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Abstract

A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of
genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on
phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n
(Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the
same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate
phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss
of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy
number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the
engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the
entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice
containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different
cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human
genome may affect not only locus and adjacent gene expression but also ‘‘genome regulation.’’ Furthermore, structural
change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic
structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.
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Introduction

Copy number variation (CNV) of genomic segments among

phenotypically normal human individuals was recently shown to

be surprisingly frequent [1,2]. It covers a large proportion of the

human genome and encompasses thousands of genes [3,4]. About

58,000 human CNVs from approximately 14,500 regions

(CNVRs) have been identified to date (http://projects.tcag.ca/

variation/). They contribute to genetic variation and genome

evolution [5–8] by modifying the expression of genes mapping

within the CNV and in its flanks [9–13]. Consistently, initial cases

of adaptive CNV alleles under positive selection were recently

uncovered [14] and several structural variants were shown to be

associated with ‘‘genomic disorders’’ [15–17] and susceptibility to

disease (reviewed in [7,18–21]). For example, a microdeletion and

its reciprocal microduplication at chromosomal band 17p11.2

were shown to be associated with Smith-Magenis (SMS;

OMIM#182290) and Potocki-Lupski syndromes (PTLS;

OMIM#610883), respectively [22–24]. The Retinoic Acid

Induced gene 1 (RAI1; GeneID: 10743) is thought to be the main
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dosage-sensitive gene within this genomic interval. Consistently,

SMS patients with only RAI1 mutation have been identified [25–

28]. However, accumulating evidence indicates that other factors

also contribute to the spectrum of clinical findings in patients. For

example, SMS patients with RAI1 mutations are less likely than

SMS patients with the deletion to be short and suffer from hearing

loss, cardiovascular, and renal tract abnormalities. On the other

hand, they are at higher risk for obesity [29–33]. Mouse models of

these syndromes were generated. These engineered animals

recapitulate several of the multiple phenotypes present in the

human patients. The SMS mice show craniofacial abnormalities,

obesity, overt seizures, hypoactivity levels, and circadian rhythm

anomalies, while the PTLS model is underweight and presents

hyperactivity, learning and memory deficiencies, and social

impairment [11,27,34,35].

We took advantage of these models and of a third strain that is a

compound heterozygote balanced for copy number—it harbors

the SMS deletion on one allele and the PTLS duplication on the

other—to tease apart the phenotypic consequences of gene dosage

alterations versus genomic structural changes.

Results

The functional impact of CNV of a given genomic interval

remains unstudied at a genome-wide scale. Such a global

assessment is achievable nowadays using the mouse as a model

organism. Mouse models of the Smith-Magenis and Potocki-

Lupski syndromes carry a deletion (strain Df(11)17/+) and its

reciprocal duplication (Dp(11)17/+), engineered rearrangements

involving the syntenic genomic regions at band MMU11B2,

respectively [11,22–24,27,28,30,34,35]. These heterozygous mice

and their wild type littermates (+/+) allow the study of the

influence of one, two, and three copies of the same CNV in an

otherwise identical genomic background (see below). A fourth

strain (Df(11)17/Dp(11)17) obtained by mating the Dp(11)17/+
and Df(11)17/+ animals enables the generation of genomically

balanced mice with two copies of that same CNV in cis, while they

are in trans in +/+ animals (see Figure 1 for a schematic

representation of the four genotypes).

Influence of Gene Dosage and Structural Changes on the
Phenotypic Outcome

To investigate the phenotypic outcome of modifying gene

dosage or of maintaining gene dosage but with a structural change,

we assessed 14 different phenotypes in the four different mouse

genotypes (i.e., 1n, 2n, 3n, and 2n compound heterozygote)

(Table 1). The decreased embryonic survival, craniofacial

abnormalities, overt seizures, and altered neuromotor function

observed in Df(11)17/+ and the learning and memory impair-

ments shown by Dp(11)17/+ animals were absent in the

genetically balanced Df(11)17/Dp(11)17 mice (summarized in

Table 1; for details see Text S1, Figures S1–S2 and Table S1).

Likewise, the significant differences in body weight and abdominal

fat found in the SMS and the PTLS mouse models when

compared to +/+ animals were absent in Df(11)17/Dp(11)17 (Text

S1 and Figure S3). Furthermore, we found that ‘‘backing out of

the test tube,’’ when confronted by a wild type mouse, was only

correlated with copy numbers but not with structural changes per se

(Text S1 and Figure S4). A summary of phenotypic differences

between Rai1 +/2 and Df(11)17/+ mice can be found in Text S1.

Anxiety was found increased in Dp(11)17/+ mice in the elevated

plus maze test [11]. We found an overall significant difference in

the percentage of observations in the open arms (F(3, 87) = 5.9;

p = 0.001) and closed arms (F(3, 87 = 8; p,0.0001). Post-hoc

analysis showed that Dp(11)17/+ mice spend significantly more

time in the closed arms (62.1%63%) than their wild type

littermates (51%61.9%) (p = 0.002). In contrast, the percentage

of observations in the open arms was significantly increased for

Df(11)17/+ mice (37%62.5%), when compared with +/+ animals

(29%61.9%) (p = 0.023). The percentage of observations in the

open arm was also significantly increased for Df(11)17/Dp(11)17

mice (36%62.2%), when compared with +/+ (p = 0.045), however

the p value is in the borderline range. The number of observations

of Df(11)17/Dp(11)17 mice in the center and the close arm was

always smaller than that of wild type. This is concordant with what

we observed for Df(11)17/+ mice. While none of these differences

are significant, both Df(11)17/+ and Df(11)17/Dp(11)17 mice

behave similarly. No significant differences were observed when

Df(11)17/Dp(11)17 were compared to the Df(11)17/+ mice

(p.0.05). These results indicate that dosage of genes mapping

within the engineered genomic interval is associated with the levels

of anxiety in mice, since the gain or loss of genetic material are

giving opposite phenotypes. However, structural changes play a

role, as restoration of the number of copies (2n in cis) does not

rescue the phenotype (Figure 2 and Table 1). This observation was

similar to what was found for activity levels in the open field

(Table1) [27].

Dp(11)17/+ mice showed a subtle impairment in the preference

of a social target versus an inanimate target and a clear impaired

preference for social novelty when compared to +/+ mice [11] in

the three-chamber test [36] that is based on the tendency of a

subject mouse to approach and engage in social interaction with

an unfamiliar mouse. We performed this test in the four different

groups of purebred mice with distinct CNV genotypes. The

analysis of the sociability part of the test showed a significant effect

of chamber side (F(1, 90) = 38.99, p,0.0001). Post-hoc analysis

demonstrated that mice from all analyzed genotypes spend more

time in the chamber side that contains the stranger 1 versus the

side with the empty container (p,0.01 in all cases) (Figure 3A). In

the preference for social novelty data, we observed a significant

difference for chamber side (F(1, 90) = 9.6, p = 0.0025) and genotype

(F(3, 90) = 5.74, p = 0.0012). Post-hoc analysis revealed that wild

type (p = 0.04) and Df (11)17/+ mice (p = 0.0002) tend to spend

significantly more time with stranger 2 than with stranger 1, but

Dp(11)17/+ and Df(11)17/Dp(11)17 mice spent the same amount

of time with stranger 1 and stranger 2 (p = 0.37 and 0.87,

respectively). Moreover, when +/+ mice were compared with the

other three genotypes we found that they spend significantly less

Author Summary

Mammalian genomes contain many forms of genetic
variation. For example, some genome segments were
shown to vary in their number of copies between
individuals of the same species, i.e. there is a range of
number of copies in the normal population instead of the
usual two copies (one per chromosome). These genetic
differences play an important role in determining the
phenotype (the observable characteristics) of each indi-
vidual. We do not know, however, if such influences are
brought about solely through changes in the number of
copies of the genomic segments (and of the genes that
map within) or if the structural modification of the
genome per se also plays a role in the outcome. We use
mouse models with different number of copies of the
same genomic region to show that rearrangements of the
genetic materials can affect the phenotype independently
of the dosage of the rearranged region.

Phenotypic and Transcriptomic Outcomes of CNV
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time in the side of the stranger 1 than the Dp(11)17/+ mice

(p = 0.0002) and Df(11)17/Dp(11)17 mice (p = 0.0003), but no

significant differences were found when compared to Df(11)17/+
mice (p.0.05). In aggregate, these results suggest that gene copy

number variation is playing a role in the preference to social

novelty and that the duplication or deletion of this genomic

interval is giving an opposite phenotype. Surprisingly, the response

to social novelty is also modified in Df(11)17/Dp(11)17 mice,

notwithstanding that gene dosage is normalized (Figure 3B and

Table 1), suggesting that genomic structural changes are playing a

role in this phenotypic outcome.

The Expression of Genes Mapping within the Engineered
Interval Is Modified

The phenotypic findings in mice prompted us to assess the effect

of changing the number of copies of the SMS/PTLS CNV on

tissue transcriptomes. We analyzed genome-wide expression levels

in five organs affected in human patients (cerebellum, heart,

kidney, testis, and hippocampus) from adult male individuals (at

least three animals of each of the strains carrying one, two in trans,

two in cis, and three copies of the MMU11B2 region; see Materials

and Methods).

We ranked and chromosomally mapped the most differentially

expressed transcripts. As anticipated, we observed in each of the

analyzed tissues a significant overrepresentation of transcripts

mapping to the rearranged interval (which we named SMS/PTLS

genes; see legend of Figure 1 or Materials and Methods for a

complete list of loci mapping to the engineered interval) amongst

the top 100 (31 to 40 transcripts depending on the tissue) and top

1,000 (33 to 50 transcripts) most differentially expressed transcripts

(all p,161024, tested with permutations; Figure 4A–B). The

expression levels of the transcripts, which vary in number of copies

amongst the different strains, are compared in Figure 4C. We

found a positive correlation between gene dosage and expression

consistent with partial results already published [11]. These

transcripts are expressed on average at 66%615% of the level

measured in wild type in Df(11)17/+ (one copy) and 138%629%

in Dp(11)17/+ animals (three copies). In particular, the expression

levels of the murine orthologs of the two genes RAI1 (GeneID:

10743) and SREBF1 (6720), which were associated with schizo-

phrenia [37–39], a phenotype absent from SMS and PTLS

patients [33,40,41], show a strong relationship with gene dosage.

The SMS/PTLS genes are, however, unchanged in Df(11)17/

Dp(11)17 mice (1.02-fold (SD = 0.16) more, two copies in cis)

compared to normal controls (two copies in trans), analogous to

results recently obtained from cell lines of a man who carried a

22q11 deletion on one allele and a reciprocal duplication on the

other allele [42]. Note that the loxP site inclusions necessary for the

mouse engineering induced the loss-of-function of one Cops3 copy

(GeneID: 26572) (Figure 1) [34], thus Df(11)17/Dp(11)17 and

Dp(11)17/+ animals have only a single and two active copies of

this gene, respectively. Consistently, we found Cops3 relative

expression level to be downregulated in the compound heterozy-

Figure 1. SMS and PTLS mouse models. Schematic representation of the mouse chromosome 11 B2 region syntenic to the SMS and PTLS critical
region to compare the genotypes of the four strains used in this report (adapted from [34]). Only a few genes of the engineered region are displayed.
The region contains the following loci, whose expression is profiled by 70 different probesets: Cops3, Nt5m, Med9, Rasd1, Pemt, Rai1, Srebf1, Tom1l2,
Lrrc48, Atpaf2, 4933439F18Rik, Drg2, Myo15, Alkbh5, AW215868, Llgl1, Flii, Smcr7, Top3a, Smcr8, Shmt1, Dhrs7b, Tmem11, Gtlf3b, Gtlf3a, Map2k3, Kcnj12,
Tnfrsf13b, Usp22, Aldh3a1, Aldh3a2, Slc47a2, Slc47a1, and Zfp179 (a.k.a. Rnf112) (for GeneIDs, see Materials and Methods). The Cops3 and Zfp179 loci
were used as anchoring points to engineer the rearrangement [34], thus their number of copies does not correlate with the number of copies of the
region. Furthermore, some copies of Cops3 (indicated by an X) were inactivated in the process [34].
doi:10.1371/journal.pbio.1000543.g001

Phenotypic and Transcriptomic Outcomes of CNV
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gous animals and unchanged in the PTLS mouse model

(Figure 4C). The Df(11)17/+ and Df(11)17/Dp(11)17 strains carry

two and three copies of Zfp179 (a.k.a. Rnf112, GeneID: 22671),

respectively (Figure 1 and 4C), thus this gene could be considered

in the ‘‘flanking’’ genes category in some strains (see below).

To confirm the transcriptome profiling results, we indepen-

dently measured by Taqman quantitative PCR the relative

expression levels of 43 genes in the hippocampus and cerebellum

of males (N = 3) and females (N = 3) and the cortex, liver, and lung

of female mice (N = 3) of the +/+, Dp(11)17/+, and Df(11)17/+
genotypes. The list of genes and assays used are presented in Table

S2. They map either centromeric, within, or telomeric to the

rearranged region. We found good reproducibility of the data for

the three genes that were quantified with two different Taqman

assays (Figure S5). Likewise, we noted a robust correlation between

the Taqman and expression microarray results (correlation

coefficient, R2 = 0.87; Figure S5A). Furthermore, the assays

performed on female tissues demonstrated that the above

described influences on the expression levels of genes situated

within the rearrangement are not restricted to one sex and to the

five tissues monitored by microarray (Figure S5B and S5C). Thus,

the altered expression of SMS/PTLS genes are most probably

relevant to the development of the phenotypic manifestations of

PTLS and SMS mouse models that are absent in the Df(11)17/

Dp(11)17 animals.

The Expression of Normal Copy Number Genes Mapping
on MMU11 Is Modified

A second category of transcripts, those that map to the rest of

mouse chromosome 11 (MMU11 genes), was significantly

enriched within the top 1,000 most differentially expressed

transcripts in all five tissues (all p,161024, 97 to 138 transcripts,

Figure 4B; ‘‘Most-diff’’ set of data, see below and Materials and

Methods). This ‘‘flanking effect’’ might not be an effect of

structural changes but could potentially be caused by linkage

disequilibrium between the engineered interval and flanking

polymorphisms. Consistently, retention of large blocks from the

parental strain through genetic selection even after repeated

backcrossing has been reported [43–45].

The SMS and PTLS mouse models were generated from a

different genetic background (i.e., the AB2.2 ES cell line derived

from a 129S5 mouse, see [34] for details) and were backcrossed for

12 generations to C57BL/6J-Tyrc-Brd. Genotyping of the entire

length of MMU11 revealed that, whereas the region proximal to

the engineered interval had recombined, the distal section had

either only partially or not recombined at all to the C57BL/6J

background in Dp(11)17/+ and Df(11)17)/+, respectively (Figure

S6A). These sequence variants may have a significant impact on

microarray-based transcriptome profiling [46–48]. For example,

almost half of the reported 100 most significant cis-acting

expression QTLs could be attributed to sequence diversity in

probe regions in [46].

We thus devised a strategy to identify and discard the transcripts

that could possibly be influenced by their 129S5 genetic makeup

rather than by the modification of the number of copies of the

CNV. As we found that 129S5 and 129S2 mice were genetically

identical at all tested loci from the SMS/PTLS engineered interval

to the telomere, we thought to use expression data previously

established in our laboratory with the same microarray platform

(GEO Series accession number: GSE10744) [12] to identify the

transcripts that show a different level of expression between 129S2

and C57BL/6J animals in at least one of six major tissues (brain,

liver, testis, kidney, lung, and heart) (false discovery rate,0.1;

corrected for multiple testing) and that thus should be removed

from our analysis (see Materials and Methods, Figure S7). This

allowed establishment of a restricted set of data, named Most-diff-

Table 1. Not all phenotypes are recovered with the correct gene dosage in the region.

Genotype [Gene copy
number within this
genomic interval]: Dp(11)17/+ [3n] Df(11)17/+ [1n] Wild type [2n] Df(11)17/Dp(11)17 [2n]

Phenotype:

Viability normal reduced normal normal

Craniofacial abnormalities absent present (99%) absent absent

Overt seizures absent present (9%) absent absent

Body weight underweight overweight normal normal

Abdominal fat underweight (1%) overweight (3%) normal (2%) normal (2%)

Anxiety (plus maze) elevated decreased normal decreased

Sociability normal normal normal normal

Preference for social
novelty

decreased increased normal decreased

Dominant behavior increased decreased normal normal

Dowel test (number of falls) normal increased normal normal

Hanging ability normal decreased normal normal

Rotating rod abnormal performance abnormal performance normal normal

Activity levels (open field) elevated decreased normal elevated

Learning and memory
(conditioned fear)

impaired normal normal normal

The observed and systematically examined phenotypes for the four experimentally tested genotypes are summarized with the results found for each genotype. In bold
type are those phenotypes that were not rescued in Df(11)17/Dp(11)17 mice. Italics represent opposing phenotypes in Df(11)17/+ versus Dp(11)17/+ mice. Some
phenotypes were previously reported in [11,27,34,35].
doi:10.1371/journal.pbio.1000543.t001
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restricted, in which these transcripts were excluded (the unre-

stricted set was named ‘‘Most-diff’’; see Materials and Methods).

Within this constrained set, we found again that the SMS/PTLS

transcripts were significantly enriched within the top 1,000 most

differentially expressed transcripts in all five tissues analyzed

(Most-diff-restricted set: all p,161024, 26 to 40 transcripts).

Similarly, the transcripts that map to the rest of the MMU11

chromosome were significantly enriched within the top 1,000 most

differentially expressed transcripts in the cerebellum and hippo-

campus (Most-diff-restricted set: p,161023, 94 and 103 tran-

scripts, respectively) but not in the other three monitored tissues.

One could argue that this class of transcripts is still

overrepresented in the two neuronal tissues because we were

unsuccessful in identifying and discarding all transcripts that are

influenced by linkage disequilibrium. Hence, to further assess a

potential bias caused by the linkage disequilibrium between the

engineered interval and flanking polymorphisms, we compared in

three different tissues (cerebellum, kidney and testis) the relative

expression of genes before and after their recombination to a

C57BL6/J homozygous genetic background. We measured by

quantitative PCR the relative expression levels of genes showing

significant differences in expression between Dp(11)17/+ and +/+
in the microarray profiling experiments (see above) and mapping

to the 11:76843886–92963733 interval in Dp(11)17/+ mice after

12 and 17 backcrosses (129S5/C57BL6/J heterozygous and

C57BL6/J/C57BL6/J homozygous background, respectively)

and compared it to that of wild type littermates (Figure S6A).

The different assays are presented in Table S3. We found that 7

out of 14 (50%), 8 out of 16 (50%) and 12 out of 16 (75%) of the

genes we studied in testis, kidney, and cerebellum, respectively,

showed a change in expression level between the PTLS model and

controls even after recombination, suggesting that the observed

differences in expression of these genes are independent of the

genetic background and not caused by linkage disequilibrium of

the engineered region (Figure S6B–S6D). These results justify the

strategy used above to discard 129 out of 248 probesets that could

possibly be influenced by their 129S5 background.

Contrary to what we observed for the genes that map to the

rearranged intervals, the ‘‘flanking’’ transcripts presented no

correlation between gene dosage of the SMS/PTLS CNV and

their expression levels (Figure 4C–D and Figure S8). In fact a

majority (.55% within Most-diff-restricted and .80% within

Most-diff) of the MMU11 transcripts showed a similar change in

expression level in the Df(11)17/+, Dp(11)17/+, and Df(11)17/

Dp(11)17 animals compared to normal controls in all analyzed

tissues. As an important proportion of the MMU11 genes that do

not vary in number of copies appeared to be affected in a

consistent manner in the engineered animals, it is unlikely that

their expression is solely directly or indirectly controlled by one or

a combination of the 34 genes mapping to the rearranged interval

Figure 2. Anxiety in the plus maze test is not normalized with the correction of the gene copy number. The percentage of observations
in each arm or the center of the plus maze is represented. Light grey columns: Dp(11)17/+ (N = 19); dark grey columns: Df(11)17/+ (N = 20); white
columns: +/+ (N = 27); and black columns: Df(11)17/Dp(11)17 (N = 22). Values represent mean 6 SEM. The asterisk denotes significant differences (*
p,0.05).
doi:10.1371/journal.pbio.1000543.g002

Phenotypic and Transcriptomic Outcomes of CNV
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(see Figure 1 or the Materials and Methods section for the

complete list of these genes). If this would have been the case we

might anticipate observing opposite changes in expression in the

SMS and in the PTLS mice (see above and below). Consistently,

we observe similar expression levels not only in the mice with one

or three copies but also in the balanced heterozygote animals with

two copies in cis of the SMS/PTLS CNV. In this latter strain,

these changes in expression levels of the MMU11 transcripts are

identified, although we register no modifications of the expression

levels of the SMS/PTLS transcripts (Figure 4C and Figure S8B).

Similarly, the analogous changes in expression reported in the

different engineered genotypes could not be explained by the

retention of promoters driving the introduced selection markers, as

a previously shown possible explanation we needed to control for

(e.g., [49–51], reviewed in [52]), because different cassettes are

maintained in the three different models, i.e. puromycin and

Figure 3. Some social behaviors are dependent on the presence of genomic rearrangements. (A) Percentage of observations in the
chamber side with stranger 1 (Stg1, white columns) or with the empty container (EC, black columns) during the sociability test is shown for the four
different groups of mice. (B) Percentage of observations in the chamber side with stranger 1 (Stg1, white columns) or with stranger 2 (Stg2, grey
columns) during the preference for social novelty test is depicted. For each genotype the number of mice tested was: N = 21 for Dp(11)17/+, N = 23 for
Df(11)17/+, N = 28 for +/+, and N = 22 for Df(11)17/Dp(11)17 mice. The mean 6 S.E.M. values are presented. Asterisk denotes significantly differences (*
p,0.05).
doi:10.1371/journal.pbio.1000543.g003

Phenotypic and Transcriptomic Outcomes of CNV
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Figure 4. Differentially expressed genes in SMS and PTLS mouse models. Distribution of the mapping regions of the top 100 (A) and top
1,000 ranked (B) most differentially expressed transcripts in the cerebellum (C), heart (H), kidney (K), testis (T), and hippocampus (Hi) or present on the
array (Affy) of Df(11)17/+ (SMS model, 1n), Dp(11)17/+ (PTLS model, 3n), Df(11)17/Dp(11)17 (2n compound heterozygote), and +/+ (2n) mice (Most-diff

Phenotypic and Transcriptomic Outcomes of CNV
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neomycin resistance genes in Df(11)17/+ and Df(11)17/Dp(11)17

and Hprt, tyrosinase and K14Agouti genes in Dp(11)17/+ and

Df(11)17/Dp(11)17 [34].

One mechanism explaining the observed deregulation of

MMU11 transcripts might be the dissociation of these transcripts

from their long-range regulatory elements, a phenomenon known

as position effect [53]. If the changes in gene expression were

caused by the physical separation of cis-acting regulatory elements

mapping to the rearranged interval and MMU11 genes, we should

expect an enrichment of affected genes close to the breakpoints

(i.e., the loxP sites necessary for the mouse engineering [34]). This

is only partially the case (Figure S9). In fact, we find genes with

modified expression mapping on the entirety of mouse chromo-

some 11, for example, tens of megabases from the breakpoints,

suggesting that other mechanisms of regulation might also be at

play (Figure S9). We find, however, no correlation between the

distance from the breakpoints and the extent of expression change

(Figure S10). Many of the transcripts that show changes in relative

expression appear to cluster in discrete groups along the

chromosome. We tested this assumption using a modified version

of the method described by Tang and Lewontin to infer

significance (see Materials and Methods) [54,55] but found no

significant clustering of the modified transcripts. We thus infer that

the observed clustering is simply due to the non-homogenous

distribution of genes along mouse chromosome 11 (Figure S9B).

Similarly, we found no significant enrichment of genes that

neighbor CpG islands within the set of MMU11 CNV-affected

transcripts (Most-diff-restricted: p,0.25; Most-diff: p,0.15 tested

with permutations; see Materials and Methods), which could have

suggested that these genes are expressed in many tissues [56]. We

found, however, that the MMU11 transcripts modified in

expression were expressed in a significantly greater fraction of

the tissues we assessed (average 2.6, median 3) relative to other

transcripts (1.8, 2; two-tailed p,2.2610216, Mann-Whitney U

test). They are, however, not expressed at higher levels than their

unchanged counterparts (Figure S11).

Interestingly, the two tissues that show a significant number of

differentially expressed genes mapping to MMU11, i.e. hippo-

campus and cerebellum, are part of the central nervous system

(CNS). This observation suggests that copy number changes may

have more of an effect on normal copy neighboring genes

expressed in the brain. Other reports have shown that genes

expressed in the brain have changed less than have genes

expressed in other tissues during evolution [57] and that CNV

genes expressed in the brain are more tightly regulated than other

CNV genes [12]. The stricter expression regulation of genes with a

function in the CNS is possibly brought about by their increased

interdependency through multiple feedback loops, common long-

range cis-acting regulatory units, and/or changes in the chromatin

conformation. Thus, suggesting that perturbation to such ‘‘higher

order’’ genome organization would be more identifiable and

consequential in the CNS. Consistently, the phenotypes that

persist upon restoration of gene dosage, modification of activity,

anxiety, and sociability levels, are most probably from a

neurological origin. We identified gene(s) that are modified in

their relative expression levels in the Df(11)17/Dp(11)17 mouse

(see above). The comparison of the hippocampal and cerebellar

transcriptomes of these mice with that of +/+ littermates showed

that expression levels of genes involved in detection of stimuli,

visual perception, as well as neuronal differentiation were modified

and, thus ultimately, might be at the origin of the change in

phenotypic outcome (Text S1, Table S4–S6).

Taken together our results indicate that structural changes per se,

i.e. without changes in gene dosage, have genomic consequences

on gene expression far beyond the locus whose structure is varied

and that structural variation can profoundly modify the pheno-

typic outcome.

Discussion

Copy Number Variants (CNVs), because of their prevalence,

e.g. 10% of the mouse autosomal genome and 60% of its

duplicated regions [12,58], constitute important contributors to

intraspecific genetic variation. Multiple human CNVs have been

associated with diseases, susceptibility to diseases, and adaptation

(reviewed in [7,8,18–20]).

We show that mouse models of Smith-Magenis and Potocki-

Lupski syndromes, engineered to have one and three copies,

respectively, of the mouse chromosome 11 (MMU11) band B2

region (Figure 1) present altered expression of the genes mapping

within the rearranged interval and diametrically opposing

phenotypes in body weight, percent fat, anxiety, preference for

social novelty, dominant behavior, and activity levels (Table 1).

Similarly, the deletion and reciprocal duplication of the 1q21.1

region are associated with micro- and macrocephaly, respectively

[59], while the reciprocal diametric changes in head size were

reported for 16p11.2 rearrangements [60,61]. These observations

and the associations of these genomic disorders with autism

spectrum disorder (ASD) (1q21.1 duplication and 16p11.2

deletion) and schizophrenia (1q21.1 deletion and 16p11.2

duplication) [59,61–72] lend support to the hypothesis that these

conditions are at different ends of a spectrum related to evolution

of the social brain [73,74]. SMS and PTLS, like 1q21.1 and

16p11.2 rearrangements, are so-called genomic sister-disorders—

disease mediated by duplications versus deletions of the same

regions—with overlapping phenotypic traits (for a complete list,

see [75]) in which conditions/phenotypes appeared to be linked to

gene dosage. However, patients presenting ASD and 1q21.1

deletions or 16p11.2 duplications, as well as individuals with

schizophrenia associated with 1q21.1 duplications or 16p11.2

deletions, were also reported ([61–65,72]; reviewed in [74]),

suggesting that some conditions might be due to altered gene(s)

function(s) through both under- and overexpression. Alternatively,

we can hypothesize that some phenotypes are not associated with a

specific number of copies of a particular CNV but rather that the

simple presence of a structural change at a given position of the

human genome may cause perturbation in particular pathways

regardless of gene dosage.

Murine genes mapping centromeric or telomeric to the SMS/

PTLS rearrangement show analogous changes in expression.

dataset, see Figure 1 for a schematic representation of the mouse 11 B2 region of the different mouse models). Proportion of transcripts mapping to
the SMS/PTLS rearranged interval (purple), the remainder of mouse chromosome 11 (burgundy), and elsewhere (yellow). Transcripts mapping to the
rearranged interval and to the remainder of mouse chromosome 11 are both statistically overrepresented in all tested tissues (all p,161024).
Heatmap of the changes in expression levels of the 49 Most-diff transcripts mapping to the SMS/PTLS rearranged interval (C) and the remainder of
mouse chromosome 11 (81 transcripts) (D) measured in Df(11)17/+ (d), Dp(11)17/+ (D), and Df(11)17/Dp(11)17 (dD) mice as compared to +/+
individuals in cerebellum (C), heart (H), kidney (K), testis (T), and hippocampus (Hi). The arrowhead and asterisk denote Cops3 and Zfp179 transcripts,
respectively. These transcripts were used as anchors in the strain engineering process, thus they are not present in the same number of copies than
other SMS/PTLS genes in the mice models (see Figure 1 and text for details).
doi:10.1371/journal.pbio.1000543.g004
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Specifically, a MMU11 gene over- or underexpressed in the SMS

mouse model has more than 50% chance to be also over- or

underexpressed in the PTLS mouse model, respectively. Remark-

ably, affected genes are mapping on the entirety of the

chromosome and not only in proximity to the breakpoints. The

uncoupling between the number of copies of the CNV genes and

the phenotype, here the effect on expression of genes outside of the

rearrangement, is further illustrated by the fact that we detect the

same changes in expression in the compound heterozygote, i.e. a

mouse model with a normal number of copies in a cis

configuration (Figure 1). Concomitantly, this restoration of gene

copy number within a structural change was shown not to rescue

all phenotypic manifestations observed in the SMS and PTLS

mice. Indeed some complex phenotypes such as activity, anxiety,

and preference for social novelty were still present in these

animals. These observations suggest a contribution of genomic

structural changes to the final phenotypic outcome and experi-

mentally document that simple gene dosage alone cannot account

for these phenotypes. The non-concordant absence of compensa-

tion in Df(11)17/Dp(11)17 mice (i.e. Df(11)17/Dp(11)17 mice

anxiety mimics the phenotype observed in the SMS model, while

their preference for social novelty is similar to that of PTLS

animals; Table 1) further uncovers the complexity resulting of

CNV-related genomic alteration.

The activity levels measured in the open field test exemplify the

interaction between gene dosage and final phenotypic outcome of

a specific CNV. Df(11)17/+ mice are hypoactive while Dp(11)17/

+ are hyperactive, hence the opposing phenotypes implicate gene

dosage in the final outcome. Consistently, Rai1 +/2 heterozygote

and Rai1 transgenic mice were found to be hypo- and hyperactive

in the open field, respectively [27,76]. However, the compound

heterozygote Df(11)17/Dp(11)17 and Dp(11)17/Rai- mice [27] are

also hyperactive in the open field, establishing that we are

confronted with a complex phenotypic outcome. In conclusion,

the presence of a CNV generates a phenotype through gene

dosage imbalance and/or the presence of genomic structural

changes. Further studies are warranted to resolve the underlying

causes and assess the relevance of our findings beyond genetically

engineered model and/or rare and highly penetrant CNVs.

Although we performed a broad battery of behavioral

experiments and studied the gene expression profile in five tissues

to address different aspects of SMS/PTLS phenotypes, there are

still other facets that are yet to be studied. One of the most

significant and consistent phenotypes displayed by almost all SMS

patients is sleep disturbance, including early sleep onset and offset,

repeated and prolonged nocturnal awakening, as well as excessive

daytime sleepiness (‘‘sleep attacks’’). Sleep disturbance in SMS is

accompanied by intrinsically inverted melatonin rhythms and is

often claimed by patients and their families as one of the most

challenging aspects of the SMS spectrum [33,77,78]. We suggest

that with approaches similar to this study, by combining

expression analyses in the suprachiasmatic nucleus (SCN) and

performing circadian experiments of the SMS mouse models,

valuable insights can be gained also for this important SMS

phenotype.

Importantly, our results suggest that the pathways through

which CNVs (including both deletions and duplications) result in

complex traits, particularly those involving the CNS, might

include not only alteration of the expression of genes included in

the rearranged interval but also the subtle modification of the

regulation of gene(s) mapping to the rest of the rearranged

chromosome. These changes in expression levels might be

triggered by a position effect, modification of the chromatin

structure, perturbation of chromatin loops, disruption of long

transcript structure, reflection of a regulatory interaction between

chromosome homologues (e.g. transvection), and/or repositioning

within the nucleus of a genomic region (e.g., in [79–83]; reviewed

in [5]). Consistently, a balanced translocation was shown to

significantly modify transcriptome profiles [84]. The results

presented here also suggest that the chromosome and its gene

collection are not randomly devised. The location and order are

maintained possibly in relation to a higher level genomic

organization required for proper regulation.

The potential unidirectionality of the long-range effects of

CNVs on gene expression and phenotypic outcome independent

of copy number change that has been uncovered in this report

poses an important challenge in appreciating the contribution of

this class of variation to phenotypic features. To include this

variable in genome-wide [85] as well as in eQTL association

studies [10], it might be necessary to combine all rearrangements

that differ from normality regardless of their directionality.

Materials and Methods

The materials and methods used for this report can be accessed

online (Text S1).

Supporting Information

Figure S1 Neuromotor dysfunction in Df(11)17/+ mice
is gene dosage dependent. (A) The total number of falls in the

dowel test for each of the genotypes is depicted. (B) The average

time in seconds that mice from each genotype could be hanging

from a wire is shown. For each genotype the number of tested

mice was: N = 14 for Dp(11)17/+, N = 9 for Df(11)17/+, N = 14 for

+/+, and N = 12 for Df(11)17/Dp(11)17 mice. The performance

in the rotating rod is normal in mice with the correct gene dosage

within this specific genomic interval. (C) Average time on top of

the rotating rod for Dp(11)17/+ (light grey squares) and +/+ (white

squares), (D) Df(11)17/+ (dark grey squares) and +/+ (white

squares), and (E) Df(11)17/Dp(11)17 (black squares) and +/+
(white squares) are represented. For each genotype the number of

mice tested in the rotating rod was: N = 14 for Dp(11)17/+, N = 6

for Df(11)17/+, N = 12 for +/+, and N = 8 for Df(11)17/Dp(11)17

mice. The mean 6 S.E.M. values are presented. Asterisk denotes

significantly different (* p,0.05).

Found at: doi:10.1371/journal.pbio.1000543.s001 (0.62 MB TIF)

Figure S2 Craniofacial abnormalities are dependent on
gene CNV within this genomic interval. (A) Dp(11)17/+, (B)

Df(11)17/+, (C) +/+, and (D) Df(11)17/Dp(11)17 mice facial and

skull pictures are shown. Note the position of the snout and the

broader distance between the eyes (hypertelorism) for the

Df(11)17/+ mouse compared with the other mice. The shorter

distance between the eyes and the nose can also be visualized in

the Df(11)17/+ mice. (E–L) Skeletal preparations of Dp(11)17/+
(E, I), Df(11)17/+ (F, J), wild type (G, K), and Df(11)17/Dp(11)17

(H, L) skulls of 3-mo male animals are shown for comparison. The

shape of the nasal bone of the Df(11)17/+ mice is shown with an

arrow (J). This phenotype is completely rescued with the addition

of an extra copy of the genes that are deleted (Df(11)17/Dp(11)17

animals) (L). (K) The different landmarks pictured in (C, I) were

used to objectively measure the distances between them. Cranial

landmarks (letter label) are as follows: b: nasal; a and c: anterior

notch on frontal process lateral to intraorbital fissure; d:

intersection of parietal and intraparietal bones; e: intersection of

the interparietal and occipital bones at the midline; f: bregma; g:

intersection of maxilla and sphenoid on inferior alveolar ridge.

The relative distances (in centimeters; see Materials and Methods)
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were used for the statistical analysis, and the averages of the

distances are shown in (M). The asterisk denotes significant

differences (p,0.05). An N = 3 was utilized for each genotype.

Found at: doi:10.1371/journal.pbio.1000543.s002 (2.91 MB TIF)

Figure S3 Weight differences are recovered with the
correct (i.e., diploid 2n) gene copy number within this
genomic interval. (A) Total body weight in grams, and (B)

abdominal fat weight in grams are depicted for Dp(11)17/+ (N = 8)

light grey columns, Df(11)17/+ (N = 7) dark grey columns, +/+
(N = 8) white columns, and Df(11)17/Dp(11)17 (N = 8) black

columns. The mean 6 S.E.M. values are presented. The asterisk

denotes significant differences (p,0.05).

Found at: doi:10.1371/journal.pbio.1000543.s003 (0.43 MB TIF)

Figure S4 The results for the first and second round of
the tube test for social dominance are depicted as the
percentage of winning for each genotype for (A) +/+
(white columns) versus Dp(11)17/+ (light grey columns)
(N = 10) mice, (B) +/+ (white columns) versus Df(11)17/+
mice (dark grey columns) (N = 10), and (C) +/+ (white
columns) versus Df(11)17/Dp(11)17 (black columns)
(N = 10) mice.

Found at: doi:10.1371/journal.pbio.1000543.s004 (0.29 MB TIF)

Figure S5 Relative expression levels measured by
quantitative PCR. Ratio of aneuploid/euploid normalized

relative expression levels measured by quantitative PCR in male

cerebellum (A), female hippocampus (B), and female lung (C). The

comparisons between Df(11)17/+ (SMS model, 1n) and +/+ (2n)

and Dp(11)17/+ (PTLS model, 3n) and +/+ (2n) are shown with

burgundy squares and blue triangles, respectively (see Figure 1 for

a schematic representation of the mouse 11 B2 region of the

different mouse models). The assayed genes are ordered according

to their mapping order on MMU11. Note that the SMS/PTLS

engineered region maps from Cops3 to Zfp179. Genes and assays

are presented in Table S2.

Found at: doi:10.1371/journal.pbio.1000543.s005 (0.66 MB TIF)

Figure S6 Expression levels of flanking genes before
and after recombination. Comparison of relative expression

levels measured by quantitative PCR in Dp(11)17/+ and +/+
littermates before and after recombination. The selected genes

showed significant differences in expression between Dp(11)17/+
and +/+ animals in the microarray profiling experiments (see main

text for details). They map to a 16 megabase (coordinates

MMU11:76843886-92963733) interval that recombined from a

129S5/C57BL6/J heterozygous background to a C57BL6/J/

C57BL6/J homozygous background between the 12th and 17th

backcross in Dp(11)17/+ model animals as schematically shown in

(A). Amplification results obtained in kidney (B), testis (C), and

cerebellum (D) for three different male individuals of each

genotype and backcross are shown. Blue and green triangles

denote +/+ animals after 12th and 17th backcross, respectively,

while red and black disks indicate Dp(11)17/+ animals after 12th

and 17th backcross, respectively. Genes and assays are presented in

Table S3.

Found at: doi:10.1371/journal.pbio.1000543.s006 (0.38 MB PDF)

Figure S7 Cumulative distribution of the probesets
showing a differential expression between C57BL6/J
and 129S2 mice. The 129 probesets were removed to create the

Most-diff-restricted dataset (see main text for details).

Found at: doi:10.1371/journal.pbio.1000543.s007 (0.50 MB TIF)

Figure S8 Differentially expressed genes in SMS and
PTLS mouse models. Heatmap of the changes in expression

levels of the 36 Most-diff-restricted transcripts mapping to the

SMS/PTLS rearranged interval (A) and the remainder of mouse

chromosome 11 (59 transcripts) (B) measured in Df(11)17/+ (d),

Dp(11)17/+, and Df(11)17/Dp(11)17 (dD) mice as compared to +/

+ individuals in cerebellum (C), heart (H), kidney (K), testis (T),

and hippocampus (Hi). The arrowhead and asterisk denote Cops3

and Zfp179 transcripts, respectively. These transcripts were used as

anchors in the strain engineering process, thus they are not present

in the same number of copies than other SMS/PTLS genes in the

mice models (see Figure 1 and text for details).

Found at: doi:10.1371/journal.pbio.1000543.s008 (1.52 MB TIF)

Figure S9 Genes differentially expressed in SMS and
PTLS mouse models map along the entire length of
mouse chromosome 11. Normalized relative expression of

aneuploid/euploid in the vicinity of the SMS/PTLS region (A) or

along the entirety of mouse chromosome 11 (B) for Most-diff-

restricted dataset. The four top panels show measurements in four

different tissues (C, cerebellum; H, heart; K, kidney; T, testis),

while the bottom panel presents the merge of all data. The

following comparisons are shown: Df(11)17/+ (SMS model, 1n) to

+/+ (2n) with squares; Dp(11)17/+ (PTLS model, 3n) to +/+ (2n)

with triangles; and Df(11)17/Dp(11)17 (2n compound heterozy-

gote) to +/+ (2n) with disks (see Figure 1 for a schematic

representation of the mouse 11 B2 region of the different mouse

models). The genes, which show statistically significant changes in

expression between aneuploid and euploid models, are depicted

with colored signs. Chromosome 11 coordinates are shown below.

The SMS/PTLS engineered region is highlighted in light purple.

Relative gene density along the chromosome is indicated in the

bottom panels with a black line. The region between the red

dotted lines in (A) is enlarged in (B).

Found at: doi:10.1371/journal.pbio.1000543.s009 (4.12 MB PDF)

Figure S10 Affected transcripts show no correlation
between extent of expression changes and distance from
the breakpoints. For each affected transcripts (Most-diff-

restricted dataset), we plotted the expression changes between

aneuploid and euploid animals in function of their distance to the

breakpoints (top panel: Df(11)17/+ versus +/+; central panel:

Dp(11)1/+ versus +/+; and bottom panel: Df(11)17/Dp(11)17

versus +/+). Data for each assessed tissue were merged and the

correlation coefficient (r) was calculated.

Found at: doi:10.1371/journal.pbio.1000543.s010 (0.57 MB TIF)

Figure S11 The affected transcripts are not highly
expressed. For each tissue and each expressed transcript, the

F-test value is plotted against the expression level measured in wild

type (+/+ genotype) or the 2n compound heterozygote (Df(11)17/

Dp(11)17). Red signs and curve denote the transcripts belonging to

the most differentially expressed set and their corresponding

Lowess curve.

Found at: doi:10.1371/journal.pbio.1000543.s011 (0.70 MB TIF)

Table S1 The viability of the different genotypes in this
inbreed genetic background is dependent on gene
dosage. Typical matings between animals Dp(11)17/+ 6 +/+,

Df(11)17/+ 6 +/+ and Df(11)17/+ 6 Dp(11)17/+ mice (12th

backcross in C57BL/6-Tyrc-Brd genetic background). The total

numbers of mice born from each mating type is indicated, plus the

resulting n of each genotype. The % of mice born/% expected for

each genotype is shown. The * denotes significantly different from

the expected Mendelian ratio. Gene copy number within this

genomic interval is indicated in brackets for each genotype.

Found at: doi:10.1371/journal.pbio.1000543.s012 (0.03 MB

DOC)
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Table S2 Genes and quantitative PCR assays to validate
microarrays experiments.
Found at: doi:10.1371/journal.pbio.1000543.s013 (0.05 MB XLS)

Table S3 Genes and quantitative PCR assays before
and after recombination in three tissues.
Found at: doi:10.1371/journal.pbio.1000543.s014 (0.06 MB

DOC)

Table S4 Transcripts differentially expressed in the
hippocampus of Df(11)17/Dp(11)17 mouse.
Found at: doi:10.1371/journal.pbio.1000543.s015 (0.08 MB XLS)

Table S5 Transcripts differentially expressed in the
cerebellum of Df(11)17/Dp(11)17 mouse.
Found at: doi:10.1371/journal.pbio.1000543.s016 (0.08 MB XLS)

Table S6 Genes with abnormal expression in the
compound heterozygous mice that can putatively ex-
plain the phenotypes found in Df(11)17/Dp(11)17.

Found at: doi:10.1371/journal.pbio.1000543.s017 (0.05 MB

DOC)

Text S1 Online supplementary text and online supple-
mentary materials and methods.
Found at: doi:10.1371/journal.pbio.1000543.s018 (0.20 MB

DOC)
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