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Improving crops yield under water-limited conditions is the most daunting challenge

faced by breeders. To this end, accurate, relevant phenotyping plays an increasingly

pivotal role for the selection of drought-resilient genotypes and, more in general, for a
meaningful dissection of the quantitative genetic landscape that underscores the adaptive

response of crops to drought. A major and universally recognized obstacle to a more

effective translation of the results produced by drought-related studies into improved

cultivars is the difficulty in properly phenotyping in a high-throughput fashion in order to

identify the quantitative trait loci that govern yield and related traits across different water

regimes. This review provides basic principles and a broad set of references useful for

the management of phenotyping practices for the study and genetic dissection of drought

tolerance and, ultimately, for the release of drought-tolerant cultivars.
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INTRODUCTION

Crops are exposed to the ravages of drought in various ways

and to different extents. Regrettably, global climate change will

increase the occurrence and severity of drought episodes, not least
due to the higher evapotranspirative demand created by rising

temperatures. Altogether, these changes have already been shown

to offset a significant portion of the increases in average yields
that during the past three decades arose from technology, CO2

fertilization and other factors (Lobell et al., 2011). Therefore,

food security in the twenty-first century will rely increasingly
on the release of cultivars with improved resistance to drought

conditions and with high yield stability (Swaminathan, 2005;

Borlaug, 2007; Pennisi, 2008; Luo, 2010; Tester and Langridge,
2010; Reynolds et al., 2011; Serraj et al., 2011; Chapman et al.,

2012).

In this challenging scenario, molecular approaches offer novel
opportunities for the dissection and more targeted manipula-

tion of the genetic and functional basis of yield under drought

conditions (Forster et al., 2000; Sinclair et al., 2004; Bohnert
et al., 2006; Mackill, 2006; Tuberosa and Salvi, 2006; Jenks et al.,

2007; Nelson et al., 2007; Ortiz et al., 2007a; Vij and Tyagi,

2007; Leung, 2008; Xu and Crouch, 2008; Ashraf, 2010; Mittler
and Blumwald, 2010; Yadav et al., 2011; Deikman et al., 2012).

Additionally, the “-omics” platforms now allow for extensive

mining of the transcriptome (Rabbani et al., 2003; Poroyko
et al., 2007; Degenkolbe et al., 2009; Ergen and Budak, 2009;

Sreenivasulu et al., 2010; Deokar et al., 2011; Hiremath et al.,

2011), metabolome (Fernie and Schauer, 2009) and proteome
(Timperio et al., 2008). Although, some may not consider

“-omics” data as phenotypes sensu stricto, they should be treated

as such, considering that they represent crucial steps that are pro-
gressively removed from genes to their ultimate phenes (Houle

et al., 2010; Furbank and Tester, 2011). Not with standing

the deluge of molecular data produced in the past decade,
the applicable results reported so far with non-conventional

approaches have not met expectations (Edmeades et al., 2004;
Araus et al., 2007, 2008; Collins et al., 2008; Xu and Crouch,

2008; Heffner et al., 2009; Passioura, 2010; Sinclair, 2011), partly

because the progress in high-throughput, quality phenotyping
has lagged behind.

Before analyzing the factors that affect the quality of

phenotypic data collected under water-limited conditions, it is
important to define the nomenclature and mechanisms of crop

adaptation to drought and clarify their functional basis. Most

of the examples and references provided in this review refer to
cereals, which, as compared to other crops, have been more exten-

sively investigated under drought conditions. Nevertheless, most

concepts presented herein are equally valid for other crops as well.

DROUGHT ADAPTATION: CONCEPTS, NOMENCLATURE,

AND MECHANISMS

In agriculture, the term “drought” refers to a condition in which

the amount of water available through rainfall and/or irrigation
is insufficient to meet the transpiration needs of the crop. The

examples presented in this review provide some general guide-

lines on the different mechanisms that allow plants to withstand
and eventually mitigate the negative effects of water deficit. In

general, a clear distinction should be made between traits that
help plants to survive a severe drought stress and traits that mit-

igate yield losses in crops exposed to a mild or intermediate level

of water stress. Modern breeding activities, including phenotyp-
ing conditions, have predominantly targeted the latter levels of

stress. Although, yield remains an elusive and neglected concept

in most molecular studies carried out under water-limited con-
ditions, it is an appropriate way to gauge the overall phenotypic

value of any accession.
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THE FUNCTIONAL BASIS OF DROUGHT RESISTANCE

Among the several definitions of drought resistance that have
been provided during the past decades, the original one

formulated by Levitt (1972) retains its validity and offers a ratio-

nal approach to classify the strategies that allow plants to mitigate
the negative effects of water deficit. Levitt (1972) classified the dif-

ferent mechanisms or strategies of drought resistance into two

broad categories: dehydration avoidance and dehydration toler-
ance. In this respect, morpho-physiological features [e.g., deep

roots, early flowering, deposition of epicuticular waxes, osmotic

adjustment (OA), etc.] that enable the plant, or parts thereof, to
maintain hydration are classified under dehydration avoidance.

Conversely, features (e.g., remobilization of stem water-soluble

carbohydrates (WSC), accumulation of molecular protectants,
etc.) that allow the plant to maintain, at least partially, proper

functionality in a severely dehydrated state are classified under

dehydration (desiccation) tolerance. Carefully planned experi-
ments conducted under controlled conditions allow us to separate

the action of loci imparting avoidance from those providing

tolerance to drought (Yue et al., 2006). Several reviews and
dedicated volumes have addressed the mechanisms underlying

drought resistance and the strategies that can improve yield under

such conditions (Blum, 1988, 1996, 2009, 2011; Ludlow and
Muchow, 1990; Ceccarelli and Grando, 1996; Passioura, 1996,

2007, 2010; Richards, 1996; Turner, 1997; Ribaut, 2006; Fischer

et al., 2003; Boyer and Westgate, 2004; Chaves and Oliveira,
2004; Tuberosa, 2004; Araus et al., 2008; Kumar et al., 2008;

Morison et al., 2008; Reynolds and Tuberosa, 2008; Farooq et al.,

2009; Passioura and Angus, 2010; Yang et al., 2010; Sadok and
Sinclair, 2011; Sinclair, 2011; Cairns et al., 2012; Mir et al.,

2012).
The first step is to define the population of environments

to be targeted, also identified as the TPE (target population

of environments). Differences in TPE are largely determined
by long-term patterns of genotype-by-environment interactions

(GEI). The identification and characterization of a TPE is facil-

itated by the use of crop simulation models based on historic
records of weather data. Simulation can describe a TPE by the

frequency of occurrence of specific abiotic stresses and be based

on the soil moisture profile along the crop cycle (Chapman et al.,
2003). In Mediterranean environments, wheat and barley usu-

ally experience terminal drought caused by high temperatures

during the grain-filling period (Araus et al., 2008). Nevertheless,
within each TPE and GEI are frequently observed relating to

yearly fluctuations in environmental factors (e.g., rainfall, tem-

perature, etc.), diseases (e.g., foliar disease), and/or parasites (e.g.,
insects). Ideally, phenotyping for drought tolerance and yield sta-

bility should be carried out across a broad range of environments

present within the TPE. During past decades, these multienviron-
ment trials have been instrumental in increasing yield potential

and also in maintaining yield stability under drought-stressed

conditions in temperate maize (Tollenaar and Wu, 1999; Duvick,
2005; Tollenaar and Lee, 2006) as well as in other crops (Lafitte

et al., 2006; Crossa et al., 2007; Acuna et al., 2008). In a few cases,

they have also allowed for the identification of major QTLs consis-
tently affecting yield across a range of water availability (Bernier

et al., 2007, 2009; Maccaferri et al., 2008; Venuprasad et al.,

2009a,b, 2012; Vikram et al., 2011; Dixit et al., 2012; Ghimire
et al., 2012).

WATER-USE EFFICIENCY AND GRAIN YIELD UNDER

WATER-LIMITED CONDITIONS

Water-use efficiency (WUE) is the amount of dry matter

produced [grain yield (GY) in the case of grain crops when

considering seasonal WUE] per unit of water lost through evap-
otranspiration. A classical formula that highlights the critical role

of WUE in determining GY in crops grown in water-limited

conditions was suggested by Passioura (1977):

GY = W × WUE × HI

where W is the total amount of water transpired by the crop

and evaporated from the field and HI is the harvest index, i.e.,
the ratio between GY and total biomass. Salekdeh et al. (2009)

identify phenotyping protocols that address each formula’s fac-

tors, describe their key features and illustrate their integration
with different molecular approaches. When using this formula,

one should consider the possible interdependence of these vari-

ables, with the result that selection for improving WUE in order
to increase GY may be partially counterbalanced by a reduction

in the amount of water extracted from the soil. In fact, a number

of traits influence both W and WUE.
The most important factor is matching the phenological devel-

opment pattern of the crop and the seasonal rainfall pattern

(Richards, 1996; Turner, 1997; Araus et al., 2003; Morison et al.,
2008; Soltani and Sinclair, 2012). Early vigor potentially improves

both W and WUE, while deep roots and/or osmoregulation

under appropriate conditions increase water extraction from the
soil (Blum, 1988, 2011; Ludlow and Muchow, 1990; Richards,

2006; Reynolds and Tuberosa, 2008; Sadok and Sinclair, 2011).

However, we should keep in mind that farmers eventually harvest
grain and not WUE, which means that a lower WUE may actu-

ally be desirable when WUE is negatively associated with GY, as
is well-known in cereals differing in their intrinsic WUE (Blum,

2005, 2006, 2009). Therefore, WUE should not be equated to

drought tolerance. The best example is provided by a popula-
tion of related progeny such as recombinant inbred lines (RILs)

that differ in their capacity to extract soil moisture due to differ-

ences in root depth, and hence greater capacity to access moisture
stored in deeper soil layers. Because, WUE is higher in geno-

types characterized by low stomatal conductance, often resulting

from a lower water status, the genotypes that are more waste-
ful (i.e., with a lower WUE) and able to extract more water

from the soil (Merah, 2001; Rebetzke et al., 2002; Blum, 2006,

2009, 2011), whilst maintaining higher stomatal conductance,
will have higher yield. Conversely, under conditions of limited

soil moisture, low WUE resulting from excessive evapotranspi-

ration will not allow sustained accumulation of dry matter and
its partitioning to reproductive organs (Monneveux and Ribaut,

2006; Richards, 2006; Tambussi et al., 2007; Barnabas et al., 2008;

Sinclair et al., 2008). This finding introduces an essential concept
for interpreting cause–effect relationships between morphophys-

iological traits and GY under drought conditions: the sign and

magnitude of this relationship at the whole-plant or QTL level are

Frontiers in Physiology | Plant Physiology September 2012 | Volume 3 | Article 347 | 2

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Tuberosa Phenotyping for drought tolerance

not universal and can change widely according to the dynamics
(i.e., frequency and timing) and intensity of the drought episode/s

(Collins et al., 2008; Sinclair et al., 2010; Tardieu, 2012).

An alternative formula to address properly the factors influ-
encing WUE in crops grown under water-limited conditions has

been proposed by Richards (1991):

WUE (biomass) = TE/(1 + Es/T)

where TE is the transpiration efficiency (above ground dry
weight/transpired water), Es is the water lost by evaporation from

the soil surface and T is water lost through transpiration by the

crop. Analysis of the variables in this formula provides a useful
framework for identifying the agronomic and breeding strate-

gies, and hence phenotyping targets, most suitable for optimizing

WUE and maximizing yield in environments that differ in rainfall
distribution during the crop cycle.

At the leaf level, “intrinsic WUE” indicates the ratio of the

instantaneous rates of CO2 assimilation and stomatal transpi-
ration. Condon et al. (2002) discussed the factors influencing

intrinsic WUE and how an increased intrinsic WUE can be

achieved through either lower stomatal conductance, higher pho-
tosynthetic capacity, or both. The same authors caution about the

possible penalties in terms of yield through manipulation of each

variable. They conclude that to achieve more widespread gains in
cereal yield derived from greater intrinsic WUE, it is necessary to

decouple intrinsic WUE and low crop growth rate. In practical

terms, WUE becomes more important when crops grow predom-
inantly on stored soil moisture (Condon et al., 2002), as reflected

by the release of wheat cultivars Drysdale and Rees (Richards,

2006), specifically selected for target areas where wheat is grown
under such conditions.

WHICH TRAITS SHOULD BE TARGETED?

The morphophysiological traits and the corresponding QTLs
that affect yield in drought conditions can be categorized as

constitutive (i.e., also expressed under well-watered conditions)

or drought-responsive (i.e., expressed only under pronounced
water shortage; Lafitte and Edmeades, 1995; Blum, 2006). While

drought-responsive traits/QTLs usually affect yield only under

rather severe drought conditions, constitutive traits/QTLs can
affect yield at low and intermediate levels of drought stress as

well. The response of QTLs for drought-adaptive traits (e.g., accu-

mulation of osmolytes, relocation of WSC, etc.) to drought is
probably due to regulation of the expression of the underlying

structural genes in response to signaling cues such as abscisic

acid (ABA) accumulation (Bray, 2002) that are reinforced by cel-
lular dehydration. Under appropriate soil moisture conditions,

the presence of QTLs for traits usually classified as constitu-
tive but difficult to measure (e.g., root depth) can be revealed

by the collocation of QTLs for traits indicative of the water

status of the plant such as ABA concentration, stomatal con-
ductance, canopy temperature depression (CTD), etc., (Lebreton

et al., 1995; Tuberosa et al., 2002b; Reynolds et al., 2009, 2011).

Experimental evidence indicates that the progress achieved by
breeders during the last century can mainly be accounted for by

changes in constitutive traits that affect dehydration avoidance

rather than drought-responsive traits (Blum, 2005, 2006, 2011).
In this respect, emphasis is increasingly being placed on pheno-

typing traits that constitutively enhance yield per se (Blum, 2009;

Passioura, 2010), rather than on characteristics that enhance plant
survival under extreme drought (Bartels et al., 2006), in view of a

possible negative trade-off under less severe circumstances (Blum,

1996, 2005, 2006; Passioura, 2002, 2007, 2010; Sinclair, 2011).
The traits to be considered as potential selection targets

for improving yield under water-limited conditions must be

genetically (i.e., causally) correlated with yield, and should
have a greater heritability than yield itself (Blum, 1988, 2011;

Monneveux and Ribaut, 2006). Additional desirable features are

the presence of sufficient genetic variability and lack of yield
penalties under favorable conditions. Ideally, measurement of the

target trait should be non-destructive, rapid, accurate, and inex-

pensive. It should also be possible to measure the trait using a
small number of plants and without lengthy procedures to cali-

brate sensors to individual plants. Finally, rather than reporting

on short-term features at the cellular level, the nature of the sec-
ondary trait should be integrative across the growing cycle, or part

thereof, and relate to higher levels of functional organization (e.g.,

the canopy level rather than the single leaf), thereby providing
information on the long-term ecophysiological performance of

the crop. General information and examples are now provided on

a number of traits that have been investigated for their influence
on drought resistance and/or WUE.

EARLY VIGOR

Early vigor under conditions of low evapotranspiration may allow

annual crops to optimize WUE and limit the loss of water due to
direct evaporation from the soil surface. This leaves more stored

water available for later developmental stages when soil mois-

ture becomes progressively exhausted and increasingly limiting
for yield (Slafer et al., 2005; Richards, 2006; Rebetzke et al., 2007;

Richards et al., 2007). Early establishment also reduces the occur-

rence of inhibition of stomatal conductance as a consequence of
root-borne signaling such as from ABA through the xylem flow

(Davies et al., 2000; Ren et al., 2007) caused by shallow and super-

ficial roots (Blum, 1996; Giuliani et al., 2005). As a trade-off,
excessively vigorous canopy development may cause early deple-

tion of soil moisture. The optimal degree of vigor will thus depend

on the environmental characteristics of the TPE. Early vigor has
been exploited to improve WUE and yield in wheat (Asseng et al.,

2003; Richards, 2006; Rebetzke et al., 2007). QTLs for the growth

rate of wheat seedlings (Spielmeyer et al., 2007) are being targeted
at CSIRO (Commonwealth Scientific and Industrial Research

Organization, Australia)1.

ROOT ARCHITECTURE

Roots exhibit an astounding level of morphological plasticity in

response to soil physical conditions (Passioura, 1983; Bengough
et al., 2006; Gerald et al., 2006; Ito et al., 2006; Kato et al., 2007;

Lynch, 2007; Forde, 2009; Siopongco et al., 2009), a peculiarity

that allows plants to adapt better to the chemical and physi-
cal properties of the soil, particularly under drought conditions

1http://www.csiro.au/files/files/p2ki.pdf
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(Bacon et al., 2002; Yu et al., 2007). The concept of root ideotype
should be elaborated only after gaining a detailed understand-

ing of: (1) the factors that limit the availability of soil moisture

to the crop; and (2) the metabolic cost sustained by the plant
to develop and maintain a more vigorous root system. Notably,

recurrent selection for increased GY in drought-stressed tropi-

cal maize was associated with a decrease in root mass (Bolaños
and Edmeades, 1993). Accordingly, the effects of root size and

architecture on final yield will depend on the distribution of soil

moisture and the level of competition for water resources within
the plant community (King et al., 2009). Therefore, when addi-

tional stored moisture is available in deeper soil layers, selection

for faster growing and deeper roots could enhance water harvest
and help stabilize yield under drought conditions.

The importance of a deep and vigorous root system for higher

yield has been recognized in bean (Mohamed et al., 2002), soy-
bean (Sadok and Sinclair, 2011), chickpea (Varshney et al., 2011),

lettuce (Johnson et al., 2000), maize (Tuberosa et al., 2003, 2007b,

2011b; Hammer et al., 2009; Landi et al., 2010; Hund et al., 2011),
barley (Forster et al., 2005), wheat (Manschadi et al., 2006, 2010;

Wasson et al., 2012), and especially, in rainfed rice (Nguyen et al.,

1997; Price and Tomos, 1997; Ali et al., 2000; Babu et al., 2003;
Courtois et al., 2003, 2009; Steele et al., 2006, 2007; Kamoshita

et al., 2008; Witcombe et al., 2008; Bernier et al., 2009; Henry

et al., 2011). However, other experiments in rice have shown a
lack of correlation between root features and drought resistance

(Pantuwan et al., 2002; Subashri et al., 2009).

The main drawback to the study of root features and their
use as selection criteria relates to the difficulty of phenotyping

field-grown plants (Richards, 2008). A number of techniques

allow for the estimation of root mass and its distribution in
the soil profile. These techniques require different amounts of

labor and plot destruction for sample collection. The fastest but

most destructive technique measures the vertical pulling strength
required to uproot the plant, as a proxy for root mass and archi-

tecture (Lebreton et al., 1995; Sanguineti et al., 1998; Landi
et al., 2002). Recently, a high-throughput, albeit equally destruc-

tive approach also known as “shovelomics,” has been deployed to

investigate several root architectural features in field-grown maize
(Trachsel et al., 2011). Other less destructive but much more

time-consuming techniques such as excavation and coring meth-

ods have also been used to estimate root mass and distribution
(Nissen et al., 2008).

Minirhizotrons provide a non-destructive, in situ method for

directly viewing and studying fine roots (Johnson et al., 2001;
Smit and Groenwold, 2005). Tube installation is critical, and steps

must be taken to ensure good soil/tube contact without com-

pacting the soil. Tube installation causes some degree of soil
disturbance and has the potential to create artifacts in root data

collection and analysis, resulting in biased values. Therefore, a

waiting period of a few months between tube installation and
image collection is recommended to allow roots to recolonize the

space around the tubes and to permit nutrients to return to pre-

disturbance levels (Johnson et al., 2001). The frequency of image
collection depends upon the root parameters being measured or

calculated, and the time and resources available for collecting

images and extracting data.

In maize, a fast non-destructive method to estimate root mass
has relied on the use of a hand-held capacitance meter (van Beem

et al., 1998; McBride et al., 2008). The accuracy of this method

was tested by comparing the results with direct measurements
taken on uprooted plants grown in the greenhouse and in the

field. The significant correlation (r from 0.56 to 0.73) between the

methods suggests the feasibility of using capacitance meters for
routine, non-destructive observations repeated over time. Despite

this possibility, the method has not been widely applied.

Heterogeneity in soil structure and composition hinders the
acquisition of accurate values for root features in field-grown

plants. As an alternative to root phenotyping in field experiments,

a number of studies have measured roots in plants grown under
controlled conditions (Arihara and Crosbie, 1982; Price et al.,

1997a, 2002b,c; Landi et al., 1998, 2001a; Tuberosa et al., 2002b;

de Dorlodot et al., 2005, 2007; Kimurto et al., 2005; Zhu et al.,
2006, 2011; Hochholdinger and Tuberosa, 2009; Zaman-Allah

et al., 2011a; Ren et al., 2012). This allows more rapid and accurate

analysis of root features. A major shortcoming of these studies is
the unnatural environment in which the roots grow, suggesting

great caution in extrapolating the results to field-grown plants.

In maize, a significant, albeit weak, positive association has been
reported between seminal root traits in hydroponics and root

pulling resistance in the field (Landi et al., 2001a; Tuberosa et al.,

2002b). A reasonable compromise to avoid both the unnatural
conditions present in hydroponics and/or aeroponics and the dif-

ficulty of studying roots in the field is offered by growing plants

in pots, columns and/or observation chambers filled with soil
(Azhiri-Sigari et al., 2000; Wade et al., 2000; Zaman-Allah et al.,

2011a). Pot experiments also allow for a precise measurement of

the amount of water provided to each plant, hence water use and
WUE (Price et al., 2002b), and to estimate the capacity of roots to

penetrate a wax layer of high mechanical impedance mimicking a

soil hardpan, often the main constraint that limits access of roots
to soil moisture in deeper soil layers (Cairns et al., 2004; Nhan

et al., 2006; Acuna et al., 2007). In rice, an enhanced capacity to
penetrate a soil hardpan is considered an essential feature for the

development of deeper roots under rainfed lowland conditions

(Fukai and Cooper, 1995) and is a key factor in drought adap-
tation in areas where water supply is limited (Siopongco et al.,

2009).

Gel- or soil-filled chambers, soil sacs, pouches, paper rolls,
X-ray microtomography, and magnetic resonance imaging (MRI)

have also been used to investigate bi- and tri-dimensional root

architecture (Bengough et al., 2004; Sanguineti et al., 2007;
Hargreaves et al., 2009; Norton and Price, 2009; Ruta et al., 2010;

Tracy et al., 2010; Bovina et al., 2011; Clark et al., 2011; Rascher

et al., 2011; Singh et al., 2011; Alhosein et al., 2012; De Smet
et al., 2012; Hamada et al., 2012; Mace et al., 2012). These exper-

iments are particularly suited to the discovery of QTLs that are

prevalently expressed in a constitutive fashion and which, as such,
are more likely to influence root architectural features (e.g., root

angle) across different soil conditions.

FLOWERING TIME

Flowering time is recognized as the most critical factor to opti-

mize adaptation, hence yield, in environments differing in water

Frontiers in Physiology | Plant Physiology September 2012 | Volume 3 | Article 347 | 4

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Tuberosa Phenotyping for drought tolerance

availability and distribution during the growing season (Richards,
2006). Positive associations between plasticity of yield and flow-

ering time across different levels of water availability have been

reported in different crops (Sadras et al., 2009). Therefore, in
addition to phenology per se (i.e., mean time to a phenological

stage), plasticity of phenological development merits consider-

ation as a distinct trait influencing crop adaptation and the
outcome of any QTL experiment where the effects of phenology

on yield are not duly recognized and accounted for (Pinto et al.,

2010; Sabadin et al., 2012).
Many studies have investigated the genetic basis of flower-

ing time, reflecting the economic importance of this trait. In

annual crops, the genetic basis of flowering time is more complex
in temperate species (e.g., barley, wheat, rye, etc.) as compared

to tropical species (e.g., rice, sorghum, maize, etc.), due to the

presence in the former group of verbalization genes influencing
flowering time in response to low temperatures. In cereals, the

switch from the vegetative to the reproductive phase is controlled,

according to the species, by several genes responsive to verbaliza-
tion and/or daylength as well as by loci for earliness per se (Salvi

et al., 2002, 2007, 2011; Distelfeld et al., 2009).

In maize, a valuable selection target for improving drought
resistance is provided by the anthesis-silking interval (ASI), a

trait of intermediate heritability that is usually negatively corre-

lated with GY under drought conditions (Bolaños and Edmeades,
1996; Monneveux and Ribaut, 2006). Because ASI can be phe-

notyped quite easily and effectively under the right experimental

conditions, substantial breeding efforts have targeted this trait
through conventional breeding (Chapman and Edmeades, 1999)

or, once QTLs have been identified (Ribaut et al., 1996; Li et al.,

2003a; Hao et al., 2008), with marker-assisted selection (MAS)
(Ribaut et al., 2004; Ribaut and Ragot, 2007). The negative associ-

ation reported between the effects of QTLs that have been shown

to influence both leaf elongation and ASI suggests turgor main-
tenance as a possible common mechanism accounting for the

correlation (Welcker et al., 2007).

CARBON ISOTOPE DISCRIMINATION

Carbon isotope discrimination (�13C) measures the ratio of sta-

ble carbon isotopes (13C/12C) in the plant dry matter compared

to the ratio in the atmosphere (Condon et al., 1990). Because of
differences in leaf anatomy and the mechanisms of carbon fixa-

tion in species with the C3 or C4 pathway, studies on �13C have

wider implications for C3 species where the variation in �13C is
larger than in C4 species and has a greater impact on crop yield

(Condon et al., 1990, 2006). Commonly, but not always (Turner

et al., 2007), �13C is negatively associated with WUE over the
period of dry mass accumulation (Condon et al., 1990, 2004;

Araus et al., 2002; Rebetzke et al., 2002; Xu et al., 2007; Royo et al.,
2008).

Under drought stress, �13C is a good predictor of stom-

atal conductance (Condon et al., 2002) and WUE in different
crops (Turner, 1997; Tambussi et al., 2007). A number of stud-

ies conducted in bread wheat under varying conditions of water

availability have shown that the correlation between �13C and
final GY varies from positive, when ample water is available to the

crop, to negative in drought conditions, with no correlation at

all in intermediate conditions (Condon et al., 1993, 2004). These
results can be interpreted based on the influence of both stom-

atal conductance and photosynthetic activity on �13C, and on

the fact that biomass production is limited in wet years by a lower
stomatal conductance—an advantage under drought conditions

(Turner, 1997). �13C measured in grains correlates positively

with growth cycle duration (Araus et al., 1997) and negatively
with leaf temperature (Richards et al., 2002). Therefore, the rela-

tionship between �13C and GY depends on the environmental

conditions, the phenology of the crop and the plant organ (e.g.,
leaf or grain) from which the samples are collected (Araus et al.,

1997; Merah et al., 2001; Condon et al., 2004).

High genetic variation for grain �13C has been reported in
C3 species (Turner, 1997; Chen et al., 2012), with high heritabil-

ity (e.g., from 0.76 to 0.85 in durum wheat; Merah et al., 2001)

and a low GEI (Richards, 1996; Rebetzke et al., 2008a). For these
characteristics, �13C is an attractive breeding target for improv-

ing WUE and yield, while the high cost required to measure each

sample makes it an interesting candidate for MAS.

STOMATAL CONDUCTANCE

Stomatal conductance plays a pivotal role in regulating the water

balance of the plant and determining �13C and WUE (Condon
et al., 2002; Richards et al., 2002, 2007; Sinclair et al., 2008, 2010).

A retrospective study conducted by Fischer et al. (1998) on a

historical series of successful bread wheat cultivars released by
CIMMYT from 1962 to 1988 showed a strong positive correlation

between stomatal conductance and GY (r = 0.94; Fischer et al.,

1998), indicating the possibility of raising the yield potential,
hence the amount of water used by the crop, through an indirect

selection for stomatal conductance and/or leaf temperature.

Given the laborious nature of measuring stomatal conduc-
tance, identifying the corresponding QTLs would allow for the

implementation of MAS. In fact, it is difficult to accurately mea-

sure stomatal conductance in a reasonably large number of plants
while properly accounting for the fluctuation in the main envi-

ronmental factors known to affect stomatal conductance during

the day (wind, solar radiation, humidity, etc.). A number of stud-
ies have reported QTLs for stomatal conductance (Lebreton et al.,

1995; Price et al., 1997b, 2002a; Sanguineti et al., 1999; Ulloa et al.,

2000; Takai et al., 2006; Khowaja and Price, 2008).
A more attractive and integrative way to indirectly monitor

stomatal conductance through an extended time-period is based

on the measurement of the natural oxygen isotope composition
(d18O) in leaf and grain materials (Barbour et al., 2000; Ferrio

et al., 2007). Compared with stomatal conductance, measuring

d18O in plant material offers four advantages: (1) it provides an
integrated measure of stomatal conductance and leaf tempera-

ture over the period that the analyzed tissue was formed; (2) it
avoids a number of experimental problems typical of measuring

stomatal conductance; (3) it allows for the collection of a large

number of samples, and (4) requires very little labor in the field.
In the historical series of CIMMYT wheat cultivars tested under

irrigated conditions (see above), leaf d18O was strongly correlated

with stomatal conductance (r = −0.93; Barbour et al., 2000).
In this case, GY was more strongly correlated with leaf d18O

(r = −0.90) as compared to leaf d13C (r = −0.71). However, the
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authors caution that d18O is a questionable yield predictor when

stomatal conductance and GY are not strongly correlated.

CANOPY TEMPERATURE DEPRESSION

CTD as measured by thermal imaging is the difference in tem-
perature between the canopy surface and the surrounding air.

CTD is a highly integrating trait resulting from the effects of sev-
eral biochemical and morphophysiological features acting at the

root, stomata, leaf, and canopy levels. In the field, genotypes with

a cooler canopy temperature under drought stress, or a higher
CTD, use more of the available water in the soil to avoid excessive

dehydration (Blum, 1988; Ludlow and Muchow, 1990; Reynolds

et al., 2007, 2009). Infrared thermometry can report subtle differ-
ences in leaf temperature in both field and controlled conditions

(Blum et al., 1982; Jones et al., 2003, 2009; Chaerle et al., 2007;

Winterhalter et al., 2011a,b). Importantly, data collection is fast
and non-destructive.

CTD is useful mainly in hot and dry environments typical of

countries with a Mediterranean climate. Measurements should
preferably be made on recently irrigated crops on cloudless and

windless days with high vapor pressure deficits. Under these con-

ditions and provided that data are collected when the canopy is
sufficiently expanded to cover the soil, CTD can be a good pre-

dictor of wheat GY (r = 0.6–0.8; Reynolds and Pfeiffer, 2000).

In bread wheat, yield progress was found to be associated with
cooler canopies (Fischer et al., 1998) and significant genetic gains

in yield have been reported in response to direct selection for CTD

(Reynolds et al., 1999, 2009; Brennan et al., 2007). The addition
of CTD as a selection criterion in wheat nursery improved con-

siderably the identification of the highest yielding materials (van

Ginkel and Ogbonnaya, 2007). These results are in keeping with
the conclusions of Olivares-Villegas et al. (2007): “Canopy temper-

ature epitomises a mechanism of dehydration avoidance expressed

throughout the cycle and across latitudes, which can be utilized as a

selection criterion to identify high-yielding wheat genotypes or as an

important predictor of yield performance under drought.”

Grant et al. (2006) investigated the robustness and sensitivity
of thermal imaging for detecting changes in stomatal conductance

and leaf water status in a range of plant species (grapevine, bean

and lupin) under greenhouse or controlled environment condi-
tions. In particular, they compared absolute leaf temperatures

and thermal indices of plant stress with stomatal conductance
and water potential. Thermal imaging successfully distinguished

between irrigated and non-irrigated plants of different species,

with strong correlations between thermal indices and stomatal
conductance as measured with a leaf pyrometer. Their results also

highlighted factors such as leaf angle that should be addressed

when using thermal imaging for indirect measurement of the level
of drought stress of the tested materials. Additionally, these results

are valuable for the design of protocols for application in crop

production or ecosystem monitoring.

ABSCISIC ACID CONCENTRATION

One of the main factors influencing leaf temperature via an effect
on transpiration through stomatal conductance is the concen-

tration of ABA in the leaf tissue and, ultimately, in guard cells

(Wasilewska et al., 2008; Sirichandra et al., 2009). Therefore, ABA

is a fundamental component of the mechanisms allowing the
plant to match the water demand with the water supply and to

optimize growth and survival in response to both daily and more

long-term environmental fluctuations (Zhang and Davies, 1990;
Xiong et al., 2007). Indeed, an increase in ABA concentration is

a universal response observed in plants subjected to drought and

other abiotic stresses (Quarrie, 1991; Setter, 2006). Additionally,
ABA modulates the expression of a large number of genes whose

products protect the cell from the harmful effects of dehydration

(Bray, 2002; Seki et al., 2007).
ABA has been shown to affect many of the traits that influ-

ence the water balance of the plant through both dehydration

avoidance and dehydration tolerance (Thompson et al., 2007).
In maize seedlings subjected to artificially induced conditions of

water deprivation, an increased ABA concentration enhanced the

root/shoot ratio (Spollen et al., 2000; Sharp, 2002; Sharp et al.,
2004), an adaptive change beneficial for increasing water uptake.

It has also been shown that ABA facilitates water uptake into roots

as the soil begins to dry, particularly under non-transpiring con-
ditions, when the apoplastic path of water transport is largely

excluded (Hose et al., 2001). Under terminal drought, toler-

ant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf
ABA and reduced transpiration at high vapor pressure deficit, a

feature that highlights the important role of constitutive water-

conserving mechanisms in maximizing yield under such condi-
tions (Kholova et al., 2010a,b). The positive role on yield of a

conservative water use, rather than deep or profuse rooting, has

also been highlighted in chickpea (Zaman-Allah et al., 2011a,b).
In cereals, an accumulation of ABA has been implicated as

one of the factors that influence reproductive fertility (Saini and

Westgate, 2000; Landi et al., 2001b; Setter et al., 2001; Boyer and
Westgate, 2004; McLaughlin and Boyer, 2007; Yang et al., 2007;

Tang et al., 2008; Zhang et al., 2009) and endosperm develop-

ment (Ober et al., 1991; Tuberosa et al., 1992; Setter et al., 1996;
Mambelli and Setter, 1998; Seiler et al., 2011). In rice, selection

for reduced ABA root signaling has been advocated as a means
for better exploitation of subsoil water under mild or transient

water deficit (Siopongco et al., 2008, 2009).

Sensitivity to ABA is also of interest for its implications on the
adaptive response of plants to drought (Cominelli et al., 2005).

Genetic variability for sensitivity to ABA has been reported in

maize (Frascaroli and Tuberosa, 1993). Gametophytic selection
carried out by spraying maize silks with an ABA solution before

pollination led to significant effects on early vigor and other

agronomic traits (Frascaroli and Landi, 1996; Landi et al., 2000).
Due to the availability of ABA-specific monoclonal antibodies

(Quarrie et al., 1988) that allow for the cost-effective measure-

ment of a large number of samples, several studies have been
devoted to the identification of QTLs for ABA concentration and

the analysis of their associated effects on other drought-related

traits and yield (Lebreton et al., 1995; Tuberosa et al., 1998, 2002a;
Sanguineti et al., 1999; Reymond et al., 2003; Giuliani et al., 2005;

Landi et al., 2005, 2007; Rahman et al., 2011). Altogether, these

studies do not provide a unifying picture of the role of ABA in
determining yield, perhaps not unexpectedly in view of the dif-

ferent species and genetic backgrounds involved. Nevertheless,

it is worth noting that the evaluation of an historical series of
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maize hybrids released in the past 60 years has shown a signifi-
cant decrease in the capacity to accumulate ABA in response to

a given level of water stress (Sanguineti et al., 2006) and, conse-

quently, a negative correlation (r = −0.62) between the capacity
to accumulate ABA at the seedling stage (a trait never selected for

by breeders) and GY.

OSMOTIC ADJUSTMENT

OA is a metabolic process entailing a net increase in intercellular
solutes in response to water stress (Morgan, 1984; Zhang et al.,

1999; Serraj and Sinclair, 2002). As soil moisture declines, OA

favors turgor maintenance, and hence the integrity of metabolic
functions. Importantly, OA can bias estimates of the value of rela-

tive water content, as has been shown in wheat and barley (Boyer

et al., 2008).
OA has been implicated in sustaining yield under conditions

of water deficit in oilseed Brassica species (Kumar and Singh,

1998), chickpea (Basu et al., 2007), cotton (Saranga et al., 2001),
rice (Babu et al., 1999; Jongdee et al., 2002; Praba et al., 2009),

sorghum (Tangpremsri et al., 1995), maize (Chimenti et al.,

2006), tef (Ayele et al., 2001), barley (Gonzalez et al., 2008), and
wheat (Ali et al., 1999; Blum et al., 1999; Salem et al., 2007;

Ehdaie et al., 2008; Fan et al., 2008; Izanloo et al., 2008). Yet

the value of OA as a desirable selection target from a breeding
standpoint has been questioned (Munns, 1988; Palta et al., 2007),

based on the notion that drought-tolerant genotypes endowed

with a higher capacity to adjust osmotically are likely to be char-
acterized by slow growth, and hence biomass production, due to

the metabolic requirements of osmolyte biosynthesis. Under con-

ditions of severe dehydration, a higher capacity to accumulate
osmolytes may help plants withstand a prolonged drought spell

and undergo a more prompt and complete recovery upon rehy-

dration. Even though, the interpretation of osmotic relations in
genetically engineered plants can be cumbersome (Blum et al.,

1996), transformation experiments have shed light on the mech-

anisms by which plants may benefit from an altered capacity to
accumulate osmolytes (Umezawa et al., 2006). Similarly to other

drought-adaptive traits, the trade-off between the metabolic

requirements of OA and the potential benefits for the crop varies
on a case-by-case basis as a function of the crop, and the dynamics

and severity of the drought episodes.

CHLOROPHYLL CONCENTRATION, STAY-GREEN, AND DELAYED

LEAF SENESCENCE

A well-sustained source capacity is a key factor to maximize yield

potential during both vegetative and reproductive phases, partic-

ularly under source-limiting conditions that commonly charac-
terize drought-stressed crops. Therefore, delaying leaf senescence

maintains transpiration and increases cumulative photosynthesis
over the crop life cycle (Borrell et al., 2001; Jiang et al., 2004; Vadez

et al., 2011). This is a strategy that is adequate for soils with appre-

ciable water reserves but may otherwise cause severe stress at the
end of the growth season due to increased transpiration.

The traits that have been monitored most frequently to obtain

indirect estimates of photosynthetic potential are chlorophyll
concentration, stay-green and delayed senescence, all of which

are interconnected (Tuinstra et al., 1998; Thomas and Howarth,

2000; Shukla et al., 2004). In US Corn Belt maize, stay-green has
improved significantly and steadily during the past six decades of

breeding, particularly under favorable conditions (Duvick, 2005).

Additionally, stay-green traits in maize correlate closely to GY, and
multiple intervals of stay-green QTLs overlap with yield QTLs

(Zheng et al., 2009). Although, stay-green in maize seems more

likely to be related to nitrogen use, in sorghum it has been related
to maintenance of a more favorable water status as related to root

features (Gallais and Hirel, 2004; Blum, 2006; Mace et al., 2012).

In sorghum, four major QTLs that control stay-green and GY
have been identified (Harris et al., 2007) and near isogenic lines

(NILs) for these QTLs have been derived, providing an opportu-

nity for a detailed analysis of stay-green physiology and positional
cloning of the underlying genes (Vadez et al., 2011).

REMOBILIZATION OF WATER-SOLUBLE CARBOHYDRATES

Remobilization of WSC from the stem and leaves can mitigate the

negative effects on grain filling caused by post-anthesis drought

tolerance (Blum, 1988, 1998; Araus et al., 2002; Reynolds et al.,
2007; Rebetzke et al., 2008b). QTLs for stem-reserve remobiliza-

tion have been reported in bread wheat (Salem et al., 2007; Snape

et al., 2007; Yang et al., 2007). Rebetzke et al. (2008b) pheno-
typed three wheat mapping populations for WSC concentration

(WSC-C) and for WSC mass per unit area (WSC-A). Genotypes

with high WSC-C were commonly shorter, flowered earlier and
produced significantly fewer tillers than those of low WSC-C. This

resulted in similar yields, lower final biomass, and fewer grains

per m2, but greater dry weight partitioning to grain and kernel
weight in high versus low WSC-C genotypes. In contrast, lines

high for WSC-A produced more fertile tillers associated with sim-

ilar or greater anthesis and maturity biomass, grain number and
yield, yet similar kernel weight or size compared with genotypes

with low WSC-A, thus suggesting an important role for WSC-A

in assuring stable yield and grain size in wheat.
This overview of drought-adaptive traits, far from being

exhaustive, indicates that genetic variability in drought tolerance

and WUE can be traced to the interaction of a multitude of quan-
titatively inherited morphophysiological features, whose effects

on yield can vary greatly both in terms of magnitude and direc-

tion according to the prevailing drought scenario and other yield
constraints. Therefore, the adoption of drought-adaptive traits as

selection criteria for yield should be exercised cautiously and only

after acquiring a clear understanding of the factors limiting yield
in the TPE. Identifying the QTLs underpinning such traits and

interpreting their cause–effect relationships allow us to partially

disentangle this complexity to an extent and, eventually, make it
amenable to a more direct and effective manipulation for breed-

ing purposes. In both cases, good phenotypic data are essential to

success.

COLLECTING GOOD PHENOTYPIC DATA

Plant scientists attempting to improve resistance to drought face
two contrasting and apparently irreconcilable requirements. The

first is to simplify “the system” in order to facilitate elucida-

tion of the function of the relevant loci for the target traits
(i.e., the reductionist approach). The second is to evaluate the

broader value of such findings in a breeding and agronomically
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sound context (i.e., the holistic approach), where the physi-
ology, epistatic interactions and pleiotropic effects of complex

traits inevitably limit and blur the identification of the main

factors leading to specific phenotypes (e.g., drought-resistant ver-
sus drought-susceptible). In a way, the reductionist approach

is like trying to understand the subject of an entire puz-

zle when only a few pieces are available. On the other hand,
the holistic approach selecting, for example, for yield per se

will provide a complete picture of the puzzle (i.e., the phe-

notype). However, it will often not allow us to tease the puz-
zle apart to the extent that we would need to apply targeted

approaches such as MAS and/or genetic engineering, because of

our incomplete understanding of the number and function of
the single pieces such are the QTLs for yield. Valuable oppor-

tunities to begin to reconcile this conundrum are provided by

bioinformatics (Sawkins et al., 2004) and modeling (Hammer
et al., 2004, 2006; Cooper et al., 2009; Tardieu and Tuberosa,

2010; Sinclair et al., 2010; Messina et al., 2011). Both mod-

eling and high-throughput phenotyping for drought-adaptive
features are at the very core of DROPS (DROught-tolerant

yielding PlantS; www.drops-project.eu), an ongoing EU-funded

project aiming at improving our understanding and capac-
ity to ameliorate yield and yield stability under water-limited

conditions.

Yet the objective of this review is not to dwell on the mer-
its and pitfall of the reductionist and holistic approaches (see

also Passioura, 2010). Rather, it seeks to introduce and discuss

a number of major issues on phenotyping that are relevant for
both approaches. These issues should be considered seriously in

planning and managing experiments under drought conditions,

collecting and analyzing the data and, eventually, in interpreting
the results properly.

Given the myriad of factors that can influence the quality of

phenotypic data, this review only addresses the most important
ones. Although, it is possible to define general rules, each exper-

iment has its own “phenotyping story” and the results should be
dealt with and interpreted accordingly. What follows is equally

relevant for the improvement of crop performance under water-

limited conditions and, more generally, for experiments in the
field or under controlled conditions aimed at dissecting the phys-

iological and genetic basis of crop adaptation to water-limited

conditions. However, given the importance of field evaluation
for breeding purposes, phenotyping under field conditions is

emphasized.

WHAT DOES “GOOD PHENOTYPING” MEAN?

Good phenotyping is pivotal for reducing the genotype–
phenotype gap, especially for quantitative traits, which are the

major determinants of drought resistance. Keeping a good record
of meteorological parameters (rainfall, temperatures, wind, evap-

otranspiration, light intensity, etc.) allows for more meaningful

interpretation of the results and identification of the environ-
mental factors limiting yield (Sadras, 2002). Equally important,

though often neglected or ignored, are the physical-chemical

properties of the soil, particularly those influencing the water bal-
ance of the crop under decreasing moisture conditions (Cairns

et al., 2011).

The basic attributes of good phenotyping carried out with
appropriate genetic materials are accuracy and precision of mea-

surements, coupled with relevant experimental conditions that

are representative of the TPE. Accuracy involves the degree of
closeness of a measured or calculated quantity to its actual (true)

value. Accuracy is closely related to precision, also termed repro-

ducibility or repeatability, the degree to which further measure-
ments or calculations show the same or similar results. For a

number of traits such as stomatal conductance, flow of xylem sap,

etc., measured with mechanical or electronic devices, accuracy
and precision in measurements require calibration of the instru-

ment prior to data collection. Failure to so do will produce biased

results with a difference between the mean of the measurements
and the true reference value. A further complexity of phenotyp-

ing a large number of genotypes (e.g., a mapping population

or an association mapping panel) for drought-adaptive features
is exemplified by those traits such as stomatal conductance and

tissue water potential, the value of which can vary considerably

within a rather short timeframe due to changing environmental
conditions.

An important distinction should be made between experi-

ments aimed at (1) collecting data useful to dissect the genetic
basis of target traits or (2) breeding activities for the release of

improved cultivars. In both cases, an adequate choice of materials

will be essential for successfully meeting the desired objectives. A
notable case that clearly underscores the importance of good phe-

notyping is provided by QTL cloning (Salvi and Tuberosa, 2007).

In this respect, the ideal scenario is when the alternative QTL alle-
les can be unequivocally scored phenotypically and the trait itself

is mapped as one of the markers.

PHENOTYPING IS KING AND HERITABILITY IS QUEEN

Good phenotyping means not only the collection of accurate

data to minimize the experimental “noise” introduced by uncon-

trolled environmental and experimental variability, but also the
collection of data that are relevant and meaningful from a biolog-

ical and agronomic standpoint, under the conditions prevailing

in farmers’ fields within the TPE. Although, hundreds of accu-
rate studies reporting thousands of drought-responsive genes

and QTLs can be found in the literature, the relevance of these

data to “real” field conditions is often marginal and even ques-
tionable; only seldom has it been appropriately addressed and

discussed. In the early stages following their development, eval-

uation of transgenic materials is limited to experiments carried
out in greenhouses, a condition that underlines the importance to

mimic as close as possible the drought stress conditions in fields

(Saint Pierre et al., 2012).
Collecting accurate phenotypic data that are relevant to the

TPE has always been a major challenge for the improvement
of quantitative traits. The success of this endeavor is intimately

connected with the heritability of the trait, namely the portion

of the phenotypic variability accounted for by additive genetic
effects that can be inherited through sexually propagated gen-

erations (Falconer, 1981). Trait heritability varies greatly (from

0 to 1) according to: (1) the genetic makeup of the materi-
als under investigation; (2) the environmental conditions under

which such materials are grown and evaluated; and (3) the
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accuracy and precision of the phenotypic data. With only a few
notable exceptions (e.g., flowering time and carbon-isotope dis-

crimination), most of the traits determining the performance

of crops under drought conditions usually have low (0.3–0.4)
or, at best, intermediate (0.4–0.7) heritability. This impairs our

capacity to dissect their genetic basis properly and, more impor-

tantly, reduces the effectiveness of phenotypic selection (Falconer,
1981). Despite this, careful evaluation and appropriate manage-

ment of the experimental factors that lower the heritability of

traits, coupled with a wise choice of the genetic material, can pro-
vide effective ways to increase heritability, and hence the response

to phenotypic selection.

Once a sound association has been established between a
marker and a locus affecting a target trait, the problems encoun-

tered in the conventional selection of quantitative traits, par-

ticularly the lowly-heritable ones, can been partially overcome
through the use of markers linked to QTLs for the target trait.

This enables individuals to be scored based on their genetic make-

up rather than their phenotypic features (Peleman and Van der
Voort, 2003; Langridge, 2005). Paradoxically, the probability of

identifying the relevant chromosomal regions and accurately esti-

mating their effects relies on good phenotyping of the genetic
materials originally used to establish the phenotype–genotype

associations. In other words, the effectiveness of marker-based

approaches intimately depends on how well and how accurately
the target trait has been assessed phenotypically in mapping

populations. In fact, a low heritability impairs the probability

of detecting the presence of QTLs (Bernardo, 2004), thereby
increasing Type II errors (i.e., false negatives). An accurate and

relevant phenotyping is of even greater importance when apply-

ing genome-wide selection, an approach that disregards QTL
identification and relies on the molecular profiling and accurate

phenotyping of each progeny (Bernardo and Yu, 2007; Bernardo,

2008; Heffner et al., 2009).

EXPERIMENTAL DESIGN, DEDICATED SOFTWARE, AND

STATISTICAL APPROACHES

It is widely recognized that a substantial part of the increased
efficiency of modern breeding is due to the accurate pheno-

typing of large numbers of plots, this scale-up being made

possible by more sophisticated and high-throughput experimen-
tal machinery as well as the streamlining and automation of

tedious manual operations. Thus, the labeling of a large number

of plots and samples, data collection and storage, and keep-
ing track of pedigrees, etc., are now facilitated by the use of

electronics (e.g., bar-coding) and dedicated software (e.g., spread-

sheets, databases, etc.). Additionally, the effectiveness of field
experiments and the management and interpretation of pheno-

typic data can be enhanced greatly through the utilization of the
most appropriate experimental designs to allow for better con-

trol of within-replicate variability and to reduce or remove spatial

trends. Equally important are statistical approaches to analyz-
ing the data, particularly for investigating the effects of GEI (van

Eeuwijk et al., 2005; van Eeuwijk, 2006; Malosetti et al., 2008;

Mathews et al., 2008; Messmer et al., 2009) and epistasis (Gao and
Zhu, 2007; Jannink, 2007). Coping with the temporal variability

of drought-adaptive features can be dealt with through in-depth

analysis of QTL-by-environment interactions (van Eeuwijk et al.,
2005; Vargas et al., 2006; Burgueno et al., 2008) or by identifying

intrinsic characteristics of each genotype relating to its interac-

tion with particular environmental conditions, which requires the
development of models able to identify these variables and to sim-

ulate the behavior of genotypes in a broad range of environments

(Tardieu, 2003; Yin et al., 2003; Reymond et al., 2004; Cooper
et al., 2009; Sinclair et al., 2010).

A number of studies have shown the importance of epistasis

in determining the genetic architecture of yield and other quanti-
tative traits (Li et al., 2003b; Maccaferri et al., 2008; Zhao et al.,

2008; Frascaroli et al., 2009; Messmer et al., 2009; Ravi et al.,

2011). However, mapping two-way epistatic interactions requires
adequately large mapping population, and detecting higher order

epistasis is practically out of reach. Once different sets of NILs

become available for loci that are known to interact epistatically,
it will be possible to produce different combinations at will for

further testing and characterization of the effects of such epistatic

interactions.

MONITORING PLANT–SOIL WATER RELATIONS

A sound interpretation of the results of an experiment conducted
under conditions of water shortage requires a good characteriza-

tion of the soil–plant–atmosphere continuum (SPAC), which, in

turn, relies on accurate monitoring of the water status of both soil
and plant. From an experimental standpoint, an important issue

is to what extent genotypic differences in drought-adaptive traits

measured in phenotyping platforms at different water regimes
reflect genotype performance across watering regimes under field

conditions. Along this line, encouraging results have recently been
reported in maize (Chapuis et al., 2012).

Regrettably, a unique means of measuring water status that

can be applied in all possible situations is not available. Choosing
the most appropriate method depends on the objective being

pursued, such as understanding drought-adaptive mechanisms,

selecting for drought resistance, investigating water movements,
or managing irrigation treatments (Boyer, 1995; Kirkham, 2004;

Jones, 2007). At the plant level, greater emphasis has tradition-

ally been devoted to water potential rather than sustained turgor,
the primary reason for sustained function under drought (Blum,

2006, 2009). Hence, examples of sustained function at low water

status as the main reason for drought tolerance are compara-
tively few. Maintenance of high leaf water potential and turgor

under dry conditions indicates dehydration avoidance (Blum,

1988; Ludlow and Muchow, 1990). Similarly, the relative water
content of the leaf also provides important information on the

water status of the plant, offering the advantage of collecting a

high number of samples in a short time (Sanguineti et al., 1999),
an important prerequisite for QTL studies trying to link variation

in physiological parameters to variation in yield. The precautions

to be adopted for measuring relative water content have been dis-
cussed by Blum2. Although, all components of leaf water relations

change during the day as irradiance and temperatures vary, the

change is small for about 2 h at and after solar noon. Therefore,

2http://www.plantstress.com/methods/index.asp
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this is an appropriate time window for investigating leaf water
relations in a large number of genotypes2.

It is equally important to monitor changes in soil moisture,

preferably at different depth of the rhizosphere, during the growth
and reproductive cycle of the crop. Root water uptake is one

of the pivotal processes within the SPAC. While the gravimetric

method (i.e., weighing samples of soil columns before and after
oven drying) provides accurate, albeit time-consuming, measure-

ment of soil moisture, other methods such as the neutron probe,

the capacity method and the “I-sensor” allow for quicker and
less labor-intensive measurement (Nagy et al., 2008; Cayci et al.,

2009).

During recent decades, progress in microelectronics has
allowed the development of several dielectric-based soil water

monitoring techniques, namely time-domain reflectome-

try (TDR), and single and multisensor capacitance probe
(SCP/MCP) systems (Fares and Polyakov, 2006; Vereecken et al.,

2008). These techniques have greatly simplified the real-time

determination of water content on a fine spatial and temporal
scale. Because of their relatively low cost and ease of operation,

MCP systems have met widespread acceptance as a means of

closely monitoring soil moisture by collecting high-resolution
soil-water content data in the rhizosphere. Despite their success,

MCP systems have shown some temperature and salinity effects

in different soil types, suggesting that further research is needed
to eliminate such effects for these capacitance systems to take

their place as leading soil water monitoring sensors.

TDR has been one of the most widely used techniques to
determine soil volumetric water content thanks to its high pre-

cision, non-ionizing radiation and low influence of soil salinity,

bulk density and texture (Noborio, 2001). However, compared
to the neutron probe, most of the TDR equipment available

does not allow detailed measurement along the soil profile. Also,

the use of conventional TDR probes requires drilling holes or
opening trenches in the soil to install the probes, limiting the

number of points measured in the soil profile (Manieri et al.,
2007). More recently, two-dimensional geoelectrical tomography

has been used for monitoring soil-water redistribution due to

water uptake by lupin roots (Werban et al., 2008). The result-
ing average water content from two-dimensional geoelectrical

tomography agreed well with the values determined by the TDR

measurements model.

WHAT SEVERITY OF WATER SHORTAGE?

Unlike yield under conditions of severe drought stress (>70%

reduction from yield under well-watered conditions) yield under

more moderate water shortage (up to approximately 50% reduc-
tion) reflects more closely yield potential under favorable con-

ditions (Blum, 2006). Therefore, drought resistance per se is
expected to play a progressively more important role than yield

potential as the severity of drought escalates, with genotype

ranking for yield changing considerably once the mean yield
falls below 20–30% of yield potential (Blum, 2006) as a result

of water scarcity. Consequently, germplasm evaluation in areas

where drought severity fluctuates widely should preferably be car-
ried out under well-watered conditions and at different levels

of drought stress (e.g., intermediate and severe). In maize, this

approach has been adopted to identify QTLs for yield across a
broad range of water availability (Malosetti et al., 2008; Messmer

et al., 2009) and to develop superior hybrids in sub-Saharan

Africa (Bänziger et al., 2006).
Retrospective studies conducted with an historical series of

maize hybrids showed that screening in multiple sites at high

plant densities provides substantial yield gains across a broad
range of environments, although, rates of gain in well-watered

conditions are more than twice as high as those in water-stressed

environments (Duvick, 2005; Campos et al., 2006). In wheat, four
decades of breeding at CIMMYT have clearly indicated the impor-

tance of selecting and managing key environments differing in

their yield potential to identify the best performing genotypes
across a broad range of environments. The so-called “shuttle

breeding” which was instrumental for the success of the Green

Revolution (Borlaug and Dowswell, 2005), remains a key factor
in developing more broadly adapted cultivars (Ortiz et al., 2007b;

Trethowan and Crossa, 2007). Recently, a QTL with a major and

consistent effect on GY in multiple elite genetic backgrounds
under both water-stressed and non-stressed conditions has been

described (Vikram et al., 2011). Consistency of the QTL effect

across different genetic backgrounds makes it a suitable candidate
for use in marker-assisted breeding.

PHENOTYPING IN THE FIELD

Assuming that both the type and the number of treatments (geno-
types, irrigation volumes, etc.) to be evaluated are adequate for

the specific objectives of each experiment, the following gen-

eral factors should be evaluated carefully to ensure the collection
of meaningful phenotypic data in field experiments conducted

under water-limited conditions:

• Experimental design

• Heterogeneity of experimental conditions between and within
experimental units

• Size of the experimental unit and number of replicates
• Number of sampled plants within each experimental unit

• Genotype-by-environment-by-management interaction.

The relative impact of each factor on the quality of the phe-

notypic data to be collected will vary greatly according to each
experiment. As an example, an excessive heterogeneity in soil

characteristics (depth, moisture, pH, etc.), and/or compaction

among field plots will inevitably increase the experimental error
and will jeopardize an accurate evaluation of yield. Mapping

the soil in experimental nurseries for environmental factors that

decrease phenotypic accuracy (Cairns et al., 2004, 2011; Rossel
et al., 2006; Patzold et al., 2008) and adopting suitable experimen-

tal designs can partially mitigate the negative effects of high soil

heterogeneity.
For experimental activities carried out under drought condi-

tions, the additional factors discussed below should receive due

attention when planning and conducting the experiments.

VARIATION IN PHENOLOGY

In environments where escape is the predominant cause of

drought resistance, the presence of large differences in flowering
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time among genotypes will inevitably bias the interpretation of
the influence of drought-adaptive traits on yield under drought

conditions (Soltani and Sinclair, 2012). Likewise, the presence

of large differences in plant height and/or root mass among the
progeny of a mapping population or accessions of a panel suit-

able for association mapping studies, may lead to an overestimate

of QTL effects owing to competition between neighboring plots,
especially when their surface area is small. These QTL effects

will most likely decrease once phenotypic evaluation has been

carried out with more phenologically homogeneous materials.
Surprisingly, this issue has not yet been addressed with dedicated

experiments.

INTERACTIONS WITH OTHER STRESSES

Obtaining an accurate estimate of drought resistance per se

implies the absence of other biotic or abiotic stress agents that

influence plant growth and function. Typical case scenarios are

those involving factors that cause mechanical damage to roots
(e.g., nematodes, root-worms, etc.), impair root growth (e.g.,

soil acidity, boron toxicity, salinity, etc.), and/or reduce water

availability to the crop (e.g., presence of weeds), and source
capacity (e.g., foliar diseases, insect damage to the canopy, etc.).

When one or more of the above-mentioned constraints affects

the experimental plots, genetic variability among the progeny
in resistance to these stress agents will inevitably bias an accu-

rate evaluation of drought resistance. Likewise, important and

more subtle interactions may occur when the effects of water
deficit are evaluated in the presence of other abiotic stress fac-

tors (e.g., high temperatures, high ozone, low nutrients, etc.)

that hasten leaf senescence and/or enhance the role of specific
adaptive mechanisms, such as the relocation of stem WSC in cere-

als, that normally play a less predominant role in determining

yield.
Nevertheless, it should be noted that drought hardly ever

occurs in the absence of other stress factors (Sadras, 2002; Sinclair

et al., 2007). An example of this is provided by the conditions of
terminal drought stress frequently concomitant to high temper-

atures that wheat and rice experience during grain filling (Pinto

et al., 2010; Jagadish et al., 2011; Lopes et al., 2012; Yang et al.,
2012). A partial solution to this problem, at least for traits other

than GY and its components, which are best evaluated under

field testing, is to collect phenotypic data from plants grown
in controlled facilities (greenhouse, growth chamber etc.). This

will allow for an accurate control of the main environmental
parameters—temperature, air humidity, light, etc.,—governing

water flow in the SPAC, and hence the water balance. This is par-

ticularly important for omics-profiling studies where even small
fluctuations in environmental conditions can substantially alter

gene expression. On a broader scale, environmental characteriza-

tion can be improved through the use of geographic information
systems (GIS) for crop monitoring (Kahinda et al., 2008), for

water balance models (Reshmidevi et al., 2008) and for their

combination.

MANAGING THE DYNAMICS AND INTENSITY OF DROUGHT EPISODES

The ability to control the timing, frequency and intensity of

drought episodes is a key factor in mimicking the environmental

conditions prevailing in the TPE and, consequently, in success-
fully selecting for improved drought resistance. To this end, an

increasing number of public and private breeding programmes

have conducted field trials in locations characterized by very
low rainfall during the growing season, a condition under which

the dynamics and intensity of drought episodes can be tightly

controlled through the frequency and volume of irrigation treat-
ments. Trials in dry sites also offer the distinct advantage of

a lower incidence of biotic constraints which, if unaccounted

for, can bias the evaluation of the role of other traits and cor-
responding QTLs in the adaptive response to moisture-limited

conditions.

The option of field testing in dry areas is not always avail-
able to many of those engaged in drought-related experiments.

Therefore, rainout shelters offer the possibility of investigating

the adaptive response of crops to a desired level of drought stress,
avoiding the vagaries of unpredictable rainfall patterns. There are

basically two types of rainout shelter: static and moveable. Further

details on the merits and pitfalls of these devices are provided by
Blum2. Major drawbacks to the use of rainout shelters are high

construction and operating costs, particularly for the movable

type, as well as the usually rather limited area protected by a shel-
ter which, in turn, limits the number and size of experimental

plots that can be tested. This is a significant problem when dealing

with large mapping populations or panels of accessions suitable
for association mapping studies.

INFLUENCE OF THE GROWTH STAGE

An important aspect for phenotyping traits in the most rele-
vant way from a breeding point of view is the identification of

the critical stage at which variability in the target traits plays a

more prevalent role in final performance. This is the stage at
which the correlation between the trait and final yield is high-

est, and thus becomes more diagnostic. For example, in maize

some biochemical factors, such as the concentration of sucrose
in the placental-chalazal area of the kernel, exert a particularly

strong and timely effect on reproductive fertility around flow-

ering but not a week earlier or later (Boyer and Westgate, 2004;
McLaughlin and Boyer, 2004). Similarly, genetically-based dif-

ferences in the concentration of ABA in leaves of field-grown

maize have been shown to peak around the time of flower-
ing or shortly after (Landi et al., 1995; Pekic et al., 1995). Due

consideration should also be given to fluctuations in the her-

itability of target traits exhibited during the growth cycle (see
below).

A critical factor in improving the relevance of infrared ther-

mography to measure canopy temperature is the timing of the
measurements of temperature differences between treatments.

Under field conditions, even well-watered healthy plants may
shut their stomata before solar noon, especially under condi-

tions of high evapotranspirative demand. This is particularly

relevant when different genotypes are evaluated for their capac-
ity to exploit an avoidance strategy. In this case, the timing of

the measurements to allow good discrimination among geno-

types needs to be determined for specific conditions and may
need considerable readjustment during subsequent samplings as

the water stress progresses during the day. An additional factor
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to be considered when measuring canopy temperature is the
effect of leaf wilting, folding or rolling under stress (Leinonen

et al., 2006; Grant et al., 2007). For instance, plant canopy

architecture will influence leaf temperature not only through
the angle of leaves to the light source, but also through the

degree of self-shading in the canopy (Zheng et al., 2008). To

a certain extent, the influence of self-shading can be reduced
if the most suitable view angle is used, although, different

opinions have been expressed in this regard (Grant et al.,

2006).
When phenotyping occurs at flowering or shortly after, addi-

tional bias is introduced if the tested genotypes differ considerably

in flowering time and/or maturity. In such cases, phenotyping
all accessions on the same date will provide data collected from

plants at different physiological stages, a circumstance that could

introduce significant bias in the interpretation of cause–effect
relationships between traits and yield. A partial solution is to sow

the accessions on two or three dates based on the maturity group

(e.g., early and late). Clearly, this procedure will increase the cost
of the trial.

TIMING OF MEASUREMENT AND SAMPLE COLLECTION

For morphophysiological traits that fluctuate widely during the

circadian cycle (e.g., water status, ABA content, stomatal con-
ductance, leaf rolling, leaf temperature, etc.) choosing the most

appropriate time for measurement and/or sample collection is
very critical. Additionally, measurement of traits that are time-

consuming to record (e.g., stomatal conductance) in a large

number of plants introduces a covariate effect proportional to
the duration of data or sample collection. In this respect, remote

sensing holds great potential to minimize or eliminate alto-

gether effects on trait expression due to the circadian rhythm and
corresponding changes in environmental factors.

CTD is a notable indicator of the amount of water extracted

from the soil and lost through foliar evapotranspiration into
the atmosphere. Therefore, this trait provides an indirect esti-

mate of root architecture (size and depth) and functionality

(e.g., permeability to water as a function of aquaporines, etc.)
in accessing soil moisture, and can be used as a fast, inexpen-

sive screening of root features (Reynolds et al., 2009). However,

to be diagnostic, canopy temperature should be measured under
conditions of high evapotranspirative demand and in absence

of wind (Blum, 1988), since even a slight breeze can alter the

level of evapotranspiration instantaneously and, consequently,
alter the leaf temperature. Balota et al. (2007) have investigated

the effects of the timing of measuring CTD on breeding selec-

tions of wheat in relation to growth stage, time of day and
weather. Although, under dry conditions long-term mean CTD

at noon and yield were found to be correlated in two grow-

ing seasons, the relation of short-term CTD readings to GY was
highly variable (Balota et al., 2007). Poor correlation was asso-

ciated with days of low solar irradiance, high wind speed and

rain events. Interestingly, genotype effects on CTD were detected
for all hours of day and night. Genotype-by-hour interaction

was non-significant at night, suggesting that night-time measure-

ments may provide more stable conditions for CTD comparison
among genotypes.

PHENOTYPING IN CONTROLLED ENVIRONMENT FACILITIES

Although, GY and its components are best phenotyped in field
trials, measuring secondary traits in plants grown in controlled

environment facilities (e.g., greenhouse, growth chamber, etc.)

takes advantage of an accurate control of the main environ-
mental parameters of moisture stress, air humidity, temperature,

light, etc., that vary greatly in field experiments. However, the

conditions under which plants are grown should be relevant
to the conditions prevailing in the field (Izanloo et al., 2008).

When the materials under test differ in flowering time, the use

of plants grown under controlled conditions facilitates the col-
lection of phenotypic data and samples at the same growth

stage and under similar conditions. Additionally, a tight con-

trol of growing conditions allows for more accurate assessment
of the constitutive capacity of different genotypes to accumulate

drought-adaptive compounds in response to a given level of water

deficit. For example, the accumulation of osmolytes and/or ABA
is highly influenced by water status, which can vary considerably

among genotypes tested in the field under similar water regimes

(Tuberosa et al., 1994; Rauf et al., 2009).
More uniform conditions in terms of water status can be

achieved through exposing plants to a solution with a known con-

centration of polyethylene-glycol (PEG). This approach can be of
particular interest as a way of exposing different genotypes to a

given level of dehydration (Sanguineti et al., 2006; Verslues et al.,

2006; Texeira et al., 2008; Ruta et al., 2010). Unlike in field condi-
tions where different genotypes are likely to experience different

stress intensities, plants grown in a PEG solution are exposed to
predetermined and rather uniform water stress, a condition that

facilitates a more correct interpretation of the cause–effect rela-

tionships of the association between traits. However, the use of
PEG requires good aeration of the solution to avoid hypoxia and

verification of the absence of possible contaminants. Additionally,

plants absorb PEG, particularly when it is of a low molecular
weight (<6000), which can alter the hydraulic properties of the

leaf 2. Therefore, great caution should be adopted in taking results

obtained under such highly artificial conditions and extrapolating
them to field conditions.

In most circumstances, the collection of phenotypic data in

experimental conditions that are remote from those prevail-
ing in the field may lead to biased and potentially misleading

conclusions. At the molecular level, an interesting example is pro-

vided by transcriptomics studies (Atienza et al., 2004; Rensink,
2005) wherein plants or plant parts such as detached leaves

undergo high-intensity stress treatments in a rather short time,

i.e., “shock-like” treatments. These conditions preclude the iden-
tification of long-term responses in gene expression that play a

more predominant role in adaptation to field aridity (Passioura,

2010). In barley, changes in gene expression were monitored in
leaves of plants grown in soil and subjected to slow-drying condi-

tions for 7 and 11 days (7d-WS and 11d-WS, respectively) with

the changes obtained under “shock-like” conditions imposed
with a 6 h dehydration treatment (Talamè et al., 2007). Among

all transcripts that showed a significant change in regulation in at

least one of the conditions tested, 57% were exclusively affected in
the dehydration shock treatment, 6% at 7d-WS and 14% at 11d-

WS. Irrespective of the low percentage of transcripts (10%) with
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similar expression changes between shock- and slow-stress treat-
ments, a portion of these transcripts shared a common expres-

sion trend under the different drought treatment conditions, as

evidenced by low correlations between the fast-occurring and
the 7d-WS and 11d-WS treatments (r = 0.32 and 0.41, respec-

tively). From a practical standpoint, these results suggest that the

information obtained under artificial conditions of water deficit
induced over a very short period of time (e.g., a few hours) should

be treated very cautiously when used to identify candidate genes

for QTLs of field-related traits with a drought-adaptive role.

HARNESSING PHENOTYPIC VARIABILITY

A number of options are available to utilize the information col-

lected through phenotypic evaluation of germplasm resources

(Gur and Zamir, 2004; Dreccer et al., 2007; Reynolds et al., 2007;
Richards et al., 2007; Ortiz et al., 2008; Bernardo, 2009; Di Bianco

et al., 2011; Tuberosa et al., 2011a). A well-informed choice of

the parental lines based on a thorough phenotypic character-
ization of the main traits imparting drought resistance allows

for the creation of new populations where segregants that com-

bine drought-adaptive and other desirable features of parental
lines can be identified and selected (Reynolds et al., 2005). This

so-called “strategic crossing” has been deployed extensively and

successfully at CIMMYT, as shown by the fact that several newly
released improved wheat accessions have been selected from

crosses between parental lines chosen based on their morpho-

physiological features (Reynolds et al., 2005, 2011; Ortiz et al.,
2007b).

An effective breeding programme relies on the availability

of sufficient genetic variability for the target traits. Under this
aspect, landraces and wild accessions provide valuable oppor-

tunities to enhance the variability for drought-adaptive features

and, eventually, yield (Moncada et al., 2001; Talamè et al., 2004;
Tan et al., 2008). There is rapidly growing interest in wild rela-

tives of crops and landraces as sources of agronomically superior

alleles among those that were left behind by the domestica-
tion bottleneck and modern agriculture (Tanksley and McCouch,

1997; Lippman et al., 2007; Reynolds et al., 2007; Feuillet et al.,

2008). Advanced-backcross QTL analysis (ABQA) and introgres-
sion libraries (ILs) allow for proper and effective dissection of the

phenotypic variability contributed by non-commercially viable

parental lines (Talamè et al., 2004; Tan et al., 2008; Salvi et al.,
2011). Once a desirable QTL feature contributed by unadapted

materials tested under drought conditions has been identified, the
main issue is to evaluate to what extent the introgression of the

target segment in elite materials might cause a yield penalty under

favorable conditions. Regarding target traits, landraces and wild
relatives have been screened most commonly to identify acces-

sions with an outstanding expression of secondary traits such as

root mass, OA, leaf anatomy, etc., thought to play an important
role in conferring resistance to drought (Grando and Ceccarelli,

1995; Peleg et al., 2007, 2008).

TOWARD HIGH-THROUGHPUT PHENOMICS

High-throughput phenotyping helps standardize and improve
the collection of phenotypic data and facilitates the creation

of repository databases useful for QTL meta-analyses (Lippman

et al., 2007; Welcker et al., 2011). Unlike a decade ago, our present
capacity to conduct high-throughput molecular profiling far out-

weighs our capacity to collect reliable phenotypic data (Sinclair

and Purcell, 2005). The best example is provided by the burst
in single nucleotide polymorphism (SNP) discovery and profil-

ing in a number of crops (Rostoks et al., 2005; Kota et al., 2008;

Ganal et al., 2009; Waugh et al., 2009; Mondini et al., 2011;
Rafalski, 2011; Trebbi et al., 2011). Nevertheless, the past years

have witnessed a growing awareness of the need for increasingly

integrated, multidisciplinary and field-oriented research in order
to mitigate the negative effects of water shortage (Edmeades et al.,

2004; Tuberosa et al., 2007a).

High-throughput phenotyping of plants in pots allows for
tight control of the water shortage imposed on different geno-

types and of the homogeneity of the severity of stress, a condition

that is seldom achieved under field conditions, particularly when
the genotypes under test differ in phenology and/or biomass.

However, a number of distinct limitations characterize pot exper-

iments and should be carefully considered and managed to obtain
meaningful results relevant to field conditions (Passioura, 2006).

Phenotyping under controlled conditions is relatively straight-

forward when scoring traits in a binary fashion, such as for
photoperiod sensitivity, and when environmental conditions do

not have much effect on the target trait or are easily defined

(e.g., light versus darkness). However, it quickly becomes more
complex when the target traits are quantitatively assessed, as in

the case of growth, and when environmental conditions that

vary during the day (e.g., temperature, light intensity, soil water
status, etc.) influence the target trait (e.g., the rate of leaf elon-

gation). In this case, the phenotype is rather dynamic and better

defined by a series of response curves to environmental stimuli
(Tardieu et al., 2003, 2005; Hammer et al., 2004; Tardieu, 2012),

an approach that is very time-consuming and requires a tight

control of environmental conditions.
Hence, it is important to: (1) measure the physical variable/s

(e.g., pot weight, soil moisture etc.) that quantify the level of water
stress; and (2) add a precise amount of water to each pot. High-

throughput phenotyping platforms allow for the automation of

these procedures that have already been adopted by a number of
private companies and large public institutions to streamline and

standardize the collection of highly accurate phenotypic data in

glasshouse-grown plants (Granier et al., 2006; Rajendran et al.,
2009). State-of-the art technology including imaging, robotic

and computing equipment, allows for the continuous phenotypic

measurement of thousands of plants automatically and non-
destructively3. Regrettably, the installation and operating cost of

these platforms is very high.

For certain traits, the high-throughput collection of pheno-
typic features can be streamlined by the use of digital imaging

and measurement of canopy features by means of near-infrared

spectroscopy and spectral reflectance, as discussed below.

DIGITAL IMAGING

Digital image analysis provides an inexpensive and rapid way of

precisely measuring plant features whose measurement would

3See the “Plant Accelerator” at http://www.plantphenomics.org/TPA
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otherwise require a great deal of time. A notable example is
provided by the measurement of canopy features (Marti et al.,

2007; Campillo et al., 2008; Elsayed et al., 2011; Winterhalter

et al., 2011b; Fiorani et al., 2012). Digital images offer a series
of advantages over other methods of light interception estima-

tion, including the possibility of directly processing images by

computer. Video image analysis allows for a dynamic, inexpen-
sive and non-destructive assessment of canopy features and crop

growth (Beverly, 1996; Campillo et al., 2008; Cairns et al., 2011;

Elsayed et al., 2011; White et al., 2012). Digital imaging is equally
valuable for measuring root characteristics in experiments that

are often constrained by the lack of suitable methods for contin-

uous, non-destructive measurements (Himmelbauer et al., 2004;
Blouin et al., 2007). Additionally, digital image analysis (Kimura

et al., 1999; Armengaud et al., 2009) allows for accurate analysis

at higher resolution scales, an important prerequisite to inves-
tigate the kinetics of the processes regulating root growth. In

this respect, a non-invasive technique, based on digital image

sequence processing, has been applied for quantifying highly
resolved spatio-temporal processes within the root growth zone

in the model plant Arabidopsis (Chavarria-Krauser et al., 2008;

Iyer-Pascuzzi et al., 2010).

NEAR-INFRARED SPECTROSCOPY AND SPECTRAL REFLECTANCE

Remote sensing via near-infrared spectroscopy and spectral

reflectance of plant canopies are promising components of high-

throughput phenotyping platforms (Montes et al., 2007) and
provide interesting opportunities for collecting integrative traits

with high temporal resolution (Gutierrez et al., 2010). Spectral

reflectance in the visible and near-infrared regions of the electro-
magnetic spectrum is collected from the canopy of the crop by

sensors that can be mounted on tractors (Montes et al., 2007) or

using digital cameras mounted on hand-held devices (Casadesus
et al., 2007). Remote sensing has advanced our understanding

of the changes in leaf reflectance and leaf emittance according

to species, leaf thickness, canopy shape, leaf age, nutrient sta-
tus and, importantly, water status (Hatfield et al., 2008). Based

on this information, various vegetative indices for crop canopies

have been formulated to quantify agronomic parameters (e.g.,
leaf area, crop cover, biomass, yield, etc.). Retrieving meaningful

information from the plot spectra relies on the use of cali-

bration models for prediction of the phenotypic values. Under
well-managed experimental conditions, spectral reflectance has

been used to monitor plant photosynthetic pigment composition,

water status assessment and the early detection of abiotic stress
(Babar et al., 2006, 2007; Guo et al., 2008; Gray et al., 2010).

SIMULATING VIRTUAL PHENOTYPES

As we inch our way forward to unravel gene functions in a piece-

meal fashion (i.e., gene-by-gene) and try to understand how these

functions ultimately affect the phenotype, there is a growing
interest in models that allow us to simulate virtual phenotypes

deriving from all possible combinations of different factors—

alleles, environmental variables, etc. In a way, modeling represents
a step toward a more comprehensive systems biology approach

(Dingkuhn et al., 2005; Yin and Struik, 2008; Tardieu and

Tuberosa, 2010) aimed at predicting phenotypic performance of

an otherwise intractably large number of treatments, such as the
genotypes obtained by combining different gene/QTL alleles, irri-

gation volumes and frequency, temperatures, etc., (Hoogenboom

et al., 2004; Cooper et al., 2007; Heinemann et al., 2008; Letort
et al., 2008; Sinclair et al., 2010).

The assumption is that gene networks are regulated in a coor-

dinated way to allow plants to react predictably to a range of
environmental conditions (Sadok et al., 2007; Chenu et al., 2008;

Jansen et al., 2009; Chapuis et al., 2012). Crucial to the success

of this approach is the possibility of monitoring the phenotype
of each accession in a precise and rapid way for the target trait

(e.g., leaf elongation) in response to closely controlled environ-

mental variables such as temperature, evaporative demand, soil
water status, etc. Clearly, this kind of study is best conducted

under controlled conditions. In maize, the QTL parameters of

these responses were calculated for lines of mapping popula-
tions and were then analyzed genetically (Reymond et al., 2003;

Welcker et al., 2007), allowing simulation of leaf growth in novel

inbred lines as defined by their QTL alleles (Sadok et al., 2007).
Therefore, this approach allows for the identification of QTLs of

plant responses that, in principle, should not include a GEI. It

theoretically allows prediction of the performance of any “virtual
genotype” with a given combination of alleles in any climatic sce-

nario. This possibility opens up a promising avenue, but is limited

at present to very simple traits and genetic systems.
More integrative models simulate crop development as a func-

tion of environmental conditions. Consequently, they allow for

the evaluation of the effects of individual traits on the seasonal
dynamic of water use and carbon assimilation of crops (Chapman

et al., 2003; Yin et al., 2004). However, their algorithms remain

relatively crude, so the effects of genes or QTLs cannot usu-
ally be simulated at the crop level except for constitutive traits

such as phenology (Chapman et al., 2003; Yin et al., 2005), for

binary traits related to environmental triggers, such as flower-
ing response to photoperiod (Hoogenboom et al., 2004) or when

QTL models at the organ level can be combined with crop mod-
els (Chenu et al., 2008; Tardieu and Tuberosa, 2010). Their main

function until now has been to evaluate whether a given trait

will have a positive effect over a long series of climatic scenarios.
For instance, Hammer et al. (2005) simulated the effect of stay-

green, a trait considered as conferring drought tolerance, across

547 location-season combinations. As expected, this trait had a
positive effect under mid-season or terminal stress, but a negative

effect under severe terminal stress.

A factor that affects the prediction capacity of modeling is the
unaccounted complications caused by non-linear effects associ-

ated with genes acting in networks when selection is conducted

on a population of individuals segregating for the genes con-
tributing to the network (Peccoud et al., 2004). Notwithstanding

the promising features of modeling, an accurate prediction across

genotypes still remains a difficult undertaking.

CONCLUSIVE REMARKS AND PERSPECTIVES

Taking full advantage of germplasm resources and the opportu-

nities offered by genomics approaches to improve drought resis-
tance will require a better understanding of the physiology and

genetic basis of drought-adaptive traits. Clearly, an accurate and
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cost-effective phenotyping will be instrumental in this respect.
The utilization of techniques/approaches that allow for a precise

control of the water regime (e.g., irrigated trials in dry regions,

rainout shelters, etc.) and a reduction of the experimental noise
coupled with the adoption of high-throughput platforms will

streamline the collection of good phenotypic data while increas-

ing the cost-effectiveness of phenotyping. This, in turn, will help
to lift, at least partially, the “statistical fog” that surrounds QTLs

and impairs our capacity to properly gauge their effects and

predict the potential of novel combinations of QTL alleles.
However, no matter how accurate our phenotyping will be, the

vast majority of the QTLs determining the measured phenotype

will remain undetected. By analogy, I refer to this as the “iceberg
effect.” Similar to an iceberg, where most of mass lies below the sea

surface and thus is not visible, the majority of the genetic factors

controlling quantitative traits will equally defy detection because
their effects are simply too small to be evidenced at a statistically

significant level. Therefore, notwithstanding the implementation

of new crossing schemes (e.g., multiparental crosses: Blanc et al.,
2006, 2008) and approaches (e.g., association mapping: Buckler

et al., 2009; Lu et al., 2010, 2012; Maccaferri et al., 2011; Varshney
et al., 2012) that facilitate the identification and cloning of

QTLs, the targeted manipulation of yield will remain a daunting

undertaking.
As compared to MAS, genome-wide selection, while bypass-

ing QTL identification (Bernardo, 2009), relies even more so on

accurate phenotyping. As the cost of genotyping and sequenc-
ing keeps dropping (Varshney et al., 2009; Feuillet et al., 2011),

cost-effective phenotyping will become increasingly strategic for

further dissecting drought-adaptive traits and tailoring culti-
vars better suited for farming under drought-prone conditions.

Hopefully, the information presented in this review will help

raising interest in phenotyping as well as due awareness and
appreciation of its pivotal role.
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