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PHENOTYPIC PLASTICITY AND INTERACTIONS AMONG PLANTS 
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2Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001 USA 
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Abstract. We know a great deal about the plastic responses of plant phenotypes to the 
abiotic and biotic environment, but very little about the consequences of phenotypic plas- 
ticity for plant communities. In other words, we know that plant traits can vary widely for 
a given genotype, but we know little about the importance of trait-mediated interactions 
(TMI) among plants. Here, we discuss three major factors that affect the expression of 
phenotypic plasticity: variation in the abiotic environment, variation in the presence or 
identity of neighbors, and variation in herbivory. We consider how plastic responses to 
these factors might affect interactions among plants. Plastic responses to the abiotic en- 
vironment have important consequences for conditionality in competitive effects, to the 
point of causing shifts from competitive to facilitative interactions. Because plants show 
a high degree of plasticity in response to neighbors, and even to the specific identify of 
neighbors, phenotypic plasticity may allow species to adjust to the composition of their 
communities, promoting coexistence and community diversity. Likewise, plastic responses 
to consumers may have various and counterintuitive consequences: induction of plant re- 
sistance, compensatory growth, and increased resource uptake may affect interactions 
among plants in ways that cannot be predicted simply by considering biomass lost to 
consumers. What little we know about TMI among plants suggests that they should not be 
ignored in plant community theory. Although work to date on the community consequences 
of phenotypic plasticity has been hampered by experimental constraints, new approaches 
such as manipulating phenotypes by using signals instead of actual environmental conditions 
and the use of transgenic plants should allow us to rapidly expand our understanding of 
the community consequences of plant plasticity. 

Key words: allelopathy; chemical defense; clonal morphology; competition; facilitation; herbiv- 
ory; induced resistance; phenotypic plasticity; plant interactions; roots. 

INTRODUCTION 

Phenotypic plasticity is the property of a given ge- 
notype to produce different physiological or morpho- 
logical phenotypes in response to different environ- 
mental conditions (Bradshaw 1965, 1973, Schlichting 
1986, Sultan 1987, Schlicting and Pigliucci 1998, Pig- 
liucci 2001). A given plant genotype can experience 
different environmental conditions as a result of var- 
iation in the abiotic environment, variation in the pres- 
ence or identity of neighbors, or variation in consumer 

pressure. Variation in trait expression induced by these 
or other environmental factors might then affect inter- 
actions among plants. Although the evolutionary as- 

pects of phenotypic plasticity in plants have been ex- 

tensively examined, the ecological ramifications are 
less well understood. 

As a rule, plants are highly plastic (Sultan 1987, 
2000). Individuals within a species may vary by orders 
of magnitude in size, growth rates, allocation to dif- 
ferent organs, reproduction, and chemical constituency. 

Manuscript received 25 September 2001; revised 16 April 
2002; accepted 19 April 2002; final version received 6 June 2002. 
Corresponding Editor: F. R. Adler. For reprints of this Special 
Feature, see footnote 1, p. 1081. 
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Plants display plastic responses to a wide variety of 

ecological conditions including variation in the abiotic 
environment, disturbance, herbivory, parasitism, mu- 
tualistic relationships, and the presence, absence, or 

identity of neighbors. Plastic responses may be per- 
manent once induced, relatively fixed for a given grow- 
ing season, or may be dynamic on a scale of hours, as 
in the case of light effects on photosynthetic chemistry 
or herbivore effects on defense chemistry (Baldwin 
1999, Pearcy 1999). Although the cues that trigger phe- 
notypic differences are environmental, the ability to 

respond to cues is genetically based and can evolve 
under natural selection (Bradshaw 1973, Via 1994). 
Genetic variation in phenotypic plasticity (known as a 

significant G X E interaction) is an indicator of the 

potential for response to selection and the maintenance 
of plasticity in a population (Via and Lande 1985, Van 
Tienderen 1991). Plasticity is favorable if the environ- 
ment is variable, if environmental cues are reliable such 
that individuals can express the appropriate phenotype 
in each environment, and if there are costs to inappro- 
priate, specialized phenotypes. Specialization is fa- 
vored over plasticity when these conditions are not met, 
and is also favored by a variety of inherent costs to 

plasticity (Van Tienderen 1991, Dorn et al. 2000, Re- 
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lyea 2002; but see Sultan 1995). Because individual 
genotypes have the potential for adaptive divergence, 
plasticity in plants probably broadens ecological ranges 
and reduces the impact of selection (Mazer and Schick 
1991, Sultan 1995). 

Although phenotypic plasticity may not always be 
adaptive, the adaptive benefits of plastic traits as "buff- 
ers against spatial or temporal variability in habitat 
conditions" and "means of optimizing the acquisition 
and use of resources" (Grime et al. 1986, Robinson 
and Rorison 1988) have been widely documented and 
reviewed (Bradshaw 1965, Schlichting 1986, Sultan 
1987, 1995, Stearns 1989, Debat and David 2001). In 
contrast to our understanding of the evolutionary ecol- 
ogy of phenotypic plasticity, which is well established 
and rapidly advancing, we know little about the con- 
sequences of plasticity for ecological interactions in 
plant communities. For example, phenotypic plasticity 
may alter the sign and magnitude of interactions among 
plants, but the role of such trait-mediated interactions 
(TMI) has been largely overlooked in plant community 
ecology. Thus, an explicit research focus on TMI could 
revolutionize some aspects of plant ecology. 

Interactions among plants vary along a continuum 
from strongly competitive to strongly facilitative. The 
nature of the interaction between two species of plants 
is not always fixed, but may be conditional depending 
on environmental conditions. In other words, a species 
may be competitively superior to a particular neighbor 
under one set of conditions, but not under another. Sim- 
ilarly, a species may have positive effects on neighbors 
(facilitation) in some conditions and negative effects 
(competition) in other conditions (Bertness and Cal- 
laway 1994, Callaway 1995). A wide range of envi- 
ronmental circumstances including the particular suites 
and amounts of available resources, various environ- 
mental stresses, the composition of surrounding com- 
munities, herbivory, and physical disturbance may shift 
the balance of competition among species (Wilson and 
Keddy 1986, Louda et al. 1990, Miller 1994, Levine 
et al. 1998, Callaway and Pennings 2000). All of these 
conditions also have important effects on phenotypic 
plasticity (Sultan and Bazzaz 1993a, b, c, Emery et al. 
1994, Donohue et al. 2000a, b, 2001, Weinig 2000a, 
b, c, Weinig and Delph 2000). Although many studies 
have considered the direct consequences of variation 
in environmental factors on competition, relatively few 
have considered the impact of effects mediated through 
phenotypic plasticity. In general, high phenotypic plas- 
ticity has been thought to confer superior invasive and 
competitive abilities (Bloom et al. 1985, Poorter and 
Lambers 1986, Aerts et al. 1991, Grime et al. 1991, 
Aerts 1999, Sultan 2000, 2001), but few studies have 
explicitly tested this hypothesis. 

Here we explore three major factors that affect the 
expression of phenotypic plasticity: variation in the 
abiotic environment, variation in the presence or iden- 
tity of neighbors, and variation in herbivory. Under- 

standing the relationship between phenotypic plasticity 
and plant interactions has been limited by experimental 
constraints. First, it is difficult to separate the effects 
of plasticity from the confounding effects of the treat- 
ments used to create plasticity. Second, it is difficult 
to assess the performance of all phenotypes in all en- 
vironments because plasticity prevents the expression 
of inappropriate phenotypes in each environment 
(Schmitt 1993, Schmitt et al. 1999). Because of these 
experimental constraints, we know far more about the 
plastic responses of plants to the environment than we 
do about the consequences of plasticity for interspecific 
interactions. Although we have strong reason to suspect 
that TMI are important in plant communities, in only 
a few cases has this been explicitly demonstrated. 

Phenotypic plasticity in response to the 
abiotic environment 

Many studies have shown that plant species may 
produce a broad range of phenotypes in response to 
variation in the abiotic environment (Silvertown and 
Gordon 1989, Sultan 1993a, b, c, Pigliucci 2001). In 
one of the few experiments explicitly designed to ex- 
amine the effects of plastic responses to abiotic factors 
on competition, Poorter and Lambers (1986) measured 
the outcome of competition, in environments that dif- 
fered in resource fluctuations, between two inbred lines 
of Plantago major. One line was highly plastic in mor- 
phology and physiology and the other was restricted 
in plasticity. They found that, with increasing frequen- 
cy of fluctuations in nutrient level, the highly plastic 
line outcompeted the less plastic line. This study sup- 
ports the hypothesis that plastic individuals are superior 
competitors in temporally variable environments. Al- 
though Poorter and Lambers (1986) did not attribute 
differences in competitive ability to specific traits, oth- 
er studies have examined the relationship between plas- 
ticity of specific traits and plant interactions. In par- 
ticular, root systems are highly plastic and are funda- 
mentally related to plant interactions. In this section, 
we focus on how variation in abiotic conditions may 
affect root systems and, thus, interactions among 
plants. 

The proportional allocation of biomass to roots vs. 
shoots is fundamental to interactions among plants (Fit- 
ter 1994, Robinson 1994, Reynolds and D'Antonio 
1996, Colasanti and Hunt 1997, Aerts and Chapin 
1999). Among species, plants allocate proportionally 
more biomass to roots in nutrient-poor and water-poor 
environments and more biomass to shoots in light-lim- 
ited environments (Chapin 1980, Ericsson 1995, Aerts 
1999). This response is thought to maximize growth 
rate (Agren and Ingestad 1987) and competitive ability 
(Crick and Grime 1987, Tilman 1988, Grime et al. 
1997). In fertile, productive environments, the ability 
to allocate soil resources to leaf production is char- 
acteristic of highly competitive species (Grime 1979, 
Ryser and Notz 1996). In general, species that invest 
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more in roots are thought to competitively dominate 
habitats with low productivity, and those that invest 
more in shoots are thought to competitively dominate 
habitats with high productivity (Tilman 1988). 

Despite the importance of root: shoot ratios to a 
plant's performance, plasticity in root: shoot ratios 
may provide a relatively poor predictor of competitive 
ability. Reynolds and D'Antonio (1996) found no con- 
sistent relationship between experimentally induced 
differences in root mass ratio (root mass divided by 
total plant mass) and competitive ability. Of eight rel- 
evant studies, three found that the least plastic species 
was the most competitive (Zangerl and Bazzaz 1983, 
Aerts et al. 1991, Dakheel et al. 1993), one found that 
the most plastic species was the best competitor (Mc- 
Graw and Chapin 1989), and four found no relationship 
between plasticity in root mass ratio and competitive 
ability (Gurevitch et al. 1990, Wilson 1991, Cheplick 
1995, Figiel et al. 1995). It may be that differences in 
the mass of roots and shoots are less important than 
finer details in root and shoot morphology and physi- 
ology (Aerts et al. 1991). 

Root systems can show considerable plasticity in ab- 
sorptive capacity, total surface area, mass to surface 
area ratios, rooting density, the timing of growth and 
placement, and architecture (Biswell 1935, Muller 
1946, Drew and Saker 1975, Jackson and Caldwell 
1989, Callaway 1990, Kolb et al. 1990, Pregitzer et al. 
1993, Fitter 1994, Jackson et al. 1990). Caldwell and 
Richards (1986) surmised that high rooting density and 
root thickness would be advantageous for competitive 
potential, but little is known about the effect of such 
plasticity on plant interactions. Using data-based mod- 
els, Jackson and Caldwell (1996) estimated that plas- 
ticity in root proliferation and nutrient uptake rates in 
resource-rich patches increased nitrogen and phospho- 
rus acquisition from 28% to 70%. Confirming the hy- 
pothesis that plastic responses to resource availability 
should provide a competitive advantage, empirical 
studies in the system used to develop Jackson and Cald- 
well's model indicated that belowground plasticity in 
root morphology and root: shoot ratios of Pseudo- 
roegneria spicata improved its ability to withstand 
competition from the more vigorous, but less plastic 
Agropyron desertorum (Huber-Sannwald et al. 1996). 

Typically, genotypic variation in root architecture is 
thought to reduce niche overlap and, therefore, com- 
petition among species (Parrish and Bazzaz 1976, Cody 
1986). However, plastic responses to abiotic conditions 
could also increase competitive interactions if the result 
is a high overlap of rooting zones (Silvertown and Gor- 
don 1989). In a review of root form and depth distri- 
bution, Richards (1986) observed that the development 
of deep taproots vs. wide-spreading lateral roots of 
phreatophytic plants (species that typically utilize deep 
ground water) was dependent on environmental con- 
ditions such as the depth to the water table. Such root 
architectural plasticity could either increase or decrease 

competition depending on whether or not the target 
plant adopted a morphology that caused rooting zones 
to overlap with neighbors. 

Studies of Quercus douglasii (blue oak) provide a 
good example of how root plasticity can mediate com- 
petition with neighbors (Fig. 1). Quercus douglasii 
dominates a wide range of habitats in California, USA, 
including the mesic fringes of grasslands in the Central 
Valley, transitional vegetation near the Great Basin, the 
Sierra Nevada foothills, and throughout the coastal 
Santa Lucia Mountains. Based on predawn water stress 
and stable isotope analyses, individuals of Q. douglasii 
vary at the scale of meters with regard to utilization 
of the water table (Lewis and Burghy 1964, Griffin 
1973, Callaway et al. 1991). Callaway et al. (1991) 
measured predawn water potentials and fine roots in 
the upper 50 cm of soil of 24 Q. douglasii individuals 
and found evidence for two basic architectural patterns. 
Some trees had high water potentials (-1.5 to -3.0 
MPa at the end of the dry season) and a low biomass 
of fine roots in the shallow soil beneath their canopies, 
whereas other trees had low water potentials (-3.5 to 
-4.5 MPa) and approximately five times greater fine 
root biomass near the surface (Fig. 1). These data sug- 
gest that some trees do not access the water table (very 
low water potentials) and develop a dense root system 
near the surface, whereas other trees access the water 
table and do not invest as much in root biomass near 
the surface. These architectural differences were not 
definitively produced by phenotypic plasticity (i.e., 
Callaway did not manipulate root morphologies in ge- 
netically identical oak trees); however, neither exam- 
ination of leaf and acorn characteristics nor isozyme 
analysis suggested genetic differences between the two 
groups of trees (Callaway 1990). Furthermore, con- 
trolled experiments with seedlings demonstrated a high 
degree of plasticity in lateral root development (Cal- 
laway 1990). When the taproots of Q. douglasii seed- 
lings were grown into dry substrate 30 cm below moist 
topsoil, lateral root biomass in topsoil increased by 
80% and lateral root number by >50% over the five- 
month experimental period compared to seedlings with 
access to damp, deeper soils, which invested most of 
their root biomass into deep taproots. Thus, it is likely 
that the differences in root architecture among adult 
trees reflect a similar plastic response that is cued by 
the accessibility of the water table to the root system, 
and are not due to genetic differences among trees. 

Variation in root architecture has substantial con- 
sequences for the plant communities associated with 
Q. douglasii. In the field, the biomass of the herbaceous 
understory beneath trees with shallow root systems was 
-50% lower than the biomass in surrounding open 
grassland, indicating a strong competitive effect of 
shallow tree roots. In contrast, the biomass of plants 
under trees that had accessed the water table was ap- 
proximately two times greater than the biomass in open 
grassland (four times greater than under shallow-rooted 

This content downloaded from 150.131.192.151 on Wed, 30 Oct 2013 19:04:53 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1118 RAGAN M. CALLAWAY ET AL. Ecology, Vol. 84, No. 5 

High water Low water 
potential potential 

$S~~tA~t~a~tI I9W X 1 S82Vv ag 

bioms Trees facilitate 

Lw b sHigh biomass Trees compete 

f s w ;of shallow roots 
bunchgrass common 

FIG. 1. Interactions between oaks and understory herbs vary depending on plastic responses of oaks to water. Oaks that 
are able to access the water table have high water potentials, few shallow roots, and facilitate understory herbs by adding 
litter and nutrients leached from foliage by rain. Oaks that cannot access the water table have low water potentials, many 
shallow roots, and compete with understory herbs. The native bunchgrass Stipa pulchra is much more common under shallow- 
rooted oaks than under deep-rooted oaks. 

trees), indicating a facilitative effect. This facilitative 
effect was due to nutrients added through litter fall and 
precipitation filtering through the tree canopies. Ex- 
periments confirmed that only shallow-rooted trees 
competed with understory grasses. When tree roots 
were experimentally excluded under shallow-rooted 
trees, the biomass of grasses almost doubled, but root 
enclosures under deep-rooted trees had no effect on 
grasses. In addition to affecting productivity, the plas- 
ticity of Q. douglasii root systems also affected the 
species composition of the understory community (Cal- 
laway et al. 1991). In savannas, the native bunchgrass 
Stipa pulchra constituted <0.5% of the biomass be- 
neath deep-rooted trees. In contrast, the biomass of S. 
pulchra under shallow-rooted trees was 3.9% of the 
total herbaceous understory. 

Theory predicts that plasticity in behavior, defined 
broadly to include plastic morphologies of plants (Sil- 
vertown and Gordon 1989) can transmit heterogeneity 
from the environment to the population or community 
(Chesson and Rosenzweig 1991). These studies on Q. 
douglasii provide one of the few documented examples 
of this phenomenon for plants; however, similar effects 
are likely to occur whenever variation in access to re- 

sources strongly modifies the architecture of root sys- 
tems. 

Root systems also affect some types of facilitative 
interactions by redistributing water laterally and ver- 
tically throughout the soil profile. In 1929, Magistad 
and Breazeale hypothesized that deep-rooted plants 
that maintained some living roots near the surface 
might extract water far below the surface, but lose a 
portion of this water into dry soils at the surface. Since 
then, the passive redistribution of soil water along gra- 
dients of water potential through root systems (hy- 
draulic lift) has been shown for many species, including 
Q. douglasii (Ishikawa and Bledsoe 2000), in a wide 
variety of conditions (Caldwell et al. 1998). Hydraulic 
lift may benefit individual plants by allowing them to 
cache water in shallow soils during the night and in- 
crease their total daily transpiration rates the following 
day (Caldwell and Richards 1989). Facilitation of 
neighboring individuals may occur when cached water 
at the surface becomes available to other plants (Cald- 
well 1990, Dawson 1993). A form of hydraulic lift, or 
"water transfer" has also been described at a far small- 
er scale (centimeters) in the soil (Corak et al. 1987), 
raising the possibility of much broader impacts of root 
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FIG. 2. Root architecture of excavated Paarthernum argentatum (guayule) plants (Muller 1946). At the time of excavation, 
the plants were 17 months old and lacked other nearby neighbors. Note the reduced spread of root toward the nonspecific 
neighbor. (Units: 1 foot [ft] ~ 30.5 cm.) 

plasticity on water movement in soils. Although we are 
not aware of anystudies that have clearly linked plas- 
ticity in root system architecture to differing effects on 
neighbors via hydraulic lift, this would be a fruitful 
area for future research. 

Although we have focused primarily on plasticity of 
roots, abiotic factors also induce plastic responses by 
shoots and leaves (e.g., Cipollini 1997, 1999). We are 
unaware of studies that have addressed how these re- 
sponses affect interactions among plants, but effects 
are likely and further research in this area is warranted. 

Phenotypic plasticity in response to 
neighboring plants 

Neighboring plants cause dramatic phenotypic re- 
sponses in many plant species. For example, Rice et 
al. (1993) grew Quercus douglasii seedlings in three 
different plant communities. Morphological traits dif- 
fered and water use efficiencies were higher for seed- 
lings grown with annuals than for those grown with 
perennials. Soil water depletion was more rapid in an- 
nual plant communities, suggesting that plasticity in 
water use efficiency may have been adaptive, enhanc- 
ing the competitive ability of oak seedlings. Clonal 
plants provide many examples of plastic responses to 
neighbors (Hutchings and Slade 1988, Hutchings and 
DeKroon 1994). Turkington (1991; also see Turkington 
1983) found that the morphology of Trifolium repens 
responded plastically to the presence of different grass 
species. Moreover, the plastic response of T. repens 
clones to different grass species in the greenhouse de- 
pended on which species the clone had previously been 
associated with in the field. Furthermore, T. repens 
responded differently to the presence of root systems 
of three different grass species (Turkington 1990). Be- 
cause grass shoots were removed in this study, the plas- 
tic responses of T. repens were not likely to have been 
caused through effects on aboveground resources. 

The presence and identity of neighboring plants can 
also induce plastic responses in root allocation and ar- 
chitecture. Root plasticity in response to neighbors is 
striking in natural communities (Fig. 2; see Muller 
1946, Nye and Tinker 1977, D'Antonio and Mahall 
1991, Brisson and Reynolds 1994, Mou et al. 1995) 
and agricultural settings (Schenk et al. 1999). Exper- 
imental analyses indicate that neighbors may affect the 
phenotypic expression of root systems in two funda- 
mentally different ways: either through direct effects 
on soil resources, or independently of soil resources. 
In the first case, the roots of neighbors alter below- 
ground resource availability and therefore affect neigh- 
bors in much the same way as variation in abiotic re- 
sources (Crick and Grime 1987, Robinson and Rorison 
1988). Clearly, many plant species can concentrate 
their roots in small patches of high resources and re- 
duce proliferation in resource-poor patches (Wiersum 
1958, Drew and Saker 1975, Jackson and Caldwell 
1989, Caldwell et al. 1991). Because different species 
differ in resource uptake abilities, neighbor identity can 
have large effects on responses to resource patches. 
For example, Jackson and Caldwell (1996) found that 
the proliferation of roots of Artemisia tridentata in re- 
source-rich patches was much greater when the patch 
was shared with Pseudoroegneria spicata than when 
shared with Agropyron desertorum. Similarly, in the 
field, D'Antonio and Mahall (1991) found that two 
chaparral shrub species had markedly lower root 
lengths and occupied less soil volume when they were 
interacting with a superior competitor for water, Car- 
pobrotus edulis. 

The assumption that root plasticity caused by neigh- 
boring plants operates through this first mechanism has 
important consequences for the theoretical relationship 
between plasticity and competitive ability and for the- 
ory on processes that organize plant communities. If 
root plasticity caused by neighboring plants is primar- 
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ily determined by resource limitations, then superior 
competitors ought to be more plastic than poor com- 
petitors because plasticity allows for the rapid projec- 
tion of resource-capturing roots into nutrient-rich soil 
patches (Fitter and Hay 1981, Crick and Grime 1987). 
Taking this perspective a step farther, plasticity-and 
therefore competitive ability-should be more impor- 
tant in more productive communities where high rates 
of resource exploitation create localized zones of de- 
pletion (Crick and Grime 1987). 

As previously described, there is a substantial body 
of literature that supports the role of resources in neigh- 
bor interactions and root phenotypic plasticity (see also 
Bookman and Mack 1982, Fitter 1986, Gordon et al. 
1989, Nobel 1997). However, there is also evidence 
that many plant species affect the root morphology of 
their neighbors independently of effects on soil re- 
sources (Lund 1947, Dicke and Sabelis 1988, Miller 
and Gow 1989, Mahall and Callaway 1992, 1996, Stenz 
and Weisenseel 1993, Krannitz and Caldwell 1995, 
Schenk et al. 1999). In 1907, Schreiner and Reed found 
that roots of Lolium perenne would grow away from 
the roots of other nonspecific individuals. However, 
when they added "carbon black" to the substrate, roots 
intermingled. More recently, activated carbon, which 
adsorbs charged organic molecules and is probably 
similar to the carbon black of Schreiner and Reed, has 
been shown to ameliorate the negative effects of Larrea 
tridentata roots on the root elongation of conspecifics 
and of Ambrosia dumosa roots (Mahall and Callaway 
1991, 1992; see also Brisson and Reynolds 1994). Sim- 
ilar ameliorating effects of activated carbon have been 
documented for Centaurea maculosa root systems on 
the root elongation of Festuca idahoensis (Ridenour 
and Callaway 2001). These results suggest that chem- 
icals exuded from the roots of one species can alter 
root growth, distribution; and architecture of other spe- 
cies (Schenk et al. 1999). Presumably, by reducing 
overlap of root systems, these root avoidance mecha- 
nisms reduce competition. 

A recent experiment by Gersani et al. (2001) pro- 
vides a contrasting example of the potential conse- 
quences of neighbor-induced plasticity of root growth. 
Gersani and colleagues compared the growth and re- 
production of Glycine max (soybean) plants with sole 
possession of the rooting zone to those of plants sharing 
the rooting zone with a nonspecific. They found that 
sharing individuals produced 85% more root mass than 
non-sharing plants. Virtually all other work on root 
plasticity has demonstrated inhibitory effects resulting 
in avoidance and spatial segregation of root systems. 
In contrast, G. max plants appeared to proliferate roots 
aggressively to contest resources when they were 
forced to share the rooting zone with another plant. 
The increase in root growth in response to neighbors 
contradicts theoretical models of nutrient foraging that 
emphasize reduced root growth in response to low nu- 

trient levels, which would be expected where roots are 
dense. 

Although there are many examples of plastic growth 
responses of plants in response to neighbors, the con- 
sequences of this plasticity have been addressed in only 
a few cases. Perhaps the best examples are those of 
plasticity in stem elongation, clonal architecture, and 
photosynthetic chemistry. High densities of neighbors 
often have dramatic effects on the aboveground plas- 
ticity of biomass allocation, leaf morphology, and stem 
elongation. Phytochrome-mediated stem elongation in 
response to the red : far red ratio is a well-documented 
example of density-dependent plasticity (Dudley and 
Schmitt 1995, 1996). Chlorophyll absorbs light in the 
red region of the spectrum and therefore low red: far 
red indicates the presence of neighbors and triggers 
stem elongation in many species of plants. As part of 
the "shade avoidance response," stem elongation en- 
hances fitness by increasing light interception under 
competitive conditions. Because stem elongation oc- 
curs in response to the red: far red ratio rather than to 
the amount of photosynthetically available radiation, 
it is possible to induce stem elongation without altering 
light availability, thereby decoupling the cue from the 
resource (Schmitt et al. 1999). Dudley and Schmitt 
(1995, 1996) tested the adaptive value of plasticity in 
stem elongation by using this technique and transplant- 
ing manipulated phenotypes of the same genotype of 
Impatiens capensis into different competitive environ- 
ments. They found that elongated phenotypes were 
more fit at a high density of nonspecific neighbors than 
non-elongated phenotypes, but that non-elongated phe- 
notypes were more fit at low neighbor densities. More- 
over, Schmitt et al. (1995) found that transgenic to- 
bacco plants in which elongation responses to shade 
had been disabled had decreased fitness when grown 
in competition with wild-type plants with intact elon- 
gation responses. They also found that constitutively 
elongated Brassica ein plants had lower fitness, relative 
to a non-elongated wild type, at low densities than in 
competition with the elongated wild type at high den- 
sity. Their findings that phytochrome-mediated elon- 
gation is advantageous when competing in dense stands 
indicates that phenotypic plasticity can increase a spe- 
cies' tolerance to competition. Harley and Bertness 
(1996) induced elongated and non-elongated morphol- 
ogies of four species of marsh plants by growing plants 
in different density treatments. Plants grown at high 
density developed slender, elongated stems that ap- 
proached or exceeded their theoretical maximum 
heights based on mechanical considerations. Elongated 
plants depended on neighbors for physical support and 
often suffered stem failure if neighbors were removed, 
indicating that elongated plants interacted positively 
with neighbors in a way that non-elongated plants did 
not. These studies indicate that phenotypic plasticity 
in stem elongation can change the nature of interactions 
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among individual plants and improve performance in 
a competitive context. 

Similarly, studies on Abutilon theophrasti showed 
differential patterns of plasticity in response to neigh- 
bors. In soybean fields, competition is initially low for 
Abutilon and intensifies later in the season. Populations 
of Abutilon from soybean fields demonstrated selection 
for increased elongation at later nodes when they could 
overtop surrounding soybeans. In contrast, late elon- 
gation was selected against in cornfield Abutilon pop- 
ulations because no individuals were able to overtop 
the corn (Weinig 2000a). The onset of competition var- 
ied with the species of competitor, and the fitness ben- 
efits of elongation therefore also depended on the tim- 
ing of the plastic response. These population differ- 
ences suggest that there is adaptive response to differ- 
ent competitive environments and that different life 
history stages can have different levels of phenotypic 
plasticity (Weinig 2000a, b, Weinig and Delph 2000). 

Finally, an excellent example of the adaptive value 
of plasticity in clonal architecture comes from studies 
of the clonal plant Ranunculus reptans (Van Kleunen 
and Fischer 2001). Genotypes of Ranunculus varied in 
their plastic responses (changes in stolon length and 
growth angle) to the presence of a competitor: those 
from habitats containing competitors were more plastic 
than those from habitats where Ranunculus grew alone. 
When grown in experimental habitats with and without 
competitors (Agrostis stolonifera), the more plastic ge- 
notypes had a higher fitness, averaged over both hab- 
itats, than the less plastic genotypes. Whether the more 
plastic genotypes also had greater competitive effects 
on Agrostis was not tested. 

These studies generally indicate that plastic respons- 
es to competitors reduce competition, in concordance 
with theoretical predictions that increasingly flexible 
"behavior," defined broadly to include morphological 
plasticity (Silvertown and Gordon 1989) increases the 
probability of coexistence of species (Chesson and Ro- 
senzweig 1991). Similarly, forest models that allow 
plastic development of individual canopies in response 
to neighbors predict that plasticity promotes overall 
stand productivity by reducing competition (Sorrensen- 
Cothern et al. 1993). 

The photosynthetic chemistry of plants can be as 
plastic as leaf and stem morphology (Pearcy 1999); 
however, little is known about how plasticity in pho- 
tosynthesis correlates with competitive ability. In gen- 
eral, fast-growing species adapted to high light con- 
ditions (which are often superior competitors) are more 
plastic in their maximum photosynthetic capacity than 
slow-growing, shade-tolerant species (Strauss-Debe- 
nedetti and Bazzaz 1996). Species with plastic pho- 
tosynthetic responses should be able to persist in a wide 
variety of environments. This plasticity in photosyn- 
thetic chemistry and leaf morphology appears to allow 
the seedlings of some species to benefit from "nurse 
plants" in harsh environments. For example, in some 

Californian woodlands Quercus agrifolia seedlings are 
more common under shrubs than in the open grassland, 
and experiments indicate that seedling survival is high- 
er under shrubs than in the open (Callaway and 
D'Antonio 1991). The effects of the shade from shrubs 
appear to be somewhat conditional, as shrubs and Q. 
agrifolia seedlings are highly associated in south-fac- 
ing savanna communities, but much less so in north- 
facing woodland communities (Callaway and Davis 
1999). 

Plasticity in response to herbivory 

Herbivory triggers plastic responses in morphology, 
reproduction, and tissue chemistry in many plant spe- 
cies. Herbivory almost always places a plant at a com- 
petitive disadvantage (Strong et al. 1984, Louda et al. 
1990, Crawley 1992) because of the carbon and re- 
source costs of losing biomass. In contrast to the effects 
of biomass loss, little is known about how herbivore- 
induced plasticity affects plant interactions. What is 
known about the responses stimulated by herbivory 
(the induction of plant resistance, compensatory 
growth, and increased resource uptake) suggests that 
plasticity affects interactions among plants in ways that 
cannot always be predicted on the basis of simple bio- 
mass losses alone. 

Some of the best documented plastic responses of 
plants are the induction of morphological and chemical 
traits that confer resistance to herbivores and pathogens 
(Harvell 1990, Myers and Bazely 1991, Baldwin 1999). 
The negative effects of induced resistance on herbi- 
vores and pathogens have been well documented and 
reviewed (Karban and Myers 1989, Karban and Bald- 
win 1997, Agrawal et al. 1999, Baldwin 1999), and we 
will not discuss effects on consumers further except to 
point out that the dynamic consequences of induced 
resistance on communities of multiple consumers will 
depend, in part, on whether induced resistance is spe- 
cific to particular consumers or general (Karban and 
Baldwin 1997, Bolker et al. 2003). 

Here, we will focus on the effects of induced resis- 
tance on interactions among plants, i.e., trait-mediated 
indirect interactions (TMII; Werner and Peacor 2003) 
between herbivores and nonconsumed plants in the 
community. To explain why resistance is plastic (in- 
ducible) and not constitutive (always present at high 
levels), most theories postulate that growth or repro- 
ductive costs exist, but that they can be minimized by 
deploying resistance mechanisms only when they are 
needed (Karban and Myers 1989, Harvell 1990, Zan- 
gerl and Bazzaz 1992; but see Adler and Karban 1994). 
Attempts to document the fitness costs of resistance in 
plants have had mixed success (Simms and Rausher 
1987, Baldwin et al. 1990, Simms 1992, Karban 1993, 
Adler and Karban 1994, Sagers and Coley 1995, Maur- 
icio 1997, Mauricio and Rausher 1997, Zangerl et al. 
1997, Agrawal 1998, Baldwin 1998, Siemens and 
Mitchell-Olds 1998, Heil et al. 2000, Redman et al. 
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2001, Koricheva 2002). However, costs of resistance 
are clear in at least some cases, and in theory should 
reduce the ability of a plant to compete with its neigh- 
bors (Herms and Mattson 1992). Karban (1993) ex- 
amined the costs of induced resistance in a desert shrub 
in combination with factorial manipulations of neigh- 
bors, but costs of induced resistance were not detect- 
able in this system and so did not interact with neighbor 
treatments. In contrast, recent studies with wild tobacco 
found that induced plants had less of a competitive 
effect on neighbors than did uninduced plants, and that 
induced plants had larger costs of induced resistance 
in the presence than in the absence of competitors (Van 
Dam and Baldwin 1998, Baldwin and Hamilton 2000). 
This suggests that induced resistance can reduce both 
the effect and response components (Goldberg 1990) 
of competitive ability. Agrawal (2000) also found that 
costs of induced resistance in an annual herb were high- 
er, and competitive effects on neighbors were reduced, 
when induced plants were grown at high vs. low den- 
sities. In contrast, Cipollini (2002) found no effect of 
competition on costs of induced defenses in Araba- 
dopsis, probably because plants experiencing compe- 
tition did not increase their defenses to the same degree 
as did control plants. 

Siemens et al. (2002) studied the costs of secondary 
metabolite production by Brassica rapa in the presence 
and absence of the generalist competitor Lolium per- 
enne. They used artificial selection and herbivore-in- 
duction treatments to produce genetic and environ- 
mental variation in concentrations of the defense chem- 
icals myrosinase and glucosinolate in different genetic 
lines of B. rapa. In contrast to theoretical predictions, 
the costs of defense that occurred in the absence of 
competitors did not occur in the presence of compet- 
itors. The breakdown products of the glucosinolate- 
myrosinase reaction appeared to also function as al- 
lelopathic agents (see also Bell and Muller 1973), 
which may have benefited B. rapa plants in competi- 
tion, but not when alone, and may have reduced the 
costs of chemical production. In general, activated car- 
bon treatments designed to neutralize allelopathic ef- 
fects restored costs in competition treatments. Others 
have found evidence for dual antiherbivore/allelopathic 
roles in inducible plant metabolites (Lovett and Hoult 
1995, Tang et al. 1995), and Callaway et al. (1999) 
found that exudation of some compounds from the 
roots of Centaurea maculosa increased after moderate 
leaf herbivory. Centaurea maculosa roots are allelo- 
pathic (Ridenour and Callaway 2001), and root her- 
bivory increases the exudation of (-)-catechin, a phy- 
totoxic chemical (R. M. Callaway and J. Vivanco, un- 
published data). If secondary compounds that provide 
resistance to herbivory commonly have dual roles as 
allelopathic agents, then induced resistance to herbi- 
vores might routinely increase negative allelopathic in- 
teractions with neighbors. If so, this could partially 

offset any reduced competitive ability caused by the 
costs of production of the secondary compounds. 

The growth rates of some plant species are plastic 
in response to herbivory. Herbivory often increases 
growth rates and, in some cases, may even stimulate 
"overcompensation," i.e., larger final biomass or en- 
hanced reproduction, although this latter concept is 
highly controversial (Paige and Whitham 1987, Muller- 
Scharer 1991, Trumble et al. 1993, Frank et al. 2002). 
Agrawal (2000) found that induced Lepidium virgini- 
cum plants overcompensated in biomass even though 
they also induced defenses. Similarly, the invasive 
weed, Centaurea maculosa, demonstrates a remarkable 
indifference to herbivory and defoliation (MUller- 
Scharer 1991, Callaway et al. 1999). Although the 
mechanisms for compensatory grown in C. maculosa 
are not fully understood, fine-root growth of this plant 
increases with herbivory (Steinger and MUller-Schirer 
1992). Although it is reasonable to hypothesize that the 
phenomenon of plastic compensatory growth increases 
resource uptake and therefore competitive impacts on 
neighbors, to our knowledge no studies have investi- 
gated this possibility. 

Finally, if consumers alter the morphology of the 
plant, they may have large effects on species that use 
plants as habitat. For example, infection by dwarf mis- 
tletoe (Arceuthobium spp.) alters tree allocation pat- 
terns by inducing massive "brooms," and consequent- 
ly increases the density and diversity of forest insects 
and birds (Stevens and Hawksworth 1970, Scharpf 
1975, Bennetts et al. 1996). 

CONCLUSIONS 

Plastic responses of plants to the abiotic environ- 
ment, neighbors, and herbivory can result in genetically 
identical individuals that have very different pheno- 
types. We have argued that these phenotypic differ- 
ences should have broad implications for how plants 
interact with their neighbors. We acknowledge, how- 
ever, that this view is likely to be controversial, con- 
sidering that many plant ecologists argue that even dif- 
ferences among species, let alone differences within 
species, are largely irrelevant to interactions (Goldberg 
and Werner 1983, Gaudet and Keddy 1988, Hubbell 
2001). Present data cannot conclusively adjudicate be- 
tween these different viewpoints: in contrast to work 
with animal communities, where a great deal is known 
about TMI, at least using short-term measures (Bolker 
et al. 2003, Dill et al. 2003, Werner and Peacor 2003), 
we know relatively little about the consequences of 
plasticity for interactions among plants. In large part, 
this inequality has arisen because of the experimental 
difficulties in assessing the impacts of phenotypic plas- 
ticity in plants. In particular, (1) it is difficult to separate 
the effects of plasticity from the confounding effects 
of the treatments used to create plasticity (Bolker et al. 
2003), and (2) it is difficult to assess the consequences 
of plasticity in a natural setting because of the very 
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nature of plasticity: plants continue to change after they 
have been manipulated (Sultan 2000). Recent devel- 
opments in experimental design and technology have 
begun to overcome these difficulties (Schmitt et al. 
1999). One promising approach is to manipulate plant 
morphology using signals of environmental conditions 
rather than the actual environmental conditions, thus 
decoupling the plastic response from the environmental 
context. For example, red: far red light ratios can be 
used to induce "high-density" stem morphologies 
without actually subjecting plants to increased com- 
petition (Dudley and Schmitt 1995, 1996, Dorn et al. 
2000). The presence of root exudates can be manipu- 
lated with activated charcoal without changing the den- 
sity of competitors (Siemens et al. 2002). Similarly, 
stem elongation can be induced with gibberellic acid 
in the absence of competition (Cippollini and Schultz 
1999), and plant resistance can be induced with jas- 
monic acid without actually damaging plants (Baldwin 
1999). Another promising approach is the use of trans- 
genic plants that lack the ability to induce plastic re- 
sponses (Schmitt et al. 1995). Application of these and 
similar techniques in future research should allow us 
to make great strides toward understanding the con- 
sequences of phenotypic plasticity in natural commu- 
nities. We suggest profitable research directions for 
each of our three major categories of plasticity. In each 
case, because plasticity should be most advantageous 
when environmental heterogeneity is high (Silvertown 
and Gordon 1989), TMI among plants should be most 
important among species experiencing a wide range of 
environmental conditions. 

Plasticity induced by the abiotic environment.-Be- 
cause variation in the abiotic environment may lead to 
variability in plant phenotype, the nature of plant in- 
teractions may vary across the landscape in concert 
with abiotic factors. As indicated by work on the root- 
ing morphology of oaks, the effects can be as striking 
as reversing the sign of interactions from negative to 
positive. Many of these TMI probably have been over- 
looked because variation in belowground resources is 
not immediately apparent to ecologists. Collaborations 
between ecologists and earth scientists would be likely 
to uncover a pervasive suite of mechanisms whereby 
"hidden" abiotic variation resulted in TMI between 
plants and neighbors across superficially homogenous 
landscapes. Because groundwater availability can be 
highly heterogeneous and has large effects on root mor- 
phology, an obvious first step would be to better ex- 
plore the link between hydrology and TMI. 

Plasticity induced by neighbors.-It is well estab- 
lished that neighbors affect plant morphology. Various 
techniques that allow us to manipulate plant morphol- 
ogy without altering the biotic environment are now 
available, as we have described. We need a suite of 
studies using these techniques to determine the im- 
portance of neighbor-induced plasticity in mediating 
interactions among plants. We predict that these studies 

will reveal that TMI are widespread and that they gen- 
erally serve to reduce competitive interactions between 
plants. Because some of the plastic responses of plants 
to neighbors are apparently species specific, interaction 
coefficients among plants may change as a function not 
only of neighbor density, but also of neighbor identity, 
lending a new level of complexity to plant community 
theory. 

Plasticity induced by consumers.-Plastic responses 
of plants to consumers are common and can involve 
both chemical and morphological responses. The con- 
sequences of induced resistance for interactions with 
consumers have been well documented and are re- 
viewed elsewhere (Karban and Baldwin 1997, Agrawal 
et al. 1999). Theoretical considerations suggest that 
induced responses to consumers should reduce the 
competitive ability of induced plants, creating TMLI 
between herbivores and nonconsumed plants in the 
community. Recent advances in understanding of plant 
wound signals now allow us to manipulate the plant 
phenotype in the absence of differences in tissue dam- 
age, as previously described. We need a suite of such 
studies to examine herbivore-induced TMI. Such stud- 
ies also are likely to make major contributions to the 
debate over whether defenses against consumers have 
costs, because they can assess potential costs in a va- 
riety of environments. 
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