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Phenotypic plasticity can facilitate adaptive
evolution in gene regulatory circuits
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Abstract

Background: Many important evolutionary adaptations originate in the modification of gene regulatory circuits to
produce new gene activity phenotypes. How do evolving populations sift through an astronomical number of
circuits to find circuits with new adaptive phenotypes? The answer may often involve phenotypic plasticity.
Phenotypic plasticity allows a genotype to produce different - alternative - phenotypes after non-genetic
perturbations that include gene expression noise, environmental change, or epigenetic modification.

Results: We here analyze a well-studied model of gene regulatory circuits. A circuit’s genotype encodes the
regulatory interactions among circuit genes, and its phenotype corresponds to a stable gene activity pattern the
circuit forms. For this model, we study how genotypes are arranged in genotype space, where the distance
between two genotypes reflects the number of regulatory mutations that set those genotypes apart. Specifically,
we address whether this arrangement favors adaptive evolution mediated by plasticity. We find that plasticity
facilitates the origin of genotypes that produce a new phenotype in response to non-genetic perturbations. We
also find that selection can then stabilize the new phenotype genetically, allowing it to become a circuit’s
dominant gene expression phenotype. These are generic properties of the circuits we study here.

Conclusions: Taken together, our observations suggest that phenotypic plasticity frequently facilitates the
evolution of novel beneficial gene activity patterns in gene regulatory circuits.

Background
Novel adaptive phenotypes endow organisms with new
means to survive and reproduce. Such new phenotypes
arise through a process that involves natural selection
and random genotypic change caused by mutation.
Life’s ability to adapt through random change is remark-
able, as many man-made systems do not have this
ability [1,2]. It is a result of how genotypic change trans-
lates into phenotypic change [1,3].
Different classes of biological systems, ranging from

protein and RNA molecules [4-6] to regulatory circuits
[7] and genome-scale metabolic networks [8], share
some similarities in how they translate genotypic change
into phenotypic change. First, any genotype G produces
some phenotype P in the absence of environmental and
other perturbations. We will refer to such a ‘default’
phenotype as G’s native phenotype (analogous to the

native conformation of a protein). Second, in all these
systems genotypes exist in vast genotype spaces. In a
genotype space, the distance between two genotypes
indicates the number of mutations that set those geno-
types apart. Third, the set of genotypes with the same
native phenotype define a “genotype network”. For any
two genotypes on a genotype network, there exists a
sequence of small genetic changes that leads from one
genotype to the other, without ever changing the native
phenotype. Genotype networks are typically vast and
extend far through genotype space. A population that
evolves on a genotype network through mutation and
selection can traverse large regions of genotype space,
while the population’s bulk preserves the same pheno-
type. While doing so, members of the population can
explore different phenotypes that occur in different
regions of genotype space. Because genotype networks
extend far through this space, they facilitate exploration
of many novel phenotypes [5,8-12]. In sum, genotype
networks allow access to a wide range of new, poten-
tially adaptive phenotypes [13,14].
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Despite the existence of genotype networks, finding a
specific novel phenotype through a blind evolutionary
search is challenging, partly because genotype spaces are
very large, partly because the fraction of advantageous
novel phenotypes encountered during this search is
usually small. For example, many more mutations are
deleterious rather than advantageous [15,16]. Here we
explore a phenomenon that can facilitate this search,
that of phenotypic plasticity.
Phenotypic plasticity allows a genotype to produce

more than one distinct phenotype [17-19]. Such alterna-
tive phenotypes are induced by non-genetic perturba-
tions. Non-genetic perturbations influence the formation
of all kinds of phenotypes, but molecular phenotypes
illustrate this influence especially well. Consider protein
structure phenotypes. Driven by thermal noise - a ubi-
quitous kind of non-genetic perturbation - the same
amino acid sequence (genotype) typically folds into one
main, native structure (phenotype), as well as a large
spectrum of alternative structures. Several aspects of the
protein’s environment can influence which of these
structures it forms. They include temperature, pH, but
also other proteins, such as chaperones [20] or infective
proteinaceous agents (prions) [21]. The same holds for
RNA molecules, where a single genotype (nucleotide
sequence) can also fold into different structures
[6,22,23]. On higher levels of organization, genes and
their products interact in regulatory circuits. The geno-
type determines which of a circuit’s genes interact; the
gene activity or gene expression phenotypes resulting
from these interactions are, again, influenced by non-
genetic factors. For instance, a circuit’s native gene
expression phenotype can be altered through stochastic
change - intracellular noise - in the number of regula-
tory molecules inside a cell [24-26]. Biotic or abiotic
environmental factors can also change a gene regulatory
circuit’s activity pattern and the macroscopic traits it
helps build [17,19,27-29].
The genotype network concept can readily accommo-

date the phenomenon of phenotypic plasticity [22]. Gen-
otypes that produce a given phenotype as their native
phenotype belong to the same genotype network, but
each of these genotypes may also produce a spectrum of
alternative phenotypes. This spectrum may differ among
genotypes on the same genotype network, and not all of
these genotypes may have equal plasticity. For example,
one genotype may readily produce an alternative pheno-
type, whereas in another genotype, the same phenotype
may arise only rarely, for example through an extreme
and rare perturbation. In these two genotypes, the phe-
notype would then have high and low penetrance,
respectively.
A growing body of work suggests that phenotypic plas-

ticity strongly influences the origin of novel phenotypes

[17-19,30-44]. The earliest support comes from classic
work by Waddington [45,46], Schmalhausen [47] and
Baldwin [48]. Waddington showed that artificial selection
of a phenotype that initially appears only in a few organ-
isms after non-genetic perturbations, can easily result in
the trait’s genetic determination [46,49]. More recently,
other researchers have made the same observation for
diverse traits and different species [37,38,42]. Artificial
selection can thus turn an alternative into a native
phenotype. In addition, many observations in wild popu-
lations suggest that in multiple cases an ancestral alterna-
tive phenotype may have facilitated the evolution of new,
genetically fixed adaptive traits [17-19,30-36,40]. The phe-
notypes where plasticity may have facilitated adaptation
are very diverse. They include gill surface area in cichlid
fishes [33], pigmentation patterns in the crustacean
Daphnia melanica [34], and head size in the snake Note-
chis scutatus [35], to name but a few. Despite an abun-
dance of candidate examples, plasticity’s importance for
adaptive evolution is not universally accepted [50,51]. We
still do not know whether existing observations from arti-
ficial selection experiments or from wild populations are
rare oddities or hint at general principles of evolution
[39,43,44,52,53].
If important for adaptive evolution, plasticity would

facilitate adaptation through a scenario such as the fol-
lowing (Figure 1): Consider a population in ‘search’ of
some new superior phenotype Pnew. At some point, gen-
otypes arise that have Pnew as a low-penetrance member
of their spectrum of alternative phenotypes. Such geno-
types would accumulate through selection, as they occa-
sionally produce Pnew. Second, some mutations in these
genotypes produce genotypes where Pnew has higher

Figure 1 A plasticity-mediated evolutionary path towards a
new adaptive phenotype. Each circle represents a genotype. Lines
represent mutations that convert one genotype into another.
Different colors represent distinct phenotypes. The same
background color surrounds genotypes in the same genotype
network. Colored areas within circles represent the probability that a
genotype produces a particular phenotype. Blue represents an
original native phenotype, and red a new beneficial phenotype. We
show a sequence of mutations towards the red genotype network.
First, the red phenotype arises as a low penetrance alternative
phenotype (mutation a). As penetrance increases, the distance to
the new genotype network decreases (b). Finally, the new
phenotype has become stabilized, that is, a new genotype network
has been ‘discovered’ (c).
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penetrance. These mutant genotypes now accumulate in
the population. Finally, the population gains mutational
access to Pnew’s genotype network. In this genotype net-
work Pnew is produced as the native phenotype - without
any non-genetic perturbations. Here, Pnew has become
genetically stabilized.
In the above scenario, genotypes that produce a phe-

notype Pnew through plasticity have better chances to
find Pnew’s genotype network. This scenario requires
several properties of the organization of genotype space.
The conditions are:

i) Finding genotypes that can produce a new alterna-
tive phenotype Pnew through plasticity must be sig-
nificantly easier than finding the genotype network
of Pnew (i.e. genotypes where Pnew is native).
ii) Genotypes near the genotype network of Pnew

should have a tendency to produce Pnew as an alter-
native phenotype. Otherwise, reaching Pnew’s geno-
type network would not be easier from genotypes
that produce Pnew through plasticity.
iii) Mutations of genotypes that produce Pnew

through plasticity must often result in genotypes
that can also produce Pnew through plasticity. Other-
wise, an evolutionary search of Pnew’s genotype net-
work might not be able to progress through
genotypes that can all produce Pnew.
iv) The higher the penetrance of Pnew is in a given
genotype G, the easier it must be to reach Pnew’s
genotype network from G.

Conditions i)-iii) imply that there must be sets of
mutationally connected genotypes that produce Pnew as
an alternative phenotype. From some of those geno-
types, a single mutation must suffice to reach Pnew’s
genotype network. Condition iv) implies that selection
can promote genetic stabilization of Pnew through gra-
dual increases in Pnew’s penetrance.
We here explore whether these conditions are fulfilled

in a model of transcriptional regulation circuits. Such
circuits produce specific gene activity patterns in differ-
ent parts and developmental stages of an organism. In
doing so, they have a major role in directing develop-
mental processes [54,55]. Many evolutionary novelties
involve changes in the gene expression patterns such
circuits produce [56-59]. In the circuits we study, the
genotype encodes the transcriptional regulatory interac-
tions determined by a circuit’s cis-regulatory regions. A
phenotype corresponds to a circuit’s stable gene activity
pattern. We show that the requirements we mentioned
above are fulfilled for these circuits. Our work suggests
that phenotypic plasticity can facilitate adaptive evolu-
tion that involves changes in gene activity patterns of
regulatory circuitry.

Results
The model
Our model represents gene regulatory circuits compris-
ing N genes. The activity of each gene in a circuit is
regulated by the activity of other circuit genes. An N by
N real-valued matrix A = (aij) specifies the manner in
which this regulation occurs. We view this matrix as a
circuit’s regulatory genotype. A gene j regulates the
activity of another gene i when aij ≠ 0. The effect of
gene j on gene i can be either activating (aij > 0) or
repressing (aij < 0). We call two circuits neighbors (in a
regulatory genotype space) if they differ in a single regu-
latory interaction. We use the integer variable m to
denote a circuit’s number of regulatory interactions, i.e.
the number of non-zero values in A; we use the real
number c to denote a circuit’s interaction density, that
is, its number of interactions m divided by the maxi-
mally possible number of interactions N2. We describe
the activity state of the circuit at time t with a vector
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actions among circuit genes and the circuit’s activity
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where s(x) equals -1 when x < 0, it equals +1 when x
> 0, and it equals 0 when x = 0.
Despite this model’s simplicity, it has been successfully

used to study various aspects of the evolution of gene
regulatory circuits, such as the evolution of robustness,
of modularity, and of pattern formation [7,11,60-66].
Variants of the model have also proven useful to model
developmental processes in plants and animals [67,68].
We here consider circuits that attain a stable gene

activity pattern s∞ when their dynamics start from an
initial gene activity pattern s0. Such an initial state is
determined by factors outside the circuit, be they genes
‘upstream’ of the circuit, maternal regulators, signals
from neighboring cells or environmental factors. We
refer to a stable gene activity pattern s∞ as a gene activ-
ity phenotype. As in previous research [7], we do not
analyze circuits that fail to produce a stable activity
pattern.
Circuit genotypes with the same gene activity pheno-

type form vast genotype networks in a space of regula-
tory circuits [7]. Throughout this paper, we consider
circuits in a given genotype network, that is, they attain
a given gene activity phenotype snative

∞ from a given
initial gene activity state s0 through the circuit’s
dynamics. We refer to this genotype network as the
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‘native genotype network’ and to snative
∞ as the ‘native

phenotype’. The activity state s0 is the gene activity state
from which the system starts its dynamics in the
absence of non-genetic perturbations. We note that all
properties of genotype network organization relevant to
us depend on the fraction d of gene activity differences
between s0 and snative

∞ , and not on the identity of these
activity patterns [7].
We study two kinds of perturbations. The first is a

mutation of a circuit’s regulatory genotype. A mutation
changes an interaction by altering a value of aij in a cir-
cuit’s matrix A. Some mutations can cause a circuit to
produce a phenotype different from snative

∞ . The second
kind of perturbation has a non-genetic origin and affects
the initial gene activity pattern s0. Such a perturbation
could result, for example, from intracellular noise, from
environmental fluctuations, or from disturbances in the
activity of genes upstream of the circuit. For example,
intracellular noise can create gene expression heteroge-
neity in clonal populations [24-26], just as exposure to
some environmental factors can induce major gene
expression changes in different organismal lineages
[27-29], and impairing the activity of pair-rule genes
upstream of the segment-polarity gene circuit in fruit
flies can change the expression pattern of genes in this
circuit [69,70]. Such perturbations can alter develop-
mental trajectories, and result in new gene activity phe-
notypes different from snative

∞ .
We call the phenotypes that a circuit genotype G pro-

duces after non-genetic perturbations and that are
different from G’s native phenotype ‘alternative pheno-
types’. Some alternative phenotypes may be detrimental,
but others may be beneficial [40,71,72]. An alternative
phenotype has a low (high) penetrance if the likelihood
that G produces it after a random perturbation in the
initial condition is low (high).

Finding new alternative phenotypes is easier than finding
new native phenotypes
We first asked whether mutation-driven exploration of a
genotype network can find new alternative phenotypes
more easily than new genotype networks (native pheno-
types), as required by condition i) in the introduction.
To answer this question, we allowed an ensemble of 5 ×
103 circuits to drift randomly on a genotype network by
changing one regulatory interaction at a time, while pre-
serving the circuits’ native phenotype. During this pro-
cess, we recorded two observables. The first was the
cumulative number of new phenotypes that circuits
could produce after each possible single gene-activity
modifications of s0 (i.e. non-genetic perturbations). That
is, after each mutation, we determined those alternative
phenotypes that a mutated genotype could produce but
that previous genotypes had not been able to produce,

and appended these alternative phenotypes to a growing
list of such phenotypes. The second observable was the
cumulative number of new phenotypes that the circuits
explored exclusively through mutation. Every time a
mutation caused a change in a circuit’s native pheno-
type, we recorded the new phenotype, before replacing
the circuit by its parent in the original native genotype
network. We appended these new phenotypes to a
growing list of phenotypes that had not been encoun-
tered through previous mutations. In this analysis, we
found that plasticity allows a faster exploration of new
phenotypes than mutation alone. Figure 2 shows that
after each circuit in the ensemble had experienced 500
mutations, plasticity had explored more than twice as
many phenotypes as mutation. This figure averages
results for 200 independent ensembles of circuits with
N = 16 genes, interaction density c ≈ 0.35, and a frac-
tion d of gene activity differences between s0 and snative

∞
equal to 0.125. Circuits with different values of these
parameters also have faster access to new phenotypes
through plasticity than through mutation alone (Addi-
tional file 1: Figure S1).

Mutations and non-genetic perturbations produce similar
sets of phenotypes
If phenotypic plasticity facilitates the discovery of new
genotype networks, then mutations and non-genetic
change should often produce similar or identical new
phenotypes (condition ii) in the introduction). Other-
wise, genotypes that produce an alternative phenotype
after non-genetic perturbations would not have prefer-
ential mutational access to that phenotype’s genotype
network. In other words, if condition ii) did not hold,

Figure 2 Gene circuits exploring a genotype network find
genotypes with novel alternative phenotypes faster than new
genotype networks. The figure shows mean values for 200
independent ensembles of circuits. Ensemble size M = 5 × 103

circuits with N = 16 genes, interaction density c ≈ 0.35, and a fraction
d of gene activity differences between s0 and snative

∞ equal to 0.125.
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mutations would not be able to turn an alternative phe-
notype into a native phenotype that is produced even in
the absence of non-genetic perturbations. To find out
whether this is the case, we sampled random genotypes
from a given genotype network. All the genotypes on
this network produce the same phenotype snative

∞ from
s0. We defined the following sets for each genotype G in
the sample: Pμ is the set of new phenotypes that muta-
tions in G can create; Ps0

is the set of alternative phe-
notypes that perturbation of each gene in the initial
condition s0 can create. To quantify the similarity
between both sets, we defined the index C as the size of
the intersection between both sets divided by its maxi-
mally possible value for sets of the same size

(
| |

min(| |,| |))C
P Ps

P Ps
=

∩


0

0
. C ranges from zero, if mutation

and non-genetic perturbations produce always different
phenotypes, to one, if Pμ and Ps0

fully overlap. We also
defined an index Crand, which estimates how similar
randomly chosen sets of phenotypes would be (see
Methods). By assessing C, we found that mutations and
non-genetic perturbations produce the same phenotypes
more often than expected by chance (Additional file 2:
Figure S2). This observation holds for all combinations
of circuit sizes N, interaction densities c, and distances d
between s0 and snative

∞ we examined (Table 1; Wilcoxon
signed-rank test; p < 2.2 × 10-16 in all cases). Thus,

genotypes that require a single mutation to reach the
genotype network of a phenotype Pnew also tend to pro-
duce Pnew as an alternative phenotype.

Similar circuits produce a similar spectrum of alternative
phenotypes
Genotypes producing a new phenotype snew

∞ through
plasticity, but that are not themselves neighbors of
snew

∞ ’s genotype network may still aid in the genetic sta-
bilization of snew

∞ . This could occur if neighboring geno-
types typically produce the same alternative phenotypes
[condition iii)]. In this case, mutations that preserve
snew

∞ as an alternative phenotype can make it easier to
reach snew

∞ ’s genotype network.
Motivated by these considerations, we asked whether

similar circuits produce similar sets of alternative phe-
notypes. We use the symbol Ps0

to refer to the set of
alternative phenotypes that a circuit genotype G pro-
duces after non-genetic perturbations. Ps k0 , refers to
the set of alternative phenotypes that a genotype differ-
ing from G in k regulatory interactions, but residing on
the same genotype network produces. We define the

index C
P P

P Pk
s s k

s s k
=

∩| |
min(| |,| |)

,

,

0 0

0 0

. It varies from zero to

one as the two sets of alternative phenotypes range
from completely disjoint to fully overlapping.
Similar circuit genotypes produce similar sets of alter-

native phenotypes (Figure 3). Genotypes that differ in a
Table 1 Mutations and perturbations in the initial
condition s0 produce the same phenotypes more often
than expected by chance

N c d Mean C ± S.E. p-value Sample sizea

8 0.4 0.125 0.528 ± 0.006 < 2.2 × 10-16 5485

0.25 0.496 ± 0.006 < 2.2 × 10-16 5905

0.5 0.557 ± 0.005 < 2.2 × 10-16 7269

0.3 0.125 0.442 ± 0.006 < 2.2 × 10-16 5885

0.25 0.398 ± 0.006 < 2.2 × 10-16 6050

0.5 0.349 ± 0.005 < 2.2 × 10-16 7144

20 0.3 0.1 0.712 ± 0.006 < 2.2 × 10-16 5247

0.25 0.8 ± 0.005 < 2.2 × 10-16 6432

0.5 0.885 ± 0.003 < 2.2 × 10-16 8055

0.2 0.1 0.63 ± 0.006 < 2.2 × 10-16 5318

0.25 0.645 ± 0.006 < 2.2 × 10-16 5699

0.5 0.711 ± 0.005 < 2.2 × 10-16 7102

0.1 0.1 0.47 ± 0.006 < 2.2 × 10-16 6036

0.25 0.408 ± 0.006 < 2.2 × 10-16 6058

0.5 0.364 ± 0.005 < 2.2 × 10-16 6776

C >Crand, according to a Wilcoxon signed-rank test. In this and all other tables,
N refers to the number of genes in a circuit, c refers to the circuit’s interaction
density, and d refers to the fraction of gene activity differences between the
unperturbed initial condition s0 and the native phenotype snative

∞ .
a Even though we sampled 104 genotypes for each genotype network, we
discarded genotypes in which either Pμ or Ps0

was empty.

Figure 3 The more similar two circuit genotypes are, the
higher the overlap between their sets of alternative
phenotypes. The number k represents the distance (in the number of
differing regulatory interactions) between two circuits. Ck measures the
similarity between the sets of alternative phenotypes produced by the
two circuits. The plot shows mean values and the length of error bars
represents one standard error. Spearman’s r = -0.248; p < 2.2 × 10-16.
The inset shows that the fraction of genotype pairs that share a given
alternative phenotype decreases with k. Data are based on 104

randomly sampled focal circuits with N = 20, c ≈ 0.2, and d= 0.1.
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single mutation share, on average, more than 93% of
their alternative phenotypes (C1 > 0.93). High similarity
in alternative phenotypes also holds after variation on
values of N, c and d (Table 2). Figure 3 also illustrates
how Ck decreases as two circuits diverge. Circuit dis-
tance k and Ck are negatively associated for all values of
N, c and d that we examined (Table 2; Spearman’s r; p
< 2.2 10-16 in all cases).
In addition, for each of 104 circuits on the same geno-

type network, we picked randomly one of the circuit’s
alternative phenotypes. We asked whether genotypes in
the same genotype network but differing from the focal
genotype in k regulatory interactions also produced the
alternative phenotype through plasticity. More than half

of the genotypes that differ from the focal genotype by
five or fewer mutations also produced the same alterna-
tive phenotype (inset in Figure 3 and Table 3). For all
values of N, c and d we examined, the probability that
two genotypes produce the same alternative phenotype
was above 0.8 for genotypes that differ in a single regu-
latory interaction (Table 3). This probability decreases
with the number k of regulatory interactions in which
two circuits differ (Figure 3 and Table 3). In sum, simi-
lar circuits have better odds to produce the same alter-
native phenotype. Thus, genotypes that produce an
alternative phenotype snew

∞ but that are not neighbors
of snew

∞ ’s genotype network can have indirect mutational
access to this network. Other genotypes that can pro-
duce snew

∞ as an alternative phenotype may provide this
access, enabling genetic stabilization of the new
phenotype.

Genetic distance to a new genotype network is
negatively correlated to a phenotype’s penetrance
Thus far, we demonstrated that conditions i) through iii)
of our evolutionary scenario hold. We now turn to con-
dition iv). This condition requires that circuits with a
high penetrance alternative phenotype Pnew have prefer-
ential (mutational) access to Pnew’s genotype network,
where this phenotype is native. We next show in several
complementary ways that this is the case.
We quantified the penetrance of a given phenotype as

the fraction of different single-gene expression perturba-
tions in a circuit’s initial state that produce this
phenotype. We then assessed whether a phenotype’s
penetrance is linked to a circuit’s proximity to a new
genotype network, as follows (Figure 4a). We first chose
a genotype G at random among all genotypes in a pre-
determined genotype network. Second, we determined
G’s alternative phenotypes and their penetrance. Third,
we chose one of the alternative phenotypes at random,
regardless of its penetrance, and called it snew

∞ . Fourth,
we estimated the distance of G to the genotype network
of snew

∞ (see Methods). We repeated this procedure for
104 genotypes for each combination of values of N, c
and d that we examined.
Figure 4b illustrates our findings. The horizontal axis

shows a phenotype’s penetrance, and the vertical axis
the distance to the new genotype network. The area of
each circle reflects the number of genotypes in each
penetrance/mutational distance category. Starting from
a genotype that produces an alternative phenotype snew

∞ ,
one to two mutations are generally sufficient to reach
snew

∞ ’s genotype network. Figure 4b also shows that dis-
tance to a new genotype network decreases with
increasing penetrance. The inset focuses on the fraction
of genotypes that require a single mutation to reach the
new genotype network. This fraction increases - new

Table 2 The higher the similarity between two circuits is,
the higher is the overlap between their sets of
alternative phenotypes

N c d Mean C1 ± S.E.
(Sample sizea)

Spearman’s
r

p-value

8 0.4 0.125 0.95 ± 0.002 (9124) -0.279 < 2.2 × 10-
16

0.25 0.956 ± 0.002 (9248) -0.247 < 2.2 × 10-
16

0.5 0.968 ± 0.002 (9499) -0.193 < 2.2 × 10-
16

0.3 0.125 0.933 ± 0.002 (9408) -0.295 < 2.2 × 10-
16

0.25 0.94 ± 0.002 (9459) -0.27 < 2.2 × 10-
16

0.5 0.963 ± 0.002 (9649) -0.206 < 2.2 × 10-
16

20 0.3 0.1 0.968 ± 0.002 (8712) -0.237 < 2.2 × 10-
16

0.25 0.97 ± 0.002 (8910) -0.201 < 2.2 × 10-
16

0.5 0.98 ± 0.001 (9403) -0.153 < 2.2 × 10-
16

0.2 0.1 0.962 ± 0.002 (9216) -0.248 < 2.2 × 10-
16

0.25 0.965 ± 0.002 (9179) -0.214 < 2.2 × 10-
16

0.5 0.977 ± 0.001 (9440) -0.178 < 2.2 × 10-
16

0.1 0.1 0.948 ± 0.002 (9675) -0.255 < 2.2 × 10-
16

0.25 0.957 ± 0.002 (9696) -0.237 < 2.2 × 10-
16

0.5 0.966 ± 0.002 (9748) -0.189 < 2.2 × 10-
16

This overlap decreases with the genetic distance between the circuits,
according to Spearman’s r, a non-parametric rank correlation coefficient [76].
C1 is the overlap in the sets of alternative phenotypes of two genotypes that
differ in a single regulatory interaction.
a We sampled 104 independent genotypes for each parameter combination,
but we discarded genotypes that differ in k interactions where Ps0,k was
empty.
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genotype networks become easier to reach - as the
penetrance of alternative phenotypes increases. The dis-
tance to a new genotype network decreases with
increasing penetrance in all parameter combinations
that we examined (Table 4; Spearman’s r; p < 2.2 × 10-
16 in all cases). The same holds when we consider alter-
native phenotypes produced by the perturbation of two
instead of just one gene in the initial condition (Addi-
tional file 3: Analysis S1).
We performed two additional complementary ana-

lyses, that we present in the Additional files. In the
first analysis we found that genotypes that produce an
alternative phenotype with high penetrance have more
mutational paths towards the genotype network of that
phenotype (Additional file 4: Analysis S2). In the sec-
ond analysis we compared two kinds of sequences of
mutations: those that increase the penetrance of an
alternative phenotype snew

∞ and those that merely pre-
serve the alternative phenotype snew

∞ , regardless of its
penetrance. We show that the former kind of muta-
tions facilitates the arrival to snew

∞ ’s genotype network
(Additional file 5: Analysis S3). Taken together, the
observations in this section show that the genotype
network of a new phenotype is closer and easier to
reach from genotypes where a new phenotype has high
penetrance.

Plasticity accelerates the discovery of new genotype
networks
Thus far, all our results support that plasticity facilitates
discovery and stabilization of new phenotypes. We next
asked more directly whether this is the case, by analyzing

Table 3 The probability that two circuit genotypes share an alternative phenotype decreases with their genotypic
distance

N c d Fraction of genotypes that share a specific phenotype after k mutations.

k = 1 k = 2 k = 3 k = 4 k = 5

8 0.4 0.125 0.854 0.749 0.664 0.593 0.546

0.25 0.874 0.777 0.706 0.645 0.6

0.5 0.911 0.839 0.786 0.748 0.713

0.3 0.125 0.869 0.768 0.691 0.624 0.568

0.25 0.882 0.787 0.716 0.657 0.606

0.5 0.925 0.863 0.809 0.765 0.727

20 0.3 0.1 0.826 0.718 0.644 0.59 0.546

0.25 0.85 0.753 0.687 0.646 0.619

0.5 0.907 0.849 0.804 0.774 0.75

0.2 0.1 0.874 0.776 0.701 0.643 0.596

0.25 0.877 0.782 0.719 0.663 0.617

0.5 0.913 0.85 0.799 0.762 0.73

0.1 0.1 0.913 0.848 0.784 0.728 0.676

0.25 0.924 0.857 0.797 0.743 0.701

0.5 0.939 0.891 0.849 0.811 0.779

Figure 4 Genetic distance to a genotype network is negatively
correlated with a phenotype’s penetrance. (a) The leftmost circle
represents a genotype G, where an alternative phenotype snew

∞ has a
given penetrance (red sector). We quantified the penetrance of snew

∞
in G as the fraction of single-gene perturbations of the initial condition
s0 that produce snew

∞ . We determined genetic distance as the smallest
number of mutations required to reach snew

∞ ’s genotype network
(rightmost circle). (b) The horizontal axis shows the penetrance of a
phenotype snew

∞ . The vertical axis shows the distance to snew
∞ ’s

genotype network. A circle’s area is proportional to the number of
data points in each penetrance and mutational distance category. The
panel is based on 104 circuit genotypes with N = 16 genes, c ≈ 0.35,
and d = 0.25. Penetrance and genetic distance to the new genotype
network are negatively associated (Spearman’s r = -0.293; p < 2.2 × 10-
16). The inset shows that the fraction of genotypes that are neighbors
of the new genotype network increases with penetrance.
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populations of circuits subject to repeated cycles of muta-
tion and selection.
We started by establishing a population of M = 103

identical circuits. These circuits produce a phenotype
snative

∞ from an initial state s0. We assigned individuals
with this native phenotype a fitness (survival probability)
ωnative < 1. Then, we chose a random gene activity phe-
notype snew

∞ as the target of an evolutionary search. We
assigned individuals adopting snew

∞ a fitness of ωnew = 1.
Starting from our initial population, we then carried out
two parallel evolutionary simulations. In both we chan-
ged the population through repeated generations of
replication, mutation and selection (see Methods).
In the first kind of simulation, we randomly per-

turbed each circuit’s initial state every generation. We
did so by perturbing each gene’s initial activity state
with a probability a. Then, we followed the circuit’s
gene activity dynamics, until the circuit attained its
stable gene activity phenotype. We note that two
circuits with the same genotype may produce different
phenotypes because of these perturbations. We kept
the rate of perturbation a low enough so that in most
individuals the initial condition remained unperturbed.
In the second, parallel ‘control’ simulation, we never
perturbed the initial condition. Here, individuals
needed to ‘discover’ the novel phenotype exclusively
through mutation.
In both simulations we recorded two quantities. The

first is the time (in generations) until the first individual
in the population ‘discovers’ the genotype network of
snew

∞ . We call these times t*,plast and t*,control for the
simulations with plasticity and the control simulations.
The second is the time, from either t*, plast or t*, control,
until at least one quarter of the population lies in the
new genotype network. We call these times t0.25, plast

and t0.25, control, respectively.

Figure 5a illustrates that populations in which we
allow plasticity usually discover the new genotype net-
work - a genetically determined novel phenotype - faster
than control populations (t*,plast <t*,control). This observa-
tion holds after variation in values of N, c and d: with
plasticity, the time to discovery of a new genotype net-
work is significantly lower in all cases (Table 5; Wil-
coxon signed-rank test). We also varied the rate of
perturbation per gene in s0, the fitness of the native phe-
notype ωnative, and the population size M. Nearly all
such variations yielded a significantly shorter discovery
time when we allowed phenotypic plasticity (Table 6;

Figure 5 Plasticity affects the speed of novel phenotype
acquisition. (a) Populations find a novel genotype network faster
when plasticity is allowed. The symbol t*, plast refers to the number
of generations that a population of circuits needs to discover a
specific genotype network when we allow plasticity. The symbol
t*, control refers to the same number, but for populations without
plasticity. Wilcoxon signed-rank test; p < 2.2 × 10-16. (b) Plasticity
slows the accumulation of individuals in the new genotype
network. The symbol t0.25,plast stands for the number of generations
that a population in which we allow plasticity needs to have at
least 25 percent of its circuits in the new genotype network (after
its discovery by a single individual); t0.25,control corresponds to the
same number but without plastic phenotypes. Wilcoxon signed-rank
test; p < 2.2 × 10-16. Both panels include data from 498
independent pairs of populations. Parameter values for both panels:
N = 8, c ≈ 0.4, d = 0.25, μ = 0.5, a = 0.05, M = 1000, ωnative = 0.5.

Table 4 Genetic distance to a new genotype network
decreases with increasing penetrance

N c d Spearman’s r p-value

8 0.4 0.25 -0.268 < 2.2 × 10-16

0.125 -0.211 < 2.2 × 10-16

0.3 0.25 -0.218 < 2.2 × 10-16

16 0.35 0.25 -0.293 < 2.2 × 10-16

0.25 0.125 -0.263 < 2.2 × 10-16

0.25 -0.306 < 2.2 × 10-16

20 0.3 0.25 -0.26 < 2.2 × 10-16

0.2 0.1 -0.269 < 2.2 × 10-16

0.25 -0.33 < 2.2 × 10-16

0.5 -0.4 < 2.2 × 10-16

0.1 0.25 -0.23 < 2.2 × 10-16

Data for each parameter combination is based on 104 different circuits and on
the non-parametric rank correlation coefficient Spearman’s r [76].
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Wilcoxon signed-rank test). In sum, plasticity robustly
accelerated the discovery of new, genetically stable
phenotypes.
In contrast to these observations, the time from the

discovery of a new genotype network until 25 percent
of a population occupied this genotype network was
longer for populations in which we allowed plasticity
(t0.25,control <t0.25,plast; Figure 5b). This difference, albeit
small, is statistically significant for all combinations of
values for N, c and d that we tested (Table 7). Thus,
plasticity can slow the rate at which individuals with a
genetically determined new phenotype increase in fre-
quency. In sum, the shorter discovery time of a new
genotype network associated with phenotypic plasticity
is followed by a slower transition into this new net-
work. The small plasticity-dependent delay that we
observe in our work coincides with predictions of a
previously published theoretical study [29]. In that
study, the delay arises because of a decreased selection
differential associated with alleles that have conditional
fitness effects.

Discussion
The model of gene regulatory circuits we use here is a
coarse, abstract representation of the real complexity of
such circuits. This is its main limitation and, at the
same time, its strength. It allows us to analyze millions
of circuits, their native phenotypes, and any alternative

Table 6 For nearly all combinations of parameter values, plasticity accelerates the discovery of a new optimal
genotype network

N a ωnative M Sample size Mean t*, control Mean t*, plast p-value

8 0.02 0.5 1000 498 160.3 55.1 < 2.2 × 10-16

0.08 498 160.3 53.98 < 2.2 × 10-16

0.01 498 160.3 53.49 < 2.2 × 10-16

0.05 200 498 482.27 129.2 < 2.2 × 10-16

10000 498 63.06 25.14 < 2.2 × 10-16

0.2 1000 498 53.57 29.74 < 2.2 × 10-16

0.8 498 235.86 70.17 < 2.2 × 10-16

0.95 498 251.77 79.7 < 2.2 × 10-16

16 0.01 0.5 1000 467 2476.75 1858.21 4.2 × 10-6

0.05 462 2437.04 1886.83 0.0001328

0.025 200 248 3381.98 3389.867 0.778

10000 500 548.65 392.58 1.5 × 10-14

0.2 1000 500 225.74 187.78 5.4 × 10-7

0.8 283a 4172.47 3494.55 0.00204

The number of generations that a population takes to ‘discover’ a circuit in a new genotype network is significantly lower when we allow plasticity (t*, plast <t*, control),
according to a Wilcoxon signed-rank test.

The value of d is that of the old genotype network. We analyzed 500 pairs of evolving populations for each combination of N, c and d. We discarded population
pairs in which any of the populations had not reached the new genotype network by the end of the simulation (t = 104). Thus, our actual sample size was lower
than 500 populations. The remaining parameter values are as follows: d = 0.25; μ = 0.5. c ≈ 0.4 when N = 8 and it equals 0.2 when N = 16.
a We analyzed 1500 pairs of evolving populations for the simulations that we report in this row, but the populations found the new genotype network only in
283 cases.

Table 5 Plasticity accelerates the discovery of a new
optimal genotype network

N c d Sample
size

Mean t*,
control

Mean t*, plast p-value

8 0.4 0.125 498 164.93 54.45 < 2.2 × 10-16

0.25 498 160.3 52.86 < 2.2 × 10-16

0.5 497 167.58 46.95 < 2.2 × 10-16

0.3 0.125 495 104.92 42.82 < 2.2 × 10-16

0.25 498 103.84 38.03 < 2.2 × 10-16

0.5 498 136.33 40.53 < 2.2 × 10-16

16 0.25 0.125 420 2744.8 2319.81 0.00059

0.25 435 2792.44 2299.51 3.9 × 10-5

0.5 421 2832.02 2173.54 2.2 × 10-7

0.2 0.125 464 2510.68 1700.95 1.4 × 10-11

0.25 468 2483.48 1867.23 1.2 × 10-6

0.5 473 2400.1 1758.22 1.4 × 10-7

20 0.2 0.25 154 3961.17 3303.32 0.006869

The number of generations that a population takes to ‘discover’ a circuit in a
new genotype network is significantly lower when we allow plasticity (t*, plast
<t*, control), according to a Wilcoxon signed-rank test.

The value of d is that of the old genotype network. We analyzed 500 pairs of
evolving populations for each combination of N, c and d. We discarded
population pairs in which any of the populations had not reached the new
genotype network by the end of the simulation (t = 104). Thus, our actual
sample size was lower than 500 populations. The probability a ofgene-activity
perturbation in s0 equaled 0.05 per gene when N = 8, 0.025 when N = 16, and
0.02 when N = 20. Population size M = 1000; μ = 0.5; ωnative = 0.5.
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phenotypes they might adopt. In other words, it allows
us to determine how gene expression phenotypes are
organized in circuit genotype space. This organization
has several properties that facilitate the discovery of a
new phenotype through plasticity and its genetic stabili-
zation (Figure 6). First, many circuits show plastic phe-
notypes, which helps them explore many more novel
phenotypes than mutation alone could. Second, many
circuits that can produce a new phenotype Pnew through
plasticity are neighbors of the genotype network of Pnew.
They thus allow mutational access to a genotype whose
native phenotype is Pnew. Third, similar genotypes on
the same genotype network often produce the same
alternative phenotypes. Fourth, the higher the pene-
trance of a new phenotype Pnew in a genotype G is, the
easier it is to reach Pnew’s genotype network from G.
From these observations emerges an important role for
plasticity in the discovery and stabilization of novel phe-
notypes (Figure 1): Genotypes that produce a new
phenotype through plasticity (i.e. after non-genetic per-
turbations) may frequently be intermediates in evolu-
tionary paths towards genotypes where that phenotype
is the ‘native’ phenotype.
Evolutionary simulations show that plasticity can

indeed accelerate evolutionary adaptation. In these
simulations we determined the time a population needs

to ‘discover’ the genotype network of an arbitrary novel
and adaptive phenotype. This time is significantly lower
when phenotypes are plastic than when they are not.
At the same time, plasticity causes a small reduction in

the rate at which the frequency of circuits in a new geno-
type network increases. The reason is straightforward. In
the absence of plasticity, genotypes in the new genotype
network always produce the new, best adapted phenotype.
With plasticity, the same genotypes occasionally produce
other, suboptimal phenotypes: These genotypes are thus
overall less well adapted than in the absence of plasticity,
which slows their ascent in the population. The resulting
delay is similar to that predicted by previous theoretical
work [22,29,73,74] that showed smaller selection differen-
tials in populations with plasticity. These smaller differen-
tials can result from either the different fitness effects of
the distinct phenotypes that a genotype may produce
[22,74], or from alleles that are visible to selection only
under certain environmental or genetic conditions [29,73].
At least in our study system, this delay is insufficient to
cancel out the acceleration in finding a new genotype net-
work. Plasticity accelerates the discovery of the new geno-
type network to a much greater extent than it slows down
the ‘conquest’ of this network by a population (Tables 5, 7).
In our system, the positive role of plasticity in the ori-

gin and stabilization of new phenotypes is closely tied to

Table 7 Plasticity slows down the frequency increase of
circuits in a new optimal genotype network

N c d Sample
size

Mean t0.25,
control

Mean t0.25,
plast

p-value

8 0.4 0.125 498 27.55 46.72 < 2.2 × 10-16

0.25 498 30.69 45.91 < 2.2 × 10-16

0.5 497 28.01 45.63 < 2.2 × 10-16

0.3 0.125 495 18.8 26.49 < 2.2 × 10-16

0.25 498 19.25 25.86 < 2.2 × 10-16

0.5 498 26.44 25.99 < 2.2 × 10-16

16 0.25 0.125 413 41.61 106.96 6.9 × 10-14

0.25 431 35.66 138.98 < 2.2 × 10-16

0.5 418 49.76 162.98 < 2.2 × 10-16

0.2 0.125 462 43.4 143.45 < 2.2 × 10-16

0.25 466 36.48 133.72 < 2.2 × 10-16

0.5 471 42.01 120.97 < 2.2 × 10-16

20 0.2 0.25 152 35.45 103.8 4.4 × 10-10

The number of generations that a population needs to increase the fraction
of its circuits in the new genotype network to 25 percent is significantly
higher with plasticity, i.e., t0.25,plast >t0.25,control according to a Wilcoxon signed-
rank test.

The value of d is that of the old genotype network. We analyzed 500 pairs of
evolving populations for each combination of N, c and d. We discarded
population pairs in which any of the populations never had 25% of its circuits
in the new genotype network by the end of the simulation (t = 104). Thus, our
actual sample size was lower than 500 populations. The probability a of gene-
activity perturbation in s0 equaled 0.05 per gene when N = 8, 0.025 when
N = 16, and 0.02 when N = 20. Population size M = 1000; μ = 0.5; ωnative = 0.5.

Figure 6 The organization of gene circuit genotype space
favors plasticity-mediated adaptive evolution. Shapes and colors
have the same meanings in the diagram as in Figure 1. Starting
from the blue genotype network, it is easier to find a genotype that
produces a red alternative phenotype than finding the red
genotype network. Many genotypes that produce the red
alternative phenotype have direct mutational access to the red
genotype network. Such genotypes are neighbors of other
genotypes that produce the same alternative phenotype. Among
genotypes that produce the red alternative phenotype, a high
penetrance is associated to easier access to the red genotype
network.
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the existence of large genotype networks. Such networks
allow access to very distant regions in genotype space,
while preserving an existing native phenotype. And
because the spectrum of alternative phenotypes in these
regions is not the same, genotype networks facilitate
the exploration of many novel phenotypes through
plasticity.
Early studies, albeit based on an unrealistic genotype-

phenotype map, suggested that plasticity could improve
the efficiency of an evolutionary search by smoothing
fitness landscapes [75]. Ancel and Fontana asked related
questions with a more realistic genotype-phenotype
map: the folding of RNA molecules [22]. These authors
showed that plasticity does not accelerate adaptive evo-
lution in RNA structures. The reason is that RNA mole-
cules lack the first of our four properties: It is not much
easier to discover a novel alternative phenotype than to
discover this phenotype’s genotype network. This occurs
because finding an RNA genotype capable of producing
two specific secondary structure phenotypes severely
constrains the allowed base-pairings in each RNA
structure [22].
In contrast to the RNA system, plasticity has a posi-

tive role for evolutionary adaptation in our regulatory
circuits. Thus, the role of plasticity may depend on the
level of biological organization one focuses on. We note
that much of the empirical evidence supporting
plasticity’s importance for adaptation comes from mor-
phological traits, such as head size in snakes, and devel-
opmental decisions, such as those involving spore
formation in bacteria [30-35,42,46]. In this regard, it is
significant that gene regulatory circuits are central to
shape these kinds of traits. It may thus not be a coinci-
dence that plasticity can facilitate evolutionary transi-
tions in these traits. Our modeling results suggest that
future experimental analyses will produce observations
similar to existing experiments and similar to our obser-
vations wherever regulatory circuits are involved in
adaptation.
Transcriptional regulation circuits, while important,

are not the only systems in which change can lead to
novel traits that confer a fitness advantage. Changes in
mechanical, biochemical or geometrical cell and tissue
properties, in cell-cell signaling, in hormonal communi-
cation between distant parts of the organism, or even in
behavioral traits can lead to new, potentially adaptive,
phenotypes. Whether plasticity facilitates adaptive evolu-
tion in all these traits and systems is unknown. To
answer this question will require experimental studies of
evolution in individual, mechanistically well-understood
systems associated with innovation, combined with com-
putational work like ours that reveals generic principles
of evolution for a system class. In addition, the changes
that constitute an adaptive novelty frequently span

several levels of biological organization and multiple
kinds of systems. New theoretical and empirical
approaches are needed to ask how such different levels
of biological organization interact in producing phenoty-
pic variation. Such approaches will be important to
understand the evolutionary origin of complex adapta-
tions and the role of plasticity beyond individual case
studies.

Conclusions
Our results predict that phenotypic plasticity will have
an important role in adaptive evolution that involves
changes in gene activity. The fundamental reason is that
genotypes that produce occasionally a beneficial pheno-
type (and thus have a selective advantage) give more
easily rise to genotypes where that same phenotype is
more strongly genetically determined. New adaptive
phenotypes may frequently arise first as alternative phe-
notypes, induced by non-genetic perturbations, and then
be genetically stabilized by selection. Our work thus
suggests a widespread relationship between phenotypic
plasticity and adaptive evolution in gene activity
phenotypes.

Methods
Throughout this work, we chose new non-zero entries
in a circuit’s interaction matrix from a normal distribu-
tion with mean zero and standard deviation one. Also
throughout this work, we disregarded the phenotypes of
circuits that attained no stable fixed-point activity pat-
tern, as in previous studies [11].

Sampling of random genotypes in a genotype network
To sample genotypes, we first used previously estab-
lished procedures to identify a circuit genotype that pro-
duces a certain gene activity phenotype snative

∞ from an
initial condition s0 [7]. Then, we imposed 104 random
mutations that preserve the production of snative

∞ from
s0, to erase any trace of the initial genotype. Each muta-
tion was picked at random from many possible alterna-
tives (see ‘Phenotypes accessible through mutation’
below). The genotype obtained in this manner is the
first in our sample. To sample additional genotypes in
the same genotype network, we subjected the genotype
to a series of 5m+ mutations that we required to pre-
serve snative

∞ . Here, m+ stands for the maximum number
of interactions allowed in a circuit. This procedure
allowed us to avoid correlations between consecutively
sampled genotypes.

Phenotypes accessible through perturbations in the initial
condition s0
For a circuit genotype that attains snative

∞ when its devel-
opmental dynamics start from s0, we determined the
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phenotype of the N possible single gene-activity modifi-
cations of s0. Wherever we explored the effects of dou-
ble gene perturbations of the initial condition, we
followed the same procedure, but for all N(N - 1)/2 pos-
sible two-gene perturbations.

Phenotypes accessible through mutation
To generate all neighbors of a circuit, we examined each
entry aij in the matrix A of the circuit, and distinguished
the following cases: if aij ≠ 0 we determined the pheno-
type of two mutants, one in which the circuit loses an
interaction (aij = 0), and one in which the value of aij
changes but we force its sign to remain unaltered; if aij
= 0 we obtain the phenotype of two mutants, one in
which aij > 0, and one in which aij < 0. Whenever we
required a value of aij to be either smaller or greater
than zero, we forced its sign as needed. To find the phe-
notype of a mutant circuit we followed the developmen-
tal dynamics (Eq. 1) using the unperturbed s0 activity
pattern as initial condition. We only determined the
phenotype of mutants whose number of interactions
was equal or smaller than a pre-specified value m and
equal or greater than m - 5. This allowed us to keep
interaction density c in a narrow interval, in order to
explore the effect of variations on c.

Overlap between Pμ and Ps0

We used the index C
P P

P P
s

s
=

∩| |
min(| |,| |)





0

0

to assess the

similarity between the set of phenotypes that a genotype
G produces after single mutations (Pμ) and the set of
phenotypes that G produces after perturbations in the
initial condition ( Ps0

). We obtained values of C for
each of 104 genotypes in a pre-determined genotype
network. Throughout this sampling, we built two lists of
phenotypes, Lμ and Ls0

. We kept in either Lμ or Ls0

the phenotypes that genotypes in the sample could
access through either mutation or perturbations in s0,
respectively. Then, we determined for each genotype a
second index Crand, that measures the similarity between
Pμ and Ps0

expected by chance alone. We calculated
Crand as we calculated C, but from randomized pheno-
type sets. specifically, we randomized a genotype’s Pμ

( Ps0
) by replacing each phenotype in this set by a gene

activity pattern picked at random from Lμ ( Ls0
). We

did not allow any phenotype to appear more than once
in any one randomized set. Among the 104 genotypes
that we sampled, we discarded those in which either Pμ
or Ps0

was empty.

Shortest mutational distance to a new genotype network
We picked a genotype G at random from the genotype
network of a pre-specified phenotype snative

∞ . We

selected at random one of G’s alternative phenotypes,
and called it snew

∞ . We created 103 copies of G, and
changed each copy’s regulatory interactions in a
sequence of mutational steps. None of the steps was
allowed to leave snative

∞ ’s genotype network. We stopped
the sequence as soon as one of the circuits was a neigh-
bor of snew

∞ ’s genotype network. This procedure allowed
us to estimate an upper-bound for the minimum num-
ber of mutations required to reach snew

∞ ’s genotype net-
work from G.

Evolutionary simulations
We established a population of M = 103 identical cir-
cuits. Such circuits produce a phenotype snative

∞ from an
initial state s0. We also picked a gene activity pattern
where each gene’s activity state was picked at random.
This activity pattern represents the new optimal pheno-
type snew

∞ and it is different from the native phenotype
snative

∞ . We let the population evolve through repeated
cycles (’generations’) of mutation and selection imple-
mented as follows.
To assess a circuit’s phenotype and fitness, we first

assigned an initial condition to the circuit by changing
the activity state of each gene in the unperturbed initial
condition s0 with a probability a. We used this per-
turbed initial condition to start the gene activity
dynamics dictated by the circuit’s matrix A (Eq. 1). The
resulting stable (fixed-point) activity pattern s∞ is the
circuit’s phenotype. We disregarded circuits that did not
produce a fixed-point equilibrium state. If a circuit’s
phenotype s∞ was equal to snew

∞ , then we assigned to it
a fitness ω = ωnew = 1. Otherwise, we set its fitness ω
equal to the maximum of either (1 - ynew/N)5 or ωnative

(1 - ynative/N)5, where ynew equals the number of gene
activity differences between the phenotype s∞ and snew

∞ ,
and ynative equals the number of gene activity differences
between s∞ and snative

∞ . This procedure ensures a steep
decrease in fitness for any deviations from gene expres-
sion states snew

∞ or snative
∞ .

We chose the value of a so that no gene activity was
perturbed in the majority of circuits. Unless indicated
otherwise, a = 0.02 when N = 20, a = 0.025 when N =
16 and a = 0.05 when N = 8. To study evolutionary
dynamics without plasticity, we set a equal to zero in
control populations. In these populations, circuits always
start their developmental dynamics from s0.
At each generation, we sampled individuals from the

current population with replacement. For every sampled
genotype G, we subjected with probability μ a copy of G to
mutation, thus picking one of its (mutational) neighbors at
random (see ‘Phenotypes accessible through mutation’
above). We allowed such a new circuit in the new genera-
tion with a probability equal to its fitness. In other words,
we considered fitness as survival probability. We
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continued sampling until M new individuals constituted
the population for the next generation. We stopped evolu-
tion after either at least one quarter of the population
resided in the new genotype network, or after 104 genera-
tions, whichever came first. For all simulations, ωnative =
0.5, M = 103, μ = 0.5, unless indicated otherwise.

Additional material

Additional file 1: Figure S1. Gene circuits exploring a genotype
network find genotypes with new alternative phenotypes faster than
they find new genotype networks, for different parameter combinations.

Additional file 2: Figure S2. Mutations and perturbations in the initial
condition s0 produce the same phenotypes more often than expected
by chance.

Additional file 3: Analysis S1. Genetic distance to a genotype network
decreases with increasing phenotypic penetrance, for alternative
phenotypes produced after two-gene perturbations in the initial
condition.

Additional file 4: Analysis S2. High penetrance increases the number
of mutational paths to a new genotype network.

Additional file 5: Analysis S3. Mutations that increase in penetrance
facilitate access to a new genotype network.
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