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10 SOPHISTICATED KNOWLEDGE 
REPRESENTATION AND. REASONING 

REQUIRES PHILOSOPHY 

Selmer Bringsjord, Micah H. Clark and Joshua Taylor 

What is Knowledge Representation and Reasoning? 

What is knowledge representation and reasoning (KR&R)? Alas, a thorough 
account would require a book, 1 or at least a dedicated, full-length paper,' but 
here we shall have to make do with something simpler. Since most readers are 
jikely to have an intuitive grasp of the essence of KR&R, our simple account 
should suffice. The interesting thing is that this simple account itself makes refer
ence to some of the foundational distinctions in the field of philosophy. These 
distinctions also play a central role in artificial intelligence (AI) and computer 
science. 

To begin with, the first distinction in KR&R is that we identify knowledge 
with knowledge that such-and-such holds (possibly to a degree), rath.er than 
knowing how. If you ask an expert tennis player how he manages to serve a ball 
at 130 miles per hour on his first serve, and then serve a safer, topspin serve on 
his second should the first be out, you may well receive a confession that, if truth 
be told, this athlete can't really tell you. He just does it; he does something he 
has been doing since his youth. Yet, there is no denying that he knows how to 
serve. In contrast, the knowledge in KR&R must be expressible i.n declarative 
statements. For example, our tennis player knows that if his first serve lands out
side the service box, it's not in play. He thus knows a proposition, conditional . 
in form. It is this brand of declarative statement that KR&R is concerned with. 

At some point earlier, our tennis player did not know the rules of tennis. Sup
pose that for his first lesson, this person walked our onto a tennis court for the 

· first time in his life, but that he had previously glimpsed some tennis being played 
. on television. We can thus imagine that before the first lesson began, our student 

believed that a serving player in tennis is allowed three chances to serve the ball 
legally. Th.is belief would have of course been incorrect, as only two chances are 

-99-



100 Philosophy, Computing and Information Sdence 

permitted. Nonetheless, this would be a case of a second attitude directed toward 
a proposition. The first attitude was knowledge, the second mere belief. 

Knowledge-based systems (KBSs), then, can be viewed as computational sys
tems whose actions through time are a function of what they know and believe. 
Knowing that his first serve has landed outside the service box on the other 
side of the net from him, our (educated) tennis player performs the action of 
serving for a second time, and as such performs as a KBS. A fully general and for
mal account of KBSs can be found elsewhere.3 There are numerous algorithms 
designed to compute the functions in question, but in the present essay we shall 
be able to rest content with reference to but a few of them. 

The Nature of Philosophy-less KR&R 

In this section, afrer introducing the basic machinery of elementary extensional 
and intensional logic for purposes ofKR&R carried out in the service of building 
KBSs, we present our characterization of the dividing line between philosophy
less KR&R versus philosophy-infused KR&R. 

Overview of Elementary Extensional and 
Intensional Logic for KR&R 

Propositions can be represented as formulas in formal languages. For example, 
in the present case, we might use a simple formula from the formal language 
:£,c of the propositional calculus, which allows propositions to be expressed as 
either specific propositional variables such as p

1
,p

2
, ••• (or mnemonic replace

ments thereof, e.g. h for p
2 
when we want to represent the proposition that John 

is happy), or as formulas built from the p
1 
and the familiar Boolean connectives: 

•t ('nott'), tV'f'('t Or 'f"), tA'f'('t and 'f"), t~'f'('ift then 'f"), tB'f'('t if and 
only if r).4 For example, letting out repre;ent the proposition that t\ie ball lands 
outside the service box, and play that the ball is in play, out~ ., play represents 
the above conditional. If a knowledge-based system knows out and this condi
tional, it would of course be able to infer ., play, that the ball is not in play. Its 
reasoning,vould be deductive in nature, using the 'vell-kno\vn rule ofinfere"nce 
modus ponens. To use the standard provability relation I-xin knowledge-based/ 
logic-based AI and cognitive science, where the subscriptX is a placeholder for 
some particular proof calculus, we would write 

{out, out~ <play} 1--x -play 

to express the fact that the ball's being out of play can be proved from the formu
las to the left of!--. So here we have a (painfully!) simple case of aKBS, powered 
by KR&R in action. 
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Some discussion concerning candidate proof calculi for Xis necessary. Due 
to lack of space, we must leave aside specification of each of the myriad pos
sibilities, in favour of a streamlined approach. This approach is based upon the 
incontestable fact that there dearly is agenericconception offairlycareful deduc
tive reasoning according to which some lines of linear, step-by-step inference 
can be accepted as establishing their conclusions with the force of proof, even 
though detailed definition of particular calculus X, and use thereof, is absent. 
This strearulined approach works because the step-by-step sequence is such that 
each step from some set {j"

1
,. .. , 9') to some inferred-to formula Ycan be quickly 

seen, with a small amount of mental energy, to be such that it is impossible that 
each 9', hold, while Y does not.' What follows is an example of such a sequence, 
couched in natural language; the sequence establishes with the force of proof 
that 'from 'Everyone likes anyone 'vho likes someone' and 'Albert likes Brian' 
it can be inferred that 'Everyone likes Brian'. (Most people see that it can be 
inferred from this pair of statements that 'Everyone likes Albert: but are initially 
surprised that 'Everyone likes Brian' can be derived in a bit of a recursive twist.) 

l Everyone likes anyone who loves someone. assumption 
2 Albert likes Brian. assumption 
3 Albert likes someone. from2 
4 Every.one likes Alben. from 1,3 
5 Brian likes Albert. from4 
6 Brian likes someone, from5 
7 Everyone likes Brian. from 1,6 

Despite opting for what we have called a strearulined approach to provability in 
the present essay, we would be remiss if we failed to point out that the format 
that best coincides with how professionals in those fields based on deductive 

i, 'reasoning actually construct proofs and disproofs is clearly something quite like 
~' 'Fitch-style' natural deduction, with which many readers will be acquainted.6 In 
' '; this kind of'proof' calculus, which aligns with the deductions written in relevant 
f' professional books and papers (in computer science, mathematics, logic, etc.), 
{ each of the truth-functional connectives, and the quantifiers (see below), has a 
~: pair of corresponding inference rules. one for introducing the connective. and 
',j one for eliminating the connective. One concrete possibility for a natural-deduc
~i tion calculus is the 'human-frie~dly' one known as fF.' Another possibility is the 
~, natural-deduction-style proof calculus used in the Athena system.' We make use 
~~of the Athena system below, but don't use or specify its proof calculus. 
j}~~t~ The propositional calculus is rather inexpressive. Most of what 've kno\V can
'ci'ilot be represented in X,c without an unacceptably large loss ofinformation. For 
,i,:exarnple, from the statement '.Albert likes Brian; we can infer that '.Albert likes 
f,•.o.--
[j~~omeone·. We might attempt to represent these nvo statements, respectively, 
!-!'. 
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in X PC as, say, A and A_,,, Unfortunately, this representation is defective, for 
the simple reason that by no acceptable rule of deductive inference can A •• ,. 
,M be deduced from A. The problem is that X PC cannot express quantification 
in formulas such as 'Albert likes someone: and so lacks inference rules such as 
existential introduction (which formally obtains the intuitive result above).' The 
machinery of quantification (in one simple form), and this particular rule of 
inference, are part of first-order logic, whose formal language is X FOL' The alpha
bet for this language reflects an increase over that for the propositional calculus, 
to include: 

identity 

connectives 

variables 

constants 

relations 

fonctions 

quantifiers 

'· v, ... 

x,y, ... 

'1• '2! ... 

R,G, ... 

J;,f,. "' 
3, \I 

the. identity or equality symbol; 

now familiar to you, same as in !epc;t 
variables ranging over objects; 

you can think of these as proper names for objects; 

used co denote properties, e.g., Wfor being a widow; 

used to refer to functions; 

3 says 'for some ... : V says 'for every .. .' 

Predictable.formation rules are introduced to allow one to represent propositions 
like the 'Everyone likes anyOne \Vho likes someone' one above. In the interests of 
·space, the grammar in the question is omitted, and we simply sho\V 'in action' 
the kind of formulas that can be produced by this grammar, by referring back 
to the Albert-Brian example. \Ve do so by presenting here the English-based 
sequence from above in which natural language is replaced by suitable formulas 
from :J',FoL' Recall that this sequence, in keeping with the streamlined approach 
to presenting provability herein, is something that qualifies as an outright proof. 
In addition, the reader should rest assured that automated theorem proving 
technology of today can instantly find a proofofline 7 from lines 1 and 2.10 

1 \lx\ly[(3z Likes (x.z))--> Likes i;t, x)] assumption 
2 Likes(a, b) assumption 
3 3x Likes( a, x) from2 
4 \lxLikes(x, a) from 1,3 
5 Likes(b,a) from4 
6 3x Likes(b, x) from 5 
7 \Ix Likes(x, b) from 1, 6 

Recall that we referred above to natural-deduction proof calculi, in which each 
connective and quantifier is associated with a pair of inference rules, one for 
introducing and one for eliminating. \Vere this calculus to be applied to the 
sequence immediately above, the rule of inference for eliminating the universal 
quantifier would sanction moving from 

Vx'Vy [(:JzLikes(x, z)) ~ Likes(y;x)] 
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to the following - where a is substituted for x: 

Vy [(3z Likes(a, z))-+ Likes(y, a)] 

The reader is invited to see how other such rules can be used to consttuct a.fully 
formal proof out of the sequence, with help from the works cited above. 

There are languages for knowledge representation that fa.ll betwe.en :£PC and 
:£,0L' and for the most part these are the languages that anchor the brand of 
KR&R supporting the Semantic Web.11 These languages are more expressive 
than :£,C' the language of the propositional calculus, butless expressive than the 
language :£,0, of first-order logic. And these languages are associated with their 
own proof calculi. These languages are generally those associated with descrip
tion logics. 12 We don't have the space needed for a full exposition of such logics, 
but fortunately they can in general be quickly characterized with reference to 
the ingredients that compose the propositional calculus and first-order logic. 
We shall refer to these logics as point-k logical systems. A particular system in 
the class will be named later when k is set to some natural number. The ins and 
outs of ho'v the natural numbers 'vork as indices is based on an idiosyncratic 
but straightforward table invented for ease of reference by Bringsjord to keep 
straight decidability theorems for the main logical systems standardly discussed 
in such contexts.13 Using this table, here is what pins down point-two (i.e. point
k where k = 2) logic: 

None 
One 

Unlimited 

Monadic relations 

• 

Dyadic relations 

• 
Triadic relations 

• 

{ 1he characterization of such systems is sirpple. To produce such logics, 've sim
) ply begin by restricting the alphabet of :£,0L in various ways. As an example, 
i we might insist that no triadic relation be allowed, that no dyadic relations be 
[allowed, but that any number of monadic relations be allowed (as in the permu
( f:ition shown in the table immediately above). The logical system with such a 
[language (the language:£") is point-two logic, or monadic first-order logic. Point
} two logic will be othenvise just like FOL. A triadic relation is one that allows a 
). relationship between three objects to be expressed. For example, the relation (B, 
Pet's say) of a natural number n being between two distinct natural numbers m 
IT and j is a triadic one; and here would be a truth regarding the natural numbers 
(\that involves this triadic relation: :,.1. ; 

g~; Vx'ify'ifz(B(x,y,z)-+x7'z) 

[;: This truth cannot be expressed in monadic FOL. Naturally, dyadic relations 

~l ould range over two objects, and monadic relations over but one object. 

itf 
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Why would those logical systems between the propositional calculus an 
full first-order logic be so central to KR&R? The reason point-k logical sy1 
terns are interesting and useful ·pertains to an aspect of logical systems that w 
have yet to discuss: namely, meta-properties of such systems. Important met' 
properties of such systems include the meta-property of decidability. A logic' 
system is decidable just in case there is an algorithm for determining whether c 
not a well-formed formula in the language in question is a theorem. Of course 
assuming the the Church-Turing thesis is true, the existence of such an alga 
rithm guarantees that there is a computer progr.µnme that can determine_, give; 
as input a 1JEX,,. whether 1' is a theorem.14 While the propositional calculus i 
decidable, the predicate calculus is not. However, point-two logic is decidabl, 
From the standpoint of KR&R, this is thought by many to be quite desirabl, 
The reason is clear, namely that queries against knowledge bases populated b 
formulas expressed in X,

2 
can always (eventually) be answered, that is, where <l 

is such a knowledge base, queries of the form 

<Dl-9'? 

can, given enough time and working memory, always be answered by a standar1 
computing machine. 

A fact that beginner students ofKR&R and logic often find quite surprisin1 
is that the moment even one dyadic relation is allowed into a logic otherwis• 
like FOL, that logic becomes undecidable; the proofs are actually quite simple 
However, if one allo\vs another dimension of parameterization into the picture 

namely the number of quantifiers allowed in formulas, one can allow an expan 
sion on the relation side and yet still preserve decidability, as long as k is quit< 
small. We must leave such details aside. 

The final point that must be m:Jde in this section is that there are many, man; 
(actually, an infinite number of) logical systems more expressive than first-orde: 
logic. We mention just two examples. The first is in the space of extensional log 
ics, the second in the space of intensional logics. 

The first example is second-order logic (SOL), which allows quantificatior 
over:_ functions and relations, a phenomenon that routinely occurs in natural lan 
guage. The formal language in question, ;e SOL' includes variables for function: 
and relations. For instance, it seems quite plausible not only that if John is th< 
very same thing as the father of Bill, John and the father of Bill either both hav< 
or both lack the property of being obese, but more generally that these two en ti· 
ties are such that every relation is one they share or lack. The general principl< 
operative would be that two things are one and the same just in case every attrib· 
ute is one they either share or lack; this principle is known as Leibniz's Law. Ir 
SOL we can formalize this law as: 

(LL) \fx\fy (x=y0 \fX(Xx 0.J))) 
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.:Note that in (LL) the variableX ranges over relations, whereas x and y range over 
individual objects in the domain. Humans find it easy enough to discuss scenar
ios in which attributes themselves have properties, but we leave aside third-order 
logic and beyond. 

Our second exaruple is a simple epistemic logic, in which, to the propositional. 
'calculus, we add an operator K for 'knows: which allows us to represent such 
'propositions as that Albert knows that Brian knows that pis the case, as follows, 

K,K,p 
1£rom which we can deduce, using an axiom that is standard in such logics (naruely, 
that if an agent knows I'• I' is true), that in fact Brian knows thatp. A recent explo

. ration of the applicability KR&R is based on advanced epistemic logic.15 

We have now reached the point at which we can discuss the dividing line 
· between philosophy-less and philosophy-infused KR&R. 

A Proposed Dividing Line Between Philosophy-less KR&R and 
Philosophy-powered KR&R · 

· .The idea for a dividing line is really quite straightforward: KR&R can be pro
ductively pursued, and KBSs built, in the complete absence of philosophy - but 
~nly as long as the information represented and reasoned over is not in the realm 
~of the formal sciences, nor in the realm of everyday sophisticated human socio
'cognition. On the other hand, philosophy will need to be part and parcel of 

.. KR&R when that which is to be represented and reasoned over involves these 
' 'realms. We can put this position in the form of a claim that makes reference ro 
~~the expressiveness of formal languages of the sort canvassed above: 

Claim C (Regarding the Relationship Berween Philosophy and KR&R ): 

KR&R that represents propositional content in formulas of a formal language less 
expressive than that used in full fir~t-order logic (lf!.FoL) is unable to represe_nt and 
reason over propositions containing concepts routinely used in the formal sciences, 
and in everyday human socio-cognition, and as such, such KR&R will have no need 
for the field of philosophy. Moreover, to engineer KBSs abl~ to represent and reason 
over the more demanding phenomena in these domains will require a contribution 
from philosophy. and will specifically require: 

1. formulas in !f.FOL that, once rewritten so that all quantifiers appear in a 
leftmost sequence in such formulas (i.e. once rewritteit in prenex nonnal 
form16), a.re irreducibly populated by at least five non-vacuous quantifiers, 
must be allowed; and -~ 

2. formulas.in for~ languages that a.re more expressive than !!!.FOL must be 
allowed. 
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We turn now to concretizing this claim by discussing some challenges KR&R 
can meet only if both philosophy an4 the associated languages are employed. 

The Need for Philosophy 

IfC is true, thenit should be easy enough to see the need for philosophy and the 
associated rep~esentation and reasoning schemes by considering some examples 
from the relevanr domains, and we turn to such consideration now. We first look 
at an example from the formal sciences, and then one from socio-cognition. In 
both cases, the KR&R in question has been pursued, and is in fact currently still 
underway, in our own laboratory. 

KR&R and the Formal Sciences 

KR&R allows for, indeed in large measure exists to enable, the issuing of queries 
against knowledge-bases. As such, there is clearly a vantage point from which to 
see the applicability of KR&R within the formal sciences, that is, within such 
fields as formal logic, game theory, probability theory, the various subfields of 
mathematics (e.g. number theory and topology), and so on. In fact, the part of 
formal logic known as mathematical /<Jgic, aptly and (given our present purposes) 
convenientlyl is sometimes also called 'meta~mathematics~ Kleen~17 explicitly 

provides this vantage point, as 've no'v explain, in brief. After this presentation, 
we explain ,vhy the above conjecture's claim about the forinal sciences seems to 

be quite plausible. 
The first step is to view activity in the formal sciences from the standpoint 

of theon'es. By 'theory' hereis meant something purely formal, not anything like, 
say, the 'theory' of evolution, which is usually disturbingly informal.18 In the for
mal sense, a theory '1'$ is a set of formulas deducible from a set of axioms <t>; more 
precisely, given <t>, the corresponding theory '(,,is 

{1' E .'.£:¢rt} 

We say in this case that <t> are the axioms efthe theory. Note that there is 
a background formal language.'.£ from which the relevant formulas are drawn. 

But why might it be reasonable to regard all research in the formal sciences to 
revolve around theories? We don't have the space to fully articulate and defend 
this view, and hence rest content to convey the basic idea, 'vhich is straightfor~ 
ward. That idea is this: work in a formal science Scan be idealized as the attempt 
to ascertain whether or not propositions of interest follow deductively from a 
core set of axioms for S; that isi ,vhether these propositions of interest are indeed 
part of the theory that arises from the axioms for S. In this scheme, probabil
ity theory, game theory, mathematics, and so on each consists in the attempt to 
increasingly pin down the theory determined by the core axioms in question. 
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For an example simple enough to present here, let's consider a fragment of 
mathematics, namely, elementary arithmetic. Specifically, we consider the theory 
of arithmetic known as 'Peano Arithmetic: or simply as PA.1' The axioms of PA 
are the sentences 1-6 (wheres is the successor function, and the other symools are 
interpreted in keeping with grade-school arithmetic; e.g. x is ordinary multiplica
tion), and any sentence in the universal closure of the Induction Schema, 7.20 

I. \ix(O;es(x)) 4. \ix\iy(x+s(y) =s(x+y)) 
2. \ix \iy (s(x) = s(y) ~x= y) 5. \ix (xx 0 = 0) 

3. \ix(x+ O=x) 6. \ix\iy(x x s(y) = (x xy) +x) 
7. [j>(O) /\ 'Vx(j>(x) ~ j>(s(x))] ~ \ixj>(x) 

Given this machinery, the part of mathematics known as arithmetic can be 
viewed as an attempt to increasingly pin down ~A· And now it should be clear, 
in turn, why KR&R can be regarded as having direct applicability. One reason is 
that PA can be thought of as a knowledge-base, and the attempt to make more 
and more progress figuring out what is and isn't in the theory ~A can be viewed 
as the attempt to ascertain whether or not, for various formulae generable from 
the language of arithmetic, say i'• 

PA r '{' 
We could thus view 'progress in the field of arithmetic' to be the answer toques
tions such as whether or not it's true that 29 plus 0 equals 29, and whether or nor 
it's true that 3,000 times 0 equals 0, and so on. 

Why, in light of the foregoing and other material, is the claim C plausible? 
The answer, put non-technically, is quite straightforward; and comes in three 
parts, to 'vit: 

• Courtesy of Godel's first incompleteness theorem, we know that there 
are truths about arithmetic that cannot be proved from PA.21 

• Thanks to additional formal work, we know that some of these truths 
can nonetheless be proved." Ler's call this set C. 

• The general nature of the representation and reasoning needed to estab
lish the truths in C is an open question in KR&R and philosophy, but 
it is clear that full first-order logic is required (for the simple reason that 
formulas in(; require .'.£FOL to be expressed). 

So here 've have an ongoing investigation in the intersection of the formal sci
ences and KR&R that both intersects with philosophy, and is consistent with 
claimC. 
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KR&R and Socio-Cognition 

We now give our second example of C 'in action' by considering a specific con
.cept in the sphere of socio-cognition. The concept is mendacity. We shall show 
that careful KR&Rin this area necessitates both philosophy, and very expressive 
formal languages for knowledge represe,;tation. 

Mendacity 

We introduce the topic of mendacity in connection with KR&R by asking you 
to consider a confessedly idealized scenario.23 The scenario involves a superfi~ 
cial and implausible concept of lying, but as a warm-up to the genuine article, 
we indicate how the machinery of unsophisticated KR&R can be brought to 
bear to provide a solution to the scenario. Afterward, we present a philosophi
cally inspired, plausible definition oflying and demonstrate how a sophisticated, 
philosophically informed, KR&Rsystem can be used to distinguish lies and liars 
from honesty and the honest. Without further prelude, we ask you to consider 
the following scenario: you have been sent to the war-torn and faction-plagued 
planet ofRaq. Your mission is ro broker peace berween the warring Larpal and 
Tarsal factions. In a pre-trip briefing, you were informed that the Larpals are 
sending one delegate to the negotiations, and the Tarsals are sending a pair. You 
were also warned that Larpals are liars, i.e. whatever they say is false, while Tarsals 
are not, i.e. whatever they say is true. Upon arrival, you are met by the three alien 
delegates. Suddenly, you realize that though the aliens knowwhom among them 
are Larpals, and whom are Tarsals, you do not. So, you ask the first alien, 'To 
which faction do you belong?' In response, the first alien murmurs something 
you can't decipher. Seeing your look of puzzlement, the second alien says to you, 
'It said that it was a Larpal'. Then, with a cautionary wave of an appendage and an 
accusatory glance at the second alien, the third alien says to you 'That was a lie!' 
Whom among the _three aliens can you trust I 

Resolution of the Larpals and Tarsals scenario, at least in its present form, 
requires no more sophistication than J!,Pc and reasoning there,vith. The scenario 
is recast into 1,Pc by, say, representing the three aliens 'vith three constants, their 
factional membership (Larpal or Tarsal) as mutually exclusive properties, and 
their assertions as conditional formulas. In Figure 10.1, we show the scenario 
thus represented, and automatically solved, in Athena,24 a KR&R system based 
on multi-sorted, hrst-order logic, and integrated with both the Vampire theorem 
prover and the Paradox model finder. The solution to this scenario,- expressed in 
English, is as fullows: the second alien is either a Larpal or a Tarsal. If it is a Tar· 
sal, then truly the first alien said that it was a Larpal. Yet, if the first alien said that 
it was a Larpal, then it told the truth. because a Tarsal would not lie and say it 
was a Larpal, but in so telling the truth, the first alien has distinguished itself as a 
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Tarsal- a contradiction! Ergo, the second alien cannot be a Tarsal: It is a Larpal. 
Therefore; the first and third aliens are Tarsals, and thus trustworthy. 

Though the Larpals and Tarsals scenario nicely illustrates unsophisticated 
KR&R in action, the fact of the matter is that the concept of lying used in the 
scenario is, as we have already indicated, simple-minded. In real life, the idea 
that liars' propositional claims are always materially false is, well, silly. We might 
reserve such phrases as habitual liar or pathological liar for such beings, but in the 
real world, even pathological liars somerimes assert true propositions, if only by 
accident. Likewise, it is utterly unrealistic to expect honest agents to be infallible, 
i.e. to expect that their assertions are ahvays materially true, because honest agents, 
nevertheless. may state false propositions out of ignorance, or error in belief. 

To say that an agent is a liar presupposes that one has at hand an account 
of what it is to lie - yet no such account was set out, let alone included in 
the knowledge-base ·constructed above for the Larpals and Tarsals scenario. 
Any reasonable account oflying must include not just what an agent do

0

es - the 
actus reus oflying- but also what the agent believes and intends. Mendacity and 
less egregious forms of deception are consummate only when an agent acts \Vith 
the mens rea to deceive, i.e. \vhen an agent acts intending others to hold beliefs 

(domain Alien) I there is a do~ain of Aliens. 
(declare (Al A2 A3) Alien) t A11 Al1 and A3 are Aliens. 

f larpal and Tarsal are pr'Qperties of Aliens. 
(declare (larpal tarsal) (·> (Alien) Boolean)) 

# each Alien is either a Larpal or a Tarsal, but not both. 
(assert (and (or (larpal A1) (tarsa_l Ai)) 

(not (and (larpal Al) (tarsal Al))))) 
(assert (and (or (larpal Al) (tarsal A2)) 

(not (-and (larpal A2} (tarsal Al))))} 
(assert (and (or (larpal A3) (tarsal A3)) 

(not (and (larpal A3) (tarsal A3))))) 

#among Al, A2 & A3 are one Larpal and two Tarsals. 
(assert (iff (larpal Al) (and (tarsal A2) (tarsal A3)))) 
(assert (iff (larpal Al) (and (tarsal Ai) (tarsal A3)))) 
(assert (!ff (larpal A3) (and (tarsal Al) (tarsal A2)))) 

I if A3 is a larpal, then A2 is a Tarsal .. , 
(assert (if (larpal A3) (tarsal Al))) 

# and if A2 is a Tarsal, then A1 said t~at it is a larpal, 
(assert (if (tarsal A2) (larpal Al))) 

# but if A1 said that it is a Larpal, then it is a Tarsal! 
(assert (iF (larpal Al) (tarsal Al))) 

Athena transcript: 

>(load·file "larpals-and-tarsals.ath•) 

>(!prove (and (tarsal Ai) (larpal A2) (tarsal A3))) 
Theorem: (and (tarsal Al) (larpal A2) _(tarsal A3)) 

Figure 10.1: Larpals and Tarsals scenario resolved in Athena. 
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that are contrary to what the agent believes to be true. To illustrate, assume that 
Amy is asked in geography class to name the state capital of California. Amy, 
erroneously believing that Los Angeles is the capital of California, answers with 
Los Angeles. Though Arny's answer is materially false, we would not ordinarily 
accuse Amy oflying because she has answered faithfully according to her belief 
- her statement was truthfully made, though it was not factually true. How
ever, had Amy known that Sacram~nto is the capital of California, but answered 
Los Angeles intending to glve a false impression of at least her own mind, then, 
indeed, she would have been lying. Now assume that Bob is helping Cail, a fugi
tive, flee from the police. The two agree that Carl should begin a new life in 
Canada, and then pa~t ways. Later, when the police question Bob about Carfs 
whereabouts, Bob, intending to misdirect the police, tells them that Carl has 
gone to Mexico. Yet unbeknownst to Bob, Carl has changed his mind (and des
tination}, moving to Mexico instead of Canada. Thus, Bob's statement to the 
police is materially true, though we would normally say that Bob lied because he 
believed that what he said was false, and said it intending to deceive - though 
factually true, his statement was falsely made. As these exampks illustrate, the 
mem rea for lying and deception depends on the relationship between an agent's 
beliefs and the beliefs the agent intends for others. 

Now, drawing upon philosophy, we set out a plausible definition oflying. We 
present this definition first informally, and then formally, using the language of 
a logical system, namely the socio-cognitive calculus (SCC). Once lying is thus 
defined, we explain, by revisiting the Larpals and Tarsals scenario, how a highly 
sophisticated KR&R system can prove, say, that an agent is ·a liar, or that one 
agent has lied to another. 

Philosophy has a long tradition of contemplating the nature of mendacity 
'and positing definitions thereof (a tradition going back at least to St Augustine). 
For exposition, we adopt Chisholm's account of lying - a seminal work in the 
study of mendacity and deception. UsingL and D to represent correspondingly 
the speaker (i.e. the liar) and the hearer (i.e. the would-be deceived), we para
phrase below definitions of l:jing and the supporting act of asserting. 

L lies to D = df Thereis a proposition p such that (i) either L believes thatp is 
not true or L believes that pis false and (ii) L asserts p to D.25 

L asserts p to D = dfL states p to D and does so under conditions which, he 
believes, justify Din believing that he, L, accepts p.16 

Chisholm and Feeharis conception of lying is that of promise breaking.'7 

Assertions, unlike non-solemn (e.g. ironic, humorous or playful) statements, 
proffer an implicit social concord: one that offers to reveal to the hearer the 
mind of the speaker. In truthful, forthright communication, the speaker fulfills 
the promise and obligation of this concord. In lying, the speaker proffers the 
concord in bad faith: the speaker does not intend to, and does not, fulfill .the 
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obligation to reveal his/her true mind, but instead reveals a pretense of belief. In 
this way, lying 'is essentially a breach of faith'. 

The above is, of course, a highly condensed presentation of work, and there 
are various nuanced philosophical facets to it.28 Yet, even in condensed form, it 
is evident that the concepts of lying and asserting depend on agents' temporally 
coupled beliefs and actions. Thus, formal definition of these concepts requires 

the use of highly expressive languages for KR&R: ones that can represent, and 
allow reasoning over, the beliefs and actions of agents through time. 

To formally define lying and asserting, we employ the 5ocio-cognitive calcu
lus (SCC). The SCC'' is a KR&R system for representing, and reasoning over, 
events and causation, and perceptual, doxastic and epistemic states (it integrates 
ideas from the event calculus and multi-agent epistemic logic). The sec is an 
extension to the Athena system, providing, among other things, operators for 
perception, belief, knowledge and common knowledge. The signature and gram
mar of the SCC is shown following. Since some readers may not be familiar with 
the concept of a signature. we note that it is simply a set of announcements about 
the categories of objects that will be involved, and about the functions that will 
be used to talk about these objects. Thus it will be noted that in Figure 10.2, 

the signature in question includes the specific announcements that one category 
includes agents, and that happens is a function that maps a pair composed of 
an event and a moment, and returns true or false (depending upon whether the 
event does or does not occur at the_ moment in question). 

Sores 

Functions 

Terms 

Propositions 

S .. = 

! .. = .. 

p .. = 

Object I Agent I ActionType I Action I Event I 
Fluent.I Modern I Boolean 
action: Agent x ActionType 4 Action 
initially: Fluent -* Boolean 
holds: Fluent x Moment-* Boolean 
happem: Event x Moment -* Boolean 
clipped: Moment x Fluent x Moment-* Boolean 
initiates: Event x Fluent x Moment 4 Boolean 
tenninates: Event x Fluent x Moment 4 Boolean 
prior: Moment x Moment 4 Boolean 
x: s I c: s f(t,, ... ,t.) 
t: Boolean I •Pl PAQIP-* QIPB QI V .,Pl 
3., PI S(a, P) I K(a,P) I B(a,P) I C(P) 

Figure 10.2: Example of the socio-cognitive calculus. 
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Reasoning in the sec is realized via natural-deduction-style inference rules. For 
instance, R

2 
shows that knowledge entails belief; R

3 
infers from 'Pis common 

knowledge' that, for any agents a
1
, a

2 
and a,, 'a

1 
knows that a

2 
knows that a

3 

knows that P'. And R
4 

guarantees the veracity of knowledge; that is, if an agent 
'kno,vs that J>', then Pis, in fact, the case. 

------~[R,] 
C(K(a,P)---; B(a,P) 

C(P) [R,] 
K(auK(a,,K(a,,P))) 

In the Sec, agent actions are modelled as types of events. We model lying; 
asserting, and stating propositions as types of actions that an agent may perform. 
These action types are denoted by the functions lies, asserts and states. The argument 
to such action types are conceived of as reified propositions, specifically fluents. 
Thus, the formulahappens(action(l,states(p, d)), m) is read, 'it happens at moment 
m that agent! states (reified) propositionp to agent d. For convenience, we model 
that an agent is a liar by using the property liar. The signature for these additions to 
the sec is as follows (see Figure 10.3 ): 

Functions 
/::= 

states: FluentxAgent---; Action Type 
asserts: Fluentx Agent---; Action Type 

lies: Fluentx Agent---; Action Type 
liar:. Agent ---; Boolean 

Figure 10.3: Signature in the socio· cognitive calculus. 

The definitions of liar, lies and asserts are stipulated as common knowledge by 
axioms (1)-(3). 

C(V1 /iar(/) B 3J,p,m happem (action (/,lies (p,d)),m)) (1) 

i\;/ /,J,p,m happens (action(!, lies (p, d'J), m) Bl 
( 

B(I,. holds (p, m) /\ ) 

., happens (action (!,asserts (p, d)), m) (2) 

[

'<://,J,p,m happem (action (/,asserts (p,d)),m) B l 
C happem (action (!,states (p, d)), m) /\ 

[
B(l,B(d,happem (action (/,states (p,d)),m) ---;] 

. B(l,holds (p,m)))) 
(3) 



Sophisticated~owledge RepresentatiOn and Reasoning Requires Philosophy 113 

Now that we have in hand a formal account for lying, we can re-examine the 
scenario posed earlier. Assuming that Larpals conform to the plausible defini
tion of lying - not that every statement they make is false, but rather that their 
assertions, at times, misrepresent their beliefs - and that Tarsals conform to 
a counterpart notion of honesty - that their assertions faithfully reflect their 
beliefs, which are, however, still fallible - can one determine which aliens are 
trustworthy Tarsals?. 

In order to represent the Larpals and Tarsals scenario, we further extend the 
sec signature with the functions alien, larpal and tarsal with a number of con
stants (see Figure 10.4): 

Ftmctions 

Constants 

! ,,_ .. -

c:: = 

alien : Agent--> Boolean 
larpal: Agent--> Boolean 

tarsal: Agent--> Boolean 

H, A
1
, A

2
, A

3
: Agent 

p .. p,,p3 : Fluent 
mt' mv m3 : 1'Ioment 

Figure 10.4: Signature extension. 

The constants A 1, A
2 

and A
3 

denote the three distinct aliens, and the constant 
H denotes the human. From the scenario we extract several pieces of common 
knowledge: (i) A

1
,A2 andA

3 
are aliens, while His not; (ii) Larpals are liars, and 

Tarsals are not; (iii) every alien is a Larpal or a Tarsal; and (iv) aliens recognize 
whether other aliens are Larpals or Tarsals. This common knowledge is repre, 
sented by axioms ( 4)-(7): 

C(alien (4) /\alien (A,)/\ alien (A,)/\• alien (H) 

C(\l,(/arpal (a) --7 /iar (a) A (tarsal (a) -7 • fiar (a) ) 

C(V, alien (a) -7 (larpal (a) v tarsal (a))) 

{

v '1·'2 (alien(a1) /\alien( a,) -7 l 
(

(tarsal(a2 )--7 K(al>tarsa/(a2 ))) ") 

(larpal(a2 )--7 K(a1,larpal(a2 ))) 

(4) 

(5) 

(6) 

(7) 

In addition to the above common knowledge, H knows that there are exactly 
two Tarsals and one Larpal in the delegation. This knowledge is represented by 
axiom (8). 
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[ 

(larpal (4) 0 (tarsal (A,) /\tarsal (A,)))"] 
K H, (larpal (A,) 0 (tarsal (A,) A tarsal (A3 ))) A 

(larpal (A3 ) <-+(tarsal("\) A tarsal (A,))) 

(8) 

The specific interactions in the scenario at hand brings about several more axi
oms. The first alien's utterance was unclear, but it is common knowledge that, 
at moment m

1
, it asserted something to H; that something is denoted by the 

rei£ed proposition p
1
• Similarly, it is common knowledge that, a.t moment m1, 

the second alien asserted p
2 

to H. Furthermore, it is common knowledge that p
2 

is materially true if and only if the first alien declared itself a Larpal. Finally, it 
is common knowledge that, at moment m

3
, the third alien asserted p

3 
toH, and 

that p
3 

is materially true if and only if the second alien's assertion to H was a lie. 
These actions, and the truth conditions of the various assertions, are represented 
by axioms (9)-( 13 )."' 

C(happens(action(A
1
, asserts(p

1
, HJ), m)) 

C(happens(action(A,, asserts(p,, HJ), m2)) 

C(holds(p1! m,) B (holds(p
1
, m1) B larpal (A1))) 

C(happens(action(A,. asserts(p,. HJ), m,)) 

C(holds(p,. m,) B happens(action(A,. lies(p,,HJ), m2)) 

(9) 

(10) 

(11) 

(12) 

(13) 

With the Larpals and Tarsals scenario now formalized in SCC, we proceed to 
sketch how H, given sufficient contemplation, can know thatA

1 
andA

3 
are Tar

sals, and that A, is a Larpal. Our sketch consists of three parts: (i) we indicate 
how H can know that if A, is a Tarsal, then A

3 
is a Larpal; (ii) we indicate how 

H can know that ifA
1 
is a Tarsal, then A, is a Larpal; (iii) we indicate how H can 

know, based on these two conditionals, that A
1 

and A
3 

are Tarsals, and that A, 
is a Larpal. In the prose elaboration of the three parts, the reasoning is described 
fromHs peispect_ive. 

First, suppose (H reasons to itself) that A, is a Tarsal Faction membership 
is apparent to aliens, and soA

3 
also knows thatA2 is a Tarsal.A, also knows that 

Tarsals are not liars, and, more specifically, that it does not happen thatA2 lies to 
H. Therefore,A

3 
knows that the proposition that it asserted,p

3
, does not hold, 

i.e. it is materially false. SinceA
3 

knows this, it also believes this. Hence,A
3 
was 

lying when it made its assertion, so it must be a liar, and so not a Tarsal, and thus 
a Larpal. In this way, H reasons to itself that if A, is a Tarsal, then A

3 
is a Lar

pal. Here, expressed in the aforementioned 'streamlined' format for describing 
a proof, is an abbreviated proof that mirrors this description of Hs reasoning: 
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l K(H, tarsal(A,)) 
2 K(H, K(A,. alien(A,))) 
3 K(H, K(A,. tarsal(A,))) 
4 K(H, K(A

3
, ,/iar(A,))) 

assumption 
byAxiom(4) 
by Axiom (7) and step l 
by Axiom (5) and step 3 

' ++-. [ .,~ r:.~,.,,i} J]] • ~-"' .. m,, 
6 K(H, K(A,,.holds(p3, m,))) 
7 K(H, B(A3,.holds(p3, m;))) 
8 K(H, haf!pens(action(A3, lies(p3,H))m;)) 
9 K(H, liar(A;)) 

10 K(H, •tarsal(A3)) 

11 K(H,/arpal(A;)) 

by Axiom (13) and step 5 
by step 6 and R, 
by Axioms (2) and (12) and step 7 
by Axiom (1) and step 8 
by Axiom (5) and step 9 
by Axiom (6) and step 10 

Next, suppose (H reasons to itself) that A
1 

is a Tarsal. Faction membership is 
apparent to aliens, and so A, knows thatA

1 
is a Tarsal.A, also knows that Tarsals 

are not liars, and, more specifically, that it does not happen that A
1 

lies to H 
Since A, knows thatA

1 
asserted p

1 
to H andA

1 
does not lie, A, knows that itis 

not the case that A
1 

believes that p
1 

does not hold. Yet, A2 also knowsA1 knows 
(and thus believes) thatA

1 
is not a Larpal.1herefore,A

2 
knows that it is impos

sible for A
1 

to have asserted that it is iLarpal, for if it did, then it would be a liar. 
That is to say,A

2 
knows that its o'vn assertionp

2 
does not hold, i.e. it is materially 

false. Thus, A, lies in asserting p
2

• In this way, H reasons to itself that if A, is a 
Tarsal, then A, is a Larpal." 

Last, wereit the case (H reasons to itself) thatA
1 

is a Larpal, then A, and A, 
would be Tarsals, because there is only one Larpal among the three. Yet, if A, is a 
Tarsal, thenA

3 
is a Larpal, which comradictsA

3 
being a Tarsal. Hence, A, is .not 

aLarpal, thusA
1 

is a Tarsal. SinceA
1 

is a Tarsal, A, is aLarpal, and thenA
3 
is, like 

A
1
, a Tarsal. Finally, in this way, H reasons to itself thatA

1 
andA

3 
are trustworthy 

Tarsals, andA, is the dishonest Larpal. 
Note that in the final part, where H definitively determines which aliens are 

trustworthy, Hs reasoning depends on knowing that there are two Tarsals and 
one Larpal among the three aliens. Without such knowledge, it is impossible for 
H to decide who to trust. Alas, in the real world, such knowledge is not likely. 
Anyone, at least any human, may lie. Furthermore, nefarious plots (e.g. fraud, 
pyramid schemes, espionage, guerrilla tactics and terrorism) depend on lying and 
lesser deceptions. Machines may play a role in guarding e.g. free-market consum: 
ers, private citizens and sovereign states against such plots, but only if machines 
are able to comprehend philosophical conc~pts like mendacity and deception. In 
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turn, KR&R systems cannot begin to grasp such concepts unless they embrace 
philosophy, and the formal sophistication that philosophy demands. 

Brief Remark on Evil KBSs 

In general, there seems to be no reason in principle why KR&R cannot be 
applied not only to socio-cognitive concepts like mendacity and deception, 
but also to even richer and more nuanced concepts that incontestably require 

philosophical analysis in order to be couched in terms precise enough to allow 
knowledge bases to hold queryable information about them. For instance, one 
could consider the possibility of engineering a KBS that is capable of betraying 
someone, or capable, in general, of being evil. It seems quite undeniable that no 
KR&Rexpert could engage in such engineering without both engaging philoso
phy and making use of highly expressive logics. 

Engineering for the former case, which did indeed explicitly involve both 
philosophy'and highly expressive formallanguages, has already been carried out 
by Bringsjord.31 In this work. philosophical analysis was used to gradually craft 
a definition of the concept of one agent betraying anoth.er. This definition was 

c 
consistent \Vith C. 

What about evil? Here the investigation is still in its early stages." The basic 
process, though, is the same as \vhat \Ve sho\ved in action in connection with 
mendacity: philosophy is used to build the definition of evil; the definition is 
formalized in some logical system; knowledge bases describing evil agents are 
populated; and queries against such knowledge bases are issued and answered, 
which gives rise to the relevant knowledge-based systems. The interesting thing 
about this KR&R work is that if, as some have claimed," a truly evil agent is 
one that harbours outright contradictions in what he or she believes, logical 
systems able to allow the representation of contradictory information, and the 
unproblematic reasoning over that information, would be necessary. Such logi
cal systems are highly expressive and would be C-confirming. These systems are 
known as paraconsistent logics."' 

'Visual' KR&R and the Future 

Heretofore, when representing propositional content, the field of KR&R has 
been exclusively linguistic in nature.35 1his is consistent with the fact that_, to 

this point in the present essay, all formal languages used for the representation 
of propositional content have been exclusively linguistic: \Veil-formed formu
las generable by the alphabets and grammars of these languages are invariably 
strings of characters, and these strings in no way 'directly resemble' that which 
they are intended to denote. For example, when we·spoke earlier of liars and 
truthtellers, and used names t9 refer to them in our case studies of mendacity, 'V~ 
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pecifically used the constant 'A/ to refer to one of the aliens. Had we felt like 
'.oing so, 've could just as eas~y have used instead the constant 'A99: or 'al' or 
\-23: and so on, ad indejinitum. In contrasti a diagrammatic representation of 
he alien in question would bear a resemblance relation to him, and even slight 
hanges in the diagram could prevent it from denoting the alien. As the philoso
•her Peirce put it, 'a diagram is naturally analogous to the thing represented'.* 

Despite the fact that KR&R has traditionally lefi: aside pictorial represen-
1tion schemes, there can be no disputing the fact that human reasoning is 
,owerful in no small part because it is ofi:en diagrammatic in nature. Ironically, 
rhile KR&R, as elegantly explained by Glymour,37 has been purely linguistic 
ince the first formal language for KR&R was introduced by Aristotle (namely, 
he theory of the syllogism), Aristotle, along with his linguistic-oriented succes
ors in the modern era (e.g. Boole and Frege), sought to explain how the highly 
isual activity of the great Euclid could be formalized via some logical system. It 
1 plausible to hold, as we do, that substantive parts of this long-sought explana
~on began to arrive on the scene courtesy of seminal 'vork carried out by a pair 
f ofi:-collaborating logician/philosophers: Jon Barwise and John Etchemendy. 
ince the space we have to discuss diagrammatic KR&Ris quite limited, we shall 
rielly explain, by way of a problem posed by this pair, how a hybrid diagram: 
rntic/linguistic formal language in the so-called Vivid fanlliy of such languages 
an be used to solve this problem. The problem is a seating puzzle given in Bar
dse and Etchemendy.38 

Here is the seating puzzle, which has become something of a classic: Five 
eople -A,B, C,D,E - are to seated in a row of seats, under the following three 
onstraints. 

Cl A and C must llankE. 
C2 C must be closer to the middle seat than B. 
C3 B andD must be seated next to each oth'er .. 
Now, three problems are to be solved: 
Pl Prove that E cannot be in the middle, or on either end. 
P2 Can it be determined who must be sitting in the middle seat? 
P3 Can it be determined who is to be seated on the two ends? 
The class of relevant diagram's in this case can conveniently be viewed as a 

uintuple, each member of which is either one of the five people, or the question 
1ark. For example, here is a diagram: 

AECBD 

Note that this diagram satisfies all three constraints. As another example, the 
iagram 

??A?? 

is one in whichA is seated in the middle chair. 
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We are now ill position to consider a proof that constitutes a solution to the 
puzzle. This proof will be heterogeneous: it will make use of propositional con
tent expressed in traditional form (i.e. in the form of formulas from the kind of 
formal languages presented and employed above), and it will make use of such 
content expressed in the form of diagrams. Since none of the formal languages 
seen above (e.g. J!.,c, J!,FoL' etc.) allow for diagrams as well-formed expressions, 
this proofcannotbe based in thelogicalsystems visited above. Hereis the proof: 

Proof. Given thatE must be between A and C, there are six diagrams to con
sider, namely: 

AEC?? (1) 
CEA?? (4) 

?AEC? (2) 
?CEA? (S) 

??AEC (3) 
?? CEA (6) 

However, only (1) and (6) are consistent with the other two constraints. Pl is 
therefore accomplished. Since in both of these diagrams C is in the middle seat, 
P2 is answered in the affirmative. As to P3, the answer is 'No', since any end could 
haveoneofA,BorD. QED 

The diagrammatic representations seen in this seating puzzle, and in the solu· 
ti on thereof, are frequently used by human reasoners, but have hitherto not been 
part and parcel ofKR&R. Yet, in philosophy, there is a very strong tradition of 
not only recognizing that such representations are ofren used, but also of mak
ing their use precise in systems that go beyond the purely linguistic. We do not 
have the space to present and discuss such systems here. We direct the reader 
to the Vivid system for details on how the seating puzzle, as well as much more 
complicated representation and reasoning of a visual sort, can be made precise 
and mechanized. 

We conclude this section with a brief remark about the historical context. 
Logic grew out of philosophy; computer science, and specifically Al, in turn, 
grew out of!ogic. This progression is nicely chronicled by Glymour. But we are 
now in a new progression, one driven by philosophy and logic as midwives, and 
is gradually expanding KR&R into the visual realm. 

Conclusion 

We have set out and defended the view that ifKR&Ris to reach into the realms 
of mathematics and socio·cognition, then philosophy must become a genuine 
partner in the enterprise. While \Ve have mentioned a number of phenomena in 
these realms. \Ve have sho\Vn this vie\v in action through a particular emphasis · 
on a concept - mendacity - that by its very nature involves social cognition. 
We predict that as KR&R expands and matures in the future - if for no other 

~;:'i:,·:, . . reason than that it should allow humans to work collaboratively with intelligent .! 
~{~[t~J}~~lj~ff:f~:'.,;-h-- ;p.~chines. having direct and immediate access to electronic propositional con- ;i 

if 
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tent about social, cognitive, mathematical and visual matters - philosophy and 
philosophers will be consulted to an increasingly high degree. If such consulta- . 
tion does not come to pass. and the conjecture above is correct, it follows thac 
KR&R will be limited to propositional content that isbut a tiny fragment of 
what is known by human beings; and it follows in turn from that that intelligent 
machines, relative to human rn.4ids, will, knOwledge~wise. remain exceedingly 
primitive by comparison. 


