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Noise in gene expression can lead to reversible phenotypic switch-
ing. Several experimental studies have shown that the abundance
distributions of proteins in a population of isogenic cells may display
multiple distinct maxima. Each of these maxima may be associated
with a subpopulation of a particular phenotype, the quantification
of which is important for understanding cellular decision-making.
Here, we devise a methodology which allows us to quantify multi-
modal gene expression distributions and single cell power spectra in
gene regulatory networks. Extending the commonly employed linear
noise approximation, we rigorously show that, in the limit of slow
promoter dynamics, these distributions can be systematically ap-
proximated as a mixture of Gaussian components in a wide class of
networks. The resulting closed-form approximation provides a prac-
tical tool for studying complex nonlinear gene regulatory networks
that have thus far been amenable only to stochastic simulation. We
demonstrate the applicability of our approach in a number of genetic
networks, uncovering previously unidentified dynamical characteris-
tics associated with phenotypic switching. Specifically, we elucidate
how the interplay of transcriptional and translational regulation can
be exploited to control the multimodality of gene expression distri-
butions in two-promoter networks. We demonstrate how phenotypic
switching leads to birhythmical expression in a genetic oscillator, and
to hysteresis in phenotypic induction, thus highlighting the ability of
regulatory networks to retain memory.

gene expression noise | chemical master equation

Significance statement. Phenotypes of an isogenic cell popula-
tion are determined by states of low and high gene expression.
These are often associated with multiple steady states pre-
dicted by deterministic models of gene regulatory networks.
Gene expression is, however, regulated via stochastic molec-
ular interactions at transcriptional and translational levels.
Here, we show that intrinsic noise can induce multimodal-
ity in a wide class of regulatory networks whose correspond-
ing deterministic description lacks multistability, thus offer-
ing a plausible alternative mechanism for phenotypic switch-
ing without the need for ultrasensitivity or highly cooperative
interactions. We derive a general analytical framework for
quantifying this phenomenon, thereby elucidating how cells
encode decisions, and how they retain memory of transient
environmental signals, using common gene regulatory motifs.

An increasing number of single cell experiments have been
reporting bimodal gene expression distributions [1, 2, 3],

providing evidence that gene regulatory interactions encode
distinct phenotypes in isogenic cells. Cellular decision-making
is undermined by epigenetic stochasticity, in that fluctuations
allow cells to switch reversibly between distinct phenotypic
states, as has been observed in bacteria [4], yeast [5], and
cancer cells [6]. It has been argued that such stochastic tran-
sitions in gene activity can affect stem cell lineage decisions
[7, 8]. Similarly, they may present advantageous strategies
when cells make decisions in changing environments [9]. Here,
we develop a quantitative methodology which allows us to ex-
plore the implications of phenotypic switching, and the phe-
nomena associated with it.

It is known that gene regulatory networks involving slow
promoter switching may lead to distinct expression levels hav-
ing significant lifetimes; hence, overall expression levels are
characterized by bimodal distributions [10, 11, 12] or, more

generally, by mixture distributions. However, it remains to be
resolved how modeling can generally describe and parametrize
these distributions. A positive resolution is crucial for the de-
velopment of testable quantitative and predictive models, e.g.,
when investigating the sensitivity of bimodality against vari-
ation of model parameters, for estimating rate constants from
experimentally measured distributions, in the design of syn-
thetic circuitry with tuneable gene expression profiles, but,
most importantly, when determining the implications of phe-
notypic decision-making.

A class of theoretical models based on the Chemical Mas-
ter Equation (CME) predicts bimodal protein distributions
in the absence of bistability in the corresponding determin-
istic model [12, 13], some of which have been verified exper-
imentally [1, 4, 14]. Recent efforts to quantify this type of
cell-to-cell variability have been limited to particular simple
examples [12, 13, 8], which is mainly due to the difficulty of
obtaining analytical solutions from the CME. It therefore re-
mains unclear when bimodality is observed in more complex
gene regulatory networks, and how the resulting phenotypic
variability can be quantified.

The conventional linear noise approximation (LNA) of the
CME represents a systematic and commonly used technique
for the quantification of gene expression noise [15]. While the
LNA is valid for many common biochemical systems, it fails to
predict distributions with more than a single mode, as its solu-
tion is given by a multivariate Gaussian distribution which is
strictly unimodal. The reason is that the implicit assumption
underlying the LNA, namely, that all species are present in
large molecule numbers, cannot be justified for general gene
regulatory networks, since most genes occur in only one or
two copies in living cells. Hence, the conventional LNA is too
restrictive to describe distributions that are observed in gene
regulation.

Here, we present a methodology which extends the range
of validity of the LNA to gene regulatory networks that, in
the absence of deterministic multistability, display more than
a single mode in distribution. The underlying key idea is to
treat promoter dynamics exactly using the CME, while ap-
proximating mRNA and protein distributions in the limit of
large molecule numbers via a conditional LNA. The overall
cell-to-cell variability can then be decomposed into individual
Gaussian components, each of which is characterized by three
quantities: the fractional lifetime of each state, as well as the
mode and the width of each distribution component. Explicit
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(closed-form) expressions are presented here for all of these
quantities.

Our approach thus allows us to explore phenomena ac-
companying multimodality that could previously not be in-
vestigated. In the process, we identify a trade-off between
transcriptional and post-transcriptional control as being key
for the regulation of phenotypic diversity. We analyze how
slow noise in protein production rates can be integrated into
digital responses by genetic oscillators including birhythmic-
ity and all-or-none responses. In contrast to current thought
[16], we demonstrate that bistability is not required for gener-
ating hysteretic responses in gene regulatory networks, and we
identify an optimal time window for this effect to be observed.

Results
General model formulation.We consider general gene regula-
tory networks which are composed of a number of promoters
that can be in NG states and a set of NZ corresponding gene
expression product species. The overall state of the network
is then described by the vector G = (nG1

, nG2
, . . . , nGNG

),

where nGi
denotes the number of promoters in state i, as well

as by the vector of concentrations of gene expression prod-
ucts Z = (nZ1

/Ω, nZ2
/Ω, . . . , nZNZ

/Ω), which comprises all

RNA and protein species of interest; here, Ω is the cell vol-
ume. Assuming well-mixed conditions, the joint probability
distribution Π(G,Z, t) is described by the CME (SI Appendix
2) for the regulatory network illustrated in Fig. 1. We as-
sume promoter state transitions to occur either via unspe-
cific effects such as chromatin remodeling or DNA-looping,
or via transcriptional regulation. Apart from transcription
and translation, we allow for gene products to be involved
in general post-transcriptional, post-translational, as well as
translational regulation.

The above formulation involves two biochemical timescales
of interest: those of reactions that change the promoter state,
and those of reactions which involve only gene products.
Specifically, it follows that, if the former reactions occur less
frequently than the latter or vice versa, the timescales of pro-
moter and gene product species must be well separated. In ef-
fect, the corresponding CME can be decomposed into an equa-
tion for the conditional fast species and one for the slow ones
[17]. Further, one can show (SI Appendix 4) that fast pro-
moter dynamics implies unimodality in the absence of bista-
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Fig. 1. Modeling gene regulatory interactions: Representation

of a regulatory network consisting of promoters from which mRNA is transcribed,

followed by translation of protein in accordance with the central dogma. Each gene

expression pathway involves reactions that modify gene expression products post-

transcriptionally and post-translationally, as well as regulatory interactions that change

the promoter state, such as chromatin remodeling or DNA looping. In addition, we

consider upstream regulation via transcription factors (transcriptional feedback) or

via RNA-binding proteins (translational feedback). We define a slow promoter net-

work as one in which reactions that alter its state are less frequent (light arrows,

slow) compared to ones that leave it unchanged (heavy arrows, fast). The separation

of physiological abundances, with only one or two copies of each promoter per cell,

but few to tens of mRNA and tens to thousands of protein molecules, is taken into

account explicitly by the conditional LNA.

bility. We derive a conditional LNA that predicts multimodal
mixture distributions in the case of slow promoter dynamics.
Later, we also demonstrate how this extended LNA can be
applied to obtain estimates for gene expression distributions
that are uniformly valid over all timescales.

Gene expression distributions from slow promoters.Gene reg-
ulatory networks expressing more than a single phenotype can
be characterized by mixture distributions [18]. Intuitively, it
might be expected that we can describe the probability dis-
tribution Π(Z|G, t), given a certain promoter state G, under
the assumption that any reactions affecting promoters vary
on a much slower timescale than those that affect only gene
products. Averaging these conditional distributions over all
possible promoter states then yields

Π(Z, t) =
∑

G

Π(G, t)Π(Z|G, t), [1]

as can be deduced using Bayes’ theorem. Qualitatively, we
may associate (i) the set of the different modes of the mixture
components with the set of distinguishable phenotypes, (ii)
their relative weights with the probability for a given pheno-
type to be observed, and (iii) the spread of these components
with the phenotypic variability.

Quantitatively, the question of when the mixture distri-
bution Π(Z, t) is multimodal can only be answered once the
components Π(Z|G, t) and the associated weights Π(G, t) in
Eq. (1) have been derived from the CME; in practice, how-
ever, these cannot be evaluated in closed form. We address
this issue by defining a systematic approximation procedure
that makes use of the system size expansion for the gene ex-
pression products while retaining the discreteness of promoter
states. In the limit of sufficiently large molecule numbers of
gene products, these distributions can then be approximated
via an LNA for the conditional variables of the CME (SI Ap-
pendix 3.2). We therefore introduce the ansatz

Z|G = [Z|G] + Ω− 1

2 ǫZ|G [2]

for the conditional LNA which, for each promoter state, sep-
arates the gene product concentration into its conditional av-
erage [Z|G] and the fluctuations ǫZ|G about it. Similarly to
the conventional LNA, the conditional averages in the above
equation are determined from a set of conditional rate equa-
tions at quasi-steady state,

0 =
d

dt
[Z|G] = Sf(G, [Z|G]), [3]

where we only account for those reactions in Fig. 1 that affect
gene products; moreover, since we assume that the latter are
fast, we evaluate Eq. (3) at steady state. Here, S denotes
the corresponding stoichiometry, while f(G, [Z|G]) are the
associated rate functions, with the promoters being in state
G.

A particular advantage of the above procedure is that it
allows us to predict the relative weight of the mixture com-
ponents in Eq. (1). These are given by the probability of
the promoter state Π(G, t), and determine the variability on
the slow timescale. Specifically, under stationary conditions,
they may be interpreted as the fractional lifetimes of a certain
phenotype. The CME governing the slow promoter transitions
can then be derived using the ansatz in (2), see also (SI Ap-
pendix 3.2), and is given by averaging over the fast conditional
protein fluctuations:

d

dt
Π(G, t) =

NR∑

j=1

(aj(G−Rj , [Z|G−Rj ])Π(G−Rj , t)

−aj(G, [Z|G])Π(G, t)) . [4]
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Here, the vector Rj represents the stoichiometry of the jth

of NR slow promoter transitions for j = 1, . . . , NR, while
aj (G, [Z|G]) is the associated propensity, where protein con-
centrations have been replaced by their conditional averages,
as given by Eq. (3). The above CME can typically be solved
in a straightforward manner, as (i) its state space is neces-
sarily finite due to promoter conservation, (ii) it involves only
linear reactions, and (iii) physiological copy numbers concern
only one or two individual promoters. Specifically, for a sin-
gle promoter with NG internal states, the right-hand side of
Eq. (4) reduces to NG linear rate equations, where the rates
only depend on the conditional means of gene product con-
centrations from which a solution for multiple identical gene
copies can be derived (SI Appendix 3.7).

The remaining quantity to be determined is the condi-
tional distribution by means of the LNA of the CME. Re-
calling that reactions affecting the promoter state are slow, it
can be shown (SI Appendix 3) that the conditional gene prod-
uct distribution assumes a quasi-stationary state: π(Z|G) =
limµ→∞ Π(Z|G, t), where µ is the ratio of slow and fast reac-
tion timescales. We note that, in contrast to the case of fast
promoter fluctuations, the above equation implies NG condi-
tional product distributions. It follows from the system size
expansion that the conditional distribution π(Z|G) is approx-
imately Gaussian in the limit of sufficiently large molecule
numbers of gene products (SI Appendix 3.2.1) and, hence,
that the modes of the mixture components are given by the
gene product concentrations about which the conditional dis-
tributions are centered:

π(Z|G) =
(2π)−NZ/2

det(ΣZ|G)
e
− 1

2
(Z|G−[Z|G])T Σ−1

Z|G
(Z|G−[Z|G])

.

[5]

In particular, the set of significantly different modes de-
termines the set of distinguishable phenotypes that are ex-
pressed. By the Gaussian property, these are equal to the
expectations of gene product concentrations [Z|G], condi-
tioned on the promoter state. The size of fluctuations and,
ultimately, the form of the resulting conditional distribu-
tions is determined by the conditional covariances ΣZ|G =

Ω−1〈ǫZ|GǫTZ|G〉, which satisfy the linear matrix equation

JG ΣZ|G+ΣZ|G J T
G+Ω−1 DG = 0. Here, JG is the Jacobian
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Fig. 2. Binary promoter switching: (A) Gene expression from a sin-

gle promoter switching between states of low or high activity. (B) The resulting gene

product distributions show a strong dependence on the timescale of promoter switch-

ing (µ). For fast promoter fluctuations, the protein distribution is clearly Gaussian,

and well predicted by the conventional LNA (solid gray). For slow fluctuations, how-

ever, the distribution displays two modes, corresponding to either state of promoter

activity, and is well described by the conditional LNA (solid red). The intermediate

regime for which protein lifetimes become comparable to switching frequency is ap-

proximated by the above interpolation formula (Eq. (6), solid blue); that formula is in

good agreement with stochastic simulation of the full network via SSA (dotted) over

the whole range of promoter timescales. Parameter values are given in (SI Appendix,

Table S1).

of the conditional rate equations, Eq. (3), expressed as func-
tion of G; similarly, DG = Sdiagf(G, [Z|G]) S T . Specifi-
cally, the stationary covariance ΣZ|G is then a measure for
the variability of each phenotype over short timescales.

In sum, the procedure outlined above thus yields closed-
form expressions for (i) the component modes [Z|G] that
determine the set of observable phenotypes, (ii) the relative
weights Π(G, t) in the mixture, which measure phenotype sta-
bility, and (iii) the covariance matrices ΣZ|G of the condi-
tional distributions that quantify the variability of each phe-
notype. The decomposition given by the solutions of Eqs. (3)
through (5) fully determines the gene expression distribution
in Eq. (1) and, hence, characterizes general gene regulatory
networks that involve slow promoters.

Next, we demonstrate the utility of this conditional LNA
for the quantification of multimodality by applying it to a
number of exemplary gene regulatory networks. In the pro-
cess, we elucidate several phenomena that are known to be
induced by slow promoter fluctuations, but that are beyond
the scope of standard solution techniques for the CME, or of
the conventional LNA.

Binary promoter switching: interpolation of unimodal and
bimodal distributions. In eukaryotic gene regulation, the ac-
tion of polymerases and transcription factors (TFs) can be
hindered by the fact that the chromatin structure is dynamic,
rendering binding sites temporarily inaccessible [19]. A recent
study suggests that bimodal gene expression of the lactose
operon of Escherichia coli relies on similar long-lived states,
which, however, stem from TF-mediated looping of DNA [4].
These additional promoter states can be described by a sim-
ple two-stage model of gene expression involving transcription
from a promoter that fluctuates randomly between two differ-
ent states of gene activity (Fig. 2A); see also [10, 11, 19].

The limiting distributions for this simple model are shown
in Fig. 2B for different values of promoter switching and pro-
tein lifetimes. For slow promoter fluctuations, one observes
the characteristic bimodal distribution that results from the
mixture of two Gaussian distributions, as predicted by our
theory (solid red) derived in (SI Appendix 3.4) and verified
by stochastic simulation (dotted). For fast fluctuations, the
distribution is clearly unimodal and follows closely the con-
ventional LNA (solid gray). Subsequently, we assume that the
intermediate regime in which there is no timescale separation
can be fit by an interpolation formula between the solution of
the conventional LNA (Πf ) and that of the conditional LNA
(Πs),

Πint(Z) =
1

1 + µ
Πf (Z) +

µ

1 + µ
Πs(Z); [6]

here, we have defined µ as the ratio of protein degradation
and the sum of promoter off-rates and on-rates. The overall
good accuracy of this interpolation (solid blue), including in
the case where promoter switching and protein lifetimes are
of the same order, is encouraging (Fig. 2B). The conditional
LNA thus represents a simple tool for predicting the modality
of gene product distributions in gene regulatory networks over
broad ranges of timescale separation.

Global control of gene expression promotes multimodality.
During the development of hematopoietic stem cells, the
two antagonistic TFs Gata and Pu are responsible for the
erythroid-myeloid lineage decision. The underlying two-gene
regulatory motif consisting of two mutually repressing genes
represents a toggle switch [20] and has been shown to ex-
hibit multimodal protein distributions, including committed
and primed states in cell differentiation, even in the absence
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Fig. 3. Global control of gene expression promotes mul-
timodality: (A) Non-cooperative transcriptional regulation of two mutually re-

pressing promoters including translational regulation which is mediated by binding of

the repressor protein (red) to the mRNA species of the target protein (yellow). (B)

The transition graph of the CME for the two-promoter network derived from Eq. (4)

contains four slow states: (0,0) – no TF bound; (1,0) – repressor P1 bound; (0,1) –

target P2 bound; and (1,1) – both TFs bound. The parameters a1,−1 and b1,−1

correspond to the rate constants of DNA binding and unbinding of repressor and

target proteins, respectively. (C) We compare the effect of exclusive translational

(green), exclusive transcriptional (blue), and global control (red) on the modality of

the target protein distributions: the conditional LNA (solid) predicts that these are

uni-, bi-, and tetramodal, respectively, which is in excellent agreement with stochastic

simulation of the full network via SSA (dotted). (D) We analyze the mutual infor-

mation shared between repressor and target proteins (as a measure of regulation),

calculated from the conditional LNA as a function of the inverse promoter binding

constant (K) and the inverse mRNA inhibition constant (KI ). We find that opti-

mization of the mutual information is a trade-off between both types of regulation

(K−1
= 2.8, K−1

I = 28.5, 2 bits of information). The optimal target protein

distribution corresponds to (B, red). Parameter values are given in (SI Appendix,

Table S2).

of cooperative binding [8]. Here, we study how fine-tuning of
this transcriptional response can be achieved through trans-
lational feedback control. We model the latter by inhibition
of target mRNA (shown in yellow in Fig. 3A) by the repres-
sor protein (shown in red), which is actively degraded upon
binding.

We compare the corresponding probability distributions in
three regimes: (i) exclusive translational regulation, (ii) exclu-
sive transcriptional regulation, and (iii) both transcriptional
and translational regulation, which we term global control.
The CME derived from Eq. (4) describing the slow switch-
ing of both promoters is given by a Markov chain with four
states (Fig. 3B) and is analytically tractable (SI Appendix
5.1). We now discuss the qualitatively different solutions that
are obtained in the three regimes. In regime (i), i.e., with
translational control (a1 = b1 = a−1 = b−1 = 0), we expect
unimodality, as post-transcriptional regulation does not affect
promoter activity (Fig. 3C, green). In regime (ii), with tran-
scriptional control, we have [P1|0, 0] = [P1|0, 1] and [P2|0, 0] =
[P2|1, 0]; hence, the transition graph (Fig. 3B) shows that pro-
moter binding occurs independently for the two proteins. We
observe a bimodal protein distribution that is characteristic
of a toggle switch (Fig. 3C, blue). Finally, in regime (iii),
we have [P1|0, 0] 6= [P1|0, 1] and [P2|0, 0] 6= [P2|1, 0] due to
global control, which implies that repressor binding changes
the rate of target protein binding (and vice versa) and, hence,
that regulation is allosteric. We note that such regulation can
also be achieved for promoters positioned at distant loci on
the chromosome. In the latter case, we observe up to four
modes in the target protein distribution (Fig. 3C, red), each
corresponding to a combinatorial state of the two promoters.
We emphasize that our conditional LNA correctly predicts all

three regimes, as well as that it contains the conventional LNA
(Fig. 3C, green) as a special case.

Thus, we have shown that allosteric regulation of two-
gene networks can be achieved through a combination of both
slow transcriptional and fast translational regulation. Next,
we investigate if there exists an optimum for which the gene
expression products are highly regulated. To that end, we cal-
culate the mutual information of the two protein species as a
measure of regulation strength. The mutual information can
be readily found from the explicit form of the probability dis-
tribution, as predicted by the conditional LNA (SI Appendix
5.1); its use is motivated by the belief that, in highly regu-
lated systems, there is a high degree of statistical dependence
between the two protein species. However, for the case of the
globally regulated circuit, both types of regulation contribute
to the overall promoter state for the mutual information at its
optimum (Fig. 3D), as can be seen from the transition graph
(Fig. 3B). The target protein distribution resulting from op-
timal regulation is displayed in Fig. 3C. Specifically, as the
protein species share roughly two bits of information at that
optimum, we are able to distinguish all four different pheno-
types among a cell population. As we have demonstrated,
this diversity cannot be realized by transcriptional or transla-
tional regulation alone, but rather through an allosteric effect
induced by global regulation.

Birhythmicity in the expression of a genetic oscillator.Many
physiological properties are encapsulated in the dynamics of
gene regulatory networks. In human cancer cells, the response
of the p53-Mdm2 feedback loop to irradiation is binary, with
some cells displaying noisy oscillations, while others show no
rhythmic expression [21]. Here, we explore the possibility that
similar responses can be induced by a stochastic phenotypic
switch based on a negative feedback network whose deter-
ministic counterpart exhibits neither oscillatory nor bistable
behavior. In particular, using analytical expressions for the
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signaling cascade involving kinases Y and R. The latter also down-regulates gene

expression through negative feedback, causing the expression levels of all involved pro-

teins to oscillate. Promoter switching is caused by DNA damage and repair triggered
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simulation are shown for DNA damage and repair events. We observe that the os-

cillation baseline of P (blue) displays only little variation over large variations in the

oscillator period. By contrast, the binary behavior of the oscillation baseline is ampli-

fied downstream in the ultrasensitive cascade, leading to switching between oscillatory

and silent oscillator modes (blue). (C) Baseline variations are quantified by probability

distributions which discriminate well the binary switch in the oscillator output (R,

blue) that is not present in the input distribution (P , green; concentration scaled

by a factor of two). (D) We analyze the power spectra of both kinases, observing

birhythmic behavior in Y (red), but only a single frequency in R (blue), the oscillator

output, which demonstrates the amplification of the all-or-none response. We note

the increase at low frequencies, which is a reminiscence of phenotypic switching over

long timescales. Our theoretical predictions for the distributions and power spectra

(solid) agree well with stochastic simulation of the full network via SSA (dotted).

Parameter values are given in (SI Appendix, Table S3).
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power spectra characterizing stochastic oscillations (SI Ap-
pendix 3.6), we demonstrate how slow promoter fluctuations
can induce birhythmicity or phenotypic switching between os-
cillatory and steady state expression levels.

We consider the binary expression of a regulatory protein
due to DNA damage and repair under weak irradiation con-
ditions. The protein activates a kinase of an ultrasensitive
signaling cascade that is composed of two reversible phos-
phorylation modules (Fig. 4A). The phosphorylated kinase
in the second module, which is considered the output of the
system, also down-regulates gene expression through negative
feedback and, hence, induces oscillatory dynamics.

Comparing the oscillatory time courses for all three com-
ponents, as obtained using the stochastic simulation algorithm
(SSA), we find that the regulatory protein and the two signal-
ing proteins display binary variation in their oscillation base-
line and period (Fig. 4B). Specifically, the baselines of the
protein expression levels are indistinguishable in both the on-
state and the off-state, while those of the signaling proteins
show significant variation. This amplification is due to the
high sensitivity of the signaling module to protein variation,
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as shown in (A). (C) The same experiment is carried out in the reverse direction: a

decreasing ramp leading from the fully induced to the depleted promoter state also

shows transient bimodality which is, however, persistent for much longer times. The

resulting probability distribution is reminiscent of the induction history, indicating

hysteresis. We also note that, at each time point, the protein distributions obtained

from stochastic simulation of the full network (left) agree well with the predictions of

our conditional LNA (right). (D) We quantify the apparent hysteresis phenomenon

associated with an increasing and then decreasing stimulus by comparing the global

modes of either distribution, i.e., the most probable protein concentrations, which

result in a hysteresis loop. The difference between forward and reverse induction,

as predicted by the conditional LNA (solid), is in good agreement with simulation

(dotted). Parameter values are given in (SI Appendix, Table S4).

which is well represented by the distributions of signaling pro-
teins displaying two modes (Fig. 4C).

However, these stationary distributions cannot capture
the period variability that is observed in the oscillatory time
series (Fig. 4B); the latter are quantitatively better described
by the corresponding power spectra, which can be derived in
closed form using the conditional LNA (SI Appendix 5.2). The
birhythmicity of the first signaling protein is well captured
by the predicted power spectrum (Fig. 4D), which shows
two distinct frequencies. Instead, in the output of the sig-
naling cascade, we observe only a single frequency, which is
due to ultrasensitivity almost fully depleting the off-state, as
can be seen by the large component near zero in distribution
(Fig. 4C). These findings are confirmed by stochastic simu-
lation, via SSA, of the full network (Figs. 4C and 4D, dot-
ted). Remarkably, for a variant of this circuit with two gene
copies, our theory predicts an additional rhythm that does
not correspond to those of any of the individual promoter
states, but that arises as an emergent property of the mix-
ture (SI Appendix, Fig. S3). We hence conclude that slow
gene expression noise, amplified by ultrasensitive pathways,
can drastically change the dynamics of intracellular networks.

Phenotype induction: transient bimodality and hysteresis.Bi-
modality is often observed transiently during stress responses
such as osmotic, oxidative or heat shock. Transient activa-
tion of the HOG-pathway in budding yeast cells, for example,
results in bimodal protein distributions of the induced genes
after rapid nuclear translocation of TFs [2]. An open question
is whether isogenic cells exposed to the same, but changing,
stress conditions express the same phenotypes [22]. Here, we
argue that slow promoter kinetics can account for these dif-
ferences in phenotype induction due to hysteresis.

Intuitively, it is clear that slow promoter kinetics can lead
to different transient phenotypes during induction, e.g., when
the promoter is neither fully activated nor repressed. It is,
however, less obvious what memory effects are associated with
that switching. We consider a hypothetical induction exper-
iment in which an externally controlled inducer activates the
expression of TF (Fig. 5A). It is worth noting that the corre-
sponding deterministic system exhibits no bistability irrespec-
tive of TF concentration because of non-cooperative binding.
We then compare two experimental protocols, (i) an increas-
ing induction ramp which carries the promoter from the in-
active to the active state, and (ii) the corresponding reverse
experiment. In the case where both experiments yield similar
results, the system is memoryless, whereas it displays hystere-
sis otherwise.

We characterize the hysteresis effect based on analytical
solutions to the protein distributions for both experiments (SI
Appendix 5.3). When the induction rate is increased from zero
to some high value, the conditional LNA predicts transient bi-
modality immediately after the onset of the ramp (Fig. 5B).
The reverse experiment (Fig. 5C) is realized by decreasing
the induction rate from that high value to zero, starting from
the induced state. While transient bimodality is again ob-
served, it persists for a much longer time, and even after the
induction rate has dropped to zero, which indicates memory
of the induced state. Given that TF dynamics is much faster
than the induction kinetics, this asymmetry is caused by the
interplay of slow promoter binding and induction timescales.

A quantitative measure is provided by the global max-
ima of the distributions which correspond to the most likely
concentrations observed in either experiment. The maximum
switches rapidly after TF concentration is increased, while
switching occurs only after TF has been removed in the re-
verse experiment (Fig. 5D). Hence, reversible induction re-
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sults in a hysteresis loop, which is also well predicted by the
conditional LNA.

Finally, the maximum hysteretic response is achieved
when the induction rate is much faster than the promoter
dynamics, but slower than TF degradation, i.e., when the in-
duction ramp can be approximated by a step function. In that
limit, we compare the timescale of induction (τf ) to that of
the reverse experiment (τr); their ratio measures the degree
of hysteresis (SI Appendix 5.3):

τr
τf

= 1 +
[TF]

Keq
, [7]

where Keq is the DNA-dissociation constant and [TF] denotes
the concentration of TF after induction. It follows that a
memory effect is observed either for strong binding sites, or
when the perturbation [TF] is sufficiently large. The hystere-
sis phenomenon persists when induction rate and promoter
dynamics evolve on similar timescales (Figs. 5C and D); it
is, however, absent for very slow induction, as expected. The
existence of such optimal time windows for observing hystere-
sis hence provides an experimentally testable protocol with
which to probe slow promoter dynamics.

Discussion
We have presented an analytical methodology for the quanti-
tative study of multimodal distributions that arise from gene
regulation involving slow promoters. In the literature, differ-
ent methodologies have been employed to describe simple gene
regulation models on the basis of a separation of timescales.
Qian et al. [12] derive a factorization of the stationary prob-
ability density for an autoregulated gene; similarly, Innocen-
tini et al. [23] have considered a multi-state promoter without
feedback. These methodologies require the corresponding pro-
tein distributions to be obtained analytically, which becomes
generally intractable when post-transcriptional mechanisms
based on bimolecular protein interactions are considered or
when the full time-dependence of the distribution function is

desired. A promising approach that is based on conditional
moments [24] overcomes many of the limitations imposed by
timescale separation; however, it does not yield systematic
estimates for the distributions of the more abundant species.
Our conditional LNA thus fills a gap in the modeling litera-
ture, as it is the first methodology to provide closed-form ex-
pressions for gene product distributions in general regulatory
networks. While our LNA-based approach correctly takes into
account physiological gene copy numbers, it can become inac-
curate when some gene products of interest are present only
in very low molecule numbers (SI Appendix 3.4, Fig. S1).
Finally, we note that our gene-centric methodology does not
incorporate effects of cell growth and division and, hence, that
it cannot account for growth phenotypes that have been de-
scribed [25].

As we have shown, our approach provides a simple tool
(i) to identify cellular phenotypes in such networks that can-
not be quantified via deterministic models, (ii) to study a
wide class of network architectures, and to identify param-
eter ranges over which multimodality can be observed, and
(iii) to identify dynamical characteristics of multimodal sys-
tems that have not been described previously. Specifically, we
have demonstrated how the interplay of transcriptional and
translational feedback may be exploited to encode complex
phenotypes in many-gene networks. We have quantified how
phenotypic switching shapes birhythmic expression patterns
in genetic oscillators. Further, we have proposed a previously
unidentified mechanism for generating hysteresis in gene in-
duction experiments that display transient bimodality. Re-
markably, our procedure remains highly accurate when the
underlying gene regulatory network is also deterministically
multistable (SI Appendix 5.4, Fig. S4). The conditional LNA
presented here hence serves to advance our understanding of
cellular memory and decision-making.
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