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Phenotypic variation of transcriptomic cell 
types in mouse motor cortex

Federico Scala1,2,12, Dmitry Kobak3,12, Matteo Bernabucci1,2, Yves Bernaerts3,4,  

Cathryn René Cadwell5, Jesus Ramon Castro1,2, Leonard Hartmanis6, Xiaolong Jiang1,2,7, 

Sophie Laturnus3, Elanine Miranda1,2, Shalaka Mulherkar2, Zheng Huan Tan1,2, Zizhen Yao8, 

Hongkui Zeng8, Rickard Sandberg6, Philipp Berens3,9,10,11 ✉ & Andreas S. Tolias1,2 ✉

Cortical neurons exhibit extreme diversity in gene expression as well as in 

morphological and electrophysiological properties1,2. Most existing neural 

taxonomies are based on either transcriptomic3,4 or morpho-electric5,6 criteria, as 

it has been technically challenging to study both aspects of neuronal diversity in 

the same set of cells7. Here we used Patch-seq8 to combine patch-clamp recording, 

biocytin staining, and single-cell RNA sequencing of more than 1,300 neurons in 

adult mouse primary motor cortex, providing a morpho-electric annotation of 

almost all transcriptomically defined neural cell types. We found that, although 

broad families of transcriptomic types (those expressing Vip, Pvalb, Sst and so on) 

had distinct and essentially non-overlapping morpho-electric phenotypes, 

individual transcriptomic types within the same family were not well separated in 

the morpho-electric space. Instead, there was a continuum of variability in 

morphology and electrophysiology, with neighbouring transcriptomic cell types 

showing similar morpho-electric features, often without clear boundaries 

between them. Our results suggest that neuronal types in the neocortex do not 

always form discrete entities. Instead, neurons form a hierarchy that consists of 

distinct non-overlapping branches at the level of families, but can form 

continuous and correlated transcriptomic and morpho-electrical landscapes 

within families.

As animals can be grouped into species and assembled into a hierarchy 

of phylogenetic relationships to form the ‘tree of life’, neurons in the 

brain are thought to form discrete cell types, which in turn can be cast 

in a hierarchy of neuronal families and classes. The current view is that 

a neuronal cell type is characterized by a common genetic profile that 

gives rise to distinct physiological and anatomical properties, including 

patterns of connectivity7,9. A comprehensive multi-modal taxonomy of 

neurons would resemble a ‘parts list’ of the brain, helping us to decipher 

its bewildering complexity10,11.

For decades, neurons have been classified into types by their 

anatomical and physiological characteristics, and more recently by 

molecular markers1,2,12,13. High-throughput single-cell sequencing 

techniques have identified dozens of types of neuron on the basis 

of their transcriptional profiles3,4,14,15, but linking transcriptomically 

defined cell types (t-types) to their phenotypes has remained a major 

challenge16. However, to understand the roles of t-types in cortical 

computations, it is necessary to know their anatomy, connectivity, 

and electrophysiology7.

Our work is part of the BRAIN initiative cell census network (BICCN) 

effort to fully characterize the cellular taxonomy of neurons in mouse 

primary motor cortex (MOp). We used the Patch-seq technique8,17–19 to 

describe the morpho-electric phenotypes for most of the t-types in 

MOp20. Our analysis suggests that, in both excitatory and inhibitory 

classes of neurons, broad transcriptomic families (also known as ‘sub-

classes’20) have largely distinct phenotypes, but uncovers continuous 

morpho-electric variation within most of these families.

Patch-seq of mouse primary motor cortex

We sampled neurons across all layers (L) of adult mouse MOp (median 

postnatal day (P) 75) using various Cre driver lines to cover as diverse 

a population of neurons as possible. Neurons in acute slices were 

patch-clamped and stimulated with brief current pulses to record 

their electrophysiological activity at room temperature and then filled 

with biocytin for subsequent morphological recovery and reconstruc-

tion, and their RNA was extracted and sequenced using the Smart-seq2 
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protocol21 (Extended Data Fig. 1). In total, we performed whole-cell 

recordings from more than 2,000 cells, of which 1,329 cells (from 266 

mice) passed initial quality control. The mRNA of these 1,329 cells 

was sequenced, yielding on average 1.3 million exonic and 0.7 mil-

lion intronic reads (medians; mean ± s.d. on a log10 scale: 6.0 ± 0.6 and 

5.6 ± 0.8, respectively) and 9,100 ± 3,500 (mean ± s.d.) detected genes 

per cell (Extended Data Fig. 2). Of these neurons, 646 had sufficient 

staining for their morphologies to be reconstructed.

Using the gene expression profiles, we mapped all sequenced neurons 

to the transcriptomic cell types (t-types) that have been identified using 

dissociated cells in a parallel study within the BICCN consortium20. To 

assign cell types, we used a nearest centroid classifier with Pearson cor-

relation of log-expression across the most variable genes as a distance 

metric (Extended Data Fig. 1). Bootstrapping over genes was used to 

assess mapping confidence. The mapping was done separately using 

each of the seven reference data sets obtained with different sequencing 

technologies, including single-cell and single-nucleus Smart-seq2 and 

10x sequencing20. We found that Patch-seq expression profiles were 

most similar to the single-nucleus Smart-seq2 data (Extended Data 

Fig. 2g, h). At the same time, there was good agreement between t-type 

assignments based on Smart-seq2 and those based on 10x reference 

data (Extended Data Fig. 2i), so consensus t-type assignment over all 
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Fig. 1 | Transcriptomic coverage. a, Number of Patch-seq cells assigned to 

each of the neural transcriptomic types (t-types)20. Colours and the order of 

types are taken from the original publication20. The filled part of each bar 

shows the number of morphologically reconstructed neurons. Grey labels, 

t-types with no cells. Total number of neurons, 1,227. b, Normalized soma 

depths of all neurons of each t-type. For t-types with at least three cells, 

horizontal lines show medians. Soma depths were normalized by the cortical 

thickness in each slice (0, pia; 1, white matter). Grey horizontal lines, 

approximate layer boundaries identified by Nissl staining (L1, 0.07; L2/3, 0.29; 

L5, 0.73). Total number of neurons, 1,187 (for some cells soma depth could not 

be measured owing to failed staining). c, t-SNE representation of CGE-derived 

interneurons from the single-cell 10x v2 reference data set (n = 15,511; 

perplexity, 30). t-Type names are shortened by omitting the first word; some 

are abbreviated. Patch-seq cells from the Vip, Sncg, and Lamp5 subclasses were 

positioned on this t-SNE atlas23 (black symbols). d, As in c but for MGE-derived 

interneurons (n = 12,083; perplexity, 30). e, As in c but for excitatory neurons 

(n = 93,829; perplexity, 100). f, Example morphologies coloured by t-type. For 

interneurons, dendrites are shown in darker colours. For excitatory neurons, 

only dendrites are shown. Black dots mark soma locations. Three voltage 

traces are shown below for some exemplary cells: the hyperpolarization trace 

obtained with the smallest current stimulation, the first depolarization trace 

that elicited at least one action potential, and the depolarization trace showing 

maximal firing rate. Stimulation length, 600 ms.
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seven reference data sets was used for all subsequent analysis. Cells 

that showed poor mapping (owing to a low read count or excessive 

RNA contamination) were excluded (Extended Data Fig. 2), leaving 

1,227 neurons for further analysis (817 inhibitory, 410 excitatory; 369 

and 269 with morphological reconstructions, respectively).

The resulting data set covered 77 out of the 90 neuronal t-types 

(Fig.  1a), with 73 t-types having at least one morphologically 

reconstructed neuron. The coverage was good for interneurons derived 

from the caudal and medial ganglionic eminences (CGE and MGE) and 

for excitatory neurons. Within-type distributions of soma depths 

(Fig. 1b) agreed well with previous data4 and with the layer-specific 

nomenclature of excitatory t-types, confirming the validity of our 

t-type assignment. Positioning all cells on reference maps made with 

t-distributed stochastic neighbour embedding (t-SNE)22,23 also showed 

good overall coverage (Fig. 1c–e) with only few uncovered regions.

The observed phenotypes included most of the morphological and 

electrophysiological types of cortical neurons that have been described 

previously in mice and rats5,6,24, allowing us to link transcriptomic and 

morpho-electric descriptions (Extended Data Fig. 3, Supplementary 

File 1).

A detailed description of all t-types is provided in Extended Data 

Tables 1, 2. One interesting case was the transcriptomically isolated 

Lamp5 Lhx6 type, which consists of deep L5/L6 neurogliaform 

cells (NGCs). This type, unlike all other Lamp5 types, is putatively 

MGE-derived4, so its identity was an open question16. Our results 

suggest that although all deep NGCs belong to the Lamp5 subclass, 

some are derived from the CGE and some from the MGE, as in the 

hippocampus25–27. Another finding was that the Sst Pvalb Calb2 type, 

which is transcriptomically in between the Sst and Pvalb subclasses, 

was also in between these subclasses in terms of its morpho-electric 

phenotype28. Furthermore, we confirmed that chandelier cells from 

both superficial and deep layers belonged to transcriptomically isolated 

Pvalb Vipr2 types. We also showed that three previously described 

morphological types of L5 Pvalb cells5, as well as two morphological 

types of L5 Martinotti cells29,30, corresponded to different t-types. 

We were also able to identify a t-type, L4/5 IT_1, that was located on 

the boundary between L2/3 and L5 and probably corresponds to the 

quasi-L4 neurons described previously in motor cortex31.

Distinct phenotypes of major families

We next asked to what extent the morpho-electric phenotype could 

be predicted by gene expression across the entire data set. To obtain 

quantitative characterizations of the morpho-electric phenotypes, 

we extracted 29 electrophysiological (Extended Data Fig.  4, 

Supplementary File 2) and about 50 morphological features for each 

cell. We first focused on 17 electrophysiological features and used 

sparse reduced-rank regression32, a technique that predicts the firing 

properties on the basis of a low-dimensional latent space representation 

computed from a sparse selection of genes. We used cross-validation to 

tune the regularization strength (Extended Data Fig. 5). The selected 

model used 25 genes with a 5-dimensional latent space and achieved a 

cross-validated R2 of 0.38. To visualize the structure of the latent space, 

we projected gene expression and electrophysiological properties 

onto the latent dimensions (Fig. 2). The cross-validated correlations 

between the first three pairs of projections were 0.90, 0.74, and 0.67, 

respectively.

These first three components clearly separated five major groups 

of neurons: the Pvalb, Sst, Vip, and Lamp5 interneuron subclasses, and 

the excitatory neuron class (Fig. 2). These groups had distinct electro-

physiological properties: for example, as expected, Pvalb neurons 

were characterized by high firing rates while Sst neurons had high 

values of the hyperpolarization sag and rebound (Fig. 2, right). Some 

of the genes selected by the model were prominent marker genes, 

such as the pan-inhibitory markers Gad1 and Slc6a1 (related to GABA 

(γ-aminobutyric acid) processing), or the more specific inhibitory mark-

ers Sst, Vip, Pvalb, Tac1, and Htr3a. Notably, some other selected genes 

were more directly related to electrophysiological properties, such as 

the calcium channel subunit genes Cacna1e and Cacna2d3 or the potas-

sium channel-interacting protein gene Kcnip2, which can modulate fir-

ing properties in individual families. A reduced-rank regression model 

restricted to using only ion channel genes (Extended Data Fig. 5) did 

not perform much worse than the full model (cross-validated R2 = 0.33 

and correlations 0.86, 0.71, and 0.56, respectively, with regulariza-

tion set to select 25 genes). Reduced-rank regression analysis using 

morphological features supported the separation of major families 

(Extended Data Fig. 5).

Similarly, a 2D t-SNE embedding of Patch-seq cells based on the same 

electrophysiological features showed that the major transcriptomic 

families have distinct electrophysiological properties (Fig. 3a): the 

Pvalb, Lamp5, Sst, Vip, CT (corticothalamic), IT (intratelencephalic), 

and ET (extratelencephalic) subclasses were mostly well separated from 

each other. We quantified this separation using a confusion matrix 

for k-nearest neighbours (kNN) classification of cells into families: 

it was mostly diagonal, with only the ET and IT subclasses strongly 

overlapping (Fig. 3d). We confirmed the electrophysiological overlap 

between IT and ET neurons in follow-up experiments at 34 °C (Extended 

Data Fig. 6).

We also constructed a 2D t-SNE embedding based on the 

morphological features (Fig. 3b). We used only dendritic features for 

the excitatory cells, but both axonal and dendritic features for the 

inhibitory cells, leading to a strong separation between these two 
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major classes. Within each class, cells were strongly segregated by the 

soma depth, with excitatory cells forming mostly a one-dimensional 

manifold. The separability between inhibitory families was weaker 

than with electrophysiological features (Fig. 3d). The between-family 

separability was strongest when we had combined electrophysiological 

and morphological features into a joint representation (Fig. 3c, d), 

showing that these sets of properties are not redundant. The ellipses 

in Fig. 3c highlight prominent t-types and groups of t-types with similar 

morpho-electric properties.

In summary, different transcriptomic families had largely distinct 

morpho-electric phenotypes, in agreement with them being well 

separated in the transcriptomic space4.

Continuous phenotypic variation

Within individual transcriptomic families, morpho-electric phenotypes 

rarely formed isolated clusters (Fig. 3). Moreover, we often found that 

morpho-electric phenotypes varied continuously from one t-type 

to another (Fig. 4). For example, electrophysiological properties of 

the t-types within the Vip subclass varied continuously across the 

transcriptomic landscape; the membrane time constant, for instance, 

had its largest values close to the Sncg subclass and gradually decreased 

towards Vip Gpc3 (Fig. 4a). We observed the same in the Sst subclass, 

which is known to be transcriptomically4 and morpho-electrically29,30,33 

diverse in L5. Here we also found that morpho-electric properties varied 

continuously across the transcriptomic landscape, with neighbouring 

t-types consistently showing similar morphologies and similar rebound 

values (Fig. 4b). We confirmed this effect in follow-up experiments at 

physiological temperature (Extended Data Fig. 6).

To quantify this effect, for each pair of t-types within each family we 

computed the transcriptomic distance (correlation distance between 

average log-counts in the reference data) and the electrophysiological 

distance (Euclidean distance between average feature vectors) between 

them. Pooling the pairs across all families, we found that these two 

distance measures were correlated, with r = 0.60 (Fig. 4c, n = 200 pairs; 

Extended Data Fig. 7). The correlation was also observed within multiple 

individual families and for many individual electrophysiological 

features (Extended Data Fig. 7).

The IT subclass provides an example of a similar phenomenon 

in another data modality (Fig. 4d). IT neurons span all layers from 

L2/3 to L6, and IT t-types are largely layer-restricted4. However, we 

found that IT t-types did not form distinct groups for each cortical 

layer; instead, the soma depth and RNA expression varied continu-

ously along a one-dimensional manifold (Fig. 4d), in agreement with 

parallel findings based on a spatial transcriptomics approach34. For 

example, L4/5 and L5 IT t-types that were transcriptomically close to 

the L2/3 IT t-types were located at the top of L5 close to the border 

between L2/3 and L5, whereas L5 IT t-types that were transcriptomi-

cally close to L6 IT t-types were located at the bottom of L5 close 

to the border with L6. Transcriptomic distances between t-types 

were strongly correlated with the average soma depth differences 

(r = 0.70; Fig. 4d).

Finally, the Pvalb subclass is usually understood as electrophysiologi-

cally homogenous (all neurons are fast spiking) but has been described 

as morphologically diverse, in particular in L55. However, it was previ-

ously unclear whether different morphologies such as shrub-like or 

horizontally elongated correspond to different t-types5. While we found 

that different t-types had different preferred morphologies (Extended 

Data Table 1), they showed substantial overlap, in agreement with the 

L5 Pvalb t-types themselves not having clear boundaries4 (Fig. 1d). 

The shape of the axonal arbor showed continuous changes across 

the transcriptomic landscape (Fig. 4e): small shrub-like basket cells, 

horizontally elongated basket cells, and vertically elongated classical 

basket cells were located in different corners of the t-SNE embedding, 

with intermediate morphologies in between.

In summary, within major transcriptomic families, morpho-electric 

phenotypes and/or soma depth often varied smoothly across neigh-

bouring t-types, indicating that transcriptomic neighbourhood 

relationships in many cases corresponded to similarities in other 

modalities.

Variability in individual t-types

To study the morpho-electric phenotypes of individual t-types, 

we measured how consistently they conformed to their respective 

transcriptomic families (Fig. 5a) and how variable they were within 

a t-type (Fig. 5b). First, we used a kNN classifier to classify cells from 

each t-type with at least ten cells into transcriptomic families, using 

electrophysiological features. Most t-types could be unambiguously 

placed into the correct family (Fig. 5a), but some t-types were in between 

two families. For example, many Sst Pvalb Calb2 neurons were classified 

as belonging to the Pvalb subclass on the basis of electrophysiology. 

Similarly, Lamp5 Egln3_1 neurons had rather Vip- and Sst-like firing 

instead of the typical Lamp5 electrophysiology, and Vip Mybpc1 neurons 

often had Sst-like firing. Thus, while overall transcriptomic family 

was highly predictive of the cell phenotype, some t-types exhibited 

properties similar to those of another transcriptomic family.
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Next, we measured the normalized total variance of each t-type using 

electrophysiological features and compared it to the normalized total 

variance of phenotype clusters derived by k-means clustering (with k 

set to the number of t-types). The rationale here was that the variance 

of the k-means clusters would reflect the minimal possible variance 

obtainable in our data set. Values much above the cluster variances 

indicate non-trivial phenotypic variability within a t-type.

We found that many t-types had total variance substantially above 

the variances of the k-means clusters (Fig. 5b) and an alternative 

analysis using entropies of Leiden clustering35 often highlighted the 

same t-types as variable (Extended Data Fig. 8). Not all t-types showed 

high variability: some of them, such as Pvalb Vipr2_2 (chandelier 

cells), appeared morpho-electrically homogeneous. By contrast, Vip 

Mybpc1_2 was marked as having high electrophysiological variability 

and indeed had high variance in input resistance, membrane time con-

stant, and rebound (Extended Data Fig. 4). This variability was not ran-

dom: overlaying the rebound values on the t-SNE embedding (Fig. 5c)  

showed that cells with low rebound were located close to the boundary 

with the low-rebound Vip Sncg type. Similarly, Sst Pvalb Calb2 cells had 

high variability in terms of the maximum firing rate, but high-firing 

cells were mostly grouped in one part of the transcriptomic landscape 

(Fig. 5d).

We found similar examples in the morphological modality (Extended 

Data Fig. 8). Together, these examples suggest that within-t-type 

morpho-electric variability can in some cases be related to the 

underlying transcriptomic variability. This is in agreement with the 

idea that on a fine within-family scale, both transcriptomic and 

morpho-electric landscapes are continuous rather than discrete.

Discussion

We used Patch-seq to provide the missing link between transcriptomic 

and morpho-electric descriptions of neurons in adult mouse motor cor-

tex. Broad transcriptomic families were mostly well separated in their 

morpho-electric properties. Previous studies using transgenic lines 

had shown that morpho-electric properties within these families can 

be highly variable5,24. We found that this variation is structured across 

the transcriptomic landscape, such that the morpho-electric distance 

between t-types within a family is correlated with their transcriptomic 

distance. Furthermore, we found non-trivial morpho-electric variability 

within multiple t-types. Although we cannot fully exclude the possibility 

that some of this variability can be attributed to technical challenges 

of Patch-seq or to factors such as the exact spatial location of the cell 

within motor cortex36, there are clear cases in our data that suggest 

that within-type morpho-electric variability is related to within-type 

transcriptomic variability.

We therefore suggest that the ‘tree of cortical cell types’ may look 

more like a banana tree with a few large leaves, rather than an olive tree 

with many small ones. In this metaphor, neurons follow a hierarchy 

consisting of distinct, non-overlapping branches at the level of families 

(large leaves), but with a spectrum of cells forming continuous and 

correlated transcriptomic and morpho-electrical landscapes within 

each leaf.

This is at odds with the notion that t-types are discrete entities, an 

implicit assumption behind any cluster analysis. Consistent with our 

interpretation, recent transcriptomic and anatomical studies have 

argued that neurons in hippocampus, striatum, and cerebellum can 

be better described as forming partially continuous manifolds27,37–39. 

Similarly, cortical studies have identified many intermediate cells 

with uncertain t-type assignments3,4. Thus, the goal to assemble an 

exhaustive inventory of neural cell types might be unattainable if 

the types, unlike the chemical elements in the periodic table, are not 

discrete entities. We believe that there is an urgent need for theoretical 

work on how to conceptualize and model hierarchical discrete/

continuous cell variability in a principled way7.

Developmentally, it is thought that neural diversity is generated 

through a combination of intrinsic genetic programs in progenitor 

cells, and activity-dependent and environmental factors40–44. It remains 
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unclear to what extent the interplay between hard-wired genetic pro-

grams and extrinsic cues might explain our observations.

Our study has several limitations. First, some t-types were covered 

only sparsely or not at all. Additional experiments with more specific 

Cre lines could fill some of the gaps, but some very rare putative t-types 

might not be amenable to Patch-seq study. Second, as the RNA extrac-

tion process may have interfered with biocytin diffusion17 and as MOp is 

quite thick, it was difficult to recover complete morphologies of some 

groups of neurons, such as deep L5 Martinotti cells with thin long axons 

that reach all the way to L1.

A parallel Patch-seq study of the inhibitory neurons in the mouse 

visual cortex45 focused on isolating multimodal neural types 

(‘met-types’) but also often observed continuous variation. Our data 

sets are overall in good agreement (Extended Data Fig. 9) and together 

offer an unprecedented view of cell type variability in the neocortex. 

Future studies will need to add additional modalities, such as long-range 

projections, local connectivity, and in vivo functional characterization.
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Methods

No statistical methods were used to predetermine sample size. The 

experiments were not randomized and investigators were not blinded 

to allocation during experiments and outcome assessment, unless 

otherwise stated.

Animals

Experiments on adult male and female mice (n = 266; median age  

75 days, interquartile range 64–100, full range 35–245 days, Extended 

Data Fig. 2a) were performed on wild-type C57Bl/6 (n = 27), Viaat-Cre/

Ai9 (vesicular inhibitory amino acid transporter, encoded by the 

Slc32a1 gene, n = 24), Sst-Cre/Ai9 (somatostatin, n = 75), Vip-Cre/Ai9 

(vasoactive intestinal polypeptide, n = 46), Pvalb-Cre/Ai9 (parvalbumin, 

n = 76), Npy-Cre/Ai9 (neuropeptide Y, n = 2), Vipr2-Cre/Ai9 (vasoactive 

intestinal peptide receptor 2, n = 7), Scl17a8-Cre/Ai9 (VGLUT3, vesicular 

glutamate transporter 3, n = 6), Gnb4-Cre/Ai9 (n = 1), and Slc17a8-iCre/

Ai9 (n = 2) mice. Numbers above refer to mice from which sequencing 

data were successfully obtained. Several more animals were used for 

measuring layer boundaries and follow-up experiments at physiological 

temperature (see below). Mice were co-housed with littermates (2–5 per 

cage) in a controlled environment at 22–24 °C and 30–70% humidity. 

Mice were maintained with unrestricted access to food and water on a 

12-h light/dark cycle. Procedures for mouse maintenance and surgeries 

were performed according to protocols approved by the Institutional 

Animal Care and Use Committee (IACUC) of Baylor College of Medicine.

The Viaat-Cre line was generously donated by Huda Zoghbi (Baylor 

College of Medicine), the Slc17a8-iCre line by Rebecca Seal (University 

of Pittsburg). The Gnb4-Cre line was  from the Allen Institute for Brain 

Science. The other Cre and reporter lines were purchased from the 

Jackson Laboratory: Sst-Cre (stock no. 013044), Vip-Cre (stock no. 

010908), Pvalb-Cre (stock no. 008069), Vipr2-Cre (stock no. 031332), 

Slc17a8-Cre (stock no. 028534), Npy-Cre (stock no. 027851), Ai9 reporter 

(stock no. 007909).

We were unable to find any labelled cells in MOp in the Gnb4-Cre mice: 

all labelled cells were far outside of MOp and close to the claustrum46. 

For this reason, the data set does not include any Gnb4-positive cells.

Slice preparation

The MOp brain slices were obtained following previously described pro-

tocols5,28. In brief, the animals were deeply anaesthetized using 3% iso-

flurane and decapitated. The brain was rapidly removed and collected 

into cold (0–4 °C) oxygenated NMDG (N-methyl-d-glucamine) solution 

containing 93 mM NMDG, 93 mM HCl, 2.5 mM KCl, 1.2 mM NaH2PO4,  

30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM sodium ascorbate, 

2 mM thiourea, 3 mM sodium pyruvate, 10 mM MgSO4 and 0.5 mM 

CaCl2, pH 7.35 (all from Sigma-Aldrich). We cut 300-μm-thick coronal 

slices using a Leica VT1200 microtome following coordinates provided 

in the Allen Brain Atlas for adult mouse (http://atlas.brain-map.org). 

The slices were subsequently incubated at 34.0 ± 0.5 °C in oxygenated 

NMDG solution for 10–15 min before being transferred to the artificial 

cerebrospinal fluid (ACSF) solution containing: 125 mM NaCl, 2.5 mM 

KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 1 mM MgCl2, 11.1 mM glucose 

and 2 mM CaCl2, pH 7.4 (all from Sigma-Aldrich) for about 1 h. The slices 

were allowed to recover in ACSF equilibrated with CO2/O2 gas mixture 

(5% CO2, 95% O2), at room temperature (approximately 25 °C) for 1 h 

before experiments. During the recordings, slices were submerged 

in a customized chamber continuously perfused with oxygenated  

physiological solution. Recorded cells were generally located  

15–60 μm deep under the slice surface.

Patch-seq recording procedures

In order to simultaneously obtain electrophysiological, morphological 

and transcriptomic data from the same neurons, we applied our recently 

developed Patch-seq protocol17, with some modifications. In particular, 

changes were made to the internal solution to optimize its osmolarity 

in order to improve staining quality. RNase-free intracellular solution 

was prepared as follows: we dissolved 111 mM potassium gluconate, 

4 mM KCl, 10 mM HEPES and 0.2 mM EGTA in RNase-free water in a 

125-ml Erlenmeyer flask. We then covered the solution with aluminium 

foil and autoclaved it. After the solution was cooled down to room 

temperature, we added 4 mM MgATP, 0.3 mM Na3GTP, 5 mM sodium 

phosphocreatine, and 13.4 mM biocytin (all from Sigma-Aldrich). The 

pH was adjusted to 7.25 with RNase-free 0.5 M KOH using a dedicated 

pH meter (cleaned with RNase Zap and RNase-free water before each 

use). RNase-free water was then added to the solution in order to 

obtain the desired volume. After carefully checking its osmolarity 

(approximately 235–240 mOSM) the solution was stored at −20 °C 

and used for no longer than 3 weeks.

Before each experiment, we combined 494 μl internal solution with 

6 μl recombinant RNase inhibitor (1 U/μl, Takara) to increase RNA yield. 

The addition of the inhibitor resulted in an increase in osmolarity 

to the desired value of 315–320 mOSM without a further dilution17. 

The osmolarity of the ACSF was monitored before each experiment 

and adjusted to be 18–20 mOSM lower than the internal solution. In 

particular, when the ACSF osmolarity was too low, we added a small 

amount of sucrose to ACSF to increase its osmolarity and bring it to 

the desired range. This osmolarity difference between ACSF and the 

internal solution is important to obtain slight swelling of the cell during 

the recording session, which improves the diffusion of biocytin in the 

neuronal processes. All glassware, spatulas, stir bars, counters, and 

anything else that may come into contact with the reagents or solution 

were cleaned thoroughly with RNase Zap before use.

Recording pipettes (B200-116-10; Sutter Instrument) of ~3–7 MΩ 

resistance were filled with 0.1–0.3 μl RNase-free intracellular solution. 

The size of the pipette tip was chosen according to the target neuron 

size: 3–4-MΩ pipettes were used to record large neurons (for example, 

L5 ET excitatory neurons) and 6–7-MΩ pipettes were used to record 

small cells such as L1 or Vip interneurons.

The PatchMaster software (HEKA Elektronik) and custom Matlab 

scripts were used to operate the Quadro EPC 10 amplifiers and to 

perform online and offline data analysis. We used the following qual-

ity control criteria: (1) seal resistance value >1 GΩ before achieving 

whole-cell configuration; (2) access resistance <30 MΩ. Each neuron 

was injected with 600-ms-long current pulses starting from −200 pA  

and up to 1,380 pA with 20-pA increment steps (in some cases stimu-

lation was stopped before reaching 1,380 pA). There were 1.3- or 1.4-s 

intervals between successive current pulses, depending on the used 

setup. For most neurons, the stimulation was then repeated multi-

ple times from the beginning. Electrophysiological traces used for 

the analysis were acquired between 3 and 15 min after achieving the 

whole-cell configuration. Recordings were performed at room tempera-

ture (25 °C), as opposed to physiological temperature (34 °C), in order 

to keep the cells alive for longer. We performed control experiments 

at physiological temperature as well (see below).

Typically, excitatory neurons were recorded for 5–20 min while 

interneurons were recorded for 20–50 min in order to allow biocytin 

to diffuse into distal axonal segments. During the recording, the access 

resistance was checked every three minutes in order to maintain a stable 

seal that would ensure successful biocytin diffusion. The resulting cDNA 

yield was not correlated with the hold time (Spearman correlation −0.01).

Experiments at physiological temperature

A subset of electrophysiological recordings was performed at 34 °C in 

the presence of fast glutamatergic and GABAergic synaptic transmission 

blockers, 1 mM kynurenic acid (Sigma-Aldrich) and 0.1 mM picrotoxin 

(Tocris), respectively. The temperature was maintained stable, and 

constantly monitored using the temperature controller TC07 (Luigs 

and Neumann). In this set of experiments, the morphologies were not 

recovered and multiple neurons were recorded in each slice. The soma 

http://atlas.brain-map.org
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depth and the slice thickness were measured before each recording 

using Linlab2 software (Scientifica). Intrinsic electrophysiological 

recordings were obtained using the same stimulation paradigm as 

described above.

In these experiments, we targeted L5 Sst and excitatory neurons 

(Extended Data Fig. 6). We sequenced in total 185 neurons, obtained 

from 8 adult mice (7 Sst-Cre/Ai9 and 1 Pvalb-Cre/Ai9), of which 177 

neurons passed the transcriptomic quality control and got a t-type 

assignment (see below). One hundred and ten cells mapped to the Sst 

subclass, 43 to IT, 12 to ET, 10 to Pvalb, and 2 to NP. 175 cells were assigned 

to L5 in the post hoc analysis (see below). We obtained high-quality 

electrophysiological recordings and extracted electrophysiological 

features of 184 cells.

RNA sequencing of patched cells

At the end of the recording session, cell contents were aspirated into 

the glass pipette by applying a gentle negative pressure (0.7–1.5 pounds 

per square inch) for 1–5 min until the size of the cell body was visibly 

reduced. In most cases, the cell nucleus was visibly attached to the 

pipette tip and extracted from the cell body. We avoided complete 

nucleus aspiration, because it can lead to the collapse of the soma 

structure and of the nearby neurites, resulting in lower staining quality 

and stronger background staining. During the aspiration process, the 

cell body structure and access resistance were constantly monitored. 

Special care was taken to ensure that the seal between the pipette and 

the cell membrane remained intact to reduce contamination from the 

extracellular environment. After aspiration, the contents of the pipette 

were immediately ejected into a 0.2-ml PCR tube containing 4 μl lysis 

buffer (with ERCC spike-ins), and RNA was subsequently converted into 

cDNA using a Smart-seq2-based protocol21 as described previously17. 

The resulting cDNA libraries were screened using an Agilent Bioanalyzer 

2100. Samples containing less than around 1 ng total cDNA (in the 15 μl 

final volume) or with an average size less than 1,500 bp were typically 

not sequenced (with some occasional exceptions). The cDNA libraries 

were then frozen and sent for sequencing in 12 separate batches.

The cDNA libraries derived from each neuron were purified and 0.2 

ng of the purified cDNA was tagmented using the Illumina Nextera 

XT Library Preparation with one-fifth of the volumes stated in the 

manufacturer’s recommendation. Custom 8-bp index primers were 

used at a final concentration of 0.1 μM. The resulting cDNA library of 

each batch was sequenced on an Illumina NextSeq500 instrument with 

a sequencing setup of 75-bp single-end reads and 8-bp index reads. 

The investigators were blinded to the cell type of each sample during 

library construction and sequencing.

The sequencing data were processed using the zUMIs 2.5.6b pipeline 

with default settings47. Sequencing reads were aligned to the mm10 

mouse reference genome using STAR version 2.5.4b48 and transcript 

assignment performed with Gencode transcript annotations, version 

M23. A substantial portion of the RNA extracted from the neurons was 

nascent and contained intronic sequences. To accommodate this, gene 

expression counts were separately calculated using reads mapping 

to annotated intronic and exonic regions. We detected 42,466 genes, 

including pseudogenes and annotated non-coding segments, in at 

least one cell. The resulting exonic and intronic read count data were 

used for all transcriptomic analyses presented here. To quantify gene 

expression, we typically normalized exon and intron counts by exonic 

and intronic gene lengths in kilobases and added normalized counts 

together to obtain normalized exonic + intronic expression levels. See 

below for more details. Throughout the manuscript, ‘detected gene’ 

refers to a gene with a non-zero exonic or intronic count.

Biocytin staining and morphological reconstructions

Morphological recovery was carried out as previously described5,17,28. In 

brief, after the recordings, the slices were immersed in freshly prepared 

2.5% glutaraldehyde, 4% paraformaldehyde solution in 0.1 M PBS at 

4 °C for at least 48 h. The slices were subsequently processed with the 

avidin-biotin-peroxidase method to reveal the morphology of the 

neurons. As previously described, we took several steps to improve 

the staining quality of the fine axonal branches of interneurons5,17. 

First, we used a high biocytin concentration (0.5 g/100 ml). Second, 

we incubated with avidin–biotin complex and detergents at a high 

concentration (Triton X-100, 5%) for at least 24 h before staining with 

3,3′-diaminobenzidine (DAB).

Recovered cells were manually reconstructed using a 

100 × oil-immersion lens and a camera lucida system (MicroBrightField). 

We aimed to reconstruct all cells that had staining of sufficient quality 

(axons and dendrites for the inhibitory neurons; only dendrites for 

the excitatory neurons), and obtained 646 reconstructions in total. In 

addition, we reconstructed the dendrites of 30 neurons from the Vip 

and Scng subclasses that lacked sufficient axonal staining. Vip neurons 

are traditionally classified on the basis of dendritic morphology, so 

these reconstructions can inform t-type characterizations. These 

additional 30 reconstructions are shown, together with the main 646 

reconstructions, in Supplementary File 1.

Forty-five sequenced cells were mistakenly recorded using a 

solution with a much smaller concentration of biocytin, and their 

morphologies could not be recovered. We made sure that the measured 

electrophysiological properties of these cells were not systematically 

different from those of the the other sequenced cells.

Inevitably, neuronal structures can be severed as a result of the 

slicing procedure. We took special care to exclude reconstructions of 

all neurons that showed any signs of damage, lack of contrast, or poor 

overall staining. Consistently with previous studies, tissue shrinkage 

due to the fixation and staining procedures was about 10–20%5,28,49. 

This shrinkage was not compensated for in our analysis.

Cortical thickness normalization and layer assignment

Nissl-stained slices (n = 15 from two wild-type adult mice) were used 

to measure normalized layer boundaries in MOp. The Nissl staining 

protocol was adapted from ref. 50. In brief, brain slices were mounted 

on slides and allowed to dry. The sections were then demyelinated, 

stained with 0.1% cresyl violet-acetate (C5042, Sigma) for 30 min at 

60 °C and further destained. The sections were then coverslipped 

in Cytoseal 60 (Richard Allan Scientific). For each slice we measured 

total thickness from pia to white matter and the depths of the three 

between-layer boundaries (L1 to L2/3, L2/3 to L5, L5 to L6), based 

on the cortical cytoarchitecture, using a Neurolucida system with 

10 × or 20 × magnification. All measurements were normalized by the 

respective slice thickness, and the averages over all n = 15 slices were 

used as the normalized layer boundaries (Extended Data Fig. 2b).

For the Patch-seq neurons, we measured soma depth and the cortical 

thickness of the slice using a Neurolucida system. We took their ratio 

as the normalized soma depth, and assigned each neuron to a layer 

(L1, L2/3, L5, or L6) based on the Nissl-determined layer boundaries 

(Extended Data Fig. 2b). We obtained soma depth information for 

1,284 neurons out of 1,329 (45 neurons were mistakenly recorded 

using a solution with insufficient biocytin concentration, and we 

could measure soma depths for only 2 of those; for 2 other neurons 

the measurements could not be carried out because the slices were 

lost). For the 45 neurons with missing soma depth measurements, we 

used the layer targeted during the recording for all layer-based analyses 

and visualizations (marker shapes in Figs. 1c–e, 3a–c, layer-restricted 

analysis in Fig. 4, Extended Data Fig. 8).

All reconstructed morphologies were normalized by the cortical 

thickness of the respective slice to make it possible to display several 

morphologies next to each other, as in Extended Data Fig. 3.

t-Type assignment

The t-type assignment procedure was done in two rounds. The first 

round was for quality control and initial assignment to one of the three 



large transcriptomic groups (CGE-derived interneurons, MGE-derived 

interneurons, and excitatory neurons) that are perfectly separated from 

each other with no transcriptomically intermediate cells4. The second 

round was done to assign the cells to specific t-types.

In the first round, we mapped each Patch-seq cell to a large annotated 

Smart-seq2 reference data set from adult mouse cortex4, using a 

procedure similar to the one described in ref. 28. Specifically, using 

the exon count matrix of the reference data set, we selected the 3,000 

most variable genes (see below). We then normalized all exon counts 

by exonic gene lengths in kilobases, all intron counts by intronic gene 

lengths in kilobases (plus 10−6, to avoid division by zero) and added 

normalized counts together to obtain normalized exonic + intronic 

expression levels. We log-transformed these values using log2(x + 1) 

transformation and averaged the log-transformed values across all cells 

in each of the 133 t-types, to obtain reference transcriptomic profiles of 

each t-type (133 × 3,000 matrix). Out of these 3,000 genes, 2,666 were 

present in the genome annotation that we used and were detected in our 

data set. We applied the same normalization and log-transformation 

procedure to the exonic and intronic read counts of our cells, and for 

each cell computed Pearson correlation across the 2,666 genes with 

each of the 133 t-types. Each cell was assigned to the t-type to which it 

had the highest correlation (Extended Data Fig. 1d).

Cells meeting any of the following exclusion criteria were declared 

low quality and did not get a t-type assignment (Extended Data 

Fig. 2e): cells with the highest correlation below 0.4 (78 cells); cells 

that would be assigned to non-neural t-types, presumably owing 

to RNA contamination51 (14 cells; see also Extended Data Fig. 2j–n); 

cells with the highest correlation less than 0.02 above the maximal 

correlation in one of the other two large transcriptomic groups  

(5 cells). The remaining 1,232 cells passed quality control and entered 

the second round.

In the second round, cells were independently mapped to the seven 

transcriptomic data sets obtained from mouse MOp20. The mapping 

was done only to the t-types from the transcriptomic group identified 

in the first round, using the 500 most variable genes in that data set 

for that transcriptomic group (so using 7 × 3 = 21 sets of 500 most 

variable genes). Gene selection was performed as described below, 

and t-type assignment was done exactly as described above. Across 

the 21 reference subsets, 421–494 most variable genes were present 

in our data set, and were used for the t-type assignment (Extended 

Data Fig. 1e). When mapping to the Smart-seq2 reference data sets, 

we used normalized intronic and exonic reference counts, as above. 

When mapping to the UMI-based reference data sets, we used the 

unique molecular identifier (UMI) counts directly, without gene length 

normalization.

We used bootstrapping over genes to assess the confidence of each 

t-type assignment. For each cell and for each of the seven reference 

data sets, we repeatedly selected a bootstrap sample of genes (that is, 

the same number of genes, selected randomly with repetitions) and 

repeated the mapping. This was done 100 times and the fraction of 

times the cell mapped to each t-type was taken as the t-type assignment 

confidence for that t-type (Extended Data Fig. 1f). The confidences 

obtained with seven reference data sets agreed well with each other 

(Extended Data Fig. 2i) and were averaged to obtain the consensus 

confidence. Finally, the cell was assigned to the t-type with the highest 

consensus confidence.

Four cells were assigned to an excitatory t-type, despite having clearly 

inhibitory firing, morphology, and/or soma depth location (such as L1). 

The most likely cause of this was RNA contamination from excitatory 

cells, which are much more abundant than inhibitory cells in the mouse 

cortex (Extended Data Fig. 2). These four cells were excluded from all 

analyses and visualizations (as if they did not pass the transcriptomic 

quality control). In addition, one cell was probably located outside 

MOp, based on the slice anatomy, and was excluded as well. The final 

number of cells with t-type assignment was 1,227.

Selection of most variable genes

Several steps of our analysis required selecting a set of the most variable 

genes in a given transcriptomic data set. We always selected a fixed 

predefined number of genes (such as 500, 1,000, or 3,000).

To select the most variable genes, we found genes that had, at the 

same time, high non-zero expression and a high probability of near-zero 

expression52. Our procedure is described in more detail elsewhere23. 

Specifically, we excluded all genes that had counts of at least cmin (for 

Patch-seq and Smart-seq2: cmin = 32; for 10x: cmin = 0) in fewer than 10 

cells. For each remaining gene we computed the mean log2 count across 

all counts that were larger than cmin (non-zero expression, µ) and the 

fraction of counts that were smaller than or equal to cmin (probability 

of near-zero expression, τ). Across genes, there was a clear inverse 

relationship between µ and τ, that roughly followed the exponential 

law: τ ≈ exp(−1.5 × µ + a) for some horizontal offset a. Using a binary 

search, we found a value b of this offset that yielded the desired number 

of genes with τ > exp(−1.5 × µ + b) + 0.002.

For Smart-seq2 and Patch-seq data sets, we used only exonic counts 

to perform gene selection.

t-SNE visualization of the transcriptomic data

t-SNE embeddings22 of the three subsets of the single-cell 10x v2 data 

set20 (Fig. 1c–e) were constructed using the same 500 most variable 

genes that were used for t-type assignment (see above). The UMI 

counts were normalized by each cell’s sequencing depth (sum of 

counts), multiplied by the median sequencing depth across all cells, 

log2(x + 1)-transformed, and reduced to 50 principal components. The 

resulting n × 50 matrix was used as input to t-SNE. We used FIt-SNE 

1.2.153 with default parameters (including learning rate n/12 and scaled 

principal component analysis (PCA) initialization23). Perplexity was left 

at the default value of 30 for both inhibitory subsets and increased to 

100 for the excitatory subset.

To position Patch-seq cells on a reference t-SNE embedding, we used 

a published procedure23. In brief, each cell was positioned at the median 

embedding location of its ten nearest neighbours, based on Pearson cor-

relation distance in the high-dimensional space. As above, we used the 

sum of the normalized exonic and intronic counts for Patch-seq cells, 

and raw UMI counts for the reference cells. All values were log2(x + 1)- 

transformed and correlations were computed across the same genes 

that were used for t-type assignments (see above).

Extraction of electrophysiological features

Twenty-nine electrophysiological properties of the neurons were 

automatically extracted based on the raw membrane voltage traces 

(Extended Data Fig. 4) using Python scripts from the Allen Software 

Development Kit (SDK) (https://github.com/AllenInstitute/AllenSDK) 

with some modifications to account for our experimental paradigm 

(https://github.com/berenslab/EphysExtraction).

For each hyperpolarizing current injection, the resting membrane 

potential was computed as the mean membrane voltage during 100 

ms before stimulation onset and the input resistance as the difference 

between the steady state voltage and the resting membrane potential, 

divided by the injected current value (we took the average voltage of 

the last 100 ms before stimulus offset as steady state). The median of 

these values over all hyperpolarizing traces was taken as the final resting 

membrane potential and input resistance, respectively.

To estimate the rheobase (the minimum current needed to elicit 

any spikes), we used robust regression (random sample consensus 

algorithm, as implemented in sklearn.linear_model.RANSACRegressor) 

of the spiking frequency onto the injected current using the five lowest 

depolarizing currents with non-zero spike count (if there were fewer 

than five, we used those available). The point at which the regression 

line crossed the x-axis gave the rheobase estimate (Extended Data 

Fig. 4). We restricted it to be between the highest injected current that 

https://github.com/AllenInstitute/AllenSDK
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elicited no spikes and the lowest injected current that elicited at least 

one spike. If the regression line crossed the x-axis outside this interval, 

the first current step that elicited at least one spike was used.

The action potential (AP) threshold, AP amplitude, AP width, 

afterhyperpolarization (AHP), afterdepolarization (ADP), the first AP 

latency, and the upstroke-to-downstroke ratio (UDR) were computed 

as illustrated in Extended Data Fig. 4, using the first AP fired by the 

neuron. AP width was computed at the AP half-height. UDR refers 

to the ratio of the maximal membrane voltage derivative during the 

AP upstroke to the maximal absolute value of the membrane voltage 

derivative during the AP downstroke. We also computed the first AP 

latency at 20 pA current above the smallest current stimulation value 

that elicited a spike.

The interspike interval (ISI) adaptation index for each trace was 

defined as the ratio of the second ISI to the first one. The ISI average 

adaptation index was defined as the mean of ISI ratios corresponding 

to all consecutive pairs of ISIs in that trace. For both quantities we took 

the median over the five lowest depolarizing currents that elicited at 

least three spikes (if fewer than five were available, we used all of them). 

AP amplitude adaptation index and AP amplitude average adaptation 

index were defined analogously to the two ISI adaptation indices, but 

using the ratios of consecutive AP amplitudes (and using the median 

over the five lowest depolarizing currents that elicited at least two 

spikes).

The maximum number of APs refers to the number of APs emitted 

during the 600-ms stimulation window of the highest firing trace. 

The spike frequency adaptation (SFA) denotes the ratio of the number 

of APs in the second half of the stimulation window to the number 

of APs in the first half of the stimulation window of the highest firing 

trace. If the highest firing trace had fewer than five APs, SFA was not 

defined. Here and below the highest firing trace corresponds to the first 

depolarizing current step that showed the maximum number of APs 

during the current stimulation window (after excluding all stimulation 

currents for which at least one AP was observed in 100 ms before or in 

200 ms after the stimulation window; see below).

The membrane time constant (τ) was computed as the time constant 

of the exponential fit to the membrane voltage from the stimulation 

onset to the first local minimum (we took the median over all 

hyperpolarizing traces). Three further features described the sag of 

the first (the lowest) hyperpolarization trace. The sag ratio was defined 

as the difference between the sag trough voltage (average voltage in 

a 5-ms window around the sag trough) and the resting membrane 

potential, divided by the steady state membrane voltage difference 

from the resting membrane potential. The sag time was defined as the 

time period between the first and the second moments at which the 

membrane voltage crossed the steady-state value after the stimulation 

onset. The sag area refers to the absolute value of the integral of the 

membrane voltage minus the steady-state voltage during the sag 

time period (Extended Data Fig. 4). If the sag trough voltage and the 

steady-state voltage differed by less than 4 mV, the sag time and sag 

area were set to zero.

The rebound was defined as the voltage difference between the 

resting membrane potential and the average voltage over 150 ms (or 

whatever time remained until 300 ms after the stimulation offset) after 

rebound onset, which we identified as the time point after stimulation 

offset at which the membrane voltage reached the value of the resting 

membrane potential. If the membrane voltage never reached the resting 

membrane potential during the 300 ms after the stimulation offset, the 

rebound was set to zero. The rebound number of APs was defined as the 

number of APs emitted during the same period of time. Both rebound 

features were computed using the lowest hyperpolarization trace.

The ISI coefficient of variation (CV) refers to the standard deviation 

divided by the mean of all ISIs in the highest firing trace. Note that a 

Poisson firing neuron would have ISI CV equal to one. The ISI Fano factor 

refers to the variance divided by the mean of all ISIs in the highest firing 

rate. The AP CV and AP Fano factor refer to the CV and the Fano factor 

of the AP amplitudes in the highest firing trace, respectively.

The burstiness was defined as the difference between the inverse of 

the smallest ISI within a detected burst and the inverse of the smallest ISI 

outside bursts, divided by their sum. We took the median over the first 

five depolarizing traces. We relied on the Allen SDK code to detect the 

bursts. In brief, within that code a burst onset was identified whenever 

a ‘detour’ ISI was followed by a ‘direct’ ISI. Detour ISIs are ISIs with a 

non-zero ADP or a drop of at least 0.5 mV of the membrane voltage 

after the first AP terminates and before the next one is elicited. Direct 

ISIs are ISIs with no ADP and no such drop of membrane voltage before 

the second AP. A burst offset was identified whenever a direct ISI was 

followed by a detour ISI. Additionally, bursts were required to contain 

no ‘pauselike’ ISIs, defined as unusually long ISIs for that trace (see Allen 

SDK for the implementation details).

Some neurons (in particular neurogliaform cells) started to emit APs 

before and after the current stimulation window, after the stimulation 

currents exceeded a certain amount. To quantify this effect, we defined 

wildness as the difference in the number of APs between the highest 

firing trace (possibly showing APs before or after the stimulation 

window) and the highest firing trace as defined above (without any 

APs outside the stimulation window). For most neurons, wildness was 

equal to zero.

For all statistical analysis we used 17 features out of the extracted 

29, excluding features that were equal to zero for many cells 

(afterdepolarization, burstiness, rebound number of APs, sag 

area, sag time, wildness), two Fano factor features that were highly 

correlated with the corresponding coefficient of variation features 

(AP Fano factor, ISI Fano factor) and another measure of latency 

that was highly correlated with the latency itself, features that had 

very skewed distributions (AP amplitude average adaptation index, 

ISI average adaptation index), and features that were undefined for 

some of the cells (spike frequency adaptation). Four features were 

log-transformed to make their distribution more Gaussian-like: AP 

coefficient of variation, ISI coefficient of variation, ISI adaptation index, 

and latency.

Extraction of morphological features

Reconstructed morphologies were converted into the SWC format 

using NLMorphologyConverter 0.9.0 (http://neuronland.org) and 

further analysed using MorphoPy (https://github.com/berenslab/

MorphoPy, version 0.6)54. Each cell was soma-centred in the x (slice 

width) and y (slice depth) dimensions, and aligned to pia in the z (cortical 

depth) dimension so that z = 0 corresponded to pia. All neurites were 

smoothed in the slice depth dimension (y) using a Savitzky–Golay 

filter of order 3 and window length 21, after resampling points to have 

maximally 1 μm spacing. For further analysis we computed two different 

feature representations of each cell: the normalized z-profile and a set 

of morphometric statistics24,28,55.

To compute the normalized z-profile, we divided all the coordinates 

of the neuronal point cloud by the thickness of the respective 

cortical slice, so that z = 1 corresponded to the white matter border. 

We projected this point cloud onto the z-axis and binned it into 20 

equal-sized bins spanning [0, 1]. The resulting histogram describes 

a neuron’s normalized depth profile perpendicular to the pia. For 

the purposes of downstream analysis, we treated this as a set of 20 

features. The z-profiles were separately computed for axons and 

dendrites.

Morphometric statistics were separately computed for the dendritic 

and axonal neurites to quantify their arborization shape and branching 

patterns. For the excitatory neurons, several additional morphometric 

statistics were computed for the apical dendrites, where apical 

dendrite was operationally defined as the dendrite with the longest 

total path length. We further used two ‘somatic’ features: normalized 

soma depth and soma radius. We did not use any features measuring 

http://neuronland.org
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morphological properties in the slice depth (y) direction because of 

possible slice shrinkage artefacts. We did not use any axonal features 

for the excitatory cells because only a small part of the axon could 

typically be reconstructed. For the inhibitory cells, where dendrite 

and axon could both be fully recovered, we included some measures 

of dendritic and axonal overlap. The full list of morphometric statistics 

is given in Supplementary File 3.

We extracted a set of 75 features, of which 40 were defined for 

excitatory neurons and 62 for inhibitory neurons, and processed the 

data for excitatory and inhibitory neurons separately. In each case, 

we excluded features with coefficient of variation below 0.25 (among 

the features with only positive values). This procedure excluded five 

features for the excitatory and nine features for the inhibitory cells. 

The distributions of the remaining features were visually checked for 

outliers and for meaningful variation between transcriptomic types, 

leading to a further exclusion of three features for the inhibitory cells. 

The full list of excluded features is given in Supplementary File 3. The 

resulting set of morphometric statistics used for further analysis 

consisted of 35 features defined for the excitatory neurons and 50 

features defined for the inhibitory neurons.

Reduced-rank regression

For the RRR analysis32 we used 17 electrophyiological features and all 

1,219 cells for which values for all 17 features and a t-type assignment 

could be computed. Electrophysiological features were standardized. 

Exon counts and intron counts were normalized by the exon/intron 

gene lengths as described above, summed together, converted to CPM, 

log2(x + 1)-transformed, and then standardized. We selected the 1,000 

most variable genes (using raw exonic counts) and used only those for 

the RRR analysis.

In brief, RRR finds a linear mapping of gene expression levels 

to a low-dimensional latent representation, from which the 

electrophysiological features are then predicted with another linear 

transformation (for mathematical details, see ref. 32). The model uses 

sparsity constraints in the form of elastic net penalty to select only a 

small number of genes. For Fig. 2 we used a model with rank r = 5, zero 

ridge penalty (α = 1), and lasso penalty tuned to yield a selection of 

25 genes (λ = 0.5). Cross-validation (Extended Data Fig. 5) was done 

using 10 folds, elastic net α-values 0.5, 0.75, and 1.0, and λ-values from 

0.2 to 6.0.

The plots shown in Fig. 2a, b are called bibiplots because they 

combine two biplots: the left biplot shows a mapping of gene expression 

levels onto the two latent dimensions; the right biplot shows the same 

mapping of electrophysiological features. To illustrate the meaning 

of the latent dimensions, each biplot combines the resulting scatter 

plots with lines showing how original features are related to the latent 

dimensions. Specifically, we computed the correlations of individual 

genes or electrophysiological properties with the latent dimensions 

and visualized these correlations as lines on the biplot. The circle shows 

the maximal possible correlation; only lines longer than 0.4 times the 

circle radius are shown in Fig. 2. Label positions were automatically 

adjusted by simulating repulsive forces between all overlapping pairs 

of labels, until there was no overlap.

For the model based on ion channel genes, we obtained the list 

of 328 ion channel genes from https://www.genenames.org/data/

genegroup/#!/group/177and used all 307 of them that had non-zero 

expression in at least 10 of our cells. We used rank r = 5, α = 1, and λ tuned 

to yield 25 genes (λ = 0.303), as above.

t-SNE visualization of the morpho-electric phenotypes

For the t-SNE visualization22 of the electrophysiological phenotypes, 

we used 17 features as described above and all n = 1,320 cells that had 

values for all 17 features. All features were standardized across this set 

of cells and transformed with PCA into a set of 17 PCs. We scaled the PCs 

by the standard deviation of PC1. We used the t-SNE implementation 

from scikit-learn Python library with the default perplexity (30), early 

exaggeration 4 (the default value 12 can be too large for small data 

sets), and scaled PCA initialization23. Fig. 3a shows n = 1,219 cells that 

had a t-type assignment.

For the t-SNE visualization of the morphological phenotypes, we 

combined morphometric statistics with the normalized z-profiles. 

The pre-processing, including PCA, was done separately for the 

excitatory and inhibitory neurons because they used different sets 

of morphometric statistics (see above). Only neurons with assigned 

t-types were used for this analysis. Two inhibitory neurons were left out 

because some of the morphometric statistics could not be extracted 

owing to insufficient dendritic recovery; this left 367 inhibitory neurons 

(with 50 morphometric features) and 269 excitatory neurons (with 35 

morphometric features). All features were standardized and each set 

was reduced to 20 PCs. We scaled the PCs by the standard deviation of 

the respective PC1, to make the inhibitory and the excitatory PCs have 

comparable variances.

We used dendritic z-profiles for the excitatory neurons and axonal 

z-profiles for the inhibitory neurons. We reduced each set to five PCs, 

discarded PC1 (it was strongly correlated with the normalized soma 

depth and made the resulting embedding strongly influenced by 

the soma depth), and scaled the PCs by the standard deviation of the 

respective PC2. We stacked the 20 scaled morphometric PCs and the 4 

scaled z-profile PCs to get a combined 24-dimensional representation, 

separately for the excitatory and for the inhibitory neurons. We 

then combined these representations into one block-diagonal 

48-dimensional matrix. This procedure makes the excitatory and 

the inhibitory populations both have zero mean. To prevent overlap 

between these two populations, we added a small constant value of 

0.25 to the excitatory block-diagonal block, leading to the strong 

excitatory–inhibitory separation in Fig. 3b. The t-SNE was performed 

exactly as described above.

For the t-SNE visualization of the morpho-electrical landscape, we 

stacked together the 48-dimensional morphological representation and 

the 16-dimensional electrophysiological representation obtained above, 

using only cells that had all morphological and all electrophysiologcal 

features (n = 628). We multiplied the electrophysiological block by √2 

to put its total variance on a similar scale (it only consisted of one set 

of scaled PCs, whereas the morphological representation consisted of 

two sets of scaled PCs: morphometrics and z-profiles). The resulting 

64-dimensional morpho-electrical representation was used for t-SNE, 

exactly as described above.

kNN classification of transcriptomic families

To classify neurons into transcriptomic families on the basis of 

electrophysiological, morphological, or combined features (Figs. 3d, 

5a, Extended Data Fig. 8a), we used a kNN classifier with k = 10 and 

Euclidean distance metric (taking the majority family among the k 

nearest neighbours). This is effectively a leave-one-out cross-validation 

procedure. For each data modality we took the exact same data 

representation that was used for computing t-SNE embeddings 

(Fig. 3a–c; see above). Note that the t-SNE algorithm is also based 

on nearest neighbours and makes all close neighbours attract each 

other in the embedding. We chose the kNN classifier as a simple 

but versatile non-parametric classifier that is directly related to the 

t-SNE embeddings. We did not use the Sncg and NP families owing to 

insufficient coverage in our data set (Fig. 1).

Fig. 3d shows the fraction of cells from each family that was classified 

into each family. Fig. 5a and Extended Data Fig. 8a show fractions 

of cells from each t-type that were classified into each family. For 

morphological and combined features, Extended Data Fig. 8a shows 

fractions of cells from the majority layer of each t-type. For example, 

the Pvalb Reln type occurred most often in L5, so only cells from that 

layer were taken for that type. Only t-types with at least ten cells (or at 

least ten layer-restricted cells) are shown.

https://www.genenames.org/data/genegroup/#!/group/177
https://www.genenames.org/data/genegroup/#!/group/177
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Within-family analysis

To study the relationship between transcriptomic and 

electrophyiological distances between pairs of t-types (Fig. 4c, d, 

Extended Data Figs. 6, 7), we took all t-types with five or more cells 

assigned to them (for Extended Data Fig. 7a: with ten or more). For each 

pair of t-types, transcriptomic distance was computed as the Pearson 

correlation between the average log2(x + 1)-transformed UMI counts in 

the single-cell 10x v2 data20. The 1,000 most variable genes across all 

neural types were used for Fig. 4c and Extended Data Fig. 7a, b, and the 

500 most variable genes across the respective transcriptomic group 

(see above) were used for Fig. 4d and Extended Data Figs. 6i, j and 7c–n. 

Electrophysiological distance was computed as the Euclidean distance 

between the average feature vectors. Fig. 4d used the soma depth 

distance, computed as the absolute value of the difference between 

the average normalized soma depths.

T-type variability analysis

The normalized total variance in Fig. 5b and Extended Data Fig. 8b 

was computed as follows. For each modality, we took the exact same 

data representation that was used for computing t-SNE embeddings 

(Fig. 3a–c; see above). For each t-type (or layer-restricted t-type; see 

above), we took the sum of its variances in all dimensions as the total 

variance and divided by the sum of variances in all dimensions across 

the whole data set:

( )
( )

X X

X X

∑ ∑ − ∑

∑ ∑ − ∑

,
j T i T ij T i T ij

j n i ij n i ij

1

| | ∈
1

| | ∈

2

1 1
2

where Xij is a value of feature j of cell i, n is the total number of cells, and 

T is the set of cell numbers belonging to the given t-type. The value 0 

indicates that all cells from this t-type have exactly identical features. 

The value 1 indicates that there is as much variance in this one t-type as 

in the whole data set. Only t-types with at least ten cells (or at least ten 

layer-restricted cells) are shown in Fig. 5b and Extended Data Fig. 8b.

To provide a sensible baseline for the range of possible normalized 

total variances in a population of morpho-electrically homogeneous 

types, we used a clustering analysis. For the cells of all the K t-types 

(or layer-restricted t-types) with at least ten cells in a given panel, we 

used the k-means algorithm to cluster them into K clusters, reasoning 

that these clusters should be as homogeneous as possible given the 

variability in our data set. We used the k-means implementation from 

scikit-learn with default parameters. We then computed the normalized 

total variance of each cluster as described above. Grey shading in Fig. 5b 

and Extended Data Fig. 8b shows the interval between the minimum 

and the maximum cluster variances. Note that the k-means algorithm 

directly minimizes within-cluster total variances.

We used the entropies of a Leiden clustering35 as an alternative way 

to approach the same question. For each modality, using the exact 

same data representation as above, we constructed its kNN graph with 

k = 10 and clustered it using the Leiden algorithm as implemented in 

the Python package leidenalg with RBConfigurationVertexPartition 

quality function and resolution parameter manually tuned to produce 

roughly the same number of clusters for each modality as in ref. 24. 

(Extended Data Fig. 8). For each t-type (or layer-restricted t-type), we 

then measured the entropy of the distribution of electrophysiological or 

morphological cluster IDs, after randomly subsampling the t-type to ten 

cells. Subsampling was done to eliminate a possible bias due to the t-type 

abundance. The whole procedure was repeated 100 times with different 

random seeds for the Leiden clustering and for the subsampling.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

All preprocessed data (gene counts, electrophysiological and 

morphological features) and meta data are available at https://

github.com/berenslab/mini-atlas, together with direct links to the 

raw data. Electrophysiological recordings are available at https://

dandiarchive.org/dandiset/000008 (main data set) and https://

dandiarchive.org/dandiset/000035 (physiological temperature) in 

NWB format. Sequencing data are available at http://data.nemoarchive.

org/biccn/grant/zeng/tolias in FASTQ format. Morphological 

reconstructions are available at https://download.brainimagelibrary.

org/3a/88/3a88a7687ab66069/ in SWC format.

Code availability

The analysis code in Python is available at https://github.com/

berenslab/mini-atlas.
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Extended Data Fig. 1 | Patch-seq protocol, mouse Cre lines, and t-type 

assignment. a, Patch-seq combines electrophyiological recordings, RNA 

sequencing using Smart-seq2, and biocytin staining in the same cell.  

b, Four exemplary slice images. Top: an image of the whole slice using 4x 

magnification. Bottom: a flattened 3D image stack using 20× magnification. 

From left to right: L5 ET neuron, L2/3 IT neuron, L5 Sst neuron, L5 Pvalb neuron. 

c, t-Types assigned to cells collected in mice from different Cre lines. ‘WT/Cre-’ 

stands for cells from any Cre line that were not labelled with a fluorescent 

indicator, or for the cells patched in wild type mice. 1,227 cells shown. d, t-Type 

assignment procedure for one example cell (d–f). Correlations to the mean log 

expression of all t-types from ref. 4, using 3,000 most variable genes. Maximum 

correlation is to the excitatory neurons. t-Type names are shortened, and every 

second one is omitted for compactness. e, Correlations to all excitatory t-types 

from ref. 20 using all seven reference data sets and 500 most variable genes.  

f, t-Type assignment confidences for all seven data sets, obtained via 

bootstrapping over genes. The average confidence is shown in black. The mode 

of the average confidence was taken as the final t-type.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Quality control. a, Age distribution of the mice used in 

the experiments. Median: 75 days. b, Soma depths of all cells and cortical 

thickness of the corresponding slices. Dashed lines show layer boundaries, 

based on the Nissl-stained slices (measured layer boundaries shown as blue 

points). All soma depths were normalized by dividing them by the cortical 

thickness. c, Relationship between the number of exonic and intronic counts. 

The apparent bimodality could be explained by whether the nucleus was 

extracted or not during Patch-seq aspiration. Whenever the nucleus was not 

extracted, low amount of nonspliced RNA led to low intronic counts; otherwise, 

the number of intronic and exonic counts was almost the same. Red: cells 

eventually failing quality control. d, Relationship between sequencing depth 

(total number of reads) and the number of detected genes (number of genes 

with non-zero counts). e, Relationship between the number of detected genes 

and the maximal correlation to clusters from ref. 4. Cells with maximal 

correlation below 0.4 were declared low quality. f, Relationship between the 

maximal correlation across neural clusters and the maximal correlation across 

non-neural clusters from ref. 4. Cells with maximal neural correlation below 0.4 

were declared low quality. See Methods for additional QC criteria. g, Maximal 

correlations using single-cell and single-nucleus Smart-seq2 reference data 

sets20. h, Maximal correlations using Smart-seq2 reference data sets (maximum 

across cell types and across two data sets) and using 10x reference data sets 

(maximum across cell types and across five data sets). i, t-Type assignment 

using single-cell Smart-seq2 reference data set and using single-cell 10x v2 

reference data set. All points are on the integer grid; marker size shows the 

number of cells at the corresponding location. Dashed lines separate CGE-

derived interneurons, MGE-derived interneurons, and excitatory neurons.  

The mapping was done within each order, so there cannot be any cells outside 

of the diagonal blocks. j, Expression of several prominent markers of non-

neural cells, in comparison to the Smart-seq2 data set from ref. 4. The values  

are log2(x + 1)-transformed sums of exonic and intronic counts, shown with 

random  ( )U − ,
1

2

1

2
 jitter. Percentage values refer to the fraction of cells with non-

zero counts. PVM stands for perivascular macrophages. We selected these 

markers because they have very low expression in neural cells. A neuronal 

marker Snap25 is shown for comparison. Cells from the reference data set are 

shown with the alpha-level set to the ratio of our data set size to that data set 

size (0.06), to make the dot plots more comparable. k, l, Neural and glial 

expression in our data set (k) and in the FACS-sorted data set4 (l) (plotted using 

the colours from the original publication, without transparency). m, n, The 

same using the excitatory marker Slc17a7 and the inhibitory marker Gad2.



Extended Data Fig. 3 | Diversity of mouse cortical neurons. Two 

representative examples per t-type, or one if only one reconstruction was 

available. In total 135 neurons in 73 t-types. For interneurons, dendrites are 

shown in darker colours. For excitatory neurons, only dendrites are shown. 

Black dots mark soma locations. Horizontal grey lines show approximate layer 

boundaries. Three voltage traces are shown for each neuron: the 

hyperpolarization trace obtained with the smallest current stimulation, the 

first depolarization trace eliciting at least one action potential, and the 

depolarization trace showing maximal firing rate. Stimulation length: 600 ms. 

The length of the shown voltage traces: 900 ms. Electrophysiological 

recording for one neuron did not pass quality control and is not shown.
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Extended Data Fig. 4 | Extraction and distribution of electrophysiological 

features. Panels a–f show data from the same exemplary cell. a, Membrane 

potential responses to the consecutive step current injections. Hyperpolarizing 

currents were used to compute the input resistance (274.80 MOhm) and membrane 

time constant tau (21.95 ms). b, The first five traces showing spikes were used to 

compute ISI adaptation index (1.26), ISI average adaptation index (1.15), AP 

amplitude adaptation index (0.91) and AP amplitude average adaptation index 

(0.99). c, The first AP elicited in this neuron. It was used to compute AP threshold 

(−40.18 mV), AP amplitude (81.17 mV), AP width (0.80 ms), AHP (−12.60 mV),  

ADP (0 mV), UDR (1.62) and latency of the first spike (69.28 ms). d, Regression line 

gives the rheobase estimate (20.44 pA). e, The highest firing trace with 32 APs. This 

trace was used to estimate the ISI CV (0.27), ISI Fano factor (0.0014 ms), AP CV (0.17) 

and AP Fano factor (1.32 mV). f, The lowest hyperpolarization trace was used to 

compute the sag ratio (1.17), sag time (0.26 ms), sag area (31.16 mV⋅ms) and rebound 

(17.84 mV). g, Eight important electrophysiological features are shown for all cells 

across all t-types. For t-types with at least three cells, horizontal lines show 

median values. See Supplementary File 2 for all electrophysiological features.



Extended Data Fig. 5 | Additional reduced-rank regression analysis and 

cross-validation. a, Cross-validated R2 of ‘naive’ and ‘relaxed’ sparse RRR 

solutions32 for various elastic net penalties (α and λ). ‘Relaxed’ means that the 

model was re-fit without a lasso penalty using only the selected genes; ‘naive’ 

means that it was not re-fit. Vertical dashed lines at 25 genes corresponds to the 

choice made for Fig. 2. The best performance is around ~100 genes, but we 

chose 25 for the sake of interpretability. The subsequent panels only show 

results for the ‘relaxed’ models. b, Cross-validated R2 using α = 1 for different 

ranks from rank 1 to rank 16 (full rank). c, Cross-validated R2 using α = 1 and λ 

needed to obtain 25 genes for different ranks. The peak performance is 

achieved with rank ~13 (inset), but rank-5 model used in the main text is almost 

as good. d, Cross-validated correlations between sequential projections of the 

transcriptomic and electrophysiological data sets (rank-5 models with α = 1). 

For any given number of selected genes, correlations decrease monotonically 

for higher components. e, f, Reduced-rank regression model using only ion 

channel genes. A full analogue of Fig. 2 but using only 328 ion channel genes 

(see Methods), of which 307 were detected in our data set in at least 10 cells.  

g–j, Reduced-rank regression model predicting morphological features. An 

analogue of Fig. 2 but using morphological, instead of electrophysiological 

features. The analysis was done separately for the excitatory (g–h) and for the 

inhibitory (i–j) neurons because different sets of morphological features were 

computed for these sets of neurons. Excitatory neurons: 269 cells, 35 features. 

Rank-5 model, λ = 0.59, adjusted to yield 25 genes. Only a subset of 

morphological features are labelled to reduce the clutter (abbreviations:  

“W” — width, “H” — height). Inhibitory neurons: 367 cells, 50 features, λ = 0.49.



Article

Extended Data Fig. 6 | Electrophysiological properties of IT, ET, and Sst 

neurons in Layer 5 at physiological temperature. a–e, Each panel shows a 

comparison between L5 neurons from the IT and the ET subclasses (pooled across 

all t-types within each subclass). The main set of experiments was done at room 

temperature (25 °C). Follow-up experiments were done at physiological temperature  

(34 °C), in the presence of 1 mM kynurenic acid and 0.1 mM picrotoxin in order to 

block fast glutamatergic and GABAergic synaptic transmission. Horizontal lines 

show median values. The first four panels correspond to features showing the 

largest IT/ET differences at room temperature, according to the two-sided 

Wilcoxon-Mann–Whitney test statistic (and omitting several features that are very 

correlated with the shown ones: upstroke-to-downstroke ratio, sag time, and sag 

area). The last panel additionally shows one feature that showed prominent 

difference at 34 °C. f, g, IT and ET neurons recorded at 34 °C in two-dimensional 

representations using the features with highest separability. h, The change of 

electrophysiological properties between room temperature (25 °C) and 

physiological temperature (34 °C) for various t-types from the Sst subclass. Only L5 

neurons are shown. Only t-types with ≥ 5 cells in both conditions are shown. 

Horizontal lines denote median values. AP amplitude and AP width changed the 

most between conditions, but the relative differences between t-types stayed 

roughly the same. The other four shown features did not change much, and the 

relative differences between t-types stayed the same. i, Overlay of the L5 Sst cells 

over the reference t-SNE embedding, coloured by rebound, as in Fig. 4b. The inset 

shows the correlation between transcriptomic distances and electrophysiological 

differences between all pairs of Sst t-types (only for t-types with at least 5 cells, and 

excluding Sst Chodl), together with its p-value. j, The same analysis as in (c) but using 

the experiments performed at physiological temperature. No corrections for 

multiple comparisons were applied.



Extended Data Fig. 7 | Transcriptomic and electrophysiological distances 

within individual families. a, b, Pooled within-family analysis. The same 

analysis as in Fig. 4c but showing within-family as well as between-family pairs 

of t-types. Using a cutoff of at least 10 neurons per t-type (a) and a cutoff of at 

least 5 neurons per t-type (b). c–n, Transcriptomic and electrophysiological 

distances within individual families. Only t-types with ≥ 5 neurons are  

used for this analysis (used t-types are listed in the second column). 

Transcriptomically well-isolated Sst Chodl and Pvalb Vipr2_2 were excluded. 

Three electrophysiological features with the highest correlation to the 

transcriptomic distance are shown on the right, for each family.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Phenotypic variability of individual t-types. The 

extended version of Fig. 5. a, Confusion matrices for classifying cells from each 

t-type into seven transcriptomic families, using electrophysiological, 

morphological, and combined features. Only t-types with at least 10 cells are 

shown. For morphological and combined features we only took cells from one 

cortical layer. Values in each column sum to 1. Arrows mark t-types that are 

classified into wrong families more often than 25% of the time. We used kNN-

based classifier with k = 10. b, Normalized total variance of features in each 

t-type. Higher values correspond to t-types with more variable phenotypes. 

Horizontal grey band shows the min/max normalized variances of k-means 

clusters. c, Three exemplary traces of cells from the Vip Mybpc1_2 type (all with 

confidence ≥ 95%) and t-SNE overlay coloured by the rebound. Inset: the same 

t-SNE embedding as in Fig. 1. Main plot: zoom-in. d, Three exemplary traces of 

cells from the Sst Pvalb Calb2 (confidence ≥ 95%) and t-SNE overlay coloured by 

the maximum firing rate. e, Exemplary morphologies of L5 cells from the Pvalb 

Reln type and t-SNE overlay coloured by the axonal width/height log-ratio as in 

Fig. 4e. f, Exemplary morphologies of Pvalb Vipr2_2 chandelier neurons and 

t-SNE overlay coloured by the axonal width/height log-ratio as in Fig. 4e. g–i, We 

used Leiden clustering35 to cluster the cells based on electrophysiological, 

morphological, and combined features. The clustering resolution was adjusted 

to roughly match the number of e-types, m-types, and em-types from ref. 24. 

The cluster colours in these panels are arbitrary and not the same as the colours 

used for t-types. j–l, For each t-type with at least 10 cells, we measured the 

entropy of the cluster assignments. Entropy zero corresponds to all cells 

getting into one cluster. Higher entropies mean that cells get distributed 

across many clusters. We repeated the clustering 100 times with different 

random seeds, and for each of them, subsampled each t-type to 10 cells to 

measure the entropy. Points show 100 repetitions, big markers show medians. 

When using morphological and combined features, all t-types were layer-

restricted, as above. The t-type colours do not correspond to the colours in 

panels ( j–i).
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Extended Data Fig. 9 | Interneurons assigned to the Tasic et al.4 t-types. This 

is an exact analogue of Fig. 1b and Extended Data Fig. 3 using inhibitory t-types 

from ref. 4. It allows the direct comparison with the results from ref. 45. We used 

the same neurons as in Extended Data Fig. 3 whenever possible.  

99 neurons in 55 t-types.



Extended Data Table 1 | Description of the inhibitory t-types

References56–61 are cited in this table.



Article

Extended Data Table 2 | Description of the excitatory t-types

References62–70 are cited in this table.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Electrophysiological recordings: HEKA patch master v2x65 and v2x90.3; morphological reconstructions: neuroleucida and neuroleucida 

explorer 11.04.  In a subset of data the soma position was evaluated in slices during recording using Linlab2 1.0.

Data analysis The sequencing data were processed using the zUMIs 2.5.6b pipeline with default settings; sequencing reads were aligned to the mouse 

reference genome using STAR version 2.5.4b; reconstructed morphologies were converted into the SWC format using 

NLMorphologyConverter 0.9.0 and further analyzed using MorphoPy 0.6; we used custom Python scripts to perform the data analysis. The 

analysis code can be found at https://github.com/berenslab/mini-atlas. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Electrophysiological recordings are available at https://dandiarchive.org/dandiset/000008 in NWB for- mat.  

Sequencing data are available at http://data. nemoarchive.org/biccn/grant/zeng/tolias in FASTQ format.  

Morphological reconstructions are available at ftp://download.brainimagelibrary.org:8811/3a/88/3a88a7687ab66069 in SWC format.  
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All preprocessed data (gene counts, electrophysiological and morphological features) and meta data are available at https://github.com/berenslab/mini-atlas.  

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sampling strategy was determined using pre-existing knowledge of the transcriptional diversity of the mouse cortex (Tasic et al., 2018; Yao et 

al., 2020) and based also on the variability of morphological and electrophysiological types predicted by existing literature (Jiang et al., 2015, 

Gouwens et al. 2019, Scala et al., 2019). 

Data exclusions Cells meeting any of the exclusion criteria described in the following were declared low quality and did not get a t-type assignment: cells with 

the highest correlation below 0.4 (78 cells); cells that would be assigned to non-neural t-types, presumably due to RNA contamination (14 

cells); cells with the highest correlation less than 0.02 above the maximal correlation in one of the other two transcriptomic orders (5 cells). 

Four cells were assigned to an excitatory t-type, despite having clearly inhibitory firing, morphology, and/or soma depth location (such as L1). 

The most likely cause was RNA contamination from excitatory cells that are much more abundant in the mouse cortex. These four cells were 

excluded from all analyses and visualizations (as if they did not pass the transcriptomic quality control). In addition, one cell was likely located 

outside of MOp, based on the slice anatomy, and was excluded as well. For the electrophysiology, the cells were not recorded or included 

when seal resistance values were <1 GΩ before achieving whole-cell configuration and/or initial access resistance was >30 MΩ.  

Cells were excluded from morphological analysis when the staining quality did not match pre-established criteria for inclusion.  Cells that 

showed low staining quality such as poor fill, excessive background, dendritic or axonal truncation were not reconstructed and not included in 

the dataset.

Replication The results of this study were not directly replicated. However, all the results were collected from multiple animals from multiple litters per 

wild-type and transgenic lines.

Randomization There was no randomization performed as the study does not involve multiple study groups.

Blinding There was no blinding performed as the study does not involve multiple study groups. However, for these study most of the neuronal 

electrophysiological proprieties and morphological reconstructions were obtained without having informations about the molecular finger 

print of the neuron. 

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 

quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 

information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 

studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 

predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 

rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 

what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 

computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 

whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 

cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 

participants dropped out/declined participation.
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Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 

allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 

hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 

Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 

any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 

calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 

these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 

indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 

repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 

controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 

blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 

compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Antibodies

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 

manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 

they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 

provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 

was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male and Female mice  (median age 75 days, interquartile range 64-100, full range 35-245 days) were used in this study. Specific 

information about every single animal can be found in https://github.com/berenslab/mini-atlas. In particular, we used C57Bl/6 Wild 

type, Viaat-Cre/Ai9 mice, SOM-Cre/Ai9, VIPCre/Ai9, PV-Cre/Ai9, NPY-Cre/Ai9, Scl17a8-Cre/Ai9, Scl17a8-iCre/Ai9, Vipr2-Cre/Ai9 and 

Gnb4-Cre/Ai9. Detailed information about the origin of each single Cre line reported here can be find in the main text.

Wild animals This study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Procedures for mouse maintenance and mouse surgeries were performed according to protocols approved by the Institutional 

Animal Care and Use Committee (IACUC) of Baylor College of Medicine. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 

information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 

how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 

in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 

provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 

enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
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Sequencing depth whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 

number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 

used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 

samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 

or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 

subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 

slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used
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Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 

segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 

transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 

original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 

physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 

second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 

ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 

mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 

subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 

etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 

metrics.
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