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Cortical neurons exhibit extreme diversity in gene expression aswell asin
morphological and electrophysiological properties*?. Most existing neural
taxonomies are based on either transcriptomic®* or morpho-electric®® criteria, as
it has been technically challenging to study both aspects of neuronal diversity in
the same set of cells’. Here we used Patch-seq® to combine patch-clamp recording,
biocytin staining, and single-cell RNA sequencing of more than 1,300 neuronsin
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adult mouse primary motor cortex, providing amorpho-electric annotation of
almost all transcriptomically defined neural cell types. We found that, although
broad families of transcriptomic types (those expressing Vip, Pvalb, Sst and so on)
had distinct and essentially non-overlapping morpho-electric phenotypes,
individual transcriptomic types within the same family were not well separated in
the morpho-electric space. Instead, there was a continuum of variability in
morphology and electrophysiology, with neighbouring transcriptomic cell types
showing similar morpho-electric features, often without clear boundaries
between them. Our results suggest that neuronal typesin the neocortex do not
always form discrete entities. Instead, neurons form a hierarchy that consists of
distinct non-overlapping branches at the level of families, but can form
continuous and correlated transcriptomic and morpho-electrical landscapes

within families.

Asanimals canbe grouped into species and assembled into a hierarchy
of phylogenetic relationships to form the ‘tree of life’, neurons in the
brainare thought toformdiscrete cell types, whichinturncanbe cast
inahierarchy of neuronal families and classes. The current view is that
aneuronal cell type is characterized by acommon genetic profile that
givesrise to distinct physiological and anatomical properties, including
patterns of connectivity”. Acomprehensive multi-modal taxonomy of
neuronswould resemble a‘partslist’ of the brain, helping us to decipher
its bewildering complexity'*".

For decades, neurons have been classified into types by their
anatomical and physiological characteristics, and more recently by
molecular markers*?*?*3, High-throughput single-cell sequencing
techniques have identified dozens of types of neuron on the basis
of their transcriptional profiles***%, but linking transcriptomically
defined cell types (t-types) to their phenotypes has remained a major
challenge'. However, to understand the roles of t-types in cortical
computations, it is necessary to know their anatomy, connectivity,
and electrophysiology’.

Ourworkis part of the BRAIN initiative cell census network (BICCN)
effortto fully characterize the cellular taxonomy of neurons inmouse
primary motor cortex (MOp). We used the Patch-seq technique®”*° to
describe the morpho-electric phenotypes for most of the t-typesin
MOp®. Our analysis suggests that, in both excitatory and inhibitory
classes of neurons, broad transcriptomic families (also known as ‘sub-
classes”) have largely distinct phenotypes, but uncovers continuous
morpho-electric variation within most of these families.

Patch-seq of mouse primary motor cortex

We sampled neurons across all layers (L) of adult mouse MOp (median
postnatal day (P) 75) using various Cre driver lines to cover as diverse
a population of neurons as possible. Neurons in acute slices were
patch-clamped and stimulated with brief current pulses to record
their electrophysiological activity at room temperature and then filled
with biocytin for subsequent morphological recovery and reconstruc-
tion, and their RNA was extracted and sequenced using the Smart-seq2
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Fig.1| Transcriptomic coverage.a, Number of Patch-seq cells assigned to
eachofthe neural transcriptomic types (t-types)®. Colours and the order of
typesare taken from the original publication?’. The filled part of each bar
shows the number of morphologically reconstructed neurons. Grey labels,
t-types withnocells. Totalnumber of neurons, 1,227. b, Normalized soma
depthsofallneurons of each t-type. For t-types with at least three cells,
horizontal lines show medians. Soma depths were normalized by the cortical
thicknessineachslice (0, pia; 1, white matter). Grey horizontal lines,
approximate layer boundaries identified by Nissl staining (L1,0.07;L2/3,0.29;
L5, 0.73). Total number of neurons, 1,187 (for some cells soma depth could not
be measured owing to failed staining). c, t-SNE representation of CGE-derived
interneurons from the single-cell10x v2 reference dataset (n=15,511;

protocol® (Extended Data Fig. 1). In total, we performed whole-cell
recordings from more than 2,000 cells, of which 1,329 cells (from 266
mice) passed initial quality control. The mRNA of these 1,329 cells
was sequenced, yielding on average 1.3 million exonic and 0.7 mil-
lionintronic reads (medians; mean +s.d.onalog,,scale: 6.0+ 0.6 and
5.6 +0.8, respectively) and 9,100 + 3,500 (mean +s.d.) detected genes
per cell (Extended Data Fig. 2). Of these neurons, 646 had sufficient
staining for their morphologies to be reconstructed.

Using the gene expression profiles, we mapped all sequenced neurons
tothe transcriptomic cell types (t-types) that have been identified using
dissociated cellsinaparallel study within the BICCN consortium?. To
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perplexity, 30). t-Type names are shortened by omitting the first word; some
areabbreviated. Patch-seq cells from the Vip, Sncg, and Lamp35 subclasses were
positioned on this t-SNE atlas?* (black symbols). d, As in ¢ but for MGE-derived
interneurons (n=12,083; perplexity, 30). e, Asin c but for excitatory neurons
(n=93,829; perplexity, 100).f, Example morphologies coloured by t-type. For
interneurons, dendrites areshownin darker colours. For excitatory neurons,
only dendrites are shown. Black dots mark somalocations. Three voltage
traces areshownbelow for some exemplary cells: the hyperpolarization trace
obtained with the smallest current stimulation, the first depolarization trace
thatelicited atleast oneaction potential, and the depolarization trace showing
maximalfiring rate. Stimulationlength, 600 ms.

assign celltypes, we used anearest centroid classifier with Pearson cor-
relation of log-expression across the most variable genes asadistance
metric (Extended Data Fig. 1). Bootstrapping over genes was used to
assess mapping confidence. The mapping was done separately using
eachoftheseven reference datasets obtained with different sequencing
technologies, including single-cell and single-nucleus Smart-seq2 and
10x sequencing®. We found that Patch-seq expression profiles were
most similar to the single-nucleus Smart-seq2 data (Extended Data
Fig.2g, h). Atthe same time, there was good agreement between t-type
assignments based on Smart-seq2 and those based on 10x reference
data (Extended Data Fig. 2i), so consensus t-type assignment over all
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seven reference data sets was used for all subsequent analysis. Cells
that showed poor mapping (owing to a low read count or excessive
RNA contamination) were excluded (Extended Data Fig. 2), leaving
1,227 neurons for further analysis (817 inhibitory, 410 excitatory; 369
and 269 with morphological reconstructions, respectively).

The resulting data set covered 77 out of the 90 neuronal t-types
(Fig. 1a), with 73 t-types having at least one morphologically
reconstructed neuron. The coverage was good for interneurons derived
fromthe caudal and medial ganglioniceminences (CGE and MGE) and
for excitatory neurons. Within-type distributions of soma depths
(Fig. 1b) agreed well with previous data* and with the layer-specific
nomenclature of excitatory t-types, confirming the validity of our
t-type assignment. Positioning all cells on reference maps made with
t-distributed stochastic neighbour embedding (t-SNE)**?* also showed
good overall coverage (Fig. 1c-e) with only few uncovered regions.

The observed phenotypes included most of the morphological and
electrophysiological types of cortical neurons that have been described
previously in mice and rats>**, allowing us to link transcriptomic and
morpho-electric descriptions (Extended Data Fig. 3, Supplementary
File1).

A detailed description of all t-types is provided in Extended Data
Tables 1, 2. One interesting case was the transcriptomically isolated
Lamp$5 Lhx6 type, which consists of deep L5/L6 neurogliaform
cells (NGCs). This type, unlike all other Lamp5 types, is putatively
MGE-derived®, so its identity was an open question®. Our results
suggest that although all deep NGCs belong to the LampS5 subclass,
some are derived from the CGE and some from the MGE, as in the
hippocampus®?. Another finding was that the Sst Pvalb Calb2 type,
which is transcriptomically in between the Sst and Pvalb subclasses,
was also in between these subclasses in terms of its morpho-electric
phenotype®. Furthermore, we confirmed that chandelier cells from
bothsuperficialand deep layers belonged to transcriptomicallyisolated
Puvalb Vipr2 types. We also showed that three previously described
morphological types of L5 Pvalb cells®, as well as two morphological
types of L5 Martinotti cells?**°, corresponded to different t-types.
We were also able to identify a t-type, L4/51T_1, that was located on
the boundary between L2/3 and L5 and probably corresponds to the
quasi-L4 neurons described previously in motor cortex®.

Distinct phenotypes of major families

We next asked to what extent the morpho-electric phenotype could
be predicted by gene expression across the entire data set. To obtain
quantitative characterizations of the morpho-electric phenotypes,
we extracted 29 electrophysiological (Extended Data Fig. 4,
Supplementary File 2) and about 50 morphological features for each
cell. We first focused on 17 electrophysiological features and used
sparse reduced-rank regression®, a technique that predicts the firing
properties on the basis of alow-dimensional latent space representation
computed from asparse selection of genes. We used cross-validation to
tune the regularization strength (Extended Data Fig. 5). The selected
modelused 25 genes with a5-dimensional latent space and achieved a
cross-validated R*of 0.38. To visualize the structure of the latent space,
we projected gene expression and electrophysiological properties
onto the latent dimensions (Fig. 2). The cross-validated correlations
between the first three pairs of projections were 0.90, 0.74, and 0.67,
respectively.

These first three components clearly separated five major groups
ofneurons: the Pvalb, Sst, Vip, and LampSinterneuron subclasses, and
the excitatory neuron class (Fig. 2). These groups had distinct electro-
physiological properties: for example, as expected, Pvalb neurons
were characterized by high firing rates while Sst neurons had high
values of the hyperpolarization sag and rebound (Fig. 2, right). Some
of the genes selected by the model were prominent marker genes,
such as the pan-inhibitory markers Gad1 and Sicéal (related to GABA
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Fig.2|Sparsereduced-rankregression.a,b, Asparsereduced-rank
regression (RRR) model® to predict combined electrophysiological features
fromgene expression. Transcriptomic dataare linearly projected toa
low-dimensional space that allows reconstruction of electrophysiological
data; componentsland2(a) and1and 3 (b) of rank-5model are shown.n=1,219.
Colour correspondsto t-type. The model selected 25 genes (left). Each panelis
abiplot, showing correlations of original features with both components; the
circle corresponds to correlation1. Only features with average correlation
above 0.4 are shown. Labels were automatically positioned to reduce overlap.
Al, adaptationindex; AP, action potential; CV, coefficient of variation;ISI,
interspikeinterval; R_input, input resistance; V rest, resting potential; UDR,
upstroke-to-downstroke ratio.

(y-aminobutyricacid) processing), or the more specificinhibitory mark-
ers Sst, Vip, Pvalb, Tacl, and Htr3a. Notably, some other selected genes
were more directly related to electrophysiological properties, such as
the calcium channel subunit genes Cacnale and Cacna2d3 or the potas-
sium channel-interacting protein gene Kcnip2, which can modulate fir-
ing propertiesinindividual families. Areduced-rank regression model
restricted to using only ion channel genes (Extended Data Fig. 5) did
not perform much worse than the full model (cross-validated R?=0.33
and correlations 0.86, 0.71, and 0.56, respectively, with regulariza-
tion set to select 25 genes). Reduced-rank regression analysis using
morphological features supported the separation of major families
(Extended Data Fig. 5).

Similarly, a2D t-SNE embedding of Patch-seq cells based on the same
electrophysiological features showed that the major transcriptomic
families have distinct electrophysiological properties (Fig. 3a): the
Pvalb, Lamps, Sst, Vip, CT (corticothalamic), IT (intratelencephalic),
and ET (extratelencephalic) subclasses were mostly well separated from
each other. We quantified this separation using a confusion matrix
for k-nearest neighbours (kNN) classification of cells into families:
it was mostly diagonal, with only the ET and IT subclasses strongly
overlapping (Fig.3d). We confirmed the electrophysiological overlap
betweenIT and ET neurons infollow-up experiments at 34 °C (Extended
DataFig. 6).

We also constructed a 2D t-SNE embedding based on the
morphological features (Fig. 3b). We used only dendritic features for
the excitatory cells, but both axonal and dendritic features for the
inhibitory cells, leading to a strong separation between these two



major classes. Within each class, cells were strongly segregated by the
soma depth, with excitatory cells forming mostly a one-dimensional
manifold. The separability between inhibitory families was weaker
thanwith electrophysiological features (Fig.3d). The between-family
separability was strongest when we had combined electrophysiological
and morphological features into a joint representation (Fig. 3c, d),
showing that these sets of properties are not redundant. The ellipses
inFig.3chighlight prominent t-types and groups of t-types with similar
morpho-electric properties.

In summary, different transcriptomic families had largely distinct
morpho-electric phenotypes, in agreement with them being well
separated in the transcriptomic space*.

Continuous phenotypic variation

Withinindividual transcriptomic families, morpho-electric phenotypes
rarely formed isolated clusters (Fig. 3). Moreover, we often found that
morpho-electric phenotypes varied continuously from one t-type
to another (Fig. 4). For example, electrophysiological properties of
the t-types within the Vip subclass varied continuously across the
transcriptomic landscape; the membrane time constant, for instance,
hadits largest values close to the Sncgsubclass and gradually decreased
towards Vip Gpc3 (Fig. 4a). We observed the same in the Sst subclass,
whichis known to be transcriptomically* and morpho-electrically?*°
diverseinL5. Here we also found that morpho-electric properties varied
continuously across the transcriptomic landscape, with neighbouring
t-types consistently showing similar morphologies and similar rebound
values (Fig. 4b). We confirmed this effect in follow-up experiments at
physiological temperature (Extended Data Fig. 6).

To quantify this effect, for each pair of t-types within each family we
computed the transcriptomic distance (correlation distance between
average log-countsinthereference data) and the electrophysiological
distance (Euclidean distance between average feature vectors) between
them. Pooling the pairs across all families, we found that these two
distance measures were correlated, with r=0.60 (Fig.4c,n=200 pairs;
Extended DataFig.7). The correlation was also observed within multiple
individual families and for many individual electrophysiological
features (Extended Data Fig. 7).

The IT subclass provides an example of a similar phenomenon
in another data modality (Fig. 4d). IT neurons span all layers from
L2/3to L6, and IT t-types are largely layer-restricted*. However, we
found that IT t-types did not form distinct groups for each cortical
layer; instead, the soma depth and RNA expression varied continu-
ously along a one-dimensional manifold (Fig. 4d), in agreement with
parallel findings based on a spatial transcriptomics approach®. For
example, L4/5and LSIT t-types that were transcriptomically close to
the L2/3 1T t-types were located at the top of L5 close to the border
betweenl2/3and L5, whereas L5SIT t-types that were transcriptomi-
cally close to L6 IT t-types were located at the bottom of L5 close
to the border with L6. Transcriptomic distances between t-types
were strongly correlated with the average soma depth differences
(r=0.70; Fig. 4d).

Finally, the Pvalb subclass is usually understood as electrophysiologi-
cally homogenous (all neurons are fast spiking) but has been described
asmorphologically diverse, in particular in L5°. However, it was previ-
ously unclear whether different morphologies such as shrub-like or
horizontally elongated correspond to different t-types®. While we found
thatdifferent t-types had different preferred morphologies (Extended
Data Table 1), they showed substantial overlap, in agreement with the
L5 Pvalb t-types themselves not having clear boundaries* (Fig. 1d).
The shape of the axonal arbor showed continuous changes across
the transcriptomic landscape (Fig. 4e): small shrub-like basket cells,
horizontally elongated basket cells, and vertically elongated classical
basket cells were located in different corners of the t-SNE embedding,
with intermediate morphologies in between.

a Morphology

- 3
;5 g &

% .

. . A L1

C Electrophysiology . 23
+ morphology . L5

+ L6

Sst Pvalb

Fig.3|Morpho-electric t-SNE embeddings. a, t-SNE embedding constructed
using electrophysiological features. Colour corresponds to t-type. n=1,320 cells
used to construct the embedding, 1,219 cells with t-type labels shown. Perplexity,
30.b, t-SNE embedding constructed using combined morphometric features
and z-profiles. n=636 cells. Perplexity, 30. ¢, t-SNE embedding constructed using
combined electrophysiological and morphological features. n =628 cells.
Perplexity, 30. Ellipses show 80% coverage ellipses for the most prominent
t-types (shaded) and for some groups of related t-types and some layer-restricted
families (unshaded). We chose these groups to reduce the overlap between
ellipses. d, Confusion matrices for classifying cells into seven transcriptomic
families using kNN classifier (k=10) and three feature sets. Each row shows what
fraction of cells from a given family is classified in each of the seven families. The
valuesin each row sum to100% but only values above 5% are shown.

Insummary, within major transcriptomic families, morpho-electric
phenotypes and/or soma depth often varied smoothly across neigh-
bouring t-types, indicating that transcriptomic neighbourhood
relationships in many cases corresponded to similarities in other
modalities.

Variability inindividual t-types

To study the morpho-electric phenotypes of individual t-types,
we measured how consistently they conformed to their respective
transcriptomic families (Fig. 5a) and how variable they were within
at-type (Fig. 5b). First, we used a kNN classifier to classify cells from
each t-type with at least ten cells into transcriptomic families, using
electrophysiological features. Most t-types could be unambiguously
placedintothe correct family (Fig. 5a), but some t-typeswereinbetween
two families. For example, many Sst Pvalb Calb2 neurons were classified
as belonging to the Pvalb subclass on the basis of electrophysiology.
Similarly, LampS5 Egln3 1 neurons had rather Vip- and Sst-like firing
instead of the typical LampS electrophysiology, and Vip Mybpcl neurons
often had Sst-like firing. Thus, while overall transcriptomic family
was highly predictive of the cell phenotype, some t-types exhibited
properties similar to those of another transcriptomic family.

Nature | Vol 598 | 7 October 2021 | 147



Article

a Vip b L5 Sst
._ I
j] e )
| app—
Do
o - wﬁ Ak
©® o - [ o
3 -
%8 @ Sre) o
[eRe) (o]
0Q O
= &

&g = |l B
———— €  Pooled across all families ————
0 10 20 30 RS} . . 0 10 20 30

7 (Ms) g 4 .,*‘ Rebound (mV)
°38 bty
o C
252 :
g2 &= 0.60
§ 0
z 0 02 04
RNA distance

Fig.4|Phenotypic variability within transcriptomic families. a, Vip neurons
mapped to thereference t-SNEembedding from Fig. 1c, coloured by membrane
time constant (7). Insets, example firing traces. b, Sst neurons from layer 5
(excluding Sst Chodl t-type) mapped to thereference t-SNEembedding from
Fig.1d, coloured by rebound value. ¢, Correlation between transcriptomic
distances and electrophysiological distances across all200 pairs of t-types
from the same family (for 50 t-types with atleast 5 cells), pooled across all
families. Transcriptomic distance was computed using the reference 10x data
asthecorrelation between average log-expression across most variable genes.
Electrophysiological distanceis Euclidean distance between the average

Next, we measured the normalized total variance of each t-type using
electrophysiological features and compared it to the normalized total
variance of phenotype clusters derived by k-means clustering (with k
setto the number of t-types). The rationale here was that the variance
of the k-means clusters would reflect the minimal possible variance
obtainable in our data set. Values much above the cluster variances
indicate non-trivial phenotypic variability within a t-type.

We found that many t-types had total variance substantially above
the variances of the k-means clusters (Fig. 5b) and an alternative
analysis using entropies of Leiden clustering® often highlighted the
samet-typesasvariable (Extended Data Fig. 8). Not all t-types showed
high variability: some of them, such as Pvalb Vipr2 2 (chandelier
cells), appeared morpho-electrically homogeneous. By contrast, Vip
Mybpcl 2 was marked as having high electrophysiological variability
andindeed had high varianceininput resistance, membrane time con-
stant, and rebound (Extended DataFig. 4). This variability was not ran-
dom: overlaying the rebound values on the t-SNE embedding (Fig. 5¢)
showed that cells withlow rebound were located close to the boundary
withthelow-rebound Vip Sncgtype. Similarly, Sst Pvalb Calb2 cells had
high variability in terms of the maximum firing rate, but high-firing
cellswere mostly groupedinone part of the transcriptomiclandscape
(Fig.5d).

We found similar examples in the morphological modality (Extended
Data Fig. 8). Together, these examples suggest that within-t-type
morpho-electric variability can in some cases be related to the
underlying transcriptomic variability. This is in agreement with the
idea that on a fine within-family scale, both transcriptomic and
morpho-electric landscapes are continuous rather than discrete.

Discussion

We used Patch-seq to provide the missing link between transcriptomic
and morpho-electric descriptions of neurons in adult mouse motor cor-
tex. Broad transcriptomic families were mostly well separated in their
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Fig.1le, coloured by normalized soma depth. Inset, examples of IT neurons at
different depths, coloured by t-type. Scatter plot used eight t-types with at
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between the average normalized somadepths. e, Pvalb neurons from layer 5
mappedto thereference t-SNEembedding from Fig. 1d, coloured by axonal
width/heightlog-ratio. Circle area corresponds to the width x height product.
Insets, example morphologies.

morpho-electric properties. Previous studies using transgenic lines
had shown that morpho-electric properties within these families can
be highly variable>**. We found that this variationis structured across
thetranscriptomiclandscape, such that the morpho-electric distance
betweent-types withinafamilyis correlated with their transcriptomic
distance. Furthermore, we found non-trivialmorpho-electric variability
within multiple t-types. Although we cannot fully exclude the possibility
that some of this variability can be attributed to technical challenges
of Patch-seq or to factors such as the exact spatial location of the cell
within motor cortex®, there are clear cases in our data that suggest
that within-type morpho-electric variability is related to within-type
transcriptomic variability.

We therefore suggest that the ‘tree of cortical cell types’ may look
morelike abananatree with afewlargeleaves, rather thananolive tree
with many small ones. In this metaphor, neurons follow a hierarchy
consisting of distinct, non-overlapping branches at the level of families
(large leaves), but with a spectrum of cells forming continuous and
correlated transcriptomic and morpho-electrical landscapes within
eachleaf.

This is at odds with the notion that t-types are discrete entities, an
implicit assumption behind any cluster analysis. Consistent with our
interpretation, recent transcriptomic and anatomical studies have
argued that neurons in hippocampus, striatum, and cerebellum can
be better described as forming partially continuous manifolds*>"%,
Similarly, cortical studies have identified many intermediate cells
with uncertain t-type assignments>*. Thus, the goal to assemble an
exhaustive inventory of neural cell types might be unattainable if
the types, unlike the chemical elements in the periodic table, are not
discrete entities. We believe that there isan urgent need for theoretical
work on how to conceptualize and model hierarchical discrete/
continuous cell variability in a principled way’.

Developmentally, it is thought that neural diversity is generated
through a combination of intrinsic genetic programs in progenitor
cells, and activity-dependent and environmental factors*®*. It remains
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exemplary traces from Vip Mybpcl_2 cells (all with confidence > 95%) and t-SNE
overlay coloured by rebound. Inset, the same t-SNEembedding asin Fig. 1. Main
plot, magnification.d, Three exemplary traces from Sst Pvalb Calb2 cells
(confidence >95%) and t-SNE overlay coloured by maximum firing rate.

unclear to what extent the interplay between hard-wired genetic pro-
grams and extrinsic cues might explain our observations.

Our study has several limitations. First, some t-types were covered
only sparsely or not at all. Additional experiments with more specific
Crelines couldfillsome of the gaps, but some very rare putative t-types
might not be amenable to Patch-seq study. Second, as the RNA extrac-
tion process may have interfered with biocytin diffusion” and asMOp is
quite thick, it was difficult to recover complete morphologies of some
groupsof neurons, such asdeep L5 Martinotti cells with thinlong axons
thatreachallthewaytoLl1.

A parallel Patch-seq study of the inhibitory neurons in the mouse
visual cortex® focused on isolating multimodal neural types
(‘met-types’) but also often observed continuous variation. Our data
setsare overallingood agreement (Extended Data Fig. 9) and together
offer an unprecedented view of cell type variability in the neocortex.
Future studies will need to add additional modalities, such aslong-range
projections, local connectivity, and invivo functional characterization.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, extended data, supplementary information,

acknowledgements, peer review information; details of author
contributions and competing interests; and statements of data and
codeavailability are available at https://doi.org/10.1038/s41586-020-
2907-3.

1. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat.
Neurosci. 18, 170-181(2015).

2. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular
properties to circuits. Neuron 91, 260-292 (2016).

3. Tasic, B. etal. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.
Nat. Neurosci. 19, 335-346 (2016).

4. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas.
Nature 563, 72-78 (2018).

5. lJiang, X. et al. Principles of connectivity among morphologically defined cell types in
adult neocortex. Science 350, aac9462 (2015).

6.  Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163,
456-492 (2015).

7. Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and
the path forward. Nat. Rev. Neurosci. 18, 530-546 (2017).

8. Cadwell, C.R. et al. Electrophysiological, transcriptomic and morphologic profiling of
single neurons using Patch-seq. Nat. Biotechnol. 34,199-203 (2016).

. Masland, R. H. Neuronal cell types. Curr. Biol. 14, R497-R500 (2004).

10. Ecker, J.R. et al. The BRAIN Initiative Cell Census Consortium: lessons learned toward
generating a comprehensive brain cell atlas. Neuron 96, 542-557 (2017).

1. Mukamel, E. A. & Ngai, J. Perspectives on defining cell types in the brain. Curr. Opin.
Neurobiol. 56, 61-68 (2019).

12.  Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318-326
(2014).

13. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons
account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45-61
(20M).

14.  Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell
RNA-seq. Science 347, 1138-1142 (2015).

15.  Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999-1014.
e22(2018).

16. Huang, Z. J. & Paul, A. The diversity of GABAergic neurons and neural communication
elements. Nat. Rev. Neurosci. 20, 563-572 (2019).

17.  Cadwell, C.R. et al. Multimodal profiling of single-cell morphology, electrophysiology,
and gene expression using Patch-seq. Nat. Protocols 12, 2531 (2017).

18. Fuzik, J. et al. Integration of electrophysiological recordings with single-cell RNA-seq data
identifies neuronal subtypes. Nat. Biotechnol. 34, 175-183 (2016).

19. Foldy, C. etal. Single-cell RNAseq reveals cell adhesion molecule profiles in
electrophysiologically defined neurons. Proc. Natl Acad. Sci. USA 113, E5222-E5231
(2016).

20. Yao, Z.etal. A transcriptomic and epigenomic cell atlas of the mouse primary motor
cortex. Nature https://doi.org/10.1038/s41586-021-03500-8 (2021).

21.  Picelli, S. et al. Smart-seg2 for sensitive full-length transcriptome profiling in single cells.
Nat. Methods 10, 1096-1098 (2013).

22. vander Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579-2605 (2008).

23. Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun.
5416, 10 (2019).

24. Gouwens, N. W. et al. Classification of electrophysiological and morphological neuron
types in the mouse visual cortex. Nat. Neurosci. 22, 1182-1195 (2019).

25. Tricoire, L. et al. Common origins of hippocampal Ivy and nitric oxide synthase
expressing neurogliaform cells. J. Neurosci. 30, 2165-2176 (2010).

26. Pelkey, K. A. et al. Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 97,
1619-1747 (2017).

27.  Harris, K. D. et al. Classes and continua of hippocampal CA1 inhibitory neurons revealed
by single-cell transcriptomics. PLoS Biol. 16, 2006387 (2018).

28. Scala, F. et al. Layer 4 of mouse neocortex differs in cell types and circuit organization
between sensory areas. Nat. Commun. 10, 4174 (2019).

29. Mufoz, W., Tremblay, R., Levenstein, D. & Rudy, B. Layer-specific modulation of
neocortical dendritic inhibition during active wakefulness. Science 355, 954-959
(2017).

30. Nigro, M. J., Hashikawa-Yamasaki, Y. & Rudy, B. Diversity and connectivity of layer 5
somatostatin-expressing interneurons in the mouse barrel cortex. J. Neurosci. 38,
1622-1633 (2018).

31.  Yamawaki, N., Borges, K., Suter, B. A., Harris, K. D. & Shepherd, G. M. A genuine layer 4
in motor cortex with prototypical synaptic circuit connectivity. eLife 3, e05422
(2014).

32. Kobak, D. et al. Sparse reduced-rank regression for exploratory visualization of paired
multivariate data sets. R. Stat. Soc. 70, 980-1000 (2021).

33. Naka, A. et al. Complementary networks of cortical somatostatin interneurons enforce
layer specific control. eLife 8, e43696 (2019).

34. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by
MERFISH. Nature https://doi.org/10.1038/s41586-021-03705-x (2021).

35. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing
well-connected communities. Sci. Rep. 9, 5233 (2019).

36. Cembrowski, M. S. et al. Spatial gene-expression gradients underlie prominent
heterogeneity of cal pyramidal neurons. Neuron 89, 351-368 (2016).

37. Mufoz-Manchado, A. B. et al. Diversity of interneurons in the dorsal striatum revealed by
single-cell RNA sequencing and PatchSeq. Cell Rep. 24, 2179-2190.e7 (2018).

38. Stanley, G. et al. Continuous and discrete neuron types of the adult murine striatum.
Neuron 105, 688-699.e8 (2019).

Nature | Vol 598 | 7 October 2021 | 149


https://doi.org/10.1038/s41586-020-2907-3
https://doi.org/10.1038/s41586-020-2907-3
https://doi.org/10.1038/s41586-021-03500-8
https://doi.org/10.1038/s41586-021-03705-x

Article

39.

40.

41.

42.

43.

44.

45.

Wang, W. X. & Lefebvre, J. L. Morphological pseudotime ordering and fate mapping
reveals diversification of cerebellar inhibitory interneurons. Preprint at https://doi.
0rg/10.1101/2020.02.29.971366 (2020).

De Marco Garcia, N. V., Karayannis, T. & Fishell, G. Neuronal activity is required for the
development of specific cortical interneuron subtypes. Nature 472, 351-355 (2011).
Dehorter, N. et al. Tuning of fast-spiking interneuron properties by an activity-dependent
transcriptional switch. Science 349, 1216-1220 (2015).

Wamsley, B. & Fishell, G. Genetic and activity-dependent mechanisms underlying
interneuron diversity. Nat. Rev. Neurosci. 18, 299-309 (2017).

Lim, L., Mi, D., Llorca, A. & Marin, O. Development and functional diversification of cortical
interneurons. Neuron 100, 294-313 (2018).

Cadwell, C. R. et al. Development and arealization of the cerebral cortex. Neuron 103,
980-1004 (2019).

Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of
cortical GABAergic cells. Cell 183, 1-19 (2020).

150 | Nature | Vol 598 | 7 October 2021

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

™ 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020


https://doi.org/10.1101/2020.02.29.971366
https://doi.org/10.1101/2020.02.29.971366
http://creativecommons.org/licenses/by/4.0/

Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and investigators were not blinded
to allocation during experiments and outcome assessment, unless
otherwise stated.

Animals
Experiments on adult male and female mice (n = 266; median age
75 days, interquartile range 64-100, full range 35-245 days, Extended
DataFig.2a) were performed on wild-type C57BI/6 (n=27), Viaat-Cre/
Ai9 (vesicular inhibitory amino acid transporter, encoded by the
Slc32al gene, n=24), Sst-Cre/Ai9 (somatostatin, n=75), Vip-Cre/Ai9
(vasoactiveintestinal polypeptide, n=46), Pvalb-Cre/Ai9 (parvalbumin,
n=76), Npy-Cre/Ai9 (neuropeptideY,n=2), Vipr2-Cre/Ai9 (vasoactive
intestinal peptide receptor 2,n=7),Scl17a8-Cre/Ai9 (VGLUT3, vesicular
glutamate transporter 3, n=6), Gnb4-Cre/Ai9 (n=1),and Slc17a8-iCre/
Ai9 (n=2) mice. Numbers above refer to mice from which sequencing
data were successfully obtained. Several more animals were used for
measuringlayer boundaries and follow-up experiments at physiological
temperature (see below). Mice were co-housed with littermates (2-5 per
cage) ina controlled environment at 22-24 °C and 30-70% humidity.
Mice were maintained with unrestricted access tofood and waterona
12-hlight/dark cycle. Procedures for mouse maintenance and surgeries
were performed according to protocols approved by the Institutional
Animal Care and Use Committee (IACUC) of Baylor College of Medicine.

The Viaat-Cre line was generously donated by Huda Zoghbi (Baylor
College of Medicine), the Slc17a8-iCre line by Rebecca Seal (University
of Pittsburg). The Gnb4-Cre line was from the Allen Institute for Brain
Science. The other Cre and reporter lines were purchased from the
Jackson Laboratory: Sst-Cre (stock no. 013044), Vip-Cre (stock no.
010908), Pvalb-Cre (stock no.008069), Vipr2-Cre (stock no. 031332),
Slc17a8-Cre (stock no. 028534), Npy-Cre (stock no. 027851), Ai9 reporter
(stock no.007909).

Wewere unableto find any labelled cellsinMOp in the Gnb4-Cre mice:
alllabelled cells were far outside of MOp and close to the claustrum*.
For this reason, the data set does not include any Gnb4-positive cells.

Slice preparation

The MOp brainslices were obtained following previously described pro-
tocols>?. Inbrief, the animals were deeply anaesthetized using 3% iso-
flurane and decapitated. The brain was rapidly removed and collected
into cold (0-4 °C) oxygenated NMDG (N-methyl-D-glucamine) solution
containing 93 mM NMDG, 93 mM HCI, 2.5 mM KCl, 1.2 mM NaH,PO,,
30 mMNaHCO,,20 mM HEPES, 25 mM glucose, 5mM sodium ascorbate,
2 mM thiourea, 3 mM sodium pyruvate, 10 mM MgS0O, and 0.5 mM
CaCl,, pH 7.35 (all from Sigma-Aldrich). We cut 300-pm-thick coronal
slicesusingaLeica VT1200 microtome following coordinates provided
in the Allen Brain Atlas for adult mouse (http://atlas.brain-map.org).
Theslices were subsequently incubated at 34.0 + 0.5 °C in oxygenated
NMDG solution for 10-15 min before being transferred to the artificial
cerebrospinal fluid (ACSF) solution containing: 125 mM NaCl, 2.5 mM
KCl, 1.25 mM NaH,PO,, 25 mM NaHCO,, 1 mM MgCl,, 11.1 mM glucose
and2mM CaCl,, pH 7.4 (all from Sigma-Aldrich) for about 1 h. The slices
were allowed torecoverin ACSF equilibrated with CO,/0, gas mixture
(5% CO,, 95% 0,), at room temperature (approximately 25 °C) for1h
before experiments. During the recordings, slices were submerged
in a customized chamber continuously perfused with oxygenated
physiological solution. Recorded cells were generally located
15-60 pm deep under the slice surface.

Patch-seqrecording procedures

Inorder to simultaneously obtain electrophysiological, morphological
and transcriptomic datafromthe same neurons, we applied our recently
developed Patch-seq protocol”, with some modifications. In particular,

changes were made to the internal solution to optimize its osmolarity
inorder toimprove staining quality. RNase-free intracellular solution
was prepared as follows: we dissolved 111 mM potassium gluconate,
4 mM KCI, 10 mM HEPES and 0.2 mM EGTA in RNase-free water in a
125-mlErlenmeyer flask. We then covered the solution with aluminium
foil and autoclaved it. After the solution was cooled down to room
temperature, we added 4 mM MgATP, 0.3 mM Na,;GTP, 5 mM sodium
phosphocreatine, and 13.4 mM biocytin (all from Sigma-Aldrich). The
pH was adjusted to 7.25 with RNase-free 0.5 M KOH using a dedicated
pH meter (cleaned with RNase Zap and RNase-free water before each
use). RNase-free water was then added to the solution in order to
obtain the desired volume. After carefully checking its osmolarity
(approximately 235-240 mOSM) the solution was stored at —20 °C
and used for no longer than 3 weeks.

Before each experiment, we combined 494 plinternal solution with
6 ulrecombinant RNase inhibitor (1U/pl, Takara) toincrease RNA yield.
The addition of the inhibitor resulted in an increase in osmolarity
to the desired value of 315-320 mOSM without a further dilution”.
The osmolarity of the ACSF was monitored before each experiment
and adjusted to be 18-20 mOSM lower than the internal solution. In
particular, when the ACSF osmolarity was too low, we added a small
amount of sucrose to ACSF to increase its osmolarity and bring it to
the desired range. This osmolarity difference between ACSF and the
internal solutionisimportant to obtain slight swelling of the cell during
the recording session, whichimproves the diffusion of biocytinin the
neuronal processes. All glassware, spatulas, stir bars, counters, and
anything else that may come into contact with the reagents or solution
were cleaned thoroughly with RNase Zap before use.

Recording pipettes (B200-116-10; Sutter Instrument) of ~3-7 MQ
resistance were filled with 0.1-0.3 pl RNase-free intracellular solution.
The size of the pipette tip was chosen according to the target neuron
size:3-4-MQ pipettes were used torecord large neurons (for example,
LS ET excitatory neurons) and 6-7-MQ pipettes were used to record
small cells such as L1 or Vipinterneurons.

The PatchMaster software (HEKA Elektronik) and custom Matlab
scripts were used to operate the Quadro EPC 10 amplifiers and to
perform online and offline data analysis. We used the following qual-
ity control criteria: (1) seal resistance value >1 GQ before achieving
whole-cell configuration; (2) access resistance <30 MQ. Each neuron
was injected with 600-ms-long current pulses starting from -200 pA
and up to 1,380 pA with 20-pA increment steps (in some cases stimu-
lation was stopped before reaching 1,380 pA). There were 1.3- or 1.4-s
intervals between successive current pulses, depending on the used
setup. For most neurons, the stimulation was then repeated multi-
ple times from the beginning. Electrophysiological traces used for
the analysis were acquired between 3 and 15 min after achieving the
whole-cell configuration. Recordings were performed at room tempera-
ture (25 °C), as opposed to physiological temperature (34 °C), inorder
to keep the cells alive for longer. We performed control experiments
at physiological temperature as well (see below).

Typically, excitatory neurons were recorded for 5-20 min while
interneurons were recorded for 20-50 min in order to allow biocytin
todiffuse into distal axonal segments. During the recording, the access
resistance was checked every three minutes in order tomaintain astable
sealthat would ensure successful biocytin diffusion. The resulting cDNA
yieldwas not correlated with the hold time (Spearman correlation—0.01).

Experiments at physiological temperature

Asubset of electrophysiological recordings was performed at 34 °Cin
the presence of fast glutamatergic and GABAergic synaptic transmission
blockers,1mM kynurenic acid (Sigma-Aldrich) and 0.1 mM picrotoxin
(Tocris), respectively. The temperature was maintained stable, and
constantly monitored using the temperature controller TCO7 (Luigs
and Neumann). In this set of experiments, the morphologies were not
recovered and multiple neurons wererecordedin eachslice. The soma
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depth and the slice thickness were measured before each recording
using Linlab2 software (Scientifica). Intrinsic electrophysiological
recordings were obtained using the same stimulation paradigm as
described above.

In these experiments, we targeted L5 Sst and excitatory neurons
(Extended Data Fig. 6). We sequenced in total 185 neurons, obtained
from 8 adult mice (7 Sst-Cre/Ai9 and 1 Pvalb-Cre/Ai9), of which 177
neurons passed the transcriptomic quality control and got a t-type
assignment (see below). One hundred and ten cells mapped to the Sst
subclass,43tolT,12to ET,10 to Pvalb,and 2 to NP.175 cells were assigned
to L5 in the post hoc analysis (see below). We obtained high-quality
electrophysiological recordings and extracted electrophysiological
features of 184 cells.

RNA sequencing of patched cells

At the end of the recording session, cell contents were aspirated into
the glass pipette by applying agentle negative pressure (0.7-1.5 pounds
per square inch) for 1-5 min until the size of the cell body was visibly
reduced. In most cases, the cell nucleus was visibly attached to the
pipette tip and extracted from the cell body. We avoided complete
nucleus aspiration, because it can lead to the collapse of the soma
structure and of the nearby neurites, resulting in lower staining quality
and stronger background staining. During the aspiration process, the
cellbody structure and access resistance were constantly monitored.
Special care was taken to ensure that the seal between the pipette and
the cellmembrane remained intact to reduce contamination from the
extracellular environment. After aspiration, the contents of the pipette
were immediately ejected into a 0.2-ml PCR tube containing 4 pl lysis
buffer (with ERCC spike-ins),and RNA was subsequently converted into
cDNA using a Smart-seq2-based protocol® as described previously”.
Theresulting cDNA libraries were screened using an Agilent Bioanalyzer
2100.Samples containing less than around1ngtotal cDNA (inthe 15 pl
final volume) or with an average size less than 1,500 bp were typically
notsequenced (withsome occasional exceptions). The cDNA libraries
were then frozen and sent for sequencing in 12 separate batches.

The cDNA libraries derived from each neuron were purified and 0.2
ng of the purified cDNA was tagmented using the Illumina Nextera
XT Library Preparation with one-fifth of the volumes stated in the
manufacturer’s recommendation. Custom 8-bp index primers were
used at a final concentration of 0.1 uM. The resulting cDNA library of
eachbatchwas sequenced on anllluminaNextSeq500 instrument with
asequencing setup of 75-bp single-end reads and 8-bp index reads.
Theinvestigators were blinded to the cell type of each sample during
library construction and sequencing.

The sequencing data were processed using the zUMIs 2.5.6b pipeline
with default settings. Sequencing reads were aligned to the mm10
mouse reference genome using STAR version 2.5.4b* and transcript
assignment performed with Gencode transcript annotations, version
M23. Asubstantial portion of the RNA extracted from the neurons was
nascent and contained intronic sequences. To accommodate this, gene
expression counts were separately calculated using reads mapping
to annotated intronic and exonic regions. We detected 42,466 genes,
including pseudogenes and annotated non-coding segments, in at
least one cell. The resulting exonic and intronic read count data were
used for all transcriptomic analyses presented here. To quantify gene
expression, we typically normalized exon and intron counts by exonic
and intronic gene lengths in kilobases and added normalized counts
together to obtain normalized exonic +intronic expression levels. See
below for more details. Throughout the manuscript, ‘detected gene’
refers to a gene with a non-zero exonic or intronic count.

Biocytin staining and morphological reconstructions

Morphological recoverywas carried out as previously described>”?, In
brief, after the recordings, the slices wereimmersed in freshly prepared
2.5% glutaraldehyde, 4% paraformaldehyde solution in 0.1 M PBS at

4 °Cforatleast48 h. Theslices were subsequently processed with the
avidin-biotin-peroxidase method to reveal the morphology of the
neurons. As previously described, we took several steps to improve
the staining quality of the fine axonal branches of interneurons>".
First, we used a high biocytin concentration (0.5 g/100 ml). Second,
we incubated with avidin-biotin complex and detergents at a high
concentration (Triton X-100, 5%) for at least 24 h before staining with
3,3’-diaminobenzidine (DAB).

Recovered cells were manually reconstructed using a
100 x oil-immersionlens and acameralucidasystem (MicroBrightField).
Weaimed to reconstructall cells that had staining of sufficient quality
(axons and dendrites for the inhibitory neurons; only dendrites for
the excitatory neurons), and obtained 646 reconstructionsin total.In
addition, we reconstructed the dendrites of 30 neurons from the Vip
and Scngsubclasses that lacked sufficient axonal staining. Vip neurons
are traditionally classified on the basis of dendritic morphology, so
these reconstructions can inform t-type characterizations. These
additional 30 reconstructions are shown, together with the main 646
reconstructions, in Supplementary File 1.

Forty-five sequenced cells were mistakenly recorded using a
solution with a much smaller concentration of biocytin, and their
morphologies could not berecovered. We made sure that the measured
electrophysiological properties of these cells were not systematically
different from those of the the other sequenced cells.

Inevitably, neuronal structures can be severed as a result of the
slicing procedure. We took special care to exclude reconstructions of
allneuronsthat showed any signs of damage, lack of contrast, or poor
overall staining. Consistently with previous studies, tissue shrinkage
due to the fixation and staining procedures was about 10-20%>25°,
This shrinkage was not compensated for in our analysis.

Cortical thickness normalization and layer assignment
Nissl-stained slices (n =15 from two wild-type adult mice) were used
to measure normalized layer boundaries in MOp. The Nissl staining
protocol was adapted fromref.*°. In brief, brain slices were mounted
onslides and allowed to dry. The sections were then demyelinated,
stained with 0.1% cresyl violet-acetate (C5042, Sigma) for 30 min at
60 °C and further destained. The sections were then coverslipped
in Cytoseal 60 (Richard Allan Scientific). For each slice we measured
total thickness from pia to white matter and the depths of the three
between-layer boundaries (L1to L2/3,L2/3to L5,L5to L6), based
on the cortical cytoarchitecture, using a Neurolucida system with
10 x or 20 x magnification. Allmeasurements were normalized by the
respectiveslice thickness, and the averages over alln=15slices were
used as the normalized layer boundaries (Extended Data Fig. 2b).

For the Patch-seqneurons, we measured somadepth and the cortical
thickness of the slice using a Neurolucida system. We took their ratio
as the normalized soma depth, and assigned each neuron to a layer
(L1,L2/3,L5, or L6) based on the Nissl-determined layer boundaries
(Extended Data Fig. 2b). We obtained soma depth information for
1,284 neurons out of 1,329 (45 neurons were mistakenly recorded
using a solution with insufficient biocytin concentration, and we
could measure soma depths for only 2 of those; for 2 other neurons
the measurements could not be carried out because the slices were
lost). For the 45 neurons with missing soma depth measurements, we
used thelayer targeted during the recording for all layer-based analyses
and visualizations (marker shapes in Figs.1c-e, 3a-c, layer-restricted
analysis in Fig. 4, Extended Data Fig. 8).

All reconstructed morphologies were normalized by the cortical
thickness of the respective slice to make it possible to display several
morphologies next to each other, as in Extended Data Fig. 3.

t-Type assignment
The t-type assignment procedure was done in two rounds. The first
round was for quality control and initial assignment to one of the three



large transcriptomic groups (CGE-derived interneurons, MGE-derived
interneurons, and excitatory neurons) that are perfectly separated from
each other with no transcriptomically intermediate cells*. The second
round was done to assign the cells to specific t-types.

Inthefirstround, we mapped each Patch-seq cell to alarge annotated
Smart-seq2 reference data set from adult mouse cortex*, using a
procedure similar to the one described in ref. %, Specifically, using
the exon count matrix of the reference data set, we selected the 3,000
most variable genes (see below). We then normalized all exon counts
by exonic gene lengthsinkilobases, all intron counts by intronic gene
lengths in kilobases (plus 107%, to avoid division by zero) and added
normalized counts together to obtain normalized exonic + intronic
expression levels. We log-transformed these values using log,(x + 1)
transformation and averaged the log-transformed values across all cells
ineach of the 133 t-types, to obtain reference transcriptomic profiles of
eacht-type (133 x 3,000 matrix). Out of these 3,000 genes, 2,666 were
presentinthegenome annotation that we used and were detected in our
data set. We applied the same normalization and log-transformation
procedure to the exonic and intronic read counts of our cells, and for
each cell computed Pearson correlation across the 2,666 genes with
each of the 133 t-types. Each cell was assigned to the t-type to which it
had the highest correlation (Extended Data Fig. 1d).

Cells meeting any of the following exclusion criteria were declared
low quality and did not get a t-type assignment (Extended Data
Fig. 2e): cells with the highest correlation below 0.4 (78 cells); cells
that would be assigned to non-neural t-types, presumably owing
to RNA contamination® (14 cells; see also Extended Data Fig. 2j-n);
cells with the highest correlation less than 0.02 above the maximal
correlation in one of the other two large transcriptomic groups
(5cells). The remaining 1,232 cells passed quality control and entered
the second round.

Inthe second round, cells were independently mapped to the seven
transcriptomic data sets obtained from mouse MOp*. The mapping
wasdoneonly tothe t-types from the transcriptomic group identified
in the first round, using the 500 most variable genes in that data set
for that transcriptomic group (so using 7 x 3 = 21 sets of 500 most
variable genes). Gene selection was performed as described below,
and t-type assignment was done exactly as described above. Across
the 21 reference subsets, 421-494 most variable genes were present
in our data set, and were used for the t-type assignment (Extended
Data Fig. 1e). When mapping to the Smart-seq2 reference data sets,
we used normalized intronic and exonic reference counts, as above.
When mapping to the UMI-based reference data sets, we used the
unique molecularidentifier (UMI) counts directly, without gene length
normalization.

We used bootstrapping over genes to assess the confidence of each
t-type assignment. For each cell and for each of the seven reference
datasets, werepeatedly selected abootstrap sample of genes (that s,
the same number of genes, selected randomly with repetitions) and
repeated the mapping. This was done 100 times and the fraction of
times the cellmappedto eacht-type was taken as the t-type assignment
confidence for that t-type (Extended Data Fig. 1f). The confidences
obtained with seven reference data sets agreed well with each other
(Extended Data Fig. 2i) and were averaged to obtain the consensus
confidence. Finally, the cell was assigned to the t-type with the highest
consensus confidence.

Four cells were assigned to an excitatory t-type, despite having clearly
inhibitory firing, morphology, and/or somadepth location (such asL1).
The most likely cause of this was RNA contamination from excitatory
cells, which are much more abundant thaninhibitory cells inthe mouse
cortex (Extended Data Fig. 2). These four cells were excluded from all
analyses and visualizations (as if they did not pass the transcriptomic
quality control). In addition, one cell was probably located outside
MOp, based on the slice anatomy, and was excluded as well. The final
number of cells with t-type assignment was 1,227.

Selection of most variable genes

Several steps of our analysis required selecting aset of the most variable
genesinagiven transcriptomic data set. We always selected a fixed
predefined number of genes (such as 500, 1,000, or 3,000).

To select the most variable genes, we found genes that had, at the
same time, high non-zero expression and a high probability of near-zero
expression®. Our procedure is described in more detail elsewhere®.
Specifically, we excluded all genes that had counts of at least c,,;, (for
Patch-seq and Smart-seq2: ¢, = 32; for 10x: ¢, = 0) in fewer than 10
cells. Foreach remaining gene we computed the mean log, countacross
all counts that were larger than c,;,, (non-zero expression, ) and the
fraction of counts that were smaller than or equal to c,,;, (probability
of near-zero expression, 7). Across genes, there was a clear inverse
relationship between y and 7, that roughly followed the exponential
law: 7= exp(-1.5 x u + a) for some horizontal offset a. Using a binary
search, we found avalue b of this offset that yielded the desired number
of genes with 7>exp(-1.5x y + b) + 0.002.

For Smart-seq2 and Patch-seq data sets, we used only exonic counts
to perform gene selection.

t-SNE visualization of the transcriptomic data

t-SNE embeddings? of the three subsets of the single-cell 10x v2 data
set? (Fig. 1c-e) were constructed using the same 500 most variable
genes that were used for t-type assignment (see above). The UMI
counts were normalized by each cell’s sequencing depth (sum of
counts), multiplied by the median sequencing depth across all cells,
log,(x+1)-transformed, and reduced to 50 principal components. The
resulting n x 50 matrix was used as input to t-SNE. We used FIt-SNE
1.2.1® with default parameters (including learning rate n/12 and scaled
principal component analysis (PCA) initialization®). Perplexity was left
at the default value of 30 for both inhibitory subsets and increased to
100 for the excitatory subset.

To position Patch-seq cells on areference t-SNE embedding, we used
apublished procedure?. In brief, each cell was positioned at the median
embeddinglocation of its ten nearest neighbours, based on Pearson cor-
relation distance in the high-dimensional space. As above, we used the
sum of the normalized exonic and intronic counts for Patch-seq cells,
and raw UMI counts for the reference cells. All values were log,(x +1)-
transformed and correlations were computed across the same genes
that were used for t-type assignments (see above).

Extraction of electrophysiological features

Twenty-nine electrophysiological properties of the neurons were
automatically extracted based on the raw membrane voltage traces
(Extended Data Fig. 4) using Python scripts from the Allen Software
DevelopmentKit (SDK) (https://github.com/AllenInstitute/AllenSDK)
with some modifications to account for our experimental paradigm
(https://github.com/berenslab/EphysExtraction).

For each hyperpolarizing current injection, the resting membrane
potential was computed as the mean membrane voltage during 100
ms before stimulation onset and the input resistance as the difference
between the steady state voltage and the resting membrane potential,
divided by the injected current value (we took the average voltage of
the last 100 ms before stimulus offset as steady state). The median of
these values over all hyperpolarizing traces was taken as the final resting
membrane potential and input resistance, respectively.

To estimate the rheobase (the minimum current needed to elicit
any spikes), we used robust regression (random sample consensus
algorithm, asimplemented in sklearn.linear_ model.RANSACRegressor)
ofthespiking frequency onto theinjected current using the five lowest
depolarizing currents with non-zero spike count (if there were fewer
than five, we used those available). The point at which the regression
line crossed the x-axis gave the rheobase estimate (Extended Data
Fig.4). Werestricted it to be between the highestinjected current that
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elicited no spikes and the lowest injected current that elicited at least
onespike.Iftheregression line crossed the x-axis outside thisinterval,
the first current step that elicited at least one spike was used.

The action potential (AP) threshold, AP amplitude, AP width,
afterhyperpolarization (AHP), afterdepolarization (ADP), the first AP
latency, and the upstroke-to-downstroke ratio (UDR) were computed
asillustrated in Extended Data Fig. 4, using the first AP fired by the
neuron. AP width was computed at the AP half-height. UDR refers
to the ratio of the maximal membrane voltage derivative during the
AP upstroke to the maximal absolute value of the membrane voltage
derivative during the AP downstroke. We also computed the first AP
latency at 20 pA current above the smallest current stimulation value
thatelicited a spike.

The interspike interval (ISI) adaptation index for each trace was
defined as the ratio of the second ISI to the first one. The ISl average
adaptationindex was defined as the mean of ISl ratios corresponding
toall consecutive pairs of ISIsin that trace. For both quantities we took
the median over the five lowest depolarizing currents that elicited at
least three spikes (if fewer than five were available, we used all of them).
APamplitude adaptationindexand AP amplitude average adaptation
index were defined analogously to the two ISl adaptation indices, but
using the ratios of consecutive AP amplitudes (and using the median
over the five lowest depolarizing currents that elicited at least two
spikes).

The maximum number of APs refers to the number of APs emitted
during the 600-ms stimulation window of the highest firing trace.
The spike frequency adaptation (SFA) denotes the ratio of the number
of APs in the second half of the stimulation window to the number
of APs in the first half of the stimulation window of the highest firing
trace. If the highest firing trace had fewer than five APs, SFA was not
defined. Here and below the highest firing trace corresponds to the first
depolarizing current step that showed the maximum number of APs
duringthe current stimulation window (after excluding all stimulation
currents for which atleast one AP was observed in 100 ms before orin
200 ms after the stimulation window; see below).

The membrane time constant (7) was computed as the time constant
of the exponential fit to the membrane voltage from the stimulation
onset to the first local minimum (we took the median over all
hyperpolarizing traces). Three further features described the sag of
the first (the lowest) hyperpolarization trace. The sag ratio was defined
as the difference between the sag trough voltage (average voltage in
a 5-ms window around the sag trough) and the resting membrane
potential, divided by the steady state membrane voltage difference
fromtheresting membrane potential. The sag time was defined as the
time period between the first and the second moments at which the
membrane voltage crossed the steady-state value after the stimulation
onset. The sag area refers to the absolute value of the integral of the
membrane voltage minus the steady-state voltage during the sag
time period (Extended Data Fig. 4). If the sag trough voltage and the
steady-state voltage differed by less than 4 mV, the sag time and sag
areawere set to zero.

The rebound was defined as the voltage difference between the
resting membrane potential and the average voltage over 150 ms (or
whatever time remained until 300 ms after the stimulation offset) after
rebound onset, which weidentified as the time point after stimulation
offset at whichthe membrane voltage reached the value of the resting
membrane potential. Ifthe membrane voltage never reached theresting
membrane potential during the 300 ms after the stimulation offset, the
rebound wasset tozero. The rebound number of APs was defined as the
number of APs emitted during the same period of time. Both rebound
features were computed using the lowest hyperpolarization trace.

ThelSI coefficient of variation (CV) refers to the standard deviation
divided by the mean of all ISIs in the highest firing trace. Note that a
Poisson firing neuron would have ISICV equal to one. The ISI Fano factor
refersto the variance divided by the mean of all ISIs in the highest firing

rate. The AP CV and AP Fano factor refer to the CV and the Fano factor
ofthe AP amplitudes in the highest firing trace, respectively.

Theburstiness was defined as the difference between the inverse of
the smallestISIwithinadetected burstand the inverse of the smallestISI
outside bursts, divided by their sum. We took the median over the first
five depolarizingtraces. We relied on the Allen SDK code to detect the
bursts. Inbrief, withinthat code aburst onset wasidentified whenever
a‘detour’ ISI was followed by a ‘direct’ ISI. Detour ISls are ISIs with a
non-zero ADP or a drop of at least 0.5 mV of the membrane voltage
after the first AP terminates and before the next one s elicited. Direct
ISIs areISIs withno ADP and no such drop of membrane voltage before
the second AP. A burst offset was identified whenever a direct ISI was
followed by adetour ISI. Additionally, bursts were required to contain
no ‘pauselike’ISIs, defined as unusually long ISIs for that trace (see Allen
SDK for the implementation details).

Some neurons (in particular neurogliaformcells) started to emit APs
before and after the current stimulation window, after the stimulation
currents exceeded a certain amount. To quantify this effect, we defined
wildness as the difference in the number of APs between the highest
firing trace (possibly showing APs before or after the stimulation
window) and the highest firing trace as defined above (without any
APs outside the stimulation window). For most neurons, wildness was
equal to zero.

For all statistical analysis we used 17 features out of the extracted
29, excluding features that were equal to zero for many cells
(afterdepolarization, burstiness, rebound number of APs, sag
area, sag time, wildness), two Fano factor features that were highly
correlated with the corresponding coefficient of variation features
(AP Fano factor, ISI Fano factor) and another measure of latency
that was highly correlated with the latency itself, features that had
very skewed distributions (AP amplitude average adaptation index,
ISI average adaptation index), and features that were undefined for
some of the cells (spike frequency adaptation). Four features were
log-transformed to make their distribution more Gaussian-like: AP
coefficient of variation, ISI coefficient of variation, ISladaptationindex,
and latency.

Extraction of morphological features

Reconstructed morphologies were converted into the SWC format
using NLMorphologyConverter 0.9.0 (http:/neuronland.org) and
further analysed using MorphoPy (https://github.com/berenslab/
MorphoPy, version 0.6)**. Each cell was soma-centred in the x (slice
width) andy (slice depth) dimensions, and aligned to piainthe z(cortical
depth) dimension so that z= 0 corresponded to pia. All neurites were
smoothed in the slice depth dimension (y) using a Savitzky-Golay
filter of order 3and window length 21, after resampling points to have
maximally 1umspacing. For further analysis we computed two different
featurerepresentations of each cell: the normalized z-profile and a set
of morphometric statistics**%%,

To compute the normalized z-profile, we divided all the coordinates
of the neuronal point cloud by the thickness of the respective
corticalslice,sothatz=1corresponded to the white matter border.
We projected this point cloud onto the z-axis and binned it into 20
equal-sized bins spanning [0, 1]. The resulting histogram describes
aneuron’s normalized depth profile perpendicular to the pia. For
the purposes of downstream analysis, we treated this as a set of 20
features. The z-profiles were separately computed for axons and
dendrites.

Morphometric statistics were separately computed for the dendritic
and axonal neurites to quantify their arborization shape and branching
patterns. For the excitatory neurons, several additional morphometric
statistics were computed for the apical dendrites, where apical
dendrite was operationally defined as the dendrite with the longest
total path length. We further used two ‘somatic’ features: normalized
soma depth and soma radius. We did not use any features measuring
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morphological properties in the slice depth (y) direction because of
possible slice shrinkage artefacts. We did not use any axonal features
for the excitatory cells because only a small part of the axon could
typically be reconstructed. For the inhibitory cells, where dendrite
and axon could both be fully recovered, we included some measures
of dendriticand axonal overlap. The full list of morphometric statistics
isgivenin Supplementary File 3.

We extracted a set of 75 features, of which 40 were defined for
excitatory neurons and 62 for inhibitory neurons, and processed the
data for excitatory and inhibitory neurons separately. In each case,
we excluded features with coefficient of variation below 0.25 (among
the features with only positive values). This procedure excluded five
features for the excitatory and nine features for the inhibitory cells.
The distributions of the remaining features were visually checked for
outliers and for meaningful variation between transcriptomic types,
leadingtoafurther exclusion of three features for the inhibitory cells.
The full list of excluded features is given in Supplementary File 3. The
resulting set of morphometric statistics used for further analysis
consisted of 35 features defined for the excitatory neurons and 50
features defined for the inhibitory neurons.

Reduced-rank regression

For the RRR analysis* we used 17 electrophyiological features and all
1,219 cells for which values for all 17 features and a t-type assignment
could be computed. Electrophysiological features were standardized.
Exon counts and intron counts were normalized by the exon/intron
genelengths as described above, summed together, converted to CPM,
log,(x+1)-transformed, and then standardized. We selected the1,000
most variable genes (using raw exonic counts) and used only those for
the RRR analysis.

In brief, RRR finds a linear mapping of gene expression levels
to a low-dimensional latent representation, from which the
electrophysiological features are then predicted with another linear
transformation (for mathematical details, see ref.*2). The model uses
sparsity constraints in the form of elastic net penalty to select only a
small number of genes. For Fig. 2 we used amodel with rank r=5, zero
ridge penalty (o =1), and lasso penalty tuned to yield a selection of
25 genes (1 =0.5). Cross-validation (Extended Data Fig. 5) was done
using 10 folds, elastic net a-values 0.5,0.75,and 1.0, and A-values from
0.2t06.0.

The plots shown in Fig. 2a, b are called bibiplots because they
combinetwo biplots: the left biplot shows a mapping of gene expression
levels onto the two latent dimensions; the right biplot shows the same
mapping of electrophysiological features. To illustrate the meaning
of the latent dimensions, each biplot combines the resulting scatter
plots with lines showing how original features are related to the latent
dimensions. Specifically, we computed the correlations of individual
genes or electrophysiological properties with the latent dimensions
andvisualized these correlations as lines on the biplot. The circle shows
the maximal possible correlation; only lines longer than 0.4 times the
circle radius are shown in Fig. 2. Label positions were automatically
adjusted by simulating repulsive forces between all overlapping pairs
of labels, until there was no overlap.

For the model based on ion channel genes, we obtained the list
of 328 ion channel genes from https://www.genenames.org/data/
genegroup/#!/group/177and used all 307 of them that had non-zero
expressioninatleast10 of our cells. Weused rankr=5,a=1,and Atuned
toyield 25 genes (1= 0.303), as above.

t-SNE visualization of the morpho-electric phenotypes

For the t-SNE visualization® of the electrophysiological phenotypes,
we used 17 features as described above and all n=1,320 cells that had
values for all 17 features. All features were standardized across this set
of cellsand transformed with PCA into aset of 17 PCs. We scaled the PCs
by the standard deviation of PC1. We used the t-SNE implementation

fromscikit-learn Python library with the default perplexity (30), early
exaggeration 4 (the default value 12 can be too large for small data
sets), and scaled PCA initialization?. Fig. 3a shows n =1,219 cells that
had at-type assignment.

For the t-SNE visualization of the morphological phenotypes, we
combined morphometric statistics with the normalized z-profiles.
The pre-processing, including PCA, was done separately for the
excitatory and inhibitory neurons because they used different sets
of morphometric statistics (see above). Only neurons with assigned
t-types were used for this analysis. Two inhibitory neurons were left out
because some of the morphometric statistics could not be extracted
owingtoinsufficient dendritic recovery; this left 367 inhibitory neurons
(with 50 morphometric features) and 269 excitatory neurons (with 35
morphometric features). All features were standardized and each set
wasreduced to 20 PCs. We scaled the PCs by the standard deviation of
therespective PC1, to make the inhibitory and the excitatory PCs have
comparable variances.

We used dendritic z-profiles for the excitatory neurons and axonal
z-profiles for the inhibitory neurons. We reduced each set to five PCs,
discarded PC1 (it was strongly correlated with the normalized soma
depth and made the resulting embedding strongly influenced by
the soma depth), and scaled the PCs by the standard deviation of the
respective PC2. We stacked the 20 scaled morphometric PCs and the 4
scaled z-profile PCs to get acombined 24-dimensional representation,
separately for the excitatory and for the inhibitory neurons. We
then combined these representations into one block-diagonal
48-dimensional matrix. This procedure makes the excitatory and
the inhibitory populations both have zero mean. To prevent overlap
between these two populations, we added a small constant value of
0.25 to the excitatory block-diagonal block, leading to the strong
excitatory-inhibitory separationin Fig. 3b. The t-SNE was performed
exactly as described above.

For the t-SNE visualization of the morpho-electrical landscape, we
stacked together the 48-dimensional morphological representationand
thel6-dimensionalelectrophysiological representationobtained above,
using only cells that had all morphological and all electrophysiologcal
features (n=628). We multiplied the electrophysiological block by v2
to put its total variance on a similar scale (it only consisted of one set
of'scaled PCs, whereas the morphological representation consisted of
two sets of scaled PCs: morphometrics and z-profiles). The resulting
64-dimensional morpho-electrical representation was used for t-SNE,
exactly as described above.

kNN classification of transcriptomic families

To classify neurons into transcriptomic families on the basis of
electrophysiological, morphological, or combined features (Figs. 3d,
5a, Extended Data Fig. 8a), we used a kNN classifier with k=10 and
Euclidean distance metric (taking the majority family among the k
nearest neighbours). Thisis effectively aleave-one-out cross-validation
procedure. For each data modality we took the exact same data
representation that was used for computing t-SNE embeddings
(Fig. 3a-c; see above). Note that the t-SNE algorithm is also based
on nearest neighbours and makes all close neighbours attract each
other in the embedding. We chose the kNN classifier as a simple
but versatile non-parametric classifier that is directly related to the
t-SNE embeddings. We did not use the Sncg and NP families owing to
insufficient coverage in our data set (Fig. 1).

Fig.3d shows the fraction of cells from each family that was classified
into each family. Fig. 5a and Extended Data Fig. 8a show fractions
of cells from each t-type that were classified into each family. For
morphological and combined features, Extended Data Fig. 8a shows
fractions of cells from the majority layer of each t-type. For example,
the Pvalb Reln type occurred most often in L5, so only cells from that
layer were taken for that type. Only t-types with at least ten cells (or at
least ten layer-restricted cells) are shown.
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Within-family analysis

To study the relationship between transcriptomic and
electrophyiological distances between pairs of t-types (Fig. 4c, d,
Extended DataFigs. 6, 7), we took all t-types with five or more cells
assigned to them (for Extended Data Fig. 7a: with ten or more). For each
pair of t-types, transcriptomic distance was computed as the Pearson
correlation between the average log,(x +1)-transformed UMI countsin
the single-cell 10x v2 data*. The 1,000 most variable genes across all
neural types were used for Fig. 4cand Extended DataFig. 7a, b, and the
500 most variable genes across the respective transcriptomic group
(see above) were used for Fig. 4d and Extended Data Figs. 6i,jand 7c-n.
Electrophysiological distance was computed as the Euclidean distance
between the average feature vectors. Fig. 4d used the soma depth
distance, computed as the absolute value of the difference between
the average normalized soma depths.

T-type variability analysis

The normalized total variance in Fig. 5b and Extended Data Fig. 8b
was computed as follows. For each modality, we took the exact same
data representation that was used for computing t-SNE embeddings
(Fig. 3a-c; see above). For each t-type (or layer-restricted t-type; see
above), we took the sum of its variances in all dimensions as the total
variance and divided by the sum of variances in all dimensions across
the whole data set:
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where X;is avalue of featurejof cell i, nis the totalnumber of cells, and
Tis the set of cell numbers belonging to the given t-type. The value 0
indicates that all cells from this t-type have exactly identical features.
Thevaluelindicates that thereis as much variancein thisonet-type as
inthe whole dataset. Only t-types with at least ten cells (or at least ten
layer-restricted cells) are shown in Fig. 5b and Extended Data Fig. 8b.

To provide a sensible baseline for the range of possible normalized
total variances in a population of morpho-electrically homogeneous
types, we used a clustering analysis. For the cells of all the K t-types
(or layer-restricted t-types) with at least ten cells in a given panel, we
used the k-means algorithmto cluster theminto K clusters, reasoning
that these clusters should be as homogeneous as possible given the
variability in our data set. We used the k-means implementation from
scikit-learn with default parameters. We then computed the normalized
total variance of each cluster as described above. Grey shading in Fig. 5b
and Extended Data Fig. 8b shows the interval between the minimum
and the maximum cluster variances. Note that the k-means algorithm
directly minimizes within-cluster total variances.

We used the entropies of a Leiden clustering™® as an alternative way
to approach the same question. For each modality, using the exact
same datarepresentation as above, we constructed its KNN graph with
k=10 and clustered it using the Leiden algorithm as implemented in
the Python package leidenalg with RBConfigurationVertexPartition
quality function and resolution parameter manually tuned to produce
roughly the same number of clusters for each modality as in ref. %,
(Extended DataFig. 8). For each t-type (or layer-restricted t-type), we
then measured the entropy of the distribution of electrophysiological or
morphological cluster IDs, after randomly subsampling the t-type toten
cells.Subsampling was done to eliminate a possible bias due tothe t-type
abundance. The whole procedure was repeated 100 times with different
random seeds for the Leiden clustering and for the subsampling.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

All preprocessed data (gene counts, electrophysiological and
morphological features) and meta data are available at https://
github.com/berenslab/mini-atlas, together with direct links to the
raw data. Electrophysiological recordings are available at https://
dandiarchive.org/dandiset/000008 (main data set) and https://
dandiarchive.org/dandiset/000035 (physiological temperature) in
NWB format. Sequencing data are available at http://data.nemoarchive.
org/biccn/grant/zeng/tolias in FASTQ format. Morphological
reconstructions are available at https://download.brainimagelibrary.
org/3a/88/3a88a7687ab66069/ in SWC format.

Code availability

The analysis code in Python is available at https://github.com/
berenslab/mini-atlas.
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Extended DataFig.1|Patch-seqprotocol, mouse Crelines, and t-type
assignment. a, Patch-seq combines electrophyiological recordings, RNA
sequencing using Smart-seq2, and biocytin staining in the same cell.

b, Four exemplary sliceimages. Top: animage of the whole slice using 4x
maghnification. Bottom: aflattened 3D image stack using 20x magnification.
Fromlefttoright:L5ET neuron,L2/31T neuron, L5 Sstneuron, L5 Pvalb neuron.
¢, t-Typesassigned to cells collected in mice from different Cre lines. ‘WT/Cre-’
stands for cells from any Cre line that were not labelled with a fluorescent
indicator, or for the cells patched in wild type mice.1,227 cellsshown.d, t-Type

assignment procedure for one example cell (d-f). Correlations to the meanlog
expressionofall t-types fromref.*, using 3,000 most variable genes. Maximum
correlationistotheexcitatory neurons. t-Type names are shortened, and every
second oneis omitted for compactness. e, Correlations to all excitatory t-types
fromref.?° using all seven reference datasets and 500 most variable genes.

f, t-Type assignment confidences for all seven data sets, obtained via
bootstrapping over genes. The average confidence isshowninblack. The mode
ofthe average confidence was taken as the final t-type.
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Extended DataFig. 2| Quality control. a, Age distribution of the mice used in
the experiments. Median: 75 days. b, Soma depths of all cellsand cortical
thickness of the corresponding slices. Dashed lines show layer boundaries,
based on the Nissl-stained slices (measured layer boundaries shown as blue
points). Allsoma depths were normalized by dividing them by the cortical
thickness. ¢, Relationship between the number of exonicand intronic counts.
The apparent bimodality could be explained by whether the nucleus was
extracted or not during Patch-seq aspiration. Whenever the nucleus was not
extracted, lowamountof nonspliced RNAled to lowintronic counts; otherwise,
the number of intronic and exonic counts was almost the same. Red: cells
eventually failing quality control.d, Relationship between sequencing depth
(totalnumber of reads) and the number of detected genes (number of genes
withnon-zero counts). e, Relationship between the number of detected genes
and the maximal correlation to clusters fromref. *. Cells with maximal
correlation below 0.4 were declared low quality. f, Relationship between the
maximal correlationacross neural clusters and the maximal correlation across
non-neural clusters fromref. *. Cells with maximal neural correlation below 0.4
were declared low quality. See Methods for additional QC criteria. g, Maximal
correlations using single-cell and single-nucleus Smart-seq2 reference data
sets?. h, Maximal correlations using Smart-seq2 reference data sets (maximum

across cell types and across two data sets) and using 10x reference datasets
(maximum across cell types and across five datasets). i, t- Type assignment
using single-cell Smart-seq2 reference dataset and using single-cell10x v2
reference dataset. All points are on the integer grid; marker size shows the
number of cells at the corresponding location. Dashed lines separate CGE-
derived interneurons, MGE-derived interneurons, and excitatory neurons.
The mapping was done within each order, so there cannot be any cells outside
ofthe diagonal blocks. j, Expression of several prominent markers of non-
neural cells, in comparison to the Smart-seq2 dataset fromref.*. The values
arelog,(x+1)-transformed sums of exonic and intronic counts, shown with
random U(—%, %) jitter. Percentage values refer to the fraction of cells with non-
zero counts. PVM stands for perivascular macrophages. We selected these
markers because they have very low expressionin neural cells. Aneuronal
marker Snap25is shown for comparison. Cells from the reference dataset are
shownwith thealpha-levelset to theratio of our dataset sizeto that dataset
size (0.06), to make the dot plots more comparable.k, I, Neural and glial
expressioninour dataset (k) and in the FACS-sorted dataset* (1) (plotted using
the colours fromthe original publication, without transparency). m,n, The
same using the excitatory marker Slc17a7 and the inhibitory marker Gad2.
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Extended DataFig. 3 | Diversity of mouse cortical neurons. Two
representative examples per t-type, or oneif only onereconstruction was
available.Intotal135neuronsin 73 t-types. Forinterneurons, dendrites are
shownin darker colours. For excitatory neurons, only dendrites are shown.
Black dots mark somalocations. Horizontal grey lines show approximate layer
boundaries. Three voltage traces are shown for each neuron: the

hyperpolarizationtrace obtained with the smallest current stimulation, the
firstdepolarization traceeliciting at least one action potential, and the
depolarization trace showing maximal firing rate. Stimulation length: 600 ms.
Thelength of the shown voltage traces: 900 ms. Electrophysiological
recording for one neuron did not pass quality control and is not shown.
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Extended DataFig.4|Extraction and distribution of electrophysiological
features. Panelsa-fshow datafromthe same exemplary cell.a, Membrane
potential responses to the consecutive step currentinjections. Hyperpolarizing
currents were used to compute theinputresistance (274.80 MOhm) and membrane
time constanttau (21.95ms). b, Thefirst five traces showing spikes were used to
computelSladaptationindex (1.26), ISlaverage adaptationindex (1.15), AP
amplitude adaptationindex (0.91) and AP amplitude average adaptationindex
(0.99).c, Thefirst APelicited inthis neuron. It was used to compute AP threshold
(-40.18mV), APamplitude (81.17mV), AP width (0.80 ms), AHP (-12.60 mV),

ADP(0mV),UDR (1.62) and latency of the first spike (69.28 ms).d, Regression line
givestherheobase estimate (20.44 pA).e, The highest firing trace with 32 APs. This
trace was used to estimate the ISICV (0.27), ISIFano factor (0.0014 ms), AP CV (0.17)
and APFano factor (1.32mV).f, The lowest hyperpolarization trace was used to
computethesagratio (1.17), sag time (0.26 ms), sag area (31.16 mV-ms) and rebound
(17.84mV).g, Eightimportantelectrophysiological features are shown forall cells
acrossall t-types. For t-types with at least three cells, horizontal lines show
median values. See Supplementary File 2 for all electrophysiological features.
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Extended DataFig.5|Additional reduced-rank regression analysis and
cross-validation. a, Cross-validated R? of ‘naive’ and ‘relaxed’ sparse RRR
solutions®for various elastic net penalties (@ and 1). ‘Relaxed’ means that the
modelwas re-fit without alasso penalty using only the selected genes; ‘naive’
meansthatit wasnotre-fit. Vertical dashed lines at 25 genes corresponds to the
choice made for Fig.2. The best performanceis around -100 genes, but we
chose 25 for the sake of interpretability. The subsequent panels only show
results for the ‘relaxed’ models. b, Cross-validated R? using a =1 for different
ranks fromrank1torank16 (full rank). c, Cross-validated R*using@=1and A
needed to obtain 25 genes for different ranks. The peak performanceis
achieved withrank ~13 (inset), but rank-5 model used in the main text is almost
asgood.d, Cross-validated correlations between sequential projections of the
transcriptomic and electrophysiological datasets (rank-5 models witha=1).
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For any given number of selected genes, correlations decrease monotonically
for higher components. e, f, Reduced-rank regression model usingonlyion
channelgenes. A fullanalogue of Fig. 2 but using only 328 ion channel genes
(see Methods), of which307 were detected in our datasetinatleast10 cells.
g-j,Reduced-rankregression model predicting morphological features. An
analogue of Fig. 2 but using morphological, instead of electrophysiological
features. The analysis was done separately for the excitatory (g-h) and for the
inhibitory (i-j) neurons because different sets of morphological features were
computed for these sets of neurons. Excitatory neurons: 269 cells, 35 features.
Rank-5model,A1=0.59, adjusted toyield 25 genes. Only asubset of
morphological features are labelled toreduce the clutter (abbreviations:

“W” —width, “H” — height). Inhibitory neurons: 367 cells, 50 features, A= 0.49.
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Extended DataFig. 6 | Electrophysiological properties of IT, ET, and Sst
neuronsinLayer 5at physiological temperature.a-e,Each panelshowsa
comparisonbetweenL5neurons fromthelTand the ET subclasses (pooled across
allt-typeswithineach subclass). The mainset of experiments was doneat room
temperature (25 °C). Follow-up experiments were done at physiological temperature
(34°C),inthe presence of imM kynurenicacidand 0.1mM picrotoxininorder to
block fastglutamatergic and GABAergic synaptic transmission. Horizontal lines
show median values. Thefirst four panels correspond to features showing the
largestIT/ET differences atroomtemperature, according to the two-sided
Wilcoxon-Mann-Whitney test statistic (and omitting several features thatare very
correlated with the shown ones: upstroke-to-downstroke ratio, sag time, and sag
area). Thelast panel additionally shows one feature that showed prominent
differenceat34°C.f,g,ITandET neuronsrecorded at 34 °Cin two-dimensional
representations using the features with highest separability. h, The change of

electrophysiological propertiesbetweenroomtemperature (25°C) and
physiologicaltemperature (34 °C) for various t-types from the Sst subclass. Only L5
neuronsareshown. Only t-types with>5 cellsinboth conditions are shown.
Horizontallines denote median values. APamplitude and APwidth changed the
most between conditions, but the relative differences betweent-types stayed
roughly the same. The other four shown features did not change much, and the
relative differences between t-typesstayed thesame. i, Overlay of the L5 Sst cells
overthereferencet-SNEembedding, coloured by rebound, asin Fig.4b. Theinset
showsthe correlation between transcriptomic distances and electrophysiological
differencesbetweenall pairs of Sstt-types (only for t-types with atleast S cells,and
excluding Sst Chodl), together withits p-value. j, The same analysis asin (c) but using
the experiments performed at physiological temperature.No corrections for
multiple comparisons were applied.
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Extended DataFig.7| Transcriptomic and electrophysiological distances

RMA distance

withinindividual families. a, b, Pooled within-family analysis. The same

analysis asin Fig. 4c but showing within-family as well as between-family pairs
of t-types. Using a cutoff of at least 10 neurons per t-type (a) and a cutoff of at
least 5neurons per t-type (b). c-n, Transcriptomic and electrophysiological
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distances withinindividual families. Only t-types with>5neurons are

used for this analysis (used t-types are listed in the second column).

Transcriptomically well-isolated Sst Chodland Pvalb Vipr2_2were excluded.
Three electrophysiological features with the highest correlation to the
transcriptomic distance are shownon the right, for each family.
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Extended DataFig. 8 |See next page for caption.



Extended DataFig. 8| Phenotypic variability of individual t-types. The
extended version of Fig. 5.a, Confusion matrices for classifying cells from each
t-typeintoseven transcriptomic families, using electrophysiological,
morphological,and combined features. Only t-types with at least 10 cells are
shown. For morphological and combined features we only took cells from one
corticallayer. Valuesin each columnsumto1. Arrows mark t-types thatare
classified into wrong families more often than 25% of the time. We used kNN-
based classifier with k=10.b, Normalized total variance of featuresin each
t-type. Higher values correspond to t-types with more variable phenotypes.
Horizontal grey band shows the min/max normalized variances of k-means
clusters.c, Three exemplary traces of cells from the Vip Mybpcl_2type (all with
confidence >95%) and t-SNE overlay coloured by the rebound. Inset: the same
t-SNEembeddingasin Fig. 1. Main plot: zoom-in.d, Three exemplary traces of
cells fromthe Sst Pvalb Calb2 (confidence > 95%) and t-SNE overlay coloured by
themaximum firingrate. e, Exemplary morphologies of L5 cells from the Pvalb
Relntype and t-SNE overlay coloured by the axonal width/height log-ratioasin

Fig.4e.f,Exemplary morphologies of Pvalb Vipr2_2 chandelier neurons and
t-SNE overlay coloured by the axonal width/height log-ratio asin Fig. 4e.g-i, We
used Leiden clustering® to cluster the cells based on electrophysiological,
morphological,and combined features. The clustering resolution was adjusted
toroughly match the number of e-types, m-types, and em-types fromref. .
Thecluster coloursinthese panels are arbitrary and not the same as the colours
used for t-types.j-1, For each t-type with at least 10 cells, we measured the
entropy of the cluster assignments. Entropy zero corresponds to all cells
gettinginto one cluster. Higher entropies mean that cells get distributed
across many clusters. Werepeated the clustering 100 times with different
randomseeds, and for each of them, subsampled each t-typeto 10 cellsto
measure the entropy. Points show100 repetitions, big markers show medians.
When using morphological and combined features, all t-types were layer-
restricted, asabove. The t-type colours donot correspond to the coloursin
panels (j-i).
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Extended DataFig.9|Interneurons assigned to the Tasicetal.*t-types. This  thesameneuronsasinExtended DataFig.3whenever possible.
isanexactanalogue of Fig.1b and Extended Data Fig. 3 using inhibitory t-types 99 neuronsinS5t-types.
fromref.*. Itallows the direct comparison with the results fromref.*. We used




Extended Data Table 1| Description of the inhibitory t-types

All marker genes are given based on Ref. [20].

Lamp$5 subclass

Lamp5 Pax6
Lamps Egin3 1
Lamps Egin3g 2
Lamps Egin3_3
Lamps Pdlima_1
Lamps Pdlima_2
Lamps Sle35d3
Lamp5 Lhx6

Sncg subclass

L1

Alpha7 cells in L1 [56]: Ndnf~ Chrna7t. Compared to Egin3 2, larger hyperpolarization sag, stronger bursts, and rebound firing.

Cancpy cells in L1 [56]: Mdnf™ Noy

L1

Ndntt Npy ' . Late-spiking neurogliaform cells (NGCs) in L1 with wide asymmetric action potentials (APs) and deep afterhyperpolarization (AHP).
Ndnf~. NGCs in L2/3, L5, and L8, showing layer-adapting axonal morphology.

Deeap L5/L6 neurogliaform-like cells with NGC morphology and deep AHP but narrow APs. Putatively MGE-derived [4], suggesting that although all
deep NGCs belong to the Lamp$§ subclass, some are CGE- and some are MGE-derived (as is the case in hippocampus [25, 26, 27]).

Sncg Cof14at
Sncg Sic17ag
Sneg Cafbi_1
Sncg Calb1_2
Sncg Npy2r

Vip subclass

The Sncg subclass (mostly Vip~ and strongly Cok™) proved difficult to sample due to the lack of specialized Cre lines. We found them in all layers
from L1 to L6 {preferentially in the upper L2/3} with diverse morphelogies; they mostly showed irregular firing, sometimes with a strong rebound.
Several cells in the upper L2/3 had large axonal marphologies, likely corresponding to the ‘large Cck basket cells' [2].

Vip Sncg

Vip Serpinf1_1
Vip Serpinft_2
Vip Serpinf1_3

Abundant in L2/3 [57], strong Cck™t expression, local dendritic and axonal morphologies = ‘small Cck basket cells' [2]. High input resistance [2].
Cck, deep L5 and L6, large axonal arborization.

L2/3, upper L5

Vip Hirtf }

ﬂ{,ﬂ Goa3 L5, mostly local morphaology [57], some cells with deep-projecting axons [5][57]. In Vip Mybpc? 1(Calb2") and Vip Chat 1 (Calb2m Chat™) also
p Glght ' in L2/2 and L5. Vi traditionally characterized by high input resistance [2], but some of these t fall

Vip Mybpet_1 some bipolar cells in L2/3 an upper L5. Vip neurons are traditionally characterized by high input resistance [2], but some of these types, especially

Vip Chat_1 Vip Gpe3, showed only moderate input resistance, comparable to the Sst subclass. This type also had particularly low resting membrane potential.

Vip Mybpet_2 } Abundant in L2/3 [57]. Vertically oriented morphologies, sometimes with bipolar dendritic structure. Diverse firing patterns with some neurans

Vip Mybpe1_3 exhibiting large membrane time constant, hyperpolarization sag and strong rebound firing. High input resistance [2].

Vip Chat 2 Upper L2/3.

ﬂg g;gzg:; } —  [We did not obtain any cells from these types, presumably due to their very weak Vip expression [4].]

Sst subclass

Sst Chod! All layers from upper L2/3 down to the bottom of LE. This type is thought to have long-range projections [4, 24] and for two cells in L6 we could indeed

see an axon disappearing into the white matter. Low rebound potential and low hyperpolarization sag. High variability in membrane time constant.

Sst Penk L6. Mostly local axonal arborization within L6 [58].

Sst Myhg_1 LS. “T-shaped' Martinotti morphologies [28, 30] and strong rebound firing.

Sst Myhg_2 L5. Strong rebound firing.

Sst Myhe_3 L5. Sometimes rebound firing. Strong hyperpolarization sag.

Sst Hirla L5. Similar to transcriptomically neighboring Sst Hpse.

Sst Etv1 L5. ‘T-shaped' Martinotti marphologies [29, 30] and strong rebound firing.

Sst Pvalb Etv1 LS. “T-shaped' Martinotti marphologies [29, 30] and strong rebound firing. Strong hyperpolarization sag.

gi; gﬁg:; } Lower L5. Mostly local axonal arbor but with some sparse ascending axons.

Sst Hpse Lower L2/3 and upper L5, Martinotti morphology. Compared to Calb2, denser local axons, sparser ‘fanning-out’ [29, 30] projections to L1, smaller

membrane time constant [28]. Mon-zero ADP.

Sst Calbz Abundant in L2/3, Martinotti morphelogy, adapting firing pattern [2][59]. ‘Fanning-out’ Martinotti morphology [29, 30] in upper LS. Non-zero ADP.

Sst Pvalb Calb2 L2/3. Lower AP width and higher firing rate than typical for the Sst subclass [28]. Some cells have Martinotti, some — basket cell merphology.

Sst Pappa -

gi: g:gg:; } Lower L&, Nan-Martinotti morphology without ascending axons [2, 24]. Deep AHP.

Sst Tac2 LS.

SstTh 1 Lower L5 and L6.

SstTh 2 -

SstTh 3 L&. Mostly local axonal arborization within L& [58].

Pvalb subclass

Pvalb Gabrg? } L&, fast spiking. Mostly local axons [58]. Some neurcns exhibited a horizontally elongated or downward projecting axon mostly innervating LBb [24].

Pvalb Egfem1 Larger hyperpolarization sag and rebound potential compared to the other FS neurons.

Pvalb Gpr142 Middle L5, fast spiking. Preferentially horizontally elongated basket cells [5].

Pvalb Kank4 Lower L5 and L8, fast spiking. A variety of axonal morphologies, including some with large local arborization with dense spherical shape.

Pvalb Calb1_1 L&, fast spiking. Mostly local axons [58]. Some neurcns exhibited a horizontally elongated or downward projecting axon mostly innervating LBb [24].

Pvalb Calb1_2 Upper L5, fast spiking. A variety of axonal morphologies, including some with large local arborization with dense spherical shape.

Pvalb Reln Upper L5, fast spiking. Preferentially small (or shrub) basket cells [5].

Pvalb fitrapl2 Abundant in L2/3, fast spiking. Strongly layer-adapting morphology: classical L2/3 basket morphology in L2/3 [5], mostly large basket cell morphology

Pvalb Viprz_1
Pvalb Vipr2_2

in upper L5 [5]. Some neurons showed delayed firing [60] with large latency.
Chandelier cells, recognizable by the straight terminal axonal 'cartridges’ [2]. Mostly upper L2/3, some in deep L5. Fast spiking, but lower firing rate
compared to basket cells, practically absent hyperpolarization sag.

Note: we did not encounter double-bouguet basket cells, previously described in L2/3 of mouse V1 [5], or L6 FS cells with translaminar axons reaching up to L1, that were
also reported in V1 [24][61].

References™®'

are cited in this table.
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Extended Data Table 2 | Description of the excitatory t-types

Transcriptomically, cortical excitatory neurons are classified into the well-separated intertelencephalic (IT), extratelencephalic (ET, also called PT for pyramidal tract),
corticothalamic (CT), and near-projecting (NP) subclasses [4]. Morphologically, they have been classified into big-tufted, small-tufted, untufted neurons, depending on the
shape of the apical dendrite tuft, stellate neurons without an apical dendrite, and horizontal/inverted neurons in L6 [62, 63, 64, 65].

IT subclass

L2317 1 -

L2/31T 2 -

L2/31T_3 Abundant in L2/3. Tufted pyramidal cells with high rheobase.

L4/51T 1 Located on the boundary between L2/3 and L5, likely corresponded to the quasi-L4 neurons described previously in motor cortex [31]. Diverse
morphologies with some pyramidal and some stellate cells.

L451T_2 Upper L5. Thin untufted apical dendrite.

L5IT_1

L5IT 2 } L5. Large tufted pyramidal neurons. Most belonged to L5 /T_1.

L51T 3

L5IT 4 Located at the boundary between L5 and L6. Short and untufted pyramical cells.

L& T 1 Upper L. Short and untufted pyramidal cells. Broad APs.

LeIT 2 L6. Often stellate or inverted [66].

L& IT Card — [Using Gnb4-Cre mouse line, we did not find any labeled cells in MOp, but only near the claustrum [46]. Those all mapped to this type.]

ET subclass

L5ET 1 Large big-tufted cells with the apical dendrite often bifurcating close to the soma, suggesting that these were corticospinal cells [67, 68]. They had

L5ET 2 bigger hyperpolarization sag, lower input resistance, and smaller AP width, compared to the L5 IT neurons {we confirmed these differences in

L5ET 3 follow-up experiments at 34 *C, Extended Data Fig. E6). We did not observe consistent morpho-electric differences between the four ET types,

L5ET 4 apart from L5 ET_1 being located deeper than the rest (Fig. 1b; consistent with Ref. [34]), but they may have different projection targets [4][69].

NP subclass

L5%6 NP_1

Las NP _2 MNP neurons proved very difficult to obtain without a specialized Cre driver line. The few neurons in our dataset were all untufted, with sparse basal

LB NP 3 dendrites, in agreement with prior literature [24].

L5/6 NP CT

CT subclass

L6 CT Gpr139

L& CT Cpat CT types were located in L6 and lower L5 and had mostly untufted apical dendrites [66]. In line with previous literature [70], they could be

LECT Grp distinguished from L6 IT neurons by a lower inter-spike interval adaptation index (Supplementary File 2). The most abundant type was L6 CT Cpaé.

L& CT Poudf2

L6 CT Kit_1 -

L6 CT Kit_2 -

Léb Coléal

Léb Shisa6_1
L6b Shisa6_2
L&b Ror1

L&b Kenip?

L6b types. transcriptomically related to the CT subclass (Fig. 1e), were all stellate, inverted, or horizontal, located preferentially in the bottom of L6.
The L&k Rort type stood out, having haorizontal dendritic morphology and showing strong rebound firing.

62-70

References® are cited in this table.
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Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OO0 0ogo gl
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Electrophysiological recordings: HEKA patch master v2x65 and v2x90.3; morphological reconstructions: neuroleucida and neuroleucida
explorer 11.04. In a subset of data the soma position was evaluated in slices during recording using Linlab2 1.0.

Data analysis The sequencing data were processed using the zUMIs 2.5.6b pipeline with default settings; sequencing reads were aligned to the mouse
reference genome using STAR version 2.5.4b; reconstructed morphologies were converted into the SWC format using
NLMorphologyConverter 0.9.0 and further analyzed using MorphoPy 0.6; we used custom Python scripts to perform the data analysis. The
analysis code can be found at https://github.com/berenslab/mini-atlas.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Electrophysiological recordings are available at https://dandiarchive.org/dandiset/000008 in NWB for- mat.
Sequencing data are available at http://data. nemoarchive.org/biccn/grant/zeng/tolias in FASTQ format.
Morphological reconstructions are available at ftp://download.brainimagelibrary.org:8811/3a/88/3a88a7687ab66069 in SWC format.
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All preprocessed data

(gene counts, electrophysiological and morphological features) and meta data are available at https://github.com/berenslab/mini-atlas.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences

[ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life scien

ces study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Behaviou

Sampling strategy was determined using pre-existing knowledge of the transcriptional diversity of the mouse cortex (Tasic et al., 2018; Yao et
al., 2020) and based also on the variability of morphological and electrophysiological types predicted by existing literature (Jiang et al., 2015,
Gouwens et al. 2019, Scala et al., 2019).

Cells meeting any of the exclusion criteria described in the following were declared low quality and did not get a t-type assignment: cells with
the highest correlation below 0.4 (78 cells); cells that would be assigned to non-neural t-types, presumably due to RNA contamination (14
cells); cells with the highest correlation less than 0.02 above the maximal correlation in one of the other two transcriptomic orders (5 cells).
Four cells were assigned to an excitatory t-type, despite having clearly inhibitory firing, morphology, and/or soma depth location (such as L1).
The most likely cause was RNA contamination from excitatory cells that are much more abundant in the mouse cortex. These four cells were
excluded from all analyses and visualizations (as if they did not pass the transcriptomic quality control). In addition, one cell was likely located
outside of MOp, based on the slice anatomy, and was excluded as well. For the electrophysiology, the cells were not recorded or included
when seal resistance values were <1 GQ before achieving whole-cell configuration and/or initial access resistance was >30 MQ.

Cells were excluded from morphological analysis when the staining quality did not match pre-established criteria for inclusion. Cells that
showed low staining quality such as poor fill, excessive background, dendritic or axonal truncation were not reconstructed and not included in
the dataset.

The results of this study were not directly replicated. However, all the results were collected from multiple animals from multiple litters per
wild-type and transgenic lines.

There was no randomization performed as the study does not involve multiple study groups.
There was no blinding performed as the study does not involve multiple study groups. However, for these study most of the neuronal

electrophysiological proprieties and morphological reconstructions were obtained without having informations about the molecular finger
print of the neuron.

ral & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.
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Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.
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Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [ | Yes [ Ino

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI D ChlIP-seq
Eukaryotic cell lines IZI D Flow cytometry
Palaeontology and archaeology IZI D MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

MNXXOXKXX &
O0O0XOOO

Dual use research of concern




Antibodies

Antibodies used

Validation

Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

State the source of each cell line used.

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pome any commonly misidentified cell lines used in the study and provide a rationale for their use.

(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance

Specimen deposition

Dating methods

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Indicate where the specimens have been deposited to permit free access by other researchers.
If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where

they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

Male and Female mice (median age 75 days, interquartile range 64-100, full range 35-245 days) were used in this study. Specific
information about every single animal can be found in https://github.com/berenslab/mini-atlas. In particular, we used C578BI/6 Wild
type, Viaat-Cre/Ai9 mice, SOM-Cre/Ai9, VIPCre/Ai9, PV-Cre/Ai9, NPY-Cre/Ai9, Scl17a8-Cre/Ai9, Scl17a8-iCre/Ai9, Vipr2-Cre/Ai9 and
Gnb4-Cre/Ai9. Detailed information about the origin of each single Cre line reported here can be find in the main text.

This study did not involve wild animals.
The study did not involve samples collected from the field.

Procedures for mouse maintenance and mouse surgeries were performed according to protocols approved by the Institutional
Animal Care and Use Committee (IACUC) of Baylor College of Medicine.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Note that full information on th

Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Identify the organization(s) that approved the study protocol.

e approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

No | Yes

[11[] public health

D |:| National security

D |:| Crops and/or livestock
L]

[] Ecosystems

O

[] Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

—<
0]
%

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

OO0o0odoods
Ooogoogo

Any other potentially harmful combination of experiments and agents

ChlIP-seq

Data deposition
D Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
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Sequencing depth whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChlP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot
number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots
Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
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D The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
D All plots are contour plots with outliers or pseudocolor plots.

D A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition
Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.
Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used




Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: D Whole brain |:| ROI-based |:| Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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