mouse immunoglobulin G (mIgG). At t = 0 s, a mIgG-hRBC has 
already been ingested (labeled 1). At t = 60 s, a nascent phagocytic cup, extending from the �rst cup, is forming 
around a second hRBC (labeled 2). A third cup, emerging from the cell body, can be seen at t = 240 s. (B) 
Kinetics of phagocytic cup formation. XY, XZ and YZ views of the confocal data sets (n = 19–38 events per 
group; 2 independent experiments) were used to measure the kinetics of single phagocytic cup formations.
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In Xenopus laevis, Myo10 is a neural crest signature gene60 and knockdown of the gene has been reported to 
decrease neural crest cell migration24,25. Furthermore, melanoblast-restricted deletion of the �lopodia-inducing 
Rho GTPase Cdc42 impairs melanoblast motility and mice develop severe belly pigmentation defects, similar 
to Rac1 conditional knockout mice61,62. It would be useful to test whether neural crest- (as alluded to above) 

Figure 11. Assay to image the phagocytosis of apoptotic human red blood cells. (A) Bright�eld images of control 
and A23187-treated human red blood cells, and labeling of phosphatidylserine with Alexa Fluor 594-conjugated 
annexin V (AF594-Annexin V; red channel). Scale bar: 10 µm. (B) Introduction of human red blood cells 
(hRBCs) with externalized phosphatidylserine (PS) to wild-type (WT) mouse peritoneal macrophages (MΦs). 
Scale bar: 10 µm. (C and D) Time-lapse images (XZ and reconstructed 3D views) of macrophages ingesting the 
three hRBCs (labeled 1,2 and 3, respectively) shown in the bright�eld image of panel B.
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or melanoblast-restricted deletion of Myo10 phenocopies homozygous Myo10tm2 mutants. The presence of 
white belly spots was a predictor of genotype (>95% of Myo10tm2/tm2 mice had white belly spots). �is high fre-
quency agrees with the 100% penetrance reported by Heimsath et al.27. (Myo10tm1d/tm1d mice) and Tokuo et al.28 
(Myo10tm2/tm2 mice), as well as the high rate reported by Liakath-Ali et al. for Myo10tm2/tm2 mice63.

Syndactyly. During embryonic development in the mouse, digit formation involves the initiation and pro-
gression of interdigital cell death. BMPs (bone morphogenetic proteins), secreted proteins, are thought to play an 
important role in initiating interdigital cell death, which involves inhibition of anti-apoptotic �broblast growth 
factors and Wnt signaling. Consistent with this scheme, conditional deletion of Bmp2 (bone morphogenetic pro-
tein 2) in limb bud mesenchyme in mouse leads to so� tissue syndactyly between digits 3 and 4, with variable 
penetrance, whereas conditional deletion of both Bmp2 and Bmp4 produces complete syndactyly of fore- and 
hindlimbs64. Mice lacking Dkk1 (dickkopf Wnt signaling pathway inhibitor 1) or Sfrp2 (secreted frizzled-related 
protein 2), genes encoding soluble inhibitors of Wnt signaling, develop syndactyly. In Sfrp2−/− mice, digits 
3 and 4 of the hindlimb are consistently fused65, whereas digits 2 and 3 are fused in Dkk1−/− mice66, among 

Figure 12. Ingestion of apoptotic human red blood cells by a Myo10tm2/tm2 macrophage. (A) Introduction 
of human red blood cells (hRBCs) with externalized phosphatidylserine (PS) to a Myo10tm2/tm2 peritoneal 
macrophage (MΦ). Scale bar: 10 µm. (B and C) Time-lapse images (XZ and reconstructed 3D views) of a 
Myo10tm2/tm2 macrophage ingesting the two hRBCs (labeled 1 and 2, respectively) shown in the bright�eld image 
of panel A. (D) Time-lapse bright�eld images showing two human red blood cells being packed together a�er 
their respective phagosomes, shown in the insets of panel C, have fused. (E) Summary data for wild-type (WT; 
n = 3) versus Myo10tm2/tm2 (n = 2) mice. n.s. = not signi�cant.
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other defects. Similarly, digits 2 and 3 or 3 and 4 are fused in Myo10tm2/tm2 mice with high penetrance (~95%); in 
contrast, Tokuo et al.28 reported 72% penetrance for Myo10tm2/tm2 mice, and Heimsath et al.27 reported ~50% for 
Myo10tm1d/tm1d mice. A di�erent pattern of syndactyly is seen when the intrinsic pathway of apoptosis, mediated 
by cytochrome c release and caspase 9 activation, is inhibited in mice. Instead of fusions a�ecting digit pairs 2 and 
3 or 3 and 4, persistent interdigital webbing is observed in mice lacking both (double knockout) Bax (encoded 
by Bax) and Bak (Bak1)67, required for cytochrome c release, or mice lacking the three (triple knockout) Bax/Bak 
activators Bid (Bid), Bim (Bcl2l11) and Puma (Bbc3)68. �us, Myo10 probably regulates the regression of inter-
digital mesenchyme, presumably as a downstream e�ector of Bmp signaling21, by initiating interstitial cell death. 
Impaired phagocytic clearance in Myo10tm2/tm2 mice is unlikely to explain the syndactyly phenotype, since we 
found that Myo10tm2/tm2 macrophages have robust phagocytic cup formation and rapidly ingest large IgG-coated 
beads46 or IgG-coated red blood cells, as well as apoptotic cells (see Figs 10 and 12). Moreover, impaired phagocy-
tosis would probably give rise to persistent webbing rather than complete or near complete syndactyly of selected 
digits. Interestingly, syndactyly is not observed in embryos of PU.1 null mice, which lack macrophages, since mes-
enchyme cells can assume the function of phagocytes in the interdigital space69. However, the hyaloid vasculature 
fails to regress in PU.1 null mice41.

Persistence of the hyaloid vasculature. Myo10tm2/tm2 mice consistently exhibited persistence of hyaloid 
vessels, as reported for Myo10tm1d/tm1d mice27. �e hyaloid vasculature normally regresses before eye opening, which 
occurs around P10 - P13. As alluded to in the Results section, regression of the hyaloid vessels requires stimula-
tion of Fzd4 and its co-receptor Lrp5, expressed on vascular endothelial cells, by the ligands Wnt7b and Norrin. 
Macrophages have been deduced to be the source of Wnt7b as well as the initiators of pro-apoptotic canonical Wnt 
signaling in hyaloid vascular endothelial cells41. Mice lacking Wnt7b, Norrin, Fzd4 or Lrp5 have hyaloid vessel per-
sistence41–43,70. Mice lacking Norrin, Fzd4 or Lrp5 additionally show retinal hypovascularization42,71,72, which has 
not been reported for mice homozygous for the hypomorphic allele Wnt7bd1 41. We anticipated that Myo10tm2/tm2 
mice would exhibit retinal hypovascularization since we found that full-length Myo10 expression increased more 
than 4-fold in retinal vascular endothelial cells between P6 and P15 (see Fig. 9A,B), when sprouting angiogen-
esis forms deep and intermediate vascular plexuses. However, we could not detect impaired retinal vasculariza-
tion in whole-mount retinal preparations from adult Myo10tm2/tm2 mice. �us, hyaloid vessel persistence cannot 
be explained as a secondary consequence of insu�cient retinal vascularization73. How Myo10 regulates hyaloid 
regression is unclear, although we found that full-length Myo10 is expressed in both macrophages46, which trig-
ger hyaloid regression41, and in retinal vascular endothelial cells. Interestingly, long �lopodia and Myo10-mediated 
transport have been implicated in Wnt signaling74, implying that Myo10 may be involved in the cell death-inducing 
Wnt signaling between retinal microglia (macrophages) and hyaloid vessels41. Imaging of the pupillary membrane, 
a transient structure on the anterior surface of the lens, in postnatal mice has impressively shown that numerous 
long, thin �lopodia extend from vascular endothelial cells and interact with resident macrophages75. However, 
whether Myo10-induced �lopodia formation is important for endothelial cell-macrophage communication and pro-
grammed capillary regression remains to be clari�ed. In HEK293T cells, we found that Fzd4-EGFP localized to the 
plasma membrane, but, in contrast to DCC, it was not enriched at the tips of Myo10-induced �lopodia (not shown).

Axon guidance. Myo10 has been implicated in neuritogenesis and axon guidance23,30,76, and mice lacking 
the Myo10 cargo protein DCC fail to form commissures in the brain34. However, MRI of isolated, �xed brains 
revealed that the corpus callosum, anterior commissure and hippocampal commissure were intact in Myo10tm2/tm2  
mice (see Fig. 5C). �ese observations suggest that full-length Myo10 is redundant for Netrin-1-mediated axon 
path�nding. We con�rmed that headless Myo10, which is still expressed in Myo10tm2/tm2 mice, does not induce 
�lopodia, but we found that headless Myo10 robustly localizes to the plasma membrane independent of the 
MyTH4-FERM domain. �is was somewhat surprising since GFP-tagged headless Myo10 has been reported to 
more di�usely localize in CAD (Cath.a-di�erentiated) cells29, a neuronal cell line. �us, in addition to dimeri-
zation with full-length Myo10 and competition for cargo29, headless Myo10 may negatively regulate full-length 
Myo10 by masking membrane phosphoinositides.

Summary and Conclusions
We found that the expression of full-length Myo10, but not headless Myo10, is abolished in Myo10tm2/tm2 mice. 
Homozygous mutant embryos developed exencephalus, a lethal phenotype, with low penetrance, whereas surviv-
ing Myo10tm2/tm2 mice consistently exhibited white belly spots, simple syndactyly and persistence of the hyaloid 
vasculature without retinal hypovascularization. We con�rmed in vitro that DCC localizes with Myo10 at the tips 
of �lopodia, but in vivo we could not detect defects in the brain commissures of Myo10tm2/tm2 mice, in contrast to 
Dcc knockout mice. We also showed in vitro that headless Myo10 strongly localizes to the plasma membrane in 
a PH domain-dependent fashion. �e unusual combination of pigmentation defects and syndactyly observed in 
Myo10tm2/tm2 mice is reminiscent of variants of Waardenburg syndrome, and we suspect that Myo10tm2/tm2 mice 
develop progressive hearing loss. �e phenotypes of hyaloid persistence and syndactyly suggest that Myo10 may be 
important for initiating apoptosis, which is also required for neural tube closure77. Intact phagocytosis by Myo10tm2/

tm2 macrophages in vitro suggests that phagocytic clearance is not impaired in homozygous mutant mice.

Materials and Methods
Mice. Heterozygous Myo10 reporter knockout (Myo10+/tm2) mice were generated by the Wellcome Trust 
Sanger Institute (Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom), 
as part of the KOMP (Knockout Mouse Project). �e targeted allele is also denoted Myo10tm2(KOMP)Wtsi, where 
Wtsi is Wellcome Trust Sanger Institute. �e targeting sequence replaces exon 19 of Myo10 and contains a lacZ 
reporter and gene trap (polyadenylation (pA) site), as well as a neomycin resistance cassette �anked by loxP sites. 
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No experiments were performed on live vertebrates. All methods were carried out in accordance with the relevant 
guidelines and regulations, and all experimental protocols were approved by the Landesamt für Natur, Umwelt 
und Verbraucherschutz Nordrhein-Westfalen, Germany.

Southern blot analysis. Mouse tail biopsies were lysed overnight at 55 °C in bu�er containing 100 mM 
Tris-HCl (pH 8.5), 5 mM EDTA, 0.2% sodium dodecyl sulfate, 200 mM NaCl, and 100 µg/ml proteinase K. A�er 
phenol/chloroform extraction, DNA samples were precipitated by isopropanol, washed in 80% ethanol, dried and 
dissolved in 50 µl TE Bu�er (10 mM Tris (pH 7.9) and 0.2 mM EDTA). Approximately 5 µg genomic DNA was 
digested with BamHI or EcoRI restriction endonuclease, fractionated on 0.8% agarose gels, and transferred to 
GeneScreen nylon membranes (NEN-DuPont, Boston, MA). �e membranes were hybridized with a 32P-labeled 
2.4 kb probe containing sequences 5′ to the targeted homology and washed with (�nal concentrations) 0.5x SSPE 
(1x SSPE contains 0.18 M NaCl, 10 mM NaH2PO4, and 1 mM EDTA; pH 7.7) and 0.5% sodium dodecyl sulfate at 
65 °C. �e hybridization probe was cloned as follows. A DNA PCR product was ampli�ed from mouse genomic 
DNA using the oligonucleotide pair Myo10HR1d and Myo10HR1r and cloned into a custom vector using BsmBI 
restriction endonuclease sites, followed by sequencing for veri�cation. �e sequence of the Myo10HR1d oli-
gonucleotide was 5′-GCTCTAGACGTCTCTGAGATGAGATGATCAGGTCCTGGTGTTA-3′, and Myo10HR1r 
was 5′-GTCTCAAGCGTCTCTTGGACATTCTAATATCCTGTATACCCCTCACA-3′. �e sequences used for 
cloning of the PCR product are in italics.

Genotyping. PCR for genotyping the Myo10 reporter knockout mice was performed in two steps. First, touch-
down PCR was performed using the following thermocycling protocol: 94 °C for 5 min, then 6 cycles of 94 °C for 
30 s, 61 °C (with subtraction of 1 °C per cycle) for 30 s, and 72 °C for 60 s. �is was followed by 31 cycles of 94 °C for 
30 s, 57.5 °C for 30 s, and 72 °C for 60 s. �e �nal extension was 72 °C for 5 min, followed by a holding temperature 
of 12 °C. �e following primer sequences (5′ → 3′) were used: Myo10_F, ATCTGTTTCCCCTTAAGCGAAAAT; 
Myo10_R, CTCTGTGGGGCCCAGAGCT; CAS_R1_Term, TCGTGGTATCGTTATGCGCC. �e expected band 
(product) size for the primer pair Myo10_F and CAS_R1_Term was 295 bp (mutant allele), and the expected size 
for the pair Myo10_F and Myo10_R was 400 bp (wild-type allele). LacZ could also be detected using the primer 
pair LacZ_2_small_F (ATCACGACGCGCTGTATC) and LacZ_2_small_R (ACATCGGGCAAATAATATCG), 
which had an expected band size of 108 bp (LacZ positive).

Western blot analyses. Myo10 protein expression was analyzed using Western blot (protein immunoblot). 
Mouse P10 brain tissue was homogenized in bu�er (1 ml per 100 mg tissue) containing: 15 mM Hepes (pH 7.4) 
and 320 mM sucrose, supplemented with leupeptin (protease inhibitor), Pefabloc SC (proteinase K inhibitor) and 
aprotinin (inhibitor of trypsin and related proteases). �e homogenate was centrifuged at 10000 x g for 10 min 
at 4 °C. �e supernatant was aspirated, mixed 1:4 with 5x Laemmli bu�er and heated at 95–99 °C for 5 min. �e 
Laemmli (Lämmli) bu�er contained SDS (sodium dodecyl sulfate), β-mercaptoethanol, and the tracking dye 
bromophenol blue. HEK293T cells overexpressing Myo10 constructs were lysed using Cell Lysis Bu�er (#9803; 
Cell Signaling Technology, Leiden, �e Netherlands) containing: 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 
Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM β-glycerolphosphate, 1 mM Na3VO4 
(phosphatase inhibitor) and 1 µg/ml leupeptin, supplemented with 5 mM NaF (phosphatase inhibitor), 10 µg/ml 
aprotinin, 10 µg/ml Pefabloc SC and 1 mM DTT (dithiothreitol). As in the case of tissue lysates, cell lysates were 
mixed with Laemmli bu�er and heated.

Proteins were separated in gels of 6.5% polyacrylamide by electrophoresis and subsequently transferred over-
night by tank blot onto polyvinylidene di�uoride membranes (Roche, Mannheim, Germany). A�er blocking 
with 5% milk powder in TBST (Tris-bu�ered saline with Tween 20, containing 50 mM Tris, 150 mM NaCl and 
0.1% Tween 20; pH 8.0) for 1 h at room temperature, primary antibody (mouse monoclonal anti-Myo10 anti-
body; sc-166720, Santa Cruz Biotechnology) was added for 24–48 h at 4 °C. Secondary antibody, horseradish 
peroxidase-conjugated anti-mouse antibodies, was added for 1 h at room temperature a�er 3 × 15 min washes 
with TBST. Finally, SuperSignal West Pico chemiluminescence substrate (Perbio, Bonn, Germany) was applied 
and immunoblot images were captured using a ChemiDoc MP imaging system (Bio-Rad, Bio-Lab Laboratories, 
München, Germany).

Plasmids and cloning. A mammalian expression vector (pCMV-Tag2B) harboring N-terminal 
FLAG-tagged, full-length mouse Myo10 (pCMV-Tag2B-mMyo10) was kindly provided by Thomas 
B. Friedman (Bethesda, MD). A headless Myo10 (Hdl-mMyo10) construct in the same vector 
(pCMV-Tag2B-Hdl-mMyo10) was generated by combining DNA fragments from PCR (using the forward primer 
(with EcoRI overhang) 5′-AGTCCGAATTCATGACAGACCAGTTTGATCAGGTG-3′ and the reverse primer 
5′-TGTAAACCCTGCGTGCCAGC-3′) and digestion with restriction enzymes (EcoRI and SalI). Hdl-mMyo10 
was subcloned from the parent vector pCMV-Tag2B-mMyo10 into the vector pEGFP-C1 (Clontech Laboratories), 
which fuses EGFP to the N-terminus, using the same approach, except the forward primer (with BglII overhang) 
was 5′-ACTGAGATCTATGCCAGACCAGTTTGATCAGGTG-3′ and the plasmid pCMV-Tag2B-mMyo10 
was digested with BstEII (also known as Eco91l) and SalI. The following Hdl-mMyo10 deletion con-
structs were generated using the template pEGFP-C1-Hdl-mMyo10: EGFP-Hdl-mMyo10∆MyTH-FERM, 
EGFP-Hdl-mMyo10∆PH-MyTH-FERM and EGFP-Hdl-mMyo10∆PH3-MyTH-FERM. pEGFP-mMyo10 
(full-length mouse Myo10) was also derived from pCMV-Tag2B-mMyo10.

Expression vectors for human Myo10 with EGFP fused at the C-terminus (pEGFPN3-hMyoX 
(hMyo10-EGFP); plasmid #47609, deposited by Emanuel Strehler), human DCC (pCMV-DCC; plasmid 
#16459, deposited by Bert Vogelstein), and mouse Frizzled 4 with EGFP fused at the C-terminus (pFz4-GFP 
(Fzd4-EGFP); plasmid #42197, depositied by Robert Le�owitz and Jeremy Nathans) were obtained from the 
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plasmid repository Addgene. �e vector for expression of human Wnt7b tagged with tGFP (TurboGFP) at the 
C-terminus (pCMV6-AC-Wnt7b-tGFP) was obtained from OriGene (MG205288; Herford, Germany). �e plas-
mid for expression of bovine Myo10 (bMyo10) tagged with mCherry at the N-terminus (pmCherry-bMyo10) was 
kindly supplied by Sta�an Strömblad (Huddinge, Sweden) and has been previously described by Plantard et al.78.

Transfection and imaging. HEK293T cells were plated on human �bronectin-coated 35 mm glass (or pol-
ymer) bottom cell culture dishes (Ibidi, Martinsried, Germany) and incubated in DMEM (Dulbecco’s Modi�ed 
Eagle’s Medium) supplemented with 10% bovine serum albumin and penicillin/streptomycin. Cells were trans-
fected with calcium phosphate (Myo10 and DCC (deleted in colorectal cancer) constructs), PolyFect transfection 
reagent (Qiagen) or Lipofectamine LTX (�ermo Fisher Scienti�c). DCC was labeled with mouse anti-DCC 
(monoclonal) antibodies which recognize the extracellular domain of human DCC protein (ab16793; Abcam, 
Cambridge, UK). �e plasma membrane was stained by incubating cells with CellMask Orange (diluted 1:1000) 
for 5 min at 37 °C. Live-cell imaging was performed, via a Nikon Apochromat TIRF 60x/1.49 (oil-immersion) 
objective lens, using a spinning disk confocal microscope (UltraVIEW Vox 3D live cell imaging system coupled 
to a Nikon Eclipse Ti inverse microscope; Perkin Elmer, Rodgau, Germany). �e system included a Yokogawa 
(Japan) CSU-X1 spinning disk scanner, a Hamamatsu (Japan) C9100-50 EM-CCD camera (1000 × 1000 pixels) 
and Volocity so�ware.

Superresolution structured illumination microscopy. Superresolution structured illumina-
tion microscopy was performed using an Elyra S.1 inverted microscope system (Carl Zeiss MicroImaging, 
Germany), controlled by ZEN 2011 SP2 so�ware (black edition; Zeiss). Cells were imaged via a Plan Apo 63/1.4 
(oil-immersion) objective lens and images were captured with an Andor iXon EM-CCD. �e following lasers and 
�lters (in parentheses) were used: 488 nm (BP 495–550 nm + LP 750 nm) and 561 nm (BP 570–620 + LP 750 nm). 
Five grating positions and 5 phase shi�s were used for each z-slice. Note that cells �xed a�er transfection were 
counterstained with Alexa Fluor 594-conjugated phalloidin (Invitrogen) to allow imaging of F-actin.

X-gal staining. Whole-mount mouse embryo X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopy-ranoside) 
staining was performed using a LacZ tissue staining kit (rep-lz-t; InvivoGen). X-gal is a chromogenic substrate for 
β-galactosidase, encoded by the LacZ gene. Embryos were �xed for 30–60 min (E10.5–14.5) at room temperature 
using the following �xative solution: 1% neutral bu�ered formalin, 0.2% glutaraldehyde, 2 mM MgCl2, 5 mM 
EDTA and 0.02% IGEPAL CA-630, a nonionic, non-denaturing detergent, in PBS. A�er several wash steps using 
0.02% IGEPAL CA-630 in PBS (pH 8.5), �xed embryos were stained in the dark for 30–120 min at 37 °C (or room 
temperature when staining digits) with staining solution: 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, 2 mM MgCl2, 
0.02% IGEPAL CA-630 and 1 mg/ml X-gal in PBS (pH 8.5). A�er staining, embryos were washed 2 × 10 min in 
PBS containing 0.1% Tween-20 at room temperature, followed by 18 h incubation in the dark with post-�xative 
(10% neutral bu�ered formalin). When required, formalin-�xed, X-gal-stained embryos were embedded in par-
a�n wax and sectioned with a microtome, followed by depara�nation and rehydration. Sections were counter-
stained with the pink stain eosin.

Magnetic resonance imaging. MRI measurements of ex vivo samples were performed on a 9.4 T BioSpec 
94/20 system (Bruker BioSpin, Ettlingen, Germany). Tissue samples were �xed in 4% paraformaldehyde (PFA) 
in PBS for at least 24 h. Prior to MRI, samples were equilibrated in PBS containing 2 mM Gd-DTPA (Magnevist, 
Bayer Schering Pharma AG, Germany) and finally embedded in 1% low-melting agarose containing 2 mM 
Gd-DTPA.

Fixed mouse eyes were measured in 1 mL PCR tubes, using a 0.7 T/m gradient system and a two element 
cryogenic surface coil (Bruker). �e inner structures of the eye were visualized using a three-dimensional (3D) 
fast low-angle shot sequence in a total scan time of 5:23 hours with the following parameters: isotropic resolution, 
23 µm; matrix size, 240 × 256 × 256; �eld of view, 5.5 × 6.0 × 6.0 mm; TR/TE, 37/4.5 ms; �ip angle, 10 degrees; 
and averages, 8.

Fixed brains were imaged using a 1 T/m gradient system and a quadrature volume coil with an inner diam-
eter of 35 mm (Rapid Biomedical, Rimpar, Germany). A 3D spin echo data set was acquired in 16:31 hours, 
using a turbo RARE sequence: isotropic resolution, 55 µm; matrix size, 296 × 232 × 232; field of view, 
16 × 12.8 × 12.8 mm; TR/TE, 750/40 ms; RARE factor 12; and averages, 18.

Histology. Harvested skin samples were placed (dermis side down) on Whatman �lter paper, which pre-
serves skin �atness during �xation, and then cut into strips. �e strips were �xed in 10% neutral bu�ered for-
malin (Sigma-Aldrich), equivalent to about 4% formaldehyde, on ice. �e next day, the tissue was dehydrated, 
embedded in para�n wax and sectioned with a microtome. �e formalin-�xed, para�n-embedded sections 
were subsequently depara�nized using the solvent xylene and graded washes with xylene and ethanol. Next, the 
sections were rehydrated with graded concentrations of ethanol in water. To optimize staining, antigen retrieval 
was performed by placing sections in target retrieval solution (Dako, Agilent Technologies, Santa Clara, CA), a 
modi�ed citrate bu�er (pH 6.1), and heated for 20 min in a pressure cooker. A�er washing and blocking with 
serum for 1 h, sections were incubated with primary antibody, goat anti-DCT (dopachrome tautomerase; also 
known as tyrosine-related protein 2) antibodies (sc-10451; Santa Cruz Biotechnology), for 2 h at room tempera-
ture. �e sections were then incubated with biotinylated secondary antibody for 1 h at room temperature, washed 
and subsequently incubated with Vectastain ABC reagent (Vector Laboratories) before the addition of peroxi-
dase substrate (alkaline phosphatase substrate kit, Vector Laboratories). Finally, the dark blue stain hematoxylin, 
which labels nucleic acid and other structures, was applied.
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Micro-computed tomography (µCT). Microtomography of ex vivo samples was performed using a 
SkyScan 1176 system (Bruker microCT, Kontich, Belgium). Tissue samples were �xed in 4% PFA in PBS for 24 h, 
followed by 3 × 30 min wash steps in 70% ethanol at room temperature. Subsequently, samples were stored in 
70% ethanol at 4 °C. Images were acquired using the X-ray source voltage set at 40 kV (range, 20–90 kV) and the 
energy (transmission) was attenuated using a 0.2 mm aluminium �lter. �e exposure time of the X-ray detector, 
cooled digital X-ray CCD camera (pixel size, 8.52 µm), was set to 780 ms (1 × frame averaging) and scanning 
performed at 0.5° rotation steps. Volumetric reconstruction of data sets was processed using SkyScan NRecon 
so�ware (v1.6.9.8; Bruker microCT). �e following reconstruction parameters were used: smoothing = 1 (range, 
1–10), ring artifact reduction = 14 (range, 1–20), and beam-hardening correction = 36 (range, 1–100).

RNA sequence (RNA-Seq) analysis. Expression pro�ling of retinal endothelial cells at �ve di�erent post-
natal days (P6, P10, P15, P21, and P50) was performed as recently described79. Pdg�-iCre/Rpl22HA/HA transgenic 
mice, which express hemagglutinin (HA) tagged ribosomal protein L22 (Rpl22) under control of Cre recombi-
nase speci�cally expressed in endothelial cells, were generated by crossing inducible endothelial cell-speci�c Cre 
(Pdg�-iCre) mice with Rpl22tm1.1Psam RiboTag knock-in mice. Ribosome-bound transcripts were immunopre-
cipitated from whole retina lysates using anti-HA antibodies coupled to magnetic beads, and gene expression was 
analyzed by RNA-Seq analysis a�er performing quality control for endothelial cell-speci�city using quantitative 
RT-PCR.

Whole-mount retinal staining. �e retina was dissected and whole-mount immunostaining performed as 
previously described by Pitulescu et al.80. In brief, eyeballs were enucleated and placed in 2.0 ml Eppendorf micro-
centrifugation tubes containing 4% PFA in PBS, and incubated for 2 h at room temperature in a tube rotator. A�er 
�xation, the eyes were washed with PBS, placed in a Petri dish and dissected under a stereomicroscope. Spring 
scissors with 8 mm blades (15003-08; Fine Science Tools) were used to both make an initial cut and excise the 
cornea. Next, two Dumont #5 forceps were used to remove the sclera and underlying choroid. Susequently, the 
lens was removed and four radial incisions were made to divide the retina into quandrants. �e dissected retinas 
were placed in 2.0 ml tubes containing blocking and permeabilization bu�er (1% bovine serum albumin and 0.3% 
Triton X-100 in PBS) and incubated at 4 °C overnight in a tube rotator. A�er washing (2 × 5 min) in PBlec bu�er 
(1 mM CaCl2, 1 mM MgCl2, 0.1 mM MnCl2 and 0.4% Triton X-100 in PBS), each retina was incubated overnight 
at 4 °C with 1:25 Biotinylated GSL I-B4 isolectin (Gri�onia Simplicifolia Lectin I isolectin (GSL I) B4; B-1205, 
Vector Laboratories, Burlingame, CA) and 1:200 rabbit anti-mouse collagen IV antibodies (2150-1470; Bio-Rad, 
Oxford, United Kingdom) diluted in PBlec bu�er. Note that GSL I-B4 isolectin is a marker for mouse endothelial 
cells, useful for labeling deeper vascular plexuses, and the extracellular matrix protein collagen IV is a component 
of the basal lamina of blood vessels. Alexa Fluor 488-conjugated streptavidin (S11223; �ermo Fisher Scienti�c, 
Darmstadt, Germany), diluted 1:100, and secondary antibody (Alexa Fluor 546-conjugated donkey anti-rabbit 
IgG (H + L)), diluted 1:500, were introduced for 1.5 h at room temperature a�er washing 1 × 15 min with wash-
ing bu�er (blocking and permeabilization bu�er diluted 1:1 with PBS) and 3 × 10 min with PBS. �e washing 
steps were repeated to remove unbound secondary antibodies. Stained retinas were transferred onto standard 
(25 mm × 75 mm) glass microscope slides via a plastic transfer pipette. For each retinal preparation, excess 
medium was aspirated and a glass coverslip (24 mm × 32 mm) containing a hanging drop of Fluoromount-G 
mounting medium (SouthernBiotech, Birmingham, AL) was gently applied.

Whole-mount, stained retinas were imaged at low magni�cation (x2) using a Leica MZ16 F �uorescence 
stereomicroscope. Higher magni�cation images were obtained via Nikon Plan Fluor ELWD 20x/0.45 (dry) and 
Apochromat TIRF 60x/1.49 (oil-immersion) objective lenses of a spinning disk confocal microscope (UltraVIEW 
Vox 3D live cell imaging system). Quantitative analysis of retinal vasculature was performed using AngioTool81.

Live-cell phagocytosis assays. Mouse resident peritoneal macrophages were isolated and seeded into 
�bronectin-coated Ibidi µ-Slide I chambers as previously described46. A�er overnight incubation of the mouse 
macrophages, freshly isolated hRBCs (human red blood cells) were incubated with CellMask Orange (C10045; 
�ermo Fisher Scienti�c) plasma membrane stain (1:1000 dilution and 5 min incubation at 37 °C) and washed 
twice with bicarbonate-free RPMI 1640 medium containing 20 mM Hepes. The hRBCs were subsequently 
opsonized with mouse IgG by incubation for at least 8 min at 37 °C with (mouse) anti-CD235a monoclonal IgG 
(IgG2b; clone HIR2) antibodies (MA1-20893; �ermo Fisher Scienti�c), diluted 1:400. �e opsonized hRBCs 
were not washed to avoid agglutination and directly pipetted into a µ-Slide I chamber seeded with macrophages 
freshly labeled (20 min pre-incubation at 37 °C, followed by wash) with rat anti-mouse F4/80 antibodies conju-
gated to Alexa Fluor 488 (1:40 dilution; MF48020, �ermo Fisher Scienti�c).

Phagocytosis of IgG-opsonized (red �uorescent) hRBCs by (green �uorescent) mouse macrophages was 
imaged by time-lapse spinning disk confocal microscopy. Z-stacks (22 slices at 0.8 µm steps) for each channel 
(488 nm (green channel) and 561 nm (red channel) laser excitation, respectively) were obtained every 15 s for 
16 min. Notably, the bicarbonate-free RPMI 1640 medium (containing 20 mM Hepes) was supplemented with 
1 mM MPG (N-(2-mercaptopropionyl)glycine), a free radical scavenger, to reduce phototoxicity. Focal dri� was 
circumvented using the Nikon Perfect Focus Sytem.

Phagocytosis of apoptotic cells. To induce externalization of phosphatidylserine, an “eat me” signal, 
hRBCs were incubated with the Ca2+ ionophore A23187 (5 µM) for 50 min, followed by wash steps. �e pel-
let was resuspended in annexin binding bu�er (V13246; �ermo Fisher Scienti�c), which contained 10 mM 
Hepes, 140 mM NaCl and 2.5 mM (pH 7.4). Externalization of phosphatidylserine was detected using Alexa 
Fluor 594-conjugated annexin V (A13203; �ermo Fisher Scienti�c). Notably, annexin V binds to phosphati-
dylserine in the presence of Ca2+. In phagocytosis assays, A23187 treated hRBCs, without CellMask Orange or 
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red-�uorescent annexin V staining, were introduced to macrophages labeled with Alexa Fluor 488-conjugated 
anti-F4/80 antibodies and imaged by spinning disk confocal microscopy using bright�eld and green �uorescent 
channels.

Statistics. Normality and homoscedasticity were tested using the Shapiro-Wilk and Levene tests, respectively. 
A one-way ANOVA (analysis of variance) was used to test for statistical di�erences at the 0.05 level of signi�-
cance. When the assumed conditions of normality and homogeneity of variance were not ful�lled, as in most 
cases, we used the non-parametric Mann-Whitney U test or Kruskal-Wallis one way analysis of variance on ranks 
(at the 0.05 level of signi�cance). Statistical analyses were performed using Origin 2016 (OriginLab), and data are 
presented as box plots or mean ± standard error (s.e.m.).
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