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Abstract

Importance—The “amyloid hypothesis” posits that disrupted amyloid-beta (Aβ) homeostasis 

initiates the pathological process resulting in Alzheimer disease (AD). Autosomal dominant 

Alzheimer disease (ADAD) has an early symptomatic onset and is caused by single gene 

mutations that result in overproduction of Aβ42. To the extent that “sporadic” late-onset Alzheimer 

disease (LOAD) also results from dysregulated Aβ42, the clinical phenotypes of ADAD and 

LOAD should be similar when controlling for the effects of age.

Objective—To use a family with late-onset ADAD caused by a presenilin 1 (PSEN1) mutation to 

mitigate the potential confound of age when comparing ADAD and LOAD.

Design—Case-control study of a family with late-onset ADAD and individuals with 

histopathologically-proven LOAD.

Setting—The Knight Alzheimer Disease Research Center, Washington University, St Louis, and 

other National Institutes of Aging-funded Alzheimer Disease Centers in the United States.

Participants—Ten PSEN1 A79V mutation carriers from multiple generations of a family with 

late-onset ADAD (median age-at-onset, 75.0 [63–77] years) and 12 noncarrier family members, 

followed at the Knight Alzheimer Disease Research Center (1985–2015); and 1115 individuals 

with neuropathologically confirmed LOAD (median age-at-onset, 74.0 [60–101] years) from the 

National Alzheimer Coordinating Center database (09/2005-12/14).

Main Outcome and Measure—Planned comparison of clinical characteristics between 

cohorts, including age at symptomatic onset, associated symptoms and signs, rates of progression, 

and disease duration.

Results—Seven (70%) mutation carriers developed AD dementia, while three are yet 

asymptomatic in their 7th and 8th decades of life. No differences were observed between mutation 

carriers and individuals with LOAD concerning age at symptomatic onset, presenting symptoms 

and duration, and rate of progression of dementia. Early emergence of comorbid hallucinations 

and delusions were observed in 57% of individuals with ADAD versus 19% of individuals with 

LOAD (p=.03). Three of twelve (25%) noncarriers from the PSEN1 A79V family are potential 

phenocopies as they also developed AD dementia (median age at onset=76.0 years).

Conclusions and Relevance—In this family, the amyloidogenic PSEN1 A79V mutation 

recapitulates the clinical attributes of LOAD. Previously reported clinical phenotypic differences 

between individuals with ADAD and LOAD may reflect age- or mutation-dependent effects.
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Introduction

A central tenet of the “amyloid hypothesis” is that accumulation and aggregation of 

insoluble amyloid beta peptide (Aβ42) represents a critical, causative step in the 

pathogenesis of Alzheimer disease (AD).1 Perhaps the strongest supporting evidence for the 

amyloid hypothesis is the finding that rare, dominantly-inherited pathogenic mutations in the 

amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes 

lead to clinically-symptomatic autosomal dominant Alzheimer disease (ADAD) by 

enhancing the conversion of APP to amyloidogenic Aβ42.1–5 Longitudinal analyses of 

cohorts of individuals with ADAD have informed the understanding of the clinical and 

paraclinical disease phenotypes resulting from disrupted cerebral Aβ42 metabolism.6,7 

However, compared with sporadic late-onset AD (LOAD), the symptomatic onset of ADAD 

usually begins at a much earlier age (46.2 versus 72.0 years).7,8 Also, ADAD may be 

characterized by clinical features that are unusual in LOAD, including pyramidal signs, 

hypo/hyperkinetic movement disorders, ataxia, and early myoclonus and seizures.9–18 

Additional differences in the pattern of cerebral Aβ42 deposition are reported in some 

ADAD cases, including 6,16,19,20 higher Aβ42 burden and greater densities of neurofibrillary 

tangles;21–23 increased Aβ42 deposition within the cerebellum24–26 and basal ganglia;19,20; 

and higher prevalence of cerebral amyloid angiopathy and large diffuse so-called “cotton 

wool” plaques.12,22,24,27 Such clinical and pathological differences may challenge whether 

findings from studies of early-onset ADAD, including current trials of anti-amyloid 

therapies,28 can be extrapolated to the understanding of the far more common LOAD.29,30 

Clinical differences may also be interpreted to suggest that ADAD and LOAD are 

etiologically distinct.

A pathogenic PSEN1 A79V mutation was identified in members of a family followed at the 

Knight Alzheimer Disease Research Center (ADRC) who developed late-onset AD 

dementia, with symptoms beginning in the 7th and 8th decades of life, and who were initially 

presumed to have sporadic LOAD.31 The PSEN1 A79V mutation is known to cause early-

onset ADAD in other families.11,32,33 PSEN1 knockout cells transfected with the A79V 
mutant PSEN1 showed significantly increased Aβ42 secretion, confirming the 

amyloidogenic potential of this mutation.31 Reports of individuals with late-onset ADAD are 

rare16,33,34 but offer the opportunity to mitigate the confound of age in comparisons with 

LOAD. Because dysregulation of Aβ42 metabolism appears central to both ADAD and 

LOAD,29,30,35 we hypothesized that the clinical characteristics of our cohort of PSEN1 
A79V mutation carriers (MCs) with late-onset ADAD would overlap with those of LOAD.

Methods

Participant identification and recruitment

Twenty-two members of a family now known to carry the PSEN1 A79V mutation were 

research participants in longitudinal studies at the Knight ADRC across a 30 year period 

(1985–2015). Ten of these 22 individuals were PSEN1 A79V MCs. MCs were clinically 

assessed with semi-structured interviews with a knowledgeable collateral source and with 

the symptomatic individual, and detailed neurological examinations were performed on the 

individual. The remaining two MCs were not examined; history was obtained through 
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interviews with a reliable collateral source. Dementia severity was determined at each 

assessment with the Clinical Dementia Rating (CDR),36 a global dementia rating scale that 

determines the presence or absence of dementia, rates dementia severity when present, and 

provides a composite measure of dysfunction across six cognitive and functional domains. 

Summation of scores across these domains yields the CDR Sum of Boxes score (CDR-SB), 

which can be used longitudinally to quantify AD progression.37 All staff involved in 

assessments were blinded to mutation status. All studies were approved by the Washington 

University School of Medicine Human Studies Committee. Informed consent was obtained 

from all research participants, including permission for autopsy.

Comparative data from deceased individuals with LOAD was obtained from the National 

Alzheimer’s Coordinating Center (NACC) Uniform Data Set (UDS)38 and Neuropathology 

Data Set (NPDS), including participants assessed from September 2005 to December 2014 

from 34 current and past National Institute on Aging (NIA) Alzheimer Disease Centers. 

NACC data were selected to provide a national representation of LOAD. Individuals were 

included from NACC if they met the following criteria: (1) neuropathologic assessment that 

yielded an “intermediate” or “high” probability of causing AD dementia;39 (2) UDS data for 

at least one clinical visit preceding death; and, (3) a diagnosis of AD dementia at their last 

clinical assessment, with age-at-symptomatic onset (CDR ≥0.5) ≥60 years. AD 

neuropathologic change was based on a modification of the NIA-AA criteria for 

neuropathologic AD “ABC score”,39 reported previously.40,41

The phenotypes of PSEN1 A79V MCs were compared with those of LOAD across 

predetermined clinical measures. Demographic details were reported at the time of first 

assessment for all individuals, including age, gender and education. Dementia features were 

extrapolated from the UDS for NACC individuals, and from the UDS recorded within the 

Knight ADRC research records for PSEN1 A79V family members assessed since 

implementation of the UDS (i.e., 2005).38 Assessed features included dementia mode of 

symptom onset (i.e., gradual, subacute, abrupt, other); presenting symptom(s) of dementia 

(i.e., impairment of memory, orientation, language, visuospatial function, executive function, 

attention, other); rate of dementia progression, as operationalized by annualized change in 

CDR-SB); and duration from symptomatic onset to death. Similarly, the prevalence of 

associated symptoms, signs, and comorbidities in individuals with very mild (CDR 0.5) and 

mild (CDR 1.0) dementia were determined from review of UDS data for all participants 

assessed since 2005. The prevalence of depressive symptoms was estimated based on 

clinician reporting of active depression (UDS Form D1: Clinician Diagnosis) and/or the 

presence of depressive symptoms for two weeks or more in the past year (UDS Form B9, 

Clinician Judgement of Symptoms). “Psychiatric symptoms or signs” were deemed present 

when hallucinations (visual or auditory) or delusions were reported by assessing clinicians 

(UDS Form B9: Clinician Judgement of Symptoms), or when severe agitation was noted 

within the month preceding the clinical assessment (UDS, Neuropsychiatric Inventory 

Questionnaire42). Language deficits, visuospatial impairment, and parkinsonism were 

inferred from the UDS Form B9 (Clinician Judgement of Symptoms) or D1 (Clinician 

Diagnosis). A history of recent/active seizures was extracted from the UDS Form A5 

(Subject Health History). In Knight ADRC participants assessed prior to 2005, clinical 

information was derived through direct review of research records, including detailed 
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interviews with knowledgeable collateral sources who were directly asked about the 

presence of symptoms, signs and comorbidities associated with dementia, and neurological 

examinations performed on participants. Apolipoprotein E (APOE) ε4 allele status was 

reported for NACC participants, and determined within the Knight ADRC Genetics Core for 

PSEN1 A79V MCs.

Neuropathology

By the end of 2015, five PSEN1 A79V MCs with late-onset ADAD had died; by December 

31, 2015 all had brain autopsy. Autopsies were limited to the removal of the brain. Four of 

these cases were examined at the Knight ADRC; the fifth case was examined at an outside 

site. The four Knight ADRC brains were examined macroscopically, tissue blocks dissected, 

and histological stains and immunohistochemistry applied following established protocols.43 

Formalin-fixed, paraffin wax-embedded tissue blocks representing 16 areas were taken, 

including the middle frontal gyrus, superior and middle temporal gyri, inferior parietal lobe 

(angular gyrus), occipital lobe (to include the calcarine sulcus and peristriate cortex), 

anterior cingulate gyrus at the level of the genu of the corpus callosum, posterior cingulate 

gyrus and precuneus at the level of the splenium, amygdala and entorhinal cortex, 

hippocampus and parahippocampal gyrus at the level of the lateral geniculate nucleus, 

striatum (caudate nucleus and putamen) at the level of the anterior commissure, lentiform 

nuclei (globus pallidus and putamen), thalamus and subthalamic nucleus, midbrain, pons, 

medulla oblongata, cerebellum with dentate nucleus, and spinal cord. Sections were stained 

with hematoxylin and eosin and a modified Bielschowsky silver impregnation. 

Immunohistochemistry was performed using the following antibodies: Aβ (10D5; Eli Lilly, 

Indianapolis, IN, USA), phospho-tau (PHF1; a gift of Dr. P. Davies), phospho-α-synuclein 

(phospho-α-synuclein (Ser129); Cell Applications, Inc., San Diego, CA, USA), and 

phospho-TDP-43 (Cosmo Bio USA, Inc., Carlsbad, CA, USA). The National Institute on 

Aging-Alzheimer’s Association criteria for the neuropathologic diagnosis of AD were 

applied.39

Statistical Analysis

Clinical variables from PSEN1 A79V MCs and individuals with LOAD were summarized 

using descriptive statistics. Continuous numerical variables were compared using the non-

parametric Mann-Whitney U-test. Categorical data was compared using Fisher’s exact test. 

The relationship between APOE ε4 carrier status and age at symptomatic onset (AAO) was 

considered through a Kaplan-Meier survival analysis. Overall differences in survival were 

assessed using the Mantel-Cox (log-rank) statistic. Statistical analyses were conducted using 

statistical software (IBM SPSS Statistics 23, IBM Corporation; and R Statistical Computing 

Software, www.r-project.org). Statistical significance was reported when p<0.05.

Results

Ten of 22 genotyped family members were PSEN1 A79V MCs (45% carrier rate). All 

individuals were part of a single multigenerational family of European ancestry living in the 

United States. All spoke English as their primary language. MCs underwent a median of 2.5 

[1–9] annual research evaluations, across 0 to 11.6 years. Seven of the MCs developed 
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progressive cognitive impairment due to AD dementia, with a median AAO of 75.0 [63–77] 

years. The remaining 3 MCs (all ≥60 years-old at their last assessment) still were cognitively 

normal (CDR 0) by December 31, 2015. Clinical information from 1115 participants with 

LOAD was obtained from the NACC for comparison. Participants with LOAD had a median 

AAO of 74 [60–101] years. Considerable overlap was observed in AAO, disease duration, 

and annualized rate of dementia progression between PSEN1 A79V MCs and individuals 

with LOAD (Figure 1).

Demographic characteristics; dementia features; associated symptoms, signs and 

comorbidities; and APOE allele status are reported for individuals with ADAD and LOAD 

(Table 1). Only educational attainment was lower in the ADAD cohort. Dementia most 

commonly presented insidiously, with a gradually progressive course, featuring memory loss 

as the presenting symptom in the vast majority of individuals. The early emergence of 

hallucinations and delusions distinguished PSEN1 A79V MCs from individuals with LOAD, 

occurring in 57% (4/7) of MCs with very mild or mild AD dementia, but in only 19% 

(137/706) of individuals with LOAD (p=.03). In 3 MCs, mild psychoses was noted 

concurrent with presenting symptoms of memory loss, manifesting with paranoid delusions 

in two individuals (suspicions that others were stealing money or food, in two MCs), and 

non-threatening complex auditory hallucinations of a baby crying in one MC. The remaining 

affected MC developed psychosis 3 years following dementia onset, manifesting with a non-

threatening delusion that someone else was in the room. An additional affected MC 

experienced severe agitation/aggression requiring hospitalization and titration of 

antipsychotic medications 3 years after dementia onset. The remainder of clinical features 

were similarly distributed between populations, including depressive symptoms, language 

deficits, visuospatial impairment, parkinsonism and seizures. There were no differences in 

the frequency of APOE ε4 carriers between groups, and a survival analysis showed no effect 

of APOE ε4 carrier status and dementia AAO in PSEN1 A79V MCs.

Histopathological analyses revealed an intermediate (n=1) or high (n=4) level of AD 

neuropathologic change in the 5 MCs who came to autopsy (Table 2). Aβ plaques and 

neurofibrillary tangles were prominent in cortical association areas including the medial 

temporal lobe. A lower density of neuritic pathology was noted in deep gray nuclei. Mild to 

moderate cerebral amyloid angiopathy was a consistent finding. Lewy bodies limited to the 

substantia nigra pars compacta were present in one case (Case E). Arteriolosclerosis with 

lacunar infarcts were present in two cases (B and E). “Cotton wool” plaques27 were absent.

Three of 12 (25%) genotyped noncarrier family members developed dementia (CDR≥0.5) in 

the 8th to 9th decades of life. One noncarrier was diagnosed with symptomatic AD and had 

neuropathologic AD confirmed at autopsy (lacunar infarcts also were present). One 

individual with parkinsonism developed dementia with visual and auditory hallucinations 

with paranoid delusions; the neuropathologic assessment met criteria for AD with cortical 

Lewy bodies. The third noncarrier was diagnosed with normal pressure hydrocephalus at age 

70 and managed with ventriculoperitoneal shunting.
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Discussion

We report a generally comparable clinical phenotype between MCs from a family with late-

onset ADAD due to a PSEN1 A79V mutation, and individuals with LOAD. Similar AAO; 

duration of dementia; rates of progression; and associated symptoms, signs and 

comorbidities were found for this ADAD family and LOAD. Hallucinations and delusions 

were reported more frequently in PSEN1 A79V MCs from this family, as has been noted 

previously in individuals with ADAD.44,45 These findings demonstrate that the clinical 

phenotypes of late-onset ADAD and LOAD can overlap, and suggest that previously 

reported clinical (e.g., seizures, early myoclonus, spastic paraparesis, dysarthria, and rapid 

decline9–18) and neuropathological differences (e.g., altered cerebral Aβ42 and 

neurofibrillary tangle deposition, increased prevalence of cerebral amyloid angiopathy, and 

formation of “cotton wool” plaques6,12,16,19–27) may reflect age- or mutation-dependent 

effects.

The factors contributing to the later dementia AAO in this PSEN1 A79V family remain 

unknown. AAO was not influenced by APOE allele carrier status, suggesting that additional, 

as of yet unexplained, genetic, epigenetic or host factors must account for the late AAO, 

consistent with reports that family history and mutation type account for a significant 

proportion of the variance in AAO across a broad range of ADAD families.7 Within PSEN1 
families, this variance may be influenced by Aβ-independent effects resulting from 

disruption of other functions of PSEN1, including its role as an endoplasmic reticulum 

calcium leak channel.46 These Aβ-independent effects could contribute to both the observed 

variability in AAO and phenotypic discordance between PSEN1 ADAD and LOAD. A79V 
is unusual among PSEN1 mutations as it was the only one of six screened PSEN1 mutations 

that did not impact PSEN1-related calcium channel function, as measured by calcium 

imaging experiments using presenilin-null mouse embryonic fibroblasts.46 The limited 

secondary effects on cellular calcium homeostasis associated with the PSEN1 A79V 
mutation may contribute to the later AAO reported in this cohort and others.16,33 

Additionally, variability may reflect alterations in the metabolism of other known PSEN1 
cleavage substrates, including Notch, a transmembrane receptor involved in neuronal 

development and function.47 PSEN1 A79V mutations have been shown to alter Aβ42 levels 

and Aβ42/40 ratio in cell culture, and MCs from the family described herein were previously 

found to have high CSF Aβ42 and Aβ42/40 ratios: findings that suggest gamma-secretase 

function may be altered in PSEN1 A79V MCs within this family.31 To our knowledge, the 

effect of PSEN1 A79V mutations on gamma-secretase-mediated Notch cleavage has not 

been previously investigated. However, the finding that many other pathogenic PSEN1 
mutations which alter Aβ42 production also impact Notch cleavage,48 suggests that PSEN1 
A79V mutations could have a similar effect. Future studies are required to address this issue, 

and to explore other molecular mechanisms through which the PSEN1 A79V mutation may 

impact disease phenotype.

Because of the late AAO, family members were enrolled in research studies with 

presumptive LOAD until the unexpected discovery of a pathogenic mutation in an affected 

family member.31 That the PSEN1 A79V mutation was responsible for symptoms in 7 of 10 

family members who developed dementia late in life suggests that it may be necessary to 
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reconsider the criteria used to select individuals with symptomatic AD for genetic testing. 

Testing for ADAD-associated mutations is considered for individuals with both early-onset 

AD and ≥2 affected family members (third-degree relatives or closer).49 These criteria are 

seldom applied to individuals with LOAD given the higher baseline prevalence of sporadic 

AD in this population.

Previous reports suggest that the early expression of prominent behavioral and psychiatric 

symptoms may represent a clinical marker for PSEN1 families.44,45 Although psychiatric 

symptoms and signs were observed more frequently in PSEN1 A79V MCs within this 

family, the specificity of this finding is expected to be low when all causes of dementia are 

considered across a broader population of patients. Indeed, visual hallucinations were 

reported in one noncarrier family-member with pathologically-proven AD and Lewy bodies. 

Absent a specific marker of late-onset ADAD, therefore, we support the recommendation 

that genetic counselling be considered in symptomatic individuals from families with 4 or 

more affected individuals with LOAD.50 The emergence of psychosis early in the course of 

dementia in such family members may further justify testing. This recommendation has 

potentially important implications for clinical practice, where the emphasis on genetic 

evaluation in individuals with early-onset AD has likely obscured prevalence estimates of 

late-onset ADAD, and identification of associated mutations.

The present work is subject to several limitations, including the small number of affected 

individuals available for study, and potential variability in reporting of clinical results across 

the multiple Alzheimer Disease Centers that contribute to the NACC. Lack of power may 

have affected our ability to quantify differences between individuals with ADAD and 

LOAD, and to investigate the clinical factors that may have contributed to the later-than-

expected dementia AAO in PSEN1 A79V MCs. Similarly, the modest number of PSEN1 
A79V cases reviewed at autopsy limited the ability to perform a quantitative comparison of 

neuropathological findings between this cohort and LOAD cases. Finally, we present clinical 

information from three PSEN1 A79V MCs who remain cognitively normal beyond the 7th 

decade of life. This finding may raise questions concerning whether amyloidogenic 

mutations invariably lead to AD, although all 3 asymptomatic MCs remain well within the 

expected range of onset of symptomatic AD observed within affected family members and 

may yet develop AD dementia. This issue will be further clarified through continued 

prospective follow-up.

At least for this PSEN1 A79V family an amyloidogenic mutation largely recapitulates the 

clinicopathological attributes of sporadic LOAD. This recapitulation indirectly supports the 

concept that ADAD and LOAD arise from parallel pathways, and suggests that at least some 

research findings involving individuals with ADAD may be extended to individuals with 

LOAD. The degree to which variability in the severity of amyloidogenic mutations, host 

genetic, epigenetic and environmental factors contribute to the AAO within and between 

PSEN1 A79V families should be further considered through adequately powered prospective 

observational studies.
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Figure 1. 
Age at symptomatic onset (AAO), duration of symptomatic dementia, and rate of dementia 

progression in sporadic late-onset Alzheimer disease (LOAD) and A79V family members 

with dementia. Control data from participants in the National Alzheimer’s Coordinating 

Center is shown as boxplots (N=1115 for Dementia AAO and Disease Duration; N=837 for 

Dementia Progression). The distribution of dementia AAO, disease duration (years), and rate 

of dementia progression (annualized change in CDR sum of boxes) are shown through 

scatterplots for individual cases (N=7 for Dementia AAO; N=5 for Dementia Duration and 

Progression).
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Table 1

Summary of clinical information for individuals with LOAD and PSEN1 A79V mutation carriers with ADAD

Family members with dementia

LOAD
p value, carriers 
versus LOADPSEN1 A79V carriers Noncarriers

Demographic details N=7 N=3 N=1115

 Median age at symptomatic onset (range), years 75.0 (63–77) 76.0 74.0 (60–101) .29

 Female gender (%) 4 (57) 2 (67) 529 (47) .71

 Median education (range), years 12 (8–15) 12 (8–15) 16 (2–24) .01

Dementia features

 Mode of onset of dementia: insidious onset, gradual 
progression (%)

7 (100) 3 (100) 1105 (99) >.99

 Presenting symptom of dementia, memory loss (%) 7 (100) 3 (100) 958/1063 (90) >.99

 Median duration of dementia (range), years 9.9+ (2.3–12.8) 5.1+ (<10 years) 9.0 (1–27.0) .73

Rate of dementia progression

 Change in CDR sum of box scores/year (range) 1.2 (0.1–3.3)
N=5

1.64 (1.04–1.68)
N=3

1.9 (−3.5–11.9)
N=837

.42

Associated symptoms, signs and comorbidities early in the disease course (CDR≤1)

 Depressive symptoms (low mood; %) 3 (43) 3 (100) 309/706 (44) >.99

 Psychiatric symptoms/signs 5 (71) 1 (33) 163/706 (24) .01

  Hallucinations or delusions, % 4/7 (57) 1 (33) 137/706 (19) .03

  Severe agitation, % 1/7 (14) 0 (0) 42/706 (6) .35

 Language deficit (%) 3 (43) 0 454/706 (58) .26

 Visuospatial impairment (%) 4 (57) 0 413/706 (64) >.99

 Parkinsonism (%) 2 (29) 1 (33) 64/706 (9) .13

 Seizures (active; %) 0 (0) 0 4/706 (1) >.99

APOE allele status

 APOE ε4 carrier (%) 5/7 (71) 2 (67) 568 (51) .45

 - Unknown 1/7 (14) 0 167 (15) >.99

+
Calculation limited to participants in whom complete duration was known
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