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Acinetobacter spp. have emerged as significant pathogens causing nosocomial

infections. Treatment of these pathogens has become a major challenge to clinicians

worldwide, due to their increasing tendency to antibiotic resistance. To address this,

much revenue and technology are currently being dedicated toward developing novel

drugs and antibiotic combinations to combat antimicrobial resistance. To address

this issue, we have constructed a panel of Acinetobacter spp. strains expressing

different antimicrobial resistance determinants such as narrow spectrum β-lactamases,

extended-spectrum β-lactamases, OXA-type-carbapenemase, metallo-beta-lactamase,

and over-expressed AmpC β-lactamase. Bacterial strains exhibiting different resistance

phenotypes were collected between 2008 and 2013 from Severance Hospital, Seoul.

Antimicrobial susceptibility was determined according to the CLSI guidelines using agar

dilution method. Selected strains were sequenced using Ion Torrent PGM system,

annotated using RAST server and analyzed using Geneious pro 8.0. Genotypic

determinants, such as acquired resistance genes, changes in the expression of efflux

pumps, mutations, and porin alternations, contributing to the relevant expressed

phenotype were characterized. Isolates expressing ESBL phenotype consisted of

blaPER−1 gene, the overproduction of intrinsic AmpC beta-lactamase associated

with ISAba1 insertion, and carbapenem resistance associated with production of

carbapenem-hydrolyzing Ambler class D β-lactamases, such as OXA-23, OXA-66,

OXA-120, OXA-500, and metallo-β-lactamase, SIM-1. We have analyzed the relative

expression of Ade efflux systems, and determined the sequences of their regulators

to correlate with phenotypic resistance. Quinolone resistance-determining regions were

analyzed to understand fluoroquinolone-resistance. Virulence factors responsible for

pathogenesis were also identified. Due to several mutations, acquisition of multiple

resistance genes and transposon insertion, phenotypic resistance decision scheme for
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for evaluating the resistance proved inaccurate, which highlights the urgent need for

modification to this scheme. This complete illustration of mechanism contributing to

specific resistance phenotypes can be used as a target for novel drug development.

It can also be used as a reference strain in the clinical laboratory and for the evaluation

of antibiotic efficacy for specific resistance mechanisms.

Keywords: Acinetobacter, panel strains, antimicrobial resistance, whole-genome sequencing, phenotypic

characterization

INTRODUCTION

Acinetobacter spp. are non-motile, non-fermenting Gram-
negative bacteria. Over the years, several species have been
identified, and the most common and clinically significant are
Acinetobacter baumannii, Acinetobacter pittii, and Acinetobacter
nosocomialis (Chen et al., 2014). These bacteria have emerged
as the most troublesome pathogens in hospital settings,
due to their rapid colonization and infection. Incidence
and mortality due to A. nosocomialis and A. pittii are
lower than those due to A. baumannii; however, these are
frequently isolated from nosocomial infections (Wisplinghoff
et al., 2012). Acinetobacter spp. have been implicated in
many pathological conditions such as ventilator-associated
pneumonia, urinary tract infections, skin and wound infections,
infective endocarditis, bacteremia, and secondary meningitis
(Fishbain and Peleg, 2010; Garnacho-Montero and Amaya-
Villar, 2010; Visca et al., 2011; Chusri et al., 2014). These
infections have become challenging to treat due to their
widespread multidrug resistance owing to mechanisms
such as horizontal gene transfer, increased expression of
β-lactamases, alterations of membrane permeability, and
increased expression of efflux pumps (Singh et al., 2013);
(Blair et al., 2015).

For several decades, numerous research have been
conducted to understand the mechanisms of resistance and
to control its dissemination in clinical settings. Considering
the severity of infections, we have constructed a series
of panel strains of Acinetobacter spp. expressing different
resistance phenotypes such as narrow spectrum β-lactamase
and oxacillinase, extended spectrum β-lactamase (ESBL),
OXA-type carbapenemase, metallo-β-lactamase (MBL), and
over-expressing AmpC β-lactamase. These strains were
characterized genotypically using massive parallel sequencing
(MPS) technology to understand the observed phenotypes.
In this study, we have performed detailed analysis of the
whole genome sequence (WGS) related to multidrug-resistance
mechanisms, such as acquisition of β-lactamases, transposon
insertions, mutations in porins, and changes in efflux pumps,
and interpreted the discrepancy observed in phenotypic
changes to relevant antibiotics. These panel strains can be
used in hospital settings as reference strains, and also in
the pharmaceutical industry to check the efficacy of new
antibiotic drugs on pathogens expressing different resistance
determinants. These strains can be distributed world-wide to
institutions working on discovery of novel antibiotics, aiding in
their characterization.

MATERIALS AND METHODS

Bacterial Strains
All bacterial strains were collected from Severance Hospital,
Seoul from 2008 to 2013. Almost 4,000 strains were shortlisted
depending on their in-silico resistance prediction from
the hospital patient database, according to the resistance
determination decision tree to interpret the type of resistance
based on phenotypic observation by François et al. (2004) and
Richard Bonnet (2010). Strains were categorized according to

their resistance phenotype such as narrow spectrum β-lactamase

and oxacillinase, ESBL, OXA-type-carbapenemase, MBL and
over-expressed AmpC β-lactamase. Bacteria were identified

using the direct colony method with MALDI-TOF MS (Bruker

Daltonics, Bremen, Germany). In addition, RNA polymerase
β-subunit gene (rpoB)-based identification was used to delineate

species within the Acinetobacter genus (La Scola et al., 2006).

Susceptibility Tests
Initially, disc diffusion assays were performed on Muller

Hinton agar plates with antibiotic discs containing piperacillin,
ampicillin, piperacillin-tazobactam, ceftazidime, cefepime,

imipenem, meropenem, ciprofloxacin, ceftazidime-clavulanate,
ampicillin-sulbactam, and aztreonam to detect antibiotic
susceptibility. In addition, the minimum-inhibitory
concentrations (MIC) for bacterial strains were determined
using agar dilution technique. E-test was used to measure
the MIC of levofloxacin, trimethoprim/sulfamethoxazole,
tigecycline, tetracycline, gentamicin, rifampicin, clindamycin,
erythromycin and chloramphenicol. All of the procedures and
results interpretation followed the Clinical and Laboratory
Standards Institute (CLSI) guidelines. AmpC β-lactamase-, MBL,
and ESBL-producing strains were selected using ertapenem-
amino phenylboronic acid (APBA), imipenem-EDTA, and
cefepime-clavulanate double disk synergy tests, respectively
(Lee et al., 2001). Modified Hodge tests were also performed
with cefoxitin disk for AmpC beta-lactamase detection, and
imipenem disk for carbapenemase detection (Lee et al., 2010).

Whole Genome Sequencing and
Bioinformatics Analysis
A few strains from each phenotypic resistance class were
randomly selected and cultured overnight. Genomic DNA
extractions were performed using Wizard genomic DNA
purification kit (Promega, WI, USA) with a few modifications
to the manufacturer’s protocol, such as adding 5 µl of RNase
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solution during cell lysis as well as incubating the supernatant
carrying the DNA at−20◦C for 1 h after addition of isopropanol.
DNA concentration was measured using Qubit dsDNA BR assay
kit (Molecular Probes, OR, USA) before sequencing.

Whole genome libraries were prepared using Ion plus
fragment library kit, and Emulsion PCR was carried out using
Ion one touch 200 Template kit v2 DL (Life technologies, CA,
USA). Sequencing of the amplicon libraries was carried out on
a 318 chip, using Ion Personal Genome Machine Ion Torrent
sequencer through Ion Sequencing 200 kit (Life technologies, CA,
USA). The resultant reads were assembled using MIRA plug-
in (version 4.0) of Torrent suite software. Genome assemblies
were annotated using RAST annotation pipeline, and further
validated with Geneious pro 8.0 (Aziz et al., 2008; Kearse
et al., 2012). Genes encoding the efflux systems, porins, and
virulence factors of the panel strains were aligned using
Clustal Omega, and verified for the polymorphisms (Sievers
et al., 2011). Resistance genes were identified using Resfinder
(Zankari et al., 2012), and manually curated using NCBI BLAST.
Multi-locus sequence typing was performed using MLST 1.8
(Zankari et al., 2013) and Acinetobacter baumannii MLST
website (Jolley and Maiden, 2010).

Outer Membrane Protein Detection
Bacterial cells were grown in Muller-Hinton broth until
logarithmic phase, and centrifuged at 5,000 g for 15min,
washed twice in 10-mM phosphate buffer, and lysed by
sonication at 18–20% amplitude for 2 × 30 s cycles, each
comprised 6 × 5 s sonication steps separated by 1 s of no
sonication, and 30 s of no sonication between the two cycles.
Unbroken cells were eliminated using centrifugation at 3,000 g
for 5min, and outer membrane was solubilized with 2% sodium
lauroyl sarcosinate. Insoluble outer membrane fraction was
recovered by ultracentrifugation at 25,000 g for 1 h, as described
previously (Hernandez-Alles et al., 1999). OMP profiles were
determined using SDS-PAGE using Mini-Protean TGX gels
(12%), followed by Coomassie blue staining (Bio-Rad, CA, USA).
Additionally, OMPs were identified using Matrix-Assisted Laser
Desorption-Time of Flight Mass Spectrometry on Tinkerbell LT
(ASTA, Suwon, Korea), as described (Pinto et al., 2017). All
experiments were repeated three times independently to check
for reproducibility of the results.

Quantitative Real-Time RT-qPCR
Total RNA of the 12 Acinetobacter spp. isolates were extracted
from exponentially grown bacterial cells with optical density
at 600 nm of 0.7–0.8, using RNeasy Mini Kit (Qiagen,
Hilden, Germany). Quantity and quality of RNA samples were
checked using NanoDrop spectrophotometer (ND- 2000 Thermo
scientific, USA). RNA samples with 260/280 ratio from 1.9 to 2.1,
260/230 ratio from 2.0 to 2.5 were used for further analysis. All
of the RNA samples were adjusted to the same concentration.
Then, 1 µg of total RNA was used to synthesize cDNA by reverse
transcription using M-MLV cDNA Synthesis Kit (Enzynomics,
Korea) in a 20 µl reaction using 50µM random hexamers.
cDNA was further diluted and stored at −20◦C until PCR.
Real-time PCR was performed with a 20-µl reaction volume

containing 2 µl (100ng) of cDNA, 1X iQ SYBR Green Supermix
(Bio-Rad, CA, USA), and gene-specific primers, 300 nM each
(for adeB, adeG, adeJ, baeSR, carO, 33-36kDa omp, and oprD
genes), on StepOne Real-Time PCR System (Life technologies,
CA, USA) with the following cycle: 1 cycle at 95◦C for 3min
followed by 40 cycles of 95◦C for 10 s and 56◦C for 1min.
Dissociation curve was generated to check PCR amplification
specificity. In each run, 2 µl RNase-free water was used as a
no template control (NTC) for each gene. The primers used
for RT-qPCR were designed using Primer3web (version 4.1.0)
(Untergasser et al., 2012), validated using Geneious pro 8.0.
(Kearse et al., 2012), synthesized commercially byMacrogen, Inc.,
Korea, and are shown in Table S9. Different primers were used
for different species due to the polymorphism identified in efflux
pumps. Each experiment was performed in triplicates at least
twice independently. The changes in expression level for each
gene was calculated according to a previous study (Livak and
Schmittgen, 2001). In brief, for each sample, the threshold cycle
(Ct) of target gene was determined and normalized to Ct value of
rpoB gene, and then calculated relatively to the calibrator (strain
YMC/2009/2/B2968) using formula 2−11Ct (data is represented
as mean ± standard error). Detailed experimental conditions
used in RT-qPCR based on MIQE requirements are described
in Table S10.

RESULTS AND DISCUSSION

Among the 4,000 Acinetobacter spp. screened initially, we
selected 26 isolates showing different phenotypic resistances, i.e.,
two ESBL-, six high-level AmpC β-lactamase-, ten OXA-type-
carbapenemase-, five MBL-, two narrow-spectrum β-lactamase-,
one narrow-spectrum oxacillinase-producing strains, in addition
to a wild type strain, susceptible to all tested antibiotics
(Table S1). Among these YMC2003/5/C86, YMC2003/1/R306
in ESBL’s; YMC2009/2/B6756, YMC2012/7/R3167 among
over-expressed AmpC beta-lactamase; YMC2011/2/C582,
YMC2011/7/R812, YMC2012/1/R79, and YMC2012/9/R2209
in OXA-type-carbapenemase; YMC2013/3/R2081 in MBL;
YMC2010/8/T346 in narrow spectrum beta-lactamase; and
YMC2009/2/B2968 in narrow-spectrum oxacillinase were
randomly picked and sequenced to further characterize
the phenotypic and genotypic correlation (Tables 1, 2).
The draft genome sequences of strains YMC2003/5/C86,
YMC2003/1/R306, YMC2009/2/B6756, YMC2012/7/R3167,
YMC2011/2/C582, YMC2011/7/R812, YMC2012/1/R79,
YMC2012/9/R2209, YMC2013/3/R2081, YMC2010/8/T346, and
YMC2009/2/B2968 have been deposited at DDBJ/ENA/GenBank
under the accession MKHG00000000, MKHH00000000,
MKHI00000000, MKHJ00000000, MKHK00000000,
MKHL00000000, MKHM00000000, MKHN00000000,
MKHO00000000, and MKHP00000000, respectively.

Extended-Spectrum Beta-Lactamases
In Korea a high prevalence of blaPER−1 ESBL-producing
Acinetobacter spp. was reported between 2001 and 2005 (Yong
et al., 2003), and the level has been reducing over the years. The
blaPER−1 belongs to class A extended-spectrum beta-lactamase,
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which has been detected in P. aeruginosa (Ranellou et al.,
2012), P. mirabilis (Pagani et al., 2004), S. enterica (Poirel
et al., 2005), and Acinetobacter spp. (Naas et al., 2006), and
disseminated worldwide since its first detection in France on
1993 (Nordmann et al., 1993). ESBLs are a class of group A
β-lactamases, which hydrolyze third generation cephalosporin’s
but are inhibited by beta-lactamase inhibitors like clavulanic acid
(Bradford, 2001; Jacoby and Munoz-Price, 2005). Antimicrobial
susceptibility for beta-lactams is similar in ESBLs and high-
level AmpC β-lactamase-producing Acinetobacter spp. We have
categorized the strains depending according to the presence of
ESBL or AmpC-producing genes, along with IS elements.

a) Acinetobacter baumannii YMC2003/5/C86: This strain was
resistant to all antibiotics tested in this study, except
ceftazidime-clavulanate. WGS analysis indicated the presence
of blaPER−1, blaTEM−1D, blaADC−31, and blaOXA−82. The
blaPER−1 gene was flanked by the putative transposase
gene tpnA1 and tpnA2 in upstream and downstream
region. Insertion sequence ISAba1 was located immediate
upstream region of AmpC beta-lactamase gene, blaADC−31

and carbapenemase gene, blaOXA−82 (Zander et al., 2013)
(Figure S1). Beta-lactam and cephalosporin resistance of
this isolate can be clearly argued by the presence of these
encoded β-lactamase genes along with the insertion elements,
providing the additional promoters for their increased
expression (Lin et al., 2010). Resistance to aminoglycosides
and gentamicin are contributed by aac(3′)-Ia, aac(6′)-Il,
aph(3′)-Ic, and strAB genes (Tables 1, 2). Levofloxacin
resistance was conferred due to the mutations observed
in gyrA and parC genes (Table 3). Twenty to seventy-
fold up-regulation of adeB and adeJ efflux pumps genes
were confirmed, which are assumed to contribute to the
resistance of levofloxacin, trimethoprim/sulfamethoxazole,
tigecycline, clindamycin, chloramphenicol, and tetracyclines
(Table 1, Figure 1).

b) Acinetobacter nosocomialis YMC2003/1/R306 was susceptible
to imipenem, meropenem, and ciprofloxacin, intermediate
to piperacillin-tazobactam, but resistant to piperacillin,
ceftazidime, cefepime, and ampicillin-sulbactam. This
isolate is an ideal candidate for ESBL strain, as it carries
blaPER−1,which is identified as a part of composite transposon
bracketed by two insertion elements ISPa12 and ISPa13,
belonging to IS4 family (Figure S2). Expression of this
gene was driven by ISPa12 promoter, and its genetic
environment is similar to the blaPER−1 found in Providencia
stuartii and Pseudomonas aeruginosa isolates, as reported
previously (Yong et al., 2003; Poirel et al., 2005). Efflux pumps
showed lower expression, which correlated to its increased
susceptibility toward fluoroquinolones and tetracyclines
(Tables 1, 3, Figure 1).

Over-Expressed AmpC Beta-Lactamase
Overproduction of intrinsic cephalosporinase such as blaADC−25,

blaADC−30, or blaADC−56 coupled with insertion elements, such as
ISAba1, are responsible for cephalosporin resistance (Lopes and
Amyes, 2012).

a) Acinetobacter baumannii YMC2009/2/B6756 was only
susceptible to imipenem and meropenem, but resistant to all
other antibiotics and beta-lactamase inhibitor combinations
used in the study (Table 1). Genomic analysis indicated
the presence of blaTEM−1D, blaADC−30, and blaOXA−66 (a
blaOXA−51−like gene) (Figure S3). The blaTEM−1D gene in
this strain consisted of P3 promoter, which was initially
found in Russia contributing to beta-lactam inhibitor-
resistance (Edelstein et al., 2000; Leflon-Guibout et al., 2000;
Constança and Manuela, 2003). Beta-lactam resistance in
this isolate is attributed to the insertion of ISAba1 upstream
of AmpC gene, blaADC−30, mediating its over-expression
(Li et al., 2015). OXA-66 is the intrinsic OXA-51 variant
class D carbapenemase, which does not confer resistance to
carbapenems, although it is associated with ISAba1; however,
a point mutation converts it into OXA-82, and this variant
confers resistance to imipenem and meropenem (Zander
et al., 2013) (Figure S3). OXA-82 and OXA-66 are associated
with the International clone 2, which is the most prevalent
clone found worldwide (Hu et al., 2007; Evans et al., 2008;
Evans and Amyes, 2014). Decreased susceptibility toward
levofloxacin, tetracycline, trimethoprim/sulfamethoxazole,
rifampicin, chloramphenicol, and gentamicin (Tables 1,
3) is contributed by aacA4, aadA1, aac(3)-Ia, armA, and
aac(6’)Ib-cr genes along with the more than 20-fold increased
expression of adeA, adeG, and adeJ efflux pumps compared to
the susceptible strain (Magnet et al., 2001; Coyne et al., 2010;
Yoon et al., 2013) (Figure 1).

b) Acinetobacter baumannii YMC2012/7/R3167 was susceptible
to piperacillin-tazobactam, imipenem, and meropenem, but
resistant to ampicillin-sulbactam, piperacillin, ceftazidime,
cefepime, ceftazidime-clavulanate (Table 1), and ciprofloxacin
(Table 3). Whole genome analysis indicated the presence of
β-lactamase genes, blaADC−30, and blaOXA−66. (Hu et al., 2007;
Zander et al., 2013) (Figure S4). Further analysis indicated the
insertion of ISAba1 upstream of AmpC gene-blaADC−30 which
provided a stronger promoter leading to over-expression of
AmpC beta-lactamase (Li et al., 2015) leading to multiple
beta-lactam resistance. Genetic structure around blaADC−30,
and blaOXA−66 of this strain was identical to A. baumannii
YMC2009/2/B6756. As opposed to the phenotypic resistance
scheme for over-expressed AmpC beta-lactamase class, this
strain was susceptible to piperacillin-tazobactam, and we were
unable to explain the discrepancy for this phenotype. The
expressions of adeB and adeG were similar to A. baumannii
YMC2009/2/B6756. High-level resistance to tetracycline was
observed due to tet(B) gene (Takahashi et al., 2002).

OXA-Type-Carbapenemases
Carbapenem resistance in Acinetobacter spp. is mediated by
various mechanisms such as membrane impermeability due to
loss of porins, but it is mostly mediated by enzymatic hydrolysis
of antibiotics (Bou et al., 2000; Quale et al., 2003; Bonomo and
Szabo, 2006; Poirel and Nordmann, 2006; Nordmann, 2010).
Carbapenem-hydrolyzing class D beta-lactamases (CHDLs) or
OXA-type-carbapenemases (OXA-51-like, 23-like, -58-like, -
143-like, -40-like, and 235-like), often associated with upstream
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insertion elements, lead to their over-expression resulting in
carbapenem resistance (Poirel et al., 2010). Studies have indicated
that OXA-40- and OXA-143-type carbapenemases were not
associated with insertion sequences nor integrons (Higgins et al.,
2009; Evans and Amyes, 2014). Below we have illustrated the
mechanism of few strains expressing OXA-type carbapenemases.
According to the resistance determination decision tree, these
strains were similar to the phenotype observed in metallo-
beta lactamase producers, except its susceptibility toward
ceftazidime and cefepime. However, due to the complex
resistance mechanism involving multiple beta-lactamases and
efflux pumps, most of the strains in this class were resistant to
these two antibiotics.

a) Acinetobacter baumannii YMC2011/7/R812 was susceptible
to ceftazidime, ceftazidime-clavulanate, ciprofloxacin,
and levofloxacin, but resistant to ampicillin-sulbactam,
piperacillin, piperacillin-tazobactam, imipenem, and
meropenem (Tables 1, 3). This strain carried CHDLs
such as OXA-120, belonging to OXA-51 family, and OXA-
23, along with cephalosporinase ADC-77 (Table 2). There
were no insertion sequences located around blaOXA−120

and blaADC−77, keeping their expressions at the basal level
(Figure S5-A). However, there was an ISAba1 insertion
upstream of blaOXA−23 leading to the overexpression of
carbapenemase hydrolyzing activity, along with cefepime
resistance (Turton et al., 2006; Lin et al., 2010). As illustrated
by Naas and Nordmann (2010) and OXA-type carbapenemase
detection scheme, these classes of bacteria are susceptible
to ceftazidime and cefepime. This strain was susceptible
to fluoroquinolones, tetracyclines, and aminoglycosides
(Tables 1, 3) due to absence of adeRS genes, which encode
a two-component system regulating AdeABC expression
system. In addition, none of the known aminoglycoside
and fluoroquinolone resistant genes were present (Tables 1,
3). In addition, adeC gene was also absent, along with
truncation of adeA gene (Figure S5-B). The genetic structure
around blaOXA−120 from A. baumannii YMC2011/7/R812
and blaOXA−66 from ESBL-producing A. baumannii
YMC2009/2/B6756 and YMC2012/7/R3167 were identical,
as both the beta-lactamases belongs to OXA-51-like group
(Rafei et al., 2015).

b) Acinetobacter baumannii YMC2012/1/R79 was resistant to
all of the antibiotics used in this study. This strain carried
blaTEM−1D, blaADC−30, blaOXA−66, and CHDL, blaOXA−23.
The multi-drug resistant phenotype of this strain was
contributed by ISAba1-blaOXA−23 and ISAba1-blaADC−30

genes (Turton et al., 2006; Lin et al., 2010) (Figure S6).
Resistance to aminoglycoside were seen due to the presence
of aadA1, aadA24, armA, and aac(6′)Ib-cr genes, resistance
to fluoroquinolones were due to the mutations in gyrA and
parC genes, along with the moderately increased expressions
of adeB, adeG, and adeJ efflux pumps (Table 1, Figure 1).

c) Acinetobacter baumannii YMC2011/2/C582 was resistant
to all of the antibiotics and beta-lactam inhibitors used in
this study for phenotypic screening (Table 1). WGS analysis
indicated the presence of ESBL gene, blaPER−1, and wide

variety of other β-lactamase genes, such as blaOXA−66,
blaOXA−23, and blaADC−30 (Table 2). The blaPER−1 gene
and partial glutathione-S-transferase were bracketed by
ISPa12 and ISPa13, belonging to the IS4 family, regulating
the expression of blaPER−1 gene driven by promoter
sequences in ISPa12 (Poirel et al., 2005), similar to A.
nosocomialis YMC2003/1/R306 strain (Figures S2, S7).
In addition, there was insertion of ISAba1 upstream of
blaADC−30 and blaOXA−23, providing additional promoter
leading to increased resistance due to overexpressions of
AmpC beta-lactamase and carbapenemase, respectively.
Increased expression of adeb, adeG, and adeJ, along with
aminoglycoside and fluoroquinolones resistance genes
such as armA, aph(3′)-Ic, strAB, aph(3′)-VIb, aadA1, and
aac(6′)Ib-cr decreased the susceptibility toward gentamicin,
tetracycline, trimethoprim/sulfamethoxazole, rifampicin, and
chloramphenicol (Table 1, Figure 1). In addition, mutations
were observed in gyrA and parC genes, which caused
levofloxacin resistance (Table 3).

d) Acinetobacter baumannii YMC2012/9/R2209 was
intermediate to imipenem but resistant to all other
cephalosporin and carbapenems used in our study (Table 1).
This isolate was AmpC beta-lactamase hyper-producer along
with CHDL, which was revealed by the presence of ISAba1-
blaOXA−82 and ISAba1-blaADC−30 (Figure S8). Increased
carbapenem resistance was caused by ISAba1-blaOXA−82

(Zander et al., 2013). Susceptibility toward tigecycline,
gentamicin and tetracycline were due to the absence of
aminoglycoside resistance genes and lower expressions
of adeB and adeG efflux pumps (Table 1, Figure 1). In
contrast, increased relative expression of adeJ gene might
have increased resistance to fluoroquinolones, such as
ciprofloxacin and levofloxacin, along with gyrA and parC
genes mutations.

MBL
MBL-producing Acinetobacter spp. have become an emerging
therapeutic concern worldwide. Along with CHDLs, carbapenem
resistance is attributed to MBLs such as IMP, VIM, GIM, SIM
etc. (Kim et al., 2014). According to the resistance detection
scheme, Acinetobacter spp. producing MBLs display similar
phenotypic resistance as OXA-type carbapenemases, except the
latter showing its susceptibility toward ceftazidime and cefepime.
MBL producing A. pittii YMC2013/3/R2081 was susceptible
to piperacillin-tazobactam and imipenem but resistant to
ampicillin-sulbactam, piperacillin, ceftazidime, cefepime,
meropenem, ceftazidime-clavulanate, and ciprofloxacin. This
bacterium contains blaCARB−8, blaPER−1, blaADC−18, blaOXA−500,
and blaSIM−1 (Tables 1, 2). Resistance to most of antibiotics
can be explained due to ESBL gene along with IS element,
ISCR1-blaPER−1, and MBL gene, blaSIM−1 (Figure S9). Despite
SIM-1 production, this bacterium was susceptible to imipenem
due to its strong activity against Acinetobacter spp (Lee et al.,
2005). Genetic analysis indicated that blaSIM−1 along with aar-3,
carB3, and aadA1 genes were encoded by class 1 integron. The
blaCARB−8 is carbencillin-hydrolyzing beta-lactamase, which
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has the same hydrolytic profile as blaCARB−5 (Choury et al.,
2000). This enzyme has been previously identified in various
species such asOligella urethralis,Vibrio cholerae,Achromobacter
xylosoxidans, A. baumannii, and Salmonella typhimurium, which
indicates inter-genus transferability of the gene (Decre et al.,
1995; Ridley and Threlfall, 1998; Choury et al., 1999, 2000; Lin
et al., 2010). Increased resistance to gentamicin was mediated by
the aac(3)-IId gene (Ho et al., 2010), despite lower expression of
adeB, adeG, and adeJ efflux pumps (Table 1, Figure 1).

Narrow Spectrum β-Lactamase
Acinetobacter pittii YMC2010/8/T346 belongs to a novel
sequence type 1385 (ST 1385), and is susceptible to ampicillin-
sulbactam, piperacillin-tazobactam, ceftazidime, cefepime,
imipenem, ceftazidime-clavulanate, and ciprofloxacin but
resistant to meropenem (Tables 1, 3). Sequence analysis
indicated the presence of blaOXA−506, variant of A. pittii intrinsic
blaOXA−213−like, blaADC−41, and blaOXA−499, which were not
associated with insertion elements (Table 2, Figure S10). The
blaOXA−499 is a novel variant of carbapenem hydrolyzing
oxacillinase, blaOXA−143. This gene was first found in South
Korea, and is the carbapenem hydrolyzing gene which explains
its resistance to the meropenem, as reported previously (D’Souza
et al., 2017). Wide susceptibility toward aminoglycosides,
tetracyclines, and fluoroquinolones was observed due to
the lower expression of efflux pumps and absence of any
corresponding resistance genes (Tables 1, 3, Figure 1).

Narrow Spectrum Oxacillinase
Acinetobacter pittii YMC2009/2/B2968 belonging to novel
ST1638, was not resistant to the antibiotics tested in this
study (Table 1). Whole genome analysis revealed blaOXA−421,
a CHDL belonging to A. pittii intrinsic blaOXA−213 family and
blaADC−22 (Table 2, Figure S11). However, no existing study has
yet demonstrated that the carbapenemase activity of blaOXA421.
blaADC−22 is a naturally occurring cephalosporinase gene in
A. baumannii, which is repressed under normal conditions
(Beceiro et al., 2009; Li et al., 2015). This strain exhibited
the highest susceptibility toward aminoglycosides, tetracyclines,
and fluoroquinolones among all other panel strains, due to the
absence of corresponding resistance genes and lowest expression
of efflux pumps. Therefore, this was selected as the reference
strain to calculate the relative expression of efflux pumps for
other strains.

Analysis of QRDRs for gyrA and parC

Genes and Fluoroquinolone Resistance
The MICs of ciprofloxacin and levofloxacin were determined
(Table 3). Both antibiotics functioned by inhibiting DNA
gyrase subunit A (GyrA), DNA gyrase subunit B (GyrB),
and toposiomerase IV subunit C (ParC) (Drlica and Zhao,
1997), and hence exhibited similar resistance phenotypes for
the panel strains. Resistance to fluoroquinolone in bacteria was
mediated by spontaneous mutations in gyrA, gyrB, and parC
genes (Park et al., 2011; Ardebili et al., 2015). We identified
the substitutions in GyrA (Ser81Leu) and ParC (Ser84Leu) in
all fluoroquinolone resistant strains (Table 3). Ser467Gly and

Glu88Lys mutation in ParC did not correlate with the resistance
phenotypes. As opposed to the previous studies, we found GyrA
(Ser81Leu) and ParC (Ser467Gly) mutations in A. nosocomialis
YMC2003/1/R306, which were susceptible to fluoroquinolone
(Vila et al., 1995). We could not find Glu479Asp, Cys423Ser,
Glu479Asp, Leu420Gln, Cys423Ser, Leu433His, Glu479Asp, and
D644Y mutations in GyrB which were previously described
as novel substitutions (Park et al., 2011), except A677V in A.
baumannii YMC2003/5/C86.

Efflux-Mediated Antimicrobial Resistance
Overexpression of efflux pumps are one of themajor mechanisms
that contribute to the multidrug resistance in Acinetobacter
species. Genes encoding these systems are carried by mobile
genetic elements or chromosomes, and thus be responsible
for acquired or intrinsic resistance (Coyne et al., 2011). Five
categories of efflux pump systems have been described, which
are responsible for pumping out diverse classes of antibiotics:
resistance-nodulation-cell division (RND) family, ATP-binding
cassette (ABC) transporters, major facilitator superfamily (MFS),
small multidrug resistance (SMR) family, and the recently
identified multidrug and toxic compound extrusion (MATE)
family (Piddock, 2006; Vila et al., 2007). Considering the broad-
range substrate specificity of the three RND-type efflux pump
systems, AdeABC, AdeFGH, and AdeIJK, we investigated the
expressions of adeB, adeG, and adeJ genes (Figures 1A–C).
Reference gene rpoB was used as a control, and susceptible strain
A. pittii YMC2009/2/B2968 was used as a reference. Tigecycline
appeared to be the best substrate for adeB pump, which correlated
with their increased resistance and seven to 50-fold increase
in its expression. This was consistent with previous findings
(Perez et al., 2007; Ruzin et al., 2007; Hornsey et al., 2010)
(Table 1, Figure 1). In addition, decreased susceptibility toward
tetracycline, trimethoprim/sulfamethoxazole, and gentamicin
also correlated with the increased expression with few exceptions.
We screened for mutations in AdeRS, a two-component
regulator system that controls the expression of AdeRS. G186V
substitution in AdeS and A136V in AdeR was detected
in all of the isolates overexpressing adeB gene, which was
previously linked to increased tigecycline resistance (Hornsey
et al., 2010; Rumbo et al., 2013) (Tables S3, S4). The
isolate A. baumannii YMC2011/7/R812 did not contain adeRS,
adeA, and adeC genes (Table S2). The adeC gene was also
absent from A. baumannii YMC2012/9/R2209 and all A. pittii
strains (Table S2). The expressions of adeG and adeJ were
variable and strain-specific. Therefore, we could not find the
suitable phenotypic marker regulating the pump. Overall, A.
baumannii isolates showed increased expression of three RND
efflux systems compared to A. pittii and A. nosocomialis.
AdeFGH and its LysR-type transcriptional regulator AdeL
were present in all strains (Table S5). TetR transcriptional
repressor AdeN, controlling AdeIJK were interrupted by
ISAba1 insertion sequence in A. baumannii YMC2012/9/R2209,
YMC2012/7/R3167, and YMC2011/2/C582, which increased
AdeIJK expression (Rosenfeld et al., 2012) (Table S5). In
addition, we were unable to correlate the expression of
BaeSR two-component system, which was previously known to
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TABLE 3 | MIC of the fluoroquinolone (ciprofloxacin and levofloxacin) and amino-acid substitutions in the QRDR of the gyrA, gyrB, and parC genes of panel strains.

MIC(µg/ml) Amino-acid substitutions in

CIP* LEV* gyrA parC gyrB

ESBL

YMC2003/5/C86 128, R 32, R S81L E88K A677V

YMC2003/1/R306 0.5, S 0.75, R S81L – –

OVER-EXPRESSED AMPCβ -LACTAMASE

YMC2009/2/B6756 128, R 6, I S81L S81L –

YMC2012/7/R3167 256, R 8, R S81L S81L –

OXA-TYPE CARBAPENEMASES

YMC2011/7/R812 0.5, S 0.19, S – – –

YMC2012/1/R79 128, R 6, I S81L S81L –

YMC2011/2/C582 128, R 24, R S81L S81L –

YMC2012/9/R2209 256, R 16, R S81L S81L –

METALLO-β-LACTAMASE

YMC2013/3/R2081 128, R 6, I S81L S81L –

NARROW-SPECTRUM β-LACTAMASE

YMC2010/8/T346 0.25, S 0.19, S – – –

NARROW-SPECTRUM OXACILLINASE

YMC2009/2/B2968 0.12, S 0.125, S – – –

*MIC assay was performed using Disk diffusion technique and E-test for ciprofloxacin and levofloxacin, respectively.

influence tigecycline susceptibility by regulating adeABC genes
(Lin et al., 2014) (Figure 1D). The limitation of our qRT-PCR
was using different primers for different species due to the
polymorphism identified in efflux pumps. This might have led
to different amplicon kinetics resulting in errors in differential
expressions. Finally, we could also detect the genes related to
non-RND efflux pumps such as cra, amvA, abeM, abeS, and
adeXYZ in all of the Acinetobacter strains. The adeDE gene
was identified in YMC2003/1/R306 and YMC2013/3/R2081, and
cmlA was present only in isolate YMC2013/3/R2081 (Table S6).

Role of Porins in Resistance
Porins play a vital role in the mechanism of carbapenem

resistance in Enterobacteriaceae. However, in Acinetobacter spp.,
their contributions toward resistance are debated, and their
functions remain ambiguous (Marti et al., 2006). Previous studies
indicated that loss of porins such as CarO, OprD, and 33-
36Kda Omp conferred carbapenem resistance (Bou et al., 2000;
Fernandez-Cuenca et al., 2003; Mussi et al., 2005; Siroy et al.,
2005; Peleg et al., 2008). To determine the potential role of
these porins in resistance, we performed SDS-PAGE (data not
shown) and MALDI-TOF (Figure S12). All of the panel strains
showed identical OMP profiles, which were also confirmed by
WGS analysis (Table S7). These results suggested that the porins
did not have any role in carbapenem resistance among the panel
strains. In addition, qRT-PCR for CarO, oprD, and 33-36Kda
Omp did not show any significant correlation to antimicrobial
resistance (Figure S13).

Virulence Factors
Understanding the pathogenesis, along with its multi-drug

resistance phenotype, is highly essential for infection control and
investigation of alternate treatment options. The development of

infection, and bacterial survival in the host depends on virulence
factors such as biofilm formation, serum resistance, evasion
of the host immune response, motility, host cell apoptosis,
bacterial dissemination, transfer of genetic material between
bacterial cells, and iron acquisition mechanisms (Choi et al.,
2005; Jacobs et al., 2010; Luke et al., 2010; Jin et al., 2011;
Gaddy et al., 2012; McConnell et al., 2013). Virulence factors
capsular polysaccharide (ptk and epsA), phospholipase D, and
penicillin-binding protein (pbpG) were present in all of the
panel strains (Table S8). Virulent genes associated with biofilm
formation, such as OmpA and BfmR, the response regulator
component of two-component system BfmRS, were present
in all of the strains (Gaddy et al., 2009; Liou et al., 2014).
However, another key virulent gene, bap (Biofilm-associated
protein), was absent in YMC2011/7/R812, YMC2012/9/R2209,
YMC2013/3/R2081, and YMC2009/2/B2968 (Badmasti et al.,
2015). Outer membrane proteins, CsuA/B, CsuC, and CsuD
were absent from YMC2011/7/R812 and YMC2010/8/T346.
Acinetobacter nosocomialis YMC2003/1/R306 did not carry the
genes involved in acinetobactin-mediated iron acquisition system
such as bauA, bauB, bauC, bauD, bauE, basC, and basD, and we
did not find homologs of these systems either.

In summary, all of the panel strains in our study were
shortlisted depending on the resistance scheme given by François
et al. (2004) and Naas and Nordmann in Antibiogram (Naas and
Nordmann, 2010). Similar to our previous study in Klebsiella
pneumoniae (Dsouza et al., 2017), we found several discrepancies
in the detection scheme. The ESBL strain YMC2003/5/C86
isolated in our study was resistant to carbapenems due to
presence of OXA-82, albeit the scheme indicates that ESBL
strains should be susceptible to carbapenems. Similarly, it
also indicates that OXA-type carbapenemases are susceptible
to ceftazidime and cefepime. However, the isolated strains in
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FIGURE 1 | Expression of (A) AdeB, (B) AdeG, (C) AdeJ, and (D) BaeS relative to rpoB. Susceptible strain A. pittii YMC2009/2/B2968 was used as a reference and

each isolate was tested in triplicate in two independent experiments. The data represent the mean ± standard error for three independent replicates. The significant

difference of expression levels between samples were indicated by bars and asterisks as follows: *p < 0.05, **p < 0.01, and ***p < 0.001 using the Student’s t-test.

this study were resistant to both antibiotics. Therefore, we
suggest the scheme to be updated and modified considering the
novel mutations, acquisition of multiple resistance genes, and
transposon insertion, for better detection. The main drawback
of this study was characterizing unequal number of strains in
each resistance classes. Strains were obtained retrospectively and
therefore, limiting the number of strains.

The basic rule in the pharmaceutical industry for developing
new antibiotics, or for clinicians prescribing antibacterial
therapy, depends on comprehensive understanding of the
mechanism(s) of resistance. For some time now, Acinetobacter
spp. have been implicated in several pathological conditions, and
constant efforts are being undertaken to control the spread of
these organisms in hospital and community settings (Maragakis
and Perl, 2008; Vila and Pachon, 2008; Metan et al., 2009;
Garnacho-Montero and Amaya-Villar, 2010; Evans et al., 2013;
Wisplinghoff and Seifert, 2014; Dramowski et al., 2015). There are

several mechanisms suggested for Acinetobacter spp. resistance
for β-lactams and other antibiotics that we have outlined in this
study. In hospital settings and research laboratories, it is quite
common to encounter these pathogens with various resistance
phenotypes. The genotypic and phenotypic correlations in our
study would definitely help clinicians and researchers to better
understand the mechanism associated, along with utilizing these
pathogens as reference strains. In addition, these panel strains
would be highly beneficial for evaluating the efficacy of novel
antibiotics or antibiotic kit on Acinetobacter spp. displaying
different resistance phenotypes. An in-depth study involving
the genetic mechanism conferring resistance can open many
opportunities for novel drug target study and ways to control
the antimicrobial resistance. We have studied the role of various
resistance genes attributing to the specific resistance in detail,
by referring to previous publications. Therefore, we believe that
we have constructed a single platform consisting of various
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resistance genes illustrating its role, which can help antimicrobial
researchers to understand the basics of antimicrobial resistance.
Further, studies could be warranted to determine the lineage
analysis on this strain and also understand the expression of
virulence factors contributing toward the bacterial pathogenesis.
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