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Abstract

We have investigated textures, vortices and persistent currents in a 0.26 mm thick

slab of superfluid 3He-A using a rotating nuclear demagnetization cryostat. The

detection technique, monitoring the resonance of a torsional oscillator containing

the slab, is sensitive to both magnetic field and counterflow induced reorientation

of the l texture. Rotation during cooling into the superfluid transition has been

used to obtain uniform l textures. We have observed two critical velocities when

an initially uniform texture is rotated: the flow induced Fréedericksz transition

velocity and the velocity for nucleation of the first vortex. We find that uniform

textures are able to pin weakly approximately 10 quanta circulation and non-

uniform textures are able to pin strongly about 60 quanta of circulation, leading

to long lived persistent currents after rotation has been stopped. We have investi-

gated the magnitude and direction of the persistent currents as a function of the

preparation angular velocity. The maximum possible persistent current that can

be generated is approximately the same for non-uniform textures that have been

prepared in different ways. The mechanism responsible for the persistent currents

is not yet fully understood, but comparisons with a strong pinning model have

been made. The effect of orbital ferromagnetism on textures has been calculated.

Attempts to detect these effects experimentally have so far proved unsuccessful.

Numerical calculations of some of the possible textures in a slab geometry, such

as domain walls and vortices, are presented.
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Chapter 1

Introduction

1.1 Superfluidity

At very low temperatures particles tend to occupy the lowest available energy

states. For a quantum gas or liquid of bosons this leads to many particles con-

densing into a single energy state (known as Bose Einstein condensation (BEC)),

resulting in quantum behaviour being observed on a macroscopic scale due to the

long range quantum coherence of the system.

4He shows such behaviour when cooled below 2.17 K. Below this second order

transition the fluid can be considered as to consist of two interpenetrating fluids:

a normal component (with density ρn and velocity vn) which carries all the entropy

and a superfluid component (with density ρs and velocity vs) with zero viscosity.

The total density of the fluid is then ρn+ρs, with the superfluid fraction increasing

with decreasing temperature and a total current density of j = ρnvn + ρsvs. This

description is known as the two fluid model and has been very successful in explain-

ing the hydrodynamic properties of superfluids. The macroscopic wavefunction,

known as the order parameter, for superfluid 4He is a complex scalar,

ψ(r) = ψ0 exp (iS(r)) (1.1)
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where ψ0 is a temperature dependent scalar amplitude and S(r) is a position

dependent phase. Further information on superfluidity in 4He can be found in the

books by Guénault [1] and Tilley and Tilley [2].

BEC in dilute gases of alkali atoms was discovered in 1995. Wieman and Cor-

nell found the transition in Rubidium atoms at temperatures of a few hundred

nanokelvin [3] and Ketterle later with sodium atoms [4], achievements that mer-

ited the Nobel physics prize in 2001. BEC of several other elements have since

been discovered.

In contrast, fermions are prevented by quantum statistics from condensing into

a single quantum state. However, Cooper showed that it is energetically more

favourable for two particles with an attractive interaction, contained above a filled

Fermi sea of particles, to form a bound state [5], known as a Cooper pair. He

showed that this occurs no matter how weak the interaction. Bardeen, Cooper

and Schrieffer (BCS) extended this idea to a system where many particles could

form Cooper pairs [6]. This theory was successful in explaining the phenomena of

superconductivity in metals by showing that the conduction electrons could form

s-wave, spin singlet Cooper pairs.

BCS theory was then applied to 3He (a fermion) which along with the more

common isotope remains liquid in the absence of applied pressure down to the

lowest temperatures yet achieved due to a high zero point energy.

1.2 Superfluid 3He

3He atoms cannot form Cooper pairs in the same way as electrons in a super-

conductor because He atoms have a strong mutual repulsion when they are close

together. This prevents s-wave pairing because such pairing implies the particles

are more likely to be found close together. At larger separations there is a weak

Van der Waals attraction, so theories with Cooper pairs that had finite angular
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momentum were developed.

Anderson and Morel [7] proposed a model consisting of p-wave, spin triplet Cooper

pairs where the 3He quasiparticles had parallel spins, |↑↑〉 and |↓↓〉. Balian and

Werthamer [8] provided a more complete treatment which included an antiparallel

spin combination, |↑↓〉+ |↓↑〉, the third substate of the spin symmetric triplet.

They showed that this BW state should have a lower energy than that Anderson

and Morel (ABM) state, making it the stable state. However, spin fluctuations

result in the ABM phase being the stable state at high pressures and tempera-

tures close to the superfluid transition Tc [9]. The superfluid phases of 3He were

discovered in 1972 by Osheroff, Richardson and Lee [10, 11] by using the Pomer-

anchuk method to obtain temperatures below 3 millikelvin, an achievement that

was awarded the 1996 Nobel physics prize. The phase diagram of 3He is shown

in figure 1.1. The A and B phases are the ABM and BW phases respectively. At

finite magnetic fields a third superfluid phase, A1, appears between the A-phase

and the normal state. This phase consists only of |↑↑〉 spin states. The A phase

is stabilized down to zero temperature for magnetic fields greater than 0.34 T at

zero pressure and 0.56 T at 29.3 bar.

There has been a huge amount of both experimental and theoretical work on the

superfluid phases of 3He in the thirty years since their discovery, showing that they

are among the most fascinating and unique condensed matter systems. Further

details of much of this work can be found in [13]. This work is only concerned

with experiments on 3He-A so the other phases will not be discussed further.

1.3 3He-A

The order parameter vector of the A phase can be written as

D(k) = ∆0 (m + in) · k d (1.2)
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Figure 1.1: Phase diagram of 3He at low temperatures and zero magnetic field

[12]. The dotted line indicates the values of pressure and temperature that were

used in the experiment described in this thesis.
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where d is a unit vector in spin space, pointing along a direction where the com-

ponent of spin is zero (i.e. s ·d = 0). m and n are a pair of orthogonal unit vectors

defined such that

l = m × n (1.3)

where l a unit vector in the direction of the orbital angular momentum of the

Cooper pairs. The scalar product in equation 1.2 shows that the energy gap

varies as a function of wavevector k and has axial symmetry about l with nodes

along l and a maximum values of ∆0 perpendicular to l. The existence of these

nodes means that excitations with k parallel or antiparallel to l can take place

at arbitrarily low temperatures resulting in the properties of the A phase, such

as viscosity and superfluid density, being strongly anisotropic. In contrast, the B

phase has an isotropic energy gap resulting in its properties being similar to those

of conventional superconductors, although it still displays weak anisotropy due to

the dipole-dipole interaction between the quasiparticles that make up the Cooper

pair.

1.4 Textures in 3He-A

1.4.1 Orientational Effects

The spatial variations of l and d are known as textures, analogous to textures

formed by the director in nematic liquid crystals [16]. The condensation energy

is not changed by rotation of these vectors so the textures are determined by

the geometry of the sample container and other orientational effects. A detailed

discussion of textures and orientational effects is given in the theoretical review

articles by Leggett [15] and Brinkman and Cross [14]. The main orientational

effects in 3He-A relevant to the experiments discussed in this thesis are described

briefly below, but are covered in more detail in the following chapter along with

calculations of some relevant textures.
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Gradients in the texture cause an increase in energy due to bending of the or-

der parameter, so the system has an internal stiffness that results in spatially

uniform textures being preferred and hence preventing other orientational effects

from changing the direction of the texture on small length scales. The walls of the

container play an important role in determining textures since l must be perpen-

dicular to the boundaries [17] because otherwise the Cooper pairs would be broken.

Also the requirement that there should be no spin current through the walls means

that the component of ∇d perpendicular to the boundaries must be zero. The l

and d vectors are not completely independent of each other but are coupled due

to the weak dipole-dipole interaction between the 3He atoms. The energy con-

tribution from this interaction is minimized when d and l are either parallel or

antiparallel. Textures where d ≡ ±l are called dipole -locked. The anisotropy of

the spin system means that the magnetic properties, such as the susceptibility,

are anisotropic about d. This gives a magnetic energy contribution that favours

d being aligned perpendicular to any applied magnetic field. The texture is also

influenced by relative motion of the normal and superfluid components (known as

counterflow), vs − vn. The flow energy is minimized when l is aligned along the

direction of flow for small counterflow velocities but at higher velocities dissipation

can be caused by the formation of non-uniform textures. The most widely studied

example is that of a helical l texture that precesses about the flow direction.

The equilibrium texture is found by minimizing the free energy density, incorpo-

rating all the above orientational effects and the relevant boundary conditions. In

some cases the texture is only a local minimum of the free energy resulting in a

metastable state that is prevented by an energy barrier from reaching the global

minimum of free energy. Further details and examples of textures are given in

chapter 2.
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1.4.2 The Fréedericksz Transition

The texture is often determined by several competing orientational effects. In the

case of a slab of 3He-A with an applied field perpendicular to the slab the uni-

form texture is the stable solution for fields less than a threshold field, H < HF .

Above this field the texture starts to distort in the center of the slab since it is

energetically preferable for d (and also l due to the dipole-dipole interaction) to

be perpendicular to H. At high fields, H >> HF , the texture is almost fully bent

over, apart from a layer near the boundary where l remains anchored perpendic-

ular to the boundary. This textural transition, illustrated in figure 1.2, is known

as a Fréedericksz transition, named after the discoverer of the similar transition in

nematic liquid crystals [16]. The transition in 3He-A was studied extensively by

the Manchester group in two different experiments [18]. The first used a torsional

oscillator to measure changes in the l texture through the anisotropy of the su-

perfluid density and viscosity in a 0.l mm thick cylindrical slab [19]. They found

that the resonant frequency (the inertial component) of the oscillator decreased

sharply at HF , whereas the bandwidth (the dissipative component) showed an ini-

tial dip before increasing at higher fields (see figure 1.3). The second experiment

used the anisotropy of the attenuation of ultrasound to measure changes in l in a

2 mm thick slab [20]. The combined results for HF as a function of temperature

are shown in figure 1.4. The transition field is inversely proportional to the slab

thickness.

The Fréedericksz transition has proved to be a powerful tool in the experiments

described in this thesis. In chapter 5 it is shown how the transition can help

quantify the uniformity of textures. A Fréedericksz transition can also be caused by

counterflow, where the uniform texture is distorted when flow above a critical value

is applied in a direction parallel to the boundaries of the slab. Such transitions

have been measured in this experiment and are described in detail in chapter 6.
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(a) H<HF

(b) H~HF

(c) H>HF

H

Figure 1.2: Fréedericksz Transition in a 3He-A slab. a) Uniform texture. b)

Texture starts to distort in center. c) Texture is almost parallel to boundaries

everywhere except near the boundaries.

Figure 1.3: Fréedericksz transition measured using a torsional oscillator. The

upper and lower parts show the shifts in resonant frequency and bandwidth re-

spectively. Taken from [18].
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1.5 Orbital Ferromagnetism

An isolated 3He atom does not possess a permanent electric dipole moment be-

cause the filled 1s orbital is spherical. However, if two 3He atoms come into close

proximity then the electron shells are distorted and each atom will become slightly

polarized. Since the 3He atoms in a Cooper pair have finite angular momentum

there exists a small magnetic moment oppositely direct to l due to the circulat-

ing charge distributions. This occurs in most diatomic molecules, but since the

molecules are randomly orientated the effect averages to zero. In contrast, a sam-

ple of 3He-A with a uniform l texture is expected to have a net magnetization due

to the magnetic moments all pointing in the same direction. Hence the system can

be described as ferromagnetic as this magnetization appears only at temperatures

below the superfluid transition Tc. This effect provides an example of how a mi-

croscopic interaction can be observed on a macroscopic scale due to the quantum

coherence of the system

In 1977 Tony Leggett [21] estimated the orbital magnetic moment to be about

10−11µB per atom by using details of the interaction between two He atoms cal-

culated by Kestner [22]. The temperature dependent magnetization, Ml can be

written as an equivalent field

Hm =
Ml

χN

(1.4)

where χN is the normal state susceptibility. Hm can then be written as

Hm = −H0

(

1 −
T

Tc

)

l (1.5)

where H0 is estimated to be 10-20 mG.

Leggett states that his estimate is at best ‘a crude order of magnitude’ and there

are several questionable aspects of his calculation. The distorted electronic wave

functions Leggett uses were calculated using self consistent field molecular orbitals

(SCF-MO), a method that has been superseded by more advanced techniques such

as quantum Monte Carlo calculations [23] and density functional theory [24] (a list
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of some results for the He-He interaction is given in [25]). Also the interaction in

3He-A is not between bare 3He atoms but between quasiparticles which have

masses several times greater than the bare mass (m∗ = 5.45m at 29 bar pressure

[12]). Hence, more theoretical calculations on the size of the magnetic moment

would be useful to get a better estimate of the size of the effect.

Shortly after Leggett performed his calculation Paulson and Wheatley measured

small changes of l textures by observing the attenuation of ultrasound [26]. To

some extent their results showed that the orientation of l depended on the sign of

the applied magnetic field. They claimed agreement with Leggett’s calculation but

they had non-uniform l textures due to the cell geometry making any quantitative

estimate of the effect difficult.

The original motivation behind this work was to try to measure the orbital fer-

romagnetism. The effect of the ferromagnetism on the Fréedericksz transition is

calculated in section 2 and the results of experimental attempts to detect this

effect are described in chapter 5.

1.6 Rotating 3He-A

1.6.1 Vortices

The order parameter for superfluid 4He (equation 1.1) is simpler than the one for

3He-A (equation 1.2) so we firstly consider the effect of rotation upon superfluid

4He before considering the effect upon 3He-A . The velocity of the superfluid

component in 4He is proportional to the gradient of the phase,

vs =
h̄

m4

∇S (1.6)

where m4 is the mass of a 4He atom and it follows from this that the superfluid

component executes irrotational motion and there is no vorticity,

∇× vs = 0. (1.7)
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The circulation is defined by

κ =

∮

vs · dl (1.8)

and using equation 1.6 gives

κ =
h̄

m4

∆S. (1.9)

The requirement that the order parameter is single valued means that the change

in S (∆S) after moving around a closed contour can only be either zero or an

integer multiple of 2π. Hence the circulation is quantized,

κ = N
h

m4

(1.10)

where h/m4 is known as the quantum of circulation and N is an integer. Fenyman

[28] suggested that an array of quantized vortex lines, each with a core consisting

of normal fluid, should form when the superfluid is rotated. The superfluid is then

able to mimic solid body rotation without violating equation 1.7 since the vorticity

is concentrated in the vortex filaments. There has since been a great deal of both

theoretical and experimental work on vortices in 4He, much of which is reviewed

in the book by Donnelly [29].

The superfluid velocity in the case of 3He-A is

vs,i =
h̄

2m3

m · ∇in (1.11)

where m3 is the mass of a 3He atom. This means that in general the superflow of

3He-A is not irrotational. Instead, Mermin and Ho [30] showed that the vorticity

depends on gradients in the l texture:

∇× vs =
h̄

2m3

∑

ijk

eijk li∇lj ×∇lk (1.12)

and hence 3He-A is only irrotational if the right hand side of equation 1.12 is

zero, which occurs at the container walls where l is rigidly held perpendicular to

the boundaries. Away from the walls the texture can respond to superflow by

forming an inhomogeneous texture leading to continuously distributed vorticity

and a lattice of textural vortices. Although in general the circulation round an
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arbitrary path in the bulk fluid is not quantized, the unit cell of a lattice of textural

vortices must contain an integer number of circulation quanta. Hence a rich variety

of vortex structures can be created in 3He-A with circulation

κ = N
h

2m3

(1.13)

where κ0 = h/2m3 = 0.066 mm2/s is the quantum of circulation for 3He . The

structure and quantum number N of the vortices depend on the angular velocity

Ω, applied magnetic field and often on the rotation history of the sample. The

vortices can be singular, which have a hard core radius comparable to the superfluid

coherence length ξ. In this case the superfluid velocity is undefined in the vortex

core and the order parameter vanishes at the center. An example of such a vortex is

shown in figure 1.5. The vortex lines can also be continuous with a soft core radius

much greater than ξ. The amplitude of the order parameter is almost constant in

such vortices and the superfluid velocity is well defined everywhere (see figure 1.6)

with the vorticity (∇× vs) distributed throughout the texture.

Most of the experimental work on vortices in 3He-A has been performed by the

Helsinki group during the last twenty years (see [31, 32] for a review). The sample

geometry typically used was a cylindrical container of length 7 mm and diameter

5 mm. This was rotated about its axis with Ω ≤ 3 rad/s. The vortices were

detected by observing cw-NMR absorption spectra, with different types of vortex

structure producing absorption peaks shifted with respect to the bulk peak. 3He-

A also supports vortex sheets [33, 34] as well as vortex lines. This is a textural

domain wall between regions of l in opposite direction that becomes decorated

with vorticity when rotation is started.

The Manchester group [27] showed that rotation during cooling through the su-

perfluid transition can play an important role in obtaining a uniform l texture in

a slab geometry after the rotation has been stopped. It was also shown that ro-

tation in the opposite direction can eventually reverse the direction of the texture

after several bursts of rotation whilst in the superfluid state. The effect of varying

the rotation speed during cooling with and without an applied magnetic field is
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described in chapter 5.

1.6.2 Persistent Currents

Some of the classic experiments on superfluids have involved the demonstration of

long lived persistent currents. For superfluids this involves rotating the container

(and often the whole cryostat) above a critical velocity for the superfluid, then

stopping rotation. The motion of the superfluid will then continue to persist

indefinitely. In the case of superconductors, electrical currents have been shown

to persist over a period of many years [2].

Experiments looking for persistent currents in superfluid 3He-A have been per-

formed by the Cornell [36] and Helsinki groups [37] (see [38] for a review). The

Cornell experiment used a toroidal shaped container packed with 25 µm powder

mounted on a torsional oscillator. They detected persistent currents by measuring

the dissipation of small amplitude torsional oscillations. The dissipation was a

minimum when the angular velocity of the cryostat matched that of the superfluid

component. The Helsinki group first used an AC gyroscope, but no persistent

currents in the A-phase were found [39]. A later experiment at Helsinki used a

stack of thin Mylar plates with an average separation of 19 µm. NMR was used

to observe a surface spin-wave mode which acted as a probe of the interaction

between the l texture and superflow. They find that rotating the cryostat above a

critical velocity of 0.5-0.6 rad/s and then stopping again leads to hysteresis in the

observed NMR signal resulting from the presence of a persistent current. Both of

the above experiments use a restricted geometry in order to pin vortices, increase

the critical velocity for vortex nucleation and prevent dissipation of the superflow

by large scale motion of the l texture, an effect resulting from the orbital anisotropy

of 3He-A . In chapter 7 persistent currents in a slab of 3He-A are described. In

our case, the disorder in the texture itself rather than an external influence can

stabilize the currents.
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Figure 1.6: An example of the velocity profile of a continuous vortex. In this case

an Anderson-Toulouse vortex [35] in 3He-A which has two quanta of circulation

(N = 2).
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Chapter 2

Textures in a Slab

2.1 Introduction

All the experiments described in this thesis used a cylindrical slab geometry for the

3He-A container. The main reason for using a slab (where the radius, R, is much

greater than the slab thickness, D) is that the global minimum of free-energy (the

ground state) is a spatially uniform texture, apart from a small region close to the

side walls which can be neglected. This is important for an experiment designed

to measure the orbital ferromagnetism of 3He-A since the magnetic moment of

each Cooper pair points in the same direction in a uniform texture, making any

quantitative measurement of this quantity much easier to interpret. The non-

uniform textures for various other sample geometries are shown in figure 2.1.

In practice the textures obtained in a slab of 3He-A are not necessarily uniform

since there are several metastable states which are prevented from reaching the

ground state by large energy barriers (e.g. due to bending energies) and topological

constraints. Therefore a variety of stable defects can be supported by 3He-A .

Planar defects such as domain walls separating regions with l in opposite directions

are possible and rotating the superfluid enables quantized vortices to be obtained,
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(a)

(c)

(b)

Figure 2.1: Numerical simulation of textures in various containers and zero applied

field. (a) Pan-Am texture in a cylinder, (b) Boojum textures in a sphere and (c)

Mermin-Ho texture in a cylinder.
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which in the case of continuous vortices in zero magnetic field, have a soft core size

of the same order as the slab thickness . The ends of the vortex line at the slab

boundaries are terminated by point singularities (known as boojums). Therefore,

the vortex cores in a slab can be either isolated or overlapped depending on the

angular velocity and the direction and magnitude of applied magnetic field.

In section 2.2 an outline of how textures were calculated in this work is given.

Section 2.3 then gives examples of one-dimensional textures. The effect of orbital

ferromagnetism on these textures is calculated in section 2.4, then examples of

textures in two-dimensions are covered in section 2.5 including domain walls and

vortices.

2.2 Calculating textures

All of the texture calculations described in this chapter utilize the hydrodynamic

(or London) limit where the length scale of any textural variations in the super-

fluid is greater than the coherence length ξ. This means that the A-phase order

parameter (eqn. 1.2) holds for the whole superfluid and the energy depends on

the spatial variation of l and d.

The free energy density in a frame where the normal fluid is at rest (vn = 0) is

then

fgr =
1

2
ρs⊥ṽ2

s
+

1

2

(

ρs‖ − ρs⊥

)

(l · ṽs)
2 + C (ṽs · ∇ × l) − C0 (l · ṽs) (l × curl l)

+
1

2
Ks (∇ · l)2 +

1

2
Kt (l · ∇ × l)2 +

1

2
Kb |l × (∇× l)|2 (2.1)

+
1

2
K4∇ · [(l · ∇) l − l (∇ · l)] +

1

2
ρsp‖ |(l · ∇)d|2 +

1

2
ρsp⊥

∑

ij

[(l ×∇)i dj]
2

where ṽs = (2m3/h̄)vs.

The first line of terms in equation 2.1 are due to the kinetic energy of the anisotropic

superfluid, the next four terms are from distortions of l and the final two terms
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are due to the bending of d. ρs⊥ and ρs‖ are the superfluid density components

perpendicular and parallel to l respectively and ρsp⊥ and ρsp‖ are the components

of spin rigidity.

The superfluid velocity is not independent of the l-texture, but is related through

the Mermin-Ho condition (equation 1.12):

∇× ṽs =
1

2

∑

ijk

eijk li∇lj ×∇lk

The other free-energy terms which determine the texture are the dipole-dipole

interaction

fd = −
1

2
λD (d · l)2 (2.2)

and the interaction with an external magnetic field

fh =
1

2
∆χ (d · H)2 (2.3)

where λD is a positive coefficient and ∆χ = χ⊥ −χ‖ is the magnetic susceptibility

anisotropy.

Comparing the dipolar energy to both the gradient energy and magnetic energy

gives the dipole-unlocking length, ξD = (ρsp‖/λD)1/2 ∼ 10µm, and the dipole-

unlocking field, HD = (λD/∆χ)1/2 ∼ 2 mT.

The calculations presented in the following sections make use of the following

dimensionless parameters: Kb/ρsp‖ = 1.5, Ks/ρsp‖ = 0.5 and ρsp⊥/ρsp/‖ = 2.0

which are values at Tc; the dimensionless slab thickness used was D/ξD = 25; and

the applied field was written in units of hD = H/HD.

For length scales greater than ξD and H < HD then the texture can be considered

as dipole-locked (l ≡ d) to a good approximation. The total free energy density

then simplifies to

f =
1

2
ρs⊥ṽ2

s
+

1

2

(

ρs‖ − ρs⊥

)

(l · ṽs)
2 + C (ṽs · ∇ × l) − C0 (l · ṽs) (l × curl l)

+
1

2
K ′

s (∇ · l)2 +
1

2
K ′

t (l · ∇ × l)2 +
1

2
K ′

b |l × (∇× l)|2 (2.4)

+
1

2
K4∇ · [(l · ∇) l − l (∇ · l)] +

1

2
∆χ (l · H)2
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where

K ′
s = Ks + ρsp⊥

K ′
t = Kt + ρsp⊥

K ′
b = Kb + ρsp‖

are the dipole-locked splay, twist and bend energy components respectively. Hence,

the effect of dipole-locking is to increase the bending energy of l. In the Ginzburg-

Landau limit (T → Tc) these coefficients are equal, K ′
b = K ′

s = K ′
t. All dipole-

locked calculations in the following sections used this limit.

Pure divergence terms in the free-energy density were neglected in calculating

textures but such terms can make a non-vanishing contribution to the total energy,

so they are included in the calculations of free-energy.

The equilibrium textures are those that minimize the free energy. These were found

by using the calculus of variations [40] to find the Euler equations. These were

solved using commercially available software [41] using the appropriate boundary

conditions and an initial guess at the solution. The processing power of modern

computers has meant that what were once difficult numerical problems can now

be solved much more quickly and with far greater ease.

2.3 One-dimensional textures

We consider an infinite slab of 3He-A with boundaries in the xy plane and an

applied magnetic field in the z-direction, H = H(ẑ). The influence of flow is

neglected. The texture can be written as

l = sin θ(z) ŷ + cos θ(z) ẑ (2.5)

d = sinφ(z) ŷ + cosφ(z) ẑ (2.6)

where θ is the angle between l and ẑ and φ is the angle between d and ẑ. The

texture is one-dimensional because both these variables are only allowed to vary
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in the z-direction.

The boundary conditions are

θ = 0 at z = ±
1

2
D (2.7)

dφ

dz
= 0 at z = ±

1

2
D. (2.8)

There have been several previous theoretical studies of such textures in a slab

geometry. Fetter used variational methods to obtain approximate analytical solu-

tions [42, 43, 44], then Hook et al. found exact solutions numerically for both the

dipole-locked [45] and dipole-unlocked [46] regimes. John Hook has also written an

excellent review on the properties of a slab of 3He-A in a magnetic field [47]. This

section reproduces the calculations of Hook, but with a greater slab thickness.

The free-energy density in the dipole-locked (θ = φ) case is

f =
1

2
K ′

b

(

dθ

dz

)2

+
1

2
∆χH2 cos2 θ (2.9)

and the Euler equation is

K ′
b

d2θ

dz2
= −

1

2
∆χH2 sin(2θ). (2.10)

Solutions for the angle of l in the center of the slab, θ(0), and the value of θ

averaged over the slab are shown in figure 2.2. The uniform texture distorts at the

Fréedericksz transition field,

H =
π

D

(

K ′
b

∆χ

)1/2

. (2.11)

The free-energy density including dipole-unlocking effects is

f =
1

2
Ks sin2 θ

(

dθ

dz

)2

+
1

2
Kb cos2 θ

(

dθ

dz

)2

+
1

2
ρsp⊥ sin2 θ

(

dφ

dz

)2

+
1

2
ρsp‖ cos2 θ

(

dφ

dz

)2

−
1

2
λD cos2(θ − φ) +

1

2
∆χH2 cos2 φ (2.12)
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leading to the following Euler equations for θ and φ

(

Ks sin2 θ +Kb cos2 θ
) d2θ

dz2

=

[

(

ρsp⊥ − ρsp‖

)

(

dφ

dz

)2

− (Ks −Kb)

(

dθ

dz

)2
]

sin θ cos θ

+λD cos (θ − φ) sin (θ − φ) (2.13)

(

ρsp⊥ sin2 θ + ρsp‖ cos2 θ
) d2φ

dz2

= −2
(

ρsp⊥ − ρsp‖

)

sin θ cos θ
dθ

dz

dφ

dz
− λD cos(θ − φ) sin(θ − φ)

−∆χH2 cosφ sinφ. (2.14)

Solutions for these equations for the slab thickness used in this experiment are

shown in figures 2.3, 2.4 and 2.5. Dipole-unlocking effects only become important

near the slab boundaries and in fields, H > HD, so in small fields the texture can

be considered to be dipole-locked to a good approximation.

2.4 Effect of Orbital Ferromagnetism

The orbital ferromagnetism contributes a small energy term,

fferro = −Ml · H = |Ml| l · H = −MlH cos θ, (2.15)

where Ml is the orbital magnetization. This term breaks the degeneracy between

the states with l parallel and antiparallel to H since the orbital moment tends to

favour being parallel to H (i.e. l antiparallel to H). The following sections describe

the effect of orbital ferromagnetism on textures in a slab at low and high magnetic

fields. The dimensionless value of orbital ferromagnetism used in the calculations

was Ml/(∆χHD) = −10−4, corresponding to Leggett’s estimate [21].
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Figure 2.4: Contour plot of d-texture for D = 25ξD.
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for D = 25ξD.
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2.4.1 Low Fields

John Hook was the first to consider the effect of orbital ferromagnetism on dipole-

locked textures at fields H ≃ HF [45]. The Euler equation is

K ′
b

(

d2θ

dz2

)

= −
1

2
∆χH2 sin 2θ +MlH sin θ. (2.16)

The distortion of the texture is small when H ≃ HF , so sin θ ≃ θ, giving

K ′
b

(

d2θ

dz2

)

= −θ
(

∆χH2 −MlH
)

(2.17)

This has the solution

θ = θ0 sin kz (2.18)

where

k2 =
∆χH2 −MlH

K ′
b

. (2.19)

Application of the boundary conditions (equation 2.7) gives kD = nπ, where n is

an integer. If n = 1 then

(

HF

HF0

)2

−
Ml

∆χHF0

(

HF

HF0

)

− 1 = 0 (2.20)

where HF0 is the Fréedericksz transition field in the absence of orbital ferro-

magnetism (equation 2.11). Solving this quadratic equation to first order in

Ml/(∆χHF0) gives the modified Fréedericksz transition field

HF = HF0 ±
Ml

2∆χ
(2.21)

where the different signs correspond to the states where l is initially parallel (-)

and antiparallel (+) to H. The difference is ∆HF = Ml/∆χ ∼ 2− 4× 10−3 Gauss,

which should be independent of temperature since Ml and ∆χ have approximately

the same temperature dependence. A slab of thickness 0.25 mm should have

∆HF/HF ∼ 1 × 10−3, a very small effect but one that could be measurable.

Preliminary attempts to measure this effect are described in chapter 5.
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2.4.2 High Fields

In order to study the effect of orbital ferromagnetism at H > HF then equation

2.15 must be added to equation 2.12 and the solutions of the Euler equations then

found numerically. Figure 2.6 shows the effect of orbital ferromagnetism on the

l-texture in the center of the slab (θ(0)) for fields close to HF .

In the absence of orbital ferromagnetism both θ(0) and φ(0) tend asymptotically

towards π/2 at high magnetic fields. The orbital ferromagnetism causes the un-

locking angle |φ − θ| to increase with increasing H since l now favours being

antiparallel to H. In this case θ(0) is approximately given by

θ(0) ≃
π

2
±
MlH

λD

(2.22)

where the difference in sign again corresponds to l either initially antiparallel or

parallel to H.

At very high magnetic fields the ferromagnetic energy will become greater than

the dipolar energy. For the case where l is initially antiparallel to H a uniform

l-texture will be restored with d perpendicular to l everywhere. Using the small

angle approximations for θ and putting φ = π/2 simplifies the Euler equation to

Kb

(

d2θ

dz2

)

= −θ (λD −MlH) (2.23)

which can be solved in a similar way to the low field approximation. The critical

field at which the uniform texture is restored is

Hc =
1

Ml

(

λD −Kb
π2

D2

)

(2.24)

which is 9763 HD for the parameters given in section 2.2. At such high fields the

A1 phase is stable down to 0.7 Tc where the A-phase transition takes place [48].

At this temperature the dimensionless parameters that determine the texture are

Kb/ρsp‖ = 2.3, Ks/ρsp‖ = 0.46 and ρsp⊥/ρsp‖ = 1.5 including a strong energy gap

correction of 1.24. Performing the calculations using these parameters makes only

a slight change (∼1%) to the texture in the high field region, giving Hc = 9642.

35



In the case where l is initially parallel to H then at high fields the texture in the

center becomes aligned in the opposite direction to that at the slab boundaries,

resulting in a higher free-energy compared to the previous case. Therefore, at some

point this metastable state should change to the ground state through either an

extrinsic process (such as the growth of a domain of the other state) or an intrinsic

process (a global instability). The value of θ(0) at high fields for both these states

is shown in figure 2.7.

If the field is applied parallel to the slab boundaries (H = Hŷ) then d remains

uniform (φ(z) = 0) but l will again try to become antiparallel to H. The angle of

l in the center of the slab for small distortions from the uniform texture is given

by

θ(0) =
MlH

λD

[

2 sinh (qD/2)

sinh qD
− 1

]

(2.25)

where q2 = λD/Kb. In the case of thick slabs the angle can be approximated as

θ(0) ≃ −MlH/λD.

2.5 Two-dimensional textures

Although the above one-dimensional calculations give some useful insights into

textures in a slab, a more realistic model is needed so that topological defects in

the texture can be studied. In this section the textures associated with a planar

domain wall and a radial Anderson-Toulouse vortex are calculated. The dipole-

locked limit and the Ginzburg-Landau regime is used in both cases in order to

simplify the calculations.
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2.5.1 Domain walls

We again consider the same slab geometry as in section 2.3 but with a two-

dimensional texture of the form

l = sinα(y, z) ŷ + cosα(y, z) ẑ (2.26)

which gives a free-energy density,

f =
1

2
K ′

b

[

(

dα

dy

)2

+

(

dα

dz

)2
]

+
1

2
∆χH2 cos2 θ. (2.27)

The Euler equation is

K ′
b

(

d2α

dy2
+
d2α

dz2

)

= −
∆χH2

2
sin 2α (2.28)

Maki [49] has found a variety of solutions to this equation in the zero field case.

A domain wall can be simulated using the boundary conditions

α = 0 when z = ±D/2 and y < 0

α = π when z = ±D/2 and y > 0

which result in the l-texture at the boundary changing from down to up at y = 0.

Such a situation could occur if the A-phase is independently nucleated in different

regions in the slab. Such a domain wall is shown in figure 2.8. The regions of

l-up and down are separated by a wall where l lies parallel to the boundaries.

The width of the wall is comparable to the slab thickness. Applying a magnetic

field perpendicular to the slab leads to the domain wall increasing in size but for

H < HF the uniform texture is restored far away from the wall. WhenH > HF the

bulk texture also bends over the in the center of the slab. At high fields H > 3HF

the texture closely resembles that in the one-dimensional case, apart from the

region close to the two line singularities at the boundaries at y = 0. Applying a

magnetic field parallel to the boundaries would lead to the width of the domain

wall decreasing. Dipole-unlocked domain walls are also possible. These occur on

the boundary between domains of l antiparallel and parallel to d. An example

38



H=0

H=0.8HF

H=1.1HF

H=3HF

Figure 2.8: Dipole-locked domain wall in magnetic fields applied perpendicular to

the slab boundary.
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would be a wall where l is up on one side of the wall and down on the other but

d is in the same direction on both sides. Such a wall would have a width ∼ ξD,

much less than the width of the dipole-locked domain wall in order to minimize

the dipolar energy contribution.

2.5.2 Radial AT Vortices

When a slab of 3He-A is rotated in a low field and at low angular velocity then

it is expected that an array of doubly quantized Anderson-Toulouse (AT) vortex

lines are created, with the vorticity concentrated in the soft core. At the slab

boundaries the vortex lines terminate in point singularities known as boojums.

There are three simple types of AT vortex (see figure 2.9): radial, circular and

hyperbolic. For anticlockwise circulation, the radial and circular lines are set in a

uniform l-down texture and the hyperbolic in a uniform l-up texture. The direction

of the texture is reversed for clockwise circulation.

The radial texture is the easiest to calculate since the l-texture has no azimuthal

component:

l = sin β(r, z) r̂ + cos β(r, z) ẑ. (2.29)

Equation 1.12 is satisfied by writing the superfluid velocity in the rotating frame

as

ṽs =

(

1 − cos β

r
−

2r

a2

)

φ̂ (2.30)

where the last term ensures that the velocity (in a coordinate system rotating with

angular velocity Ω) goes to zero at the outer radius of the unit cell,

a =

(

2h̄

2m3Ω

)
1

2

. (2.31)

The Euler equation is

K ′
b

(

d2β

dr2
+
d2β

dz2
+

1

2

dβ

dr
−

cos β sin β

r2

)

+
1

2
∆χH2 sin 2β

−ρ⊥

(

(1 − cos β) sin β

r2
−

sin β

a2

)

= 0. (2.32)

40



Radial

Circular

Hyperbolic

Figure 2.9: The texture and phase of three simple types of AT vortex for anti-

clockwise circulation. Taken from [50].
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Equation 2.32 was solved by Hu et al. [51] (with a = ∞ and H = 0) for both

the circular and hyperbolic boojum textures in a half space. They also came up

with an approximate solution for the radial AT vortex in a slab geometry and its

free-energy.

The boundary conditions are

β = 0 at r = 0

β = π at r = a (2.33)

β = π at z = ±D/2.

Numerical solutions to equation 2.32 for various values of a (i.e. different angular

velocities) in zero field are shown in figure 2.10. At low Ω the uniform texture

is restored away from the soft core of the vortex. As Ω increases the amount

of uniform texture decreases until eventually the soft core starts to get squashed

inwards, increasing the bending energy.

The effect of magnetic field on the vortex texture is shown in figure 2.11. For

H < HF the soft core radius grows as field increases, but the uniform texture

outside the core remains. When H > HF the bulk texture also distorts and the

vorticity becomes concentrated in two places: the vortex core (r = 0) and the

outer radius of the unit cell (r = a). This seems to be unrealistic, it is likely that

the circular symmetry used in these calculations would be broken and the texture

would gain an azimuthal component [52].

When superfluid 3He-A is cooled slowly through the superfluid transition whilst

rotating, the vortices with the lowest free-energy should be nucleated. The free-

energy of the radial AT vortices discussed above has been calculated by integrating

the free-energy density over the volume of the unit cell. A small inner cut-off radius

of (D/100) was used in the center to avoid problems from the boojum singularities.

The free-energy of the radial AT vortex is shown in figure 2.12. At small values of

a the energy tends towards that of the energy of the vortex in a geometry where
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to the slab boundaries.
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D = ∞. The guessed solution of Hu et al. [51] is higher in energy because it is

not the true free-energy minimum although it shows the same variation of energy

with unit cell size when a/D > 1. The free energy varies logarithmically with a/D

when a/D > 1 since outside the soft core the velocity field is inversely proportional

to the distance from the vortex center.

Figure 2.13 shows the energy of the radial AT vortices in several different magnetic

fields (up to HF ) as a function of angular velocity for D = 250µm. The magnetic

contribution to the free-energy of the uniform texture, 0.5∆χH2πa2D, has been

subtracted to give the energy of the vortex line relative to the uniform texture.

The approximate free-energy of two singular phase vortices,

F2singular = 2πDρs

(

h̄

2m3

)2 [

ln

(

a

ξ

)

−
3

4

]

(2.34)

is also shown for comparison. The gradient for the two singular vortices(N = 1)

is half that for the AT vortex (N = 2) since the energy varies with N 2. For

Ω > 0.1 rad/s the AT vortex has lower energy and hence is more likely to be

nucleated during cooling through Tc, whereas phase vortices should occur at lower

angular velocities. Application of a magnetic field leads to AT vortices becoming

the equilibrium state at lower angular velocities. The phase diagram for these

vortices is shown in figure 2.14.

A more complete theoretical treatment is clearly necessary to get a fuller under-

standing of the equilibrium vortex structures formed at Tc in a slab geometry.

Three dimensional texture calculations are needed to calculate the equilibrium

textures of both AT and singular vortices. Also, the circular unit cell approxima-

tion used in the above calculations should be replaced by a full calculation for an

array of vortices. Dipole-unlocking effects should be included for magnetic fields

H ≥ HD.
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of free energy used are 4πDρ⊥ (h̄/2m3)
2.

0.01 0.1 1

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

 

 

F
re

e
-E

n
e

rg
y
 p

e
r 

U
n

it
 C

e
ll

Angular Velocity (rad/s)

 2xPhase vortex

 AT h=0

 AT h=0.25

 AT h=0.5

 AT h=0.75

 AT h=1
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Chapter 3

The Torsional Oscillator

3.1 Introduction

The original aim of this experiment was to measure the orbital ferromagnetism

of 3He-A and so this dictated the design of the experimental cell. Two possible

methods were investigated. The first was to try to measure the orbital magne-

tization directly using a dc-SQUID magnetometer. Calculations showed that the

maximum flux transfer in the SQUID that could be expected from several slabs

of 3He-A was around 5 × 10−3 flux quanta [53]. This is about the same order of

magnitude as the expected noise level in the SQUID assuming that the direction

of texture could be reversed on timescales of the order of hours [27], hence making

any direct measurement difficult. The second possibility was to detect the influ-

ence of the orbital ferromagnetism on textural transitions such as the Fréedericksz

transition and the expected effects have been described in detail in the previous

chapter. There are several techniques that are sensitive to textures in 3He-A [47],

although no method has yet been developed that allows the texture across the

whole slab to be determined (such as those used for liquid crystals [54]). Instead

the techniques currently available for 3He-A are sensitive to the average texture

and a model is then needed to compare with the experimental data. A torsional
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oscillator was chosen for this experiment, a technique that was first used in a su-

perfluid experiment by Andronikashvili [55], where he measured the normal fluid

density of 4He by using a stack of parallel plates suspended on a torsion fibre.

The resonant frequency of a torsional oscillator is

ν0 =
1

2π

√

C

I
(3.1)

where I is the moment of inertia of the torsion head and C is the torsion constant

of the oscillator.

3.2 Equations of motion

The hydrodynamics of a slab of superfluid 3He-A (with thickness D and radius R)

contained in a torsional oscillator have been extensively discussed by Hook et al.

[46, 56]. The following is a brief outline of the equations of motion of a torsional

oscillator.

The angular motion of the slab boundaries (contained in the xy plane) about the

z-axis is

Ωw = Ω0 e
iωt ẑ. (3.2)

If the fluid is isotropic, incompressible and irrotational then the equation of motion

can be written as

ρn
∂vn

∂t
= η

∂2vn

∂z2
(3.3)

where η is the viscosity of the fluid. The solution is

vn =
rΩ0 e

iωt cosh(Kz)

cosh (KD/2)
φ̂, (3.4)

where

K = (1 + i)

[

ρnω

2η

]1/2

. (3.5)

The reciprocal of the real part of K is the viscous penetration depth, δ =
√

2η/ρω,

which describes how far the shear waves generated at the container boundaries
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travel into the fluid. A correction for fluid slip at the boundaries can be introduced

[56] but the slip length is negligible in comparison to the slab thickness for this

experiment.

The force exerted per unit area on the container walls at z = ±D/2 by the fluid is

F = −η

[

∂vn

∂z

]

z=±D/2

(3.6)

and it is convenient to write the force per unit area on the walls in dimensionless

form (F1 + iF2) using

2F = −iDρω(F1 + iF2)rΩ0 e
iωt φ̂ (3.7)

hence giving

F1 + iF2 =
ρn

ρ

tanh (KD/2)

KD/2
. (3.8)

F1 and F2 are related to the resonant frequency (νR) and bandwidth (νB) of the

torsional oscillator by

(νR − ν0) = −AF1 (3.9)

(νB − νNB) = −BF2 (3.10)

where A and B are related constants given by

2A = B =
πν0ρR

4D

2I
(3.11)

and νNB is the non-hydrodynamic contribution to the bandwidth which is found

to be negligible in comparison to the hydrodynamic contribution to the bandwidth

at mK temperatures in this experiment.

3.3 Construction

The torsion head, shown in figure 3.1, was made in two halves from Stycast 1266

epoxy. The top piece was made from a 4mm thick by 15mm diameter piece which

50



was polished on both sides using a lapping machine. The finest abrasive used

was 3µm powder making the Stycast transparent and enabling the completed cell

cavity to be inspected with a microscope.

The bottom piece was made by casting Stycast against a polished aluminium

negative. When the Stycast had set the piece was machined to the required 15

mm diameter and most of the excess aluminium was removed. The depression for

the head of the torsion rod and the fill line were also machined. Any remaining

aluminium was then slowly etched away using a solution of 3 molar NaOH.

The pieces were designed so that when they were pushed together a gap 0.25 mm

thick and 10 mm diameter would be left. A small amount of freshly mixed Stycast

was added to the corner of the female half and the pieces were pushed together

and rotated by hand until the contact surface had been completely covered. The

cell was then clamped in a vice until the epoxy had set. The 1 mm reinforcement

cavity around the circumference of the cell was then filled by adding partially set

epoxy whilst the cell was slowly rotated in a lathe. The cell was left to rotate until

the Stycast has set, then any excess epoxy was machined away. The completed

cell was inspected with a microscope to check that no epoxy had leaked into the

cavity.

The torsion rod used in this experiment (see figure 3.3) was machined from a piece

of 1 inch diameter ‘half-hard’ BeCu rod [57]. It was then thoroughly degreased

before being heat treated at 315◦C for two hours in a helium atmosphere. The cell

was then lightly glued to the head of the torsion rod before the head was covered

with Stycast.

A second torsion rod (the lower torsion rod on figure 3.3) was made in the same

way but with a resonant frequency ∼ 140 Hz. This rod acted as a vibration filter

to prevent unwanted vibration from reaching the upper torsion rod. The two

oscillators were sealed together using an indium o-ring.
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3.4 Magnetic shielding and DC coil

The magnetic field in the z-direction was provided by a superconducting coil of

length 35 mm and diameter 22 mm wound from 0.1µm diameter NbTi wire with a

CuNi matrix. The main winding had 592 turns on 2 layers and there was an inner

notch at both ends with 100 turns on 5 layers. The room temperature resistance

of the coil was 3.3 kΩ. The calculated field profile along its axis is shown in figure

3.2. The calculations were performed by treating each turn as a circular loop [58]

and then summing over all the loops. The calculated coil constant, including the

effect of the superconducting shield [59], is 125.0 Gauss/A.

A Nb cylinder was used as a magnetic shield. The cylinder was open at one end

and the other was closed apart from 3 small holes used to hold the coil in place.

PTFE and Stycast spacers was used to hold the coil firmly in position inside the

shield as well as ensuring their axes were aligned. The shield (and coil) was then

suspended from the mixing chamber of the cryostat and the torsional oscillator

was attached to the nuclear demagnetization stage via an indium o-ring seal. The

overall cell assembly is shown in figure 3.3.

3.5 Electronics

The torsional resonance of the oscillator was driven and detected electrostatically.

The circuits used are shown in figure 3.4, similar to those used in a previous

Manchester torsional oscillator experiment [60]. The electrodes were made from

brass and these were positioned against the flat face of the vibration filter, so

that there was a small gap, d, separating the electrodes from the flat face. Bias

voltages, V0 ≃ 270 V, were provided by 30 9V batteries wired in series. The

torsional oscillator was driven with a sinusoidal signal, V1e
iωt, provided by an

Agilent 33120A synthesizer. The current generated by the motion of the torsional

oscillator, id, was amplified by a current sensitive SR570 pre-amplifier and then
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Figure 3.1: Scale diagram of the Stycast 1266 torsion head.
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Figure 3.2: Magnetic field profile along axis of coil for a current of 100mA. The

effect of the Nb shield has been taken into account.
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Nb Shield

PTFE Spacer

Notched Solenoid
(on Stycast form)
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(with 0.26 mm thick cavity)

Indium Seal 
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Figure 3.3: Experimental setup. The superconducting shield and DC coil were

suspended from the mixing chamber. The two torsional oscillators were attached

to the nuclear stage of the cryostat. Another shield constructed from mu-metal was

later placed around the niobium shield in order to reduce the amount of trapped

magnetic field (see chapter 5). Most of the measurement presented in the following

chapters were taken with this second shield in place.

54



measured with a SR830 lock-in amplifier.

The force acting on the drive electrode (with capacitance C) is

F ≃
CV 2

0

2d
+
CV0V1e

iωt

d
(3.12)

and the current entering into the pre-amp is

id ≃ iV0C1e
iωt (3.13)

where C1 is the amplitude of the AC component of the capacitance of the detect

electrode.

3.6 Control Method

The routine used to control the torsional oscillator was originally devised by John

Hook and is outlined briefly below.

The torsional resonance is a lorentzian. The in-phase and quadrature voltages

measured by the lock-in (Vx and Vy respectively) can be written as

Vx + iVy =
iCVd/2

νR − ν + iνB/2
(3.14)

where Vd and ν are the drive voltage and frequency. C is a constant known as

the torsional oscillator constant which can be determined at resonance (ν = νR),

giving

Vx0 =
CVd

νB

(3.15)

where Vx0 is the in-phase voltage at resonance.

The torsional oscillator was calibrated by sweeping ν through the resonance (figure

3.5 shows an example). A least squares fit to a lorentzian curve then gave the

phase, C and the offsets on Vx and Vy. The phase was adjusted so that Vx was a

maximum (Vx0) on resonance.
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Figure 3.4: Circuit used for driving and detecting the motion of the torsional oscil-

lator. The 0.05 µF capacitor used on the detect side is a metallised polypropylene

film capacitor that was found to have the lowest DC current leakage compared to

various other types of capacitor.

56



The torsional oscillator control program used several results that follow from equa-

tion 3.14:

Vx0 = Vx +
V 2

y

Vx

(3.16)

νB =
CVd

Vx0

(3.17)

νR = ν +
νBVy

2Vx

. (3.18)

Usually the oscillator was driven near resonance. The lock-in outputs were moni-

tored by the computer and νR and νB were calculated. If the current ν was more

than 0.1νB away from νR then the drive frequency would be changed towards νR by

an amount typically 0.1(νR − ν), so that the oscillator was always being driven at

a frequency close to the resonant frequency. The drive voltage was kept constant,

usually at 250 mV.

The torsional oscillator was calibrated by plotting the resonant frequency against

bandwidth for normal 3He over an approximate temperature range 2.5 mk to

20 mK. The hydrodynamic equations 3.8 and 3.9 were fitted to the curve using

A,B and ν0 as adjustable parameters. Such a curve and the corresponding fit are

shown in figure 3.6. The fit parameters obtained were A = 177.6 mHz, B = 353.4

mHz, ν0 = 628.3653 Hz. The value of A/B = 0.503 deviates from the theoretically

predicted value of 0.5 by 0.5%, a good indication that the behaviour of the oscillator

is well described by the hydrodynamic theory outlined in section 3.2.

3.7 Thermometry

Most experiments conducted at millikelvin temperatures use an independent ther-

mometer. The Manchester Rotating Cryostat was fitted with two such devices, an

LCMN and a vibrating wire thermometer [60], during the course of this experi-

ment. However, due to technical reasons neither of these thermometers functioned

properly. Hence the behaviour of the torsional oscillator itself was used to provide

a temperature scale for both normal 3He and 3He-A with a uniform texture.
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Figure 3.5: Resonance curve for the torsional oscillator containing 3He at 29 bar
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Figure 3.6: Hydrodynamic curve for normal 3He . The solid line is a fit using

the theory described in section 3.2 with the fit parameters given in section 3.6.

The high frequencies correspond to high temperatures where δ < D and the low

frequencies to temperatures just above Tc where δ > D. The maximum in the

bandwidth occurs when δ ∼ D.

59



3.7.1 Normal 3He

The calibration parameters given in the previous section can be used to convert

measured values of νR and νB into values of F1 and F2 which can then be used to

find x = D/2δ using

F1

F2

=
B(νR − ν0)

A(νB − νNB)
=

tanx
(

1 − tanh2 x
)

+ tanhx (1 + tan2 x)

tanx
(

1 − tanh2 x
)

− tanhx (1 + tan2 x)
. (3.19)

The values of νR and νB at the superfluid transition were used to accurately deter-

mine the slab thickness D since the density and viscosity of 3He at the superfluid

transition have been measured and hence the viscous penetration depth at Tc, δc

is known. This showed that D = 260 ± 2µm.

The viscosity of the normal fluid is then given by

η =
πρνR

4x2
. (3.20)

Several groups have made detailed measurements of the viscosity of normal 3He .

Carless et al. [61] used a vibrating wire to show that the viscosity at 29.3 bar is

well determined by

η =
1

7.10T 2 + 14.5
(3.21)

where T is the temperature in mK according to the Alvesalo temperature scale

[62], which needs to be multiplied by a factor of 0.89 [12] to agree with accepted

temperature scales.

Combining equations 3.20 and 3.21 gives the temperature in terms of parameters

that can be obtained from the torsional oscillator,

T = 0.89

[

1

7.10

(

4x2

πρνRD2
− 14.5

)]
1

2

mK. (3.22)

Figure 3.7 shows how resonant frequency varies as a function of temperature for

normal 3He .
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3.7.2 Superfluid 3He-A

The measured values of νR and νB were again used to find x using equation 3.19.

The component of superfluid density perpendicular to l, ρs⊥, was then found by

using equation 3.8. Hook et al. [56] found that ρs⊥ as a function of temperature

was to a good approximation given by the theoretical equation

ρs⊥ =
4α

1 + 1
3
F s

1 (1 − 4α)
(3.23)

where F s
1 is a Fermi liquid parameter and α is an integral given by

α

(

∆

kBT

)

=
3

8

∫ π/2

0

dθ sin3 θ

[

1 − Y0

(

∆ sin θ

kBT

)]

(3.24)

where ∆ is the A-phase energy gap, kB is Boltzmann’s constant and Y0 is a Yosida

function. They found that their data fitted best when ∆ was multiplied by a factor

of 1.24, which allows for the effects of strong coupling. The calculation of ∆/kbT ,

α and Y0 are discussed in appendix B of [56].

The reduced temperature as a function of resonant frequency is shown in figure

3.8. The temperature of the transition from B-phase to A-phase calculated using

the above method deviates by ≤ 1% from the accepted value. This discrepancy is

perhaps due to the non-uniform textures created during such a transition, showing

that the frequency and bandwidth shifts due to non-uniform textures in zero field

are small and that the thermometry is still accurate to a good approximation.

3.8 Textures in a slab of 3He-A in a torsional

oscillator

There are several ways in which a uniform l-texture can distort when a verti-

cal magnetic field is applied. John Hook and co-workers [46, 56] have considered

three possible ways in which a one-dimensional texture (see section 2.3) can dis-

tort. They are radial, azimuthal and planar and are illustrated in figure 3.9. The
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Figure 3.7: Temperature as a function of resonant frequency for normal 3He .
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textures for these transitions can be written as

Radial: l = sin θ r̂ + cos θ ẑ

Azimuthal: l = sin θ φ̂ + cos θ ẑ

Planar: l = sin θ ŷ + cos θ ẑ.

The type of distortion that will occur can depend on several factors. Applying the

magnetic field at a non-zero angle to the slab normal results in a planar texture,

or if the field had a radial component then a radial texture could be formed.

Azimuthal textures can be made to occur by increasing the drive velocity amplitude

to a value where the oscillatory flow is large enough to influence the texture.

The hydrodynamic equations for each of these have been described in detail in [46]

and so are not repeated here. The shifts in F1 and F2 are different for each of these

distortions since the contribution from different components of the viscosity and

superfluid density tensors is different for each distortion. Hook et al. [56] were able

to find values for the five independent coefficients of viscosity and the anisotropy

in superfluid density (ρs⊥ − ρs‖) by fitting the hydrodynamic theory to measured

values of F1 and F2 for planar textures produced by applying the field at an angle

to the slab. These values, and the textures calculated in section 2.3, have been used

to calculate the expected shifts in F1 for the three different distortions including

the effect of orbital ferromagnetism for cases when the applied field is parallel and

antiparallel to l. These predictions for low fields are shown in figure 3.10 although

the magnitude of the orbital moment used is two orders of magnitude greater than

expected in order to make the differences between the two states visible.
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effect of the slab boundaries upon l have not been included.
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Figure 3.10: Change in F1 (i.e. resonant frequency) as a function of applied
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are for the states with l initially parallel and antiparallel to H respectively. The

difference between the two is due to the orbital magnetic moment. In this case the

magnitude of the orbital moment is 100 times the predicted value [21] in order to

make the differences between the two states visible.
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Chapter 4

The Rotating Cryostat

4.1 Introduction

The experiments described in this thesis were performed using the Manchester

Rotating Cryostat. Detailed descriptions of the cryostat have been given elsewhere

[63, 64], so only a brief overview is given in the following section. The main

purpose of this chapter is to document some of the changes that have been made

to the cryostat in order to make this work possible. No discussion of the cryogenic

techniques necessary for all low temperature experiments is given. An excellent

account of such methods can be found in [59].

During the early stages of the experiment the time that the 3He liquid could be

maintained in the superfluid A-phase was severely limited by a large heat leak,

which is described in section 4.3. Detailed studies of vibration of the cryostat have

been carried out and these are detailed in section 4.4, followed by a description in

section 4.5 of how these problems were overcome.
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4.2 Overview of the cryostat

The rotating cryostat is shown schematically in figure 4.1. The cryostat is housed

in a shielded room that rests upon a 70 tonne concrete block whose foundations

are isolated from those of the main physics building. The dewar and cryogenic

insert are hung from a circular aluminium platform and racks containing electrical

instruments are attached to the top of this platform. A drive pulley, suspended

from the roof of the shielded room, is connected to the rotating platform by a

tetrahedral aluminium frame and a plywood disc so that lateral forces are not

transmitted to the platform. The pumping and gas lines needed for the dilution

fridge pass through rotating vacuum seals and electrical power and instrument

communication is passed through a slip ring. The rotating platform is supported

by air bearings mounted on a triangular frame. There are three circular thrust pads

to provide lift and three rectangular lateral pads which define the axis of rotation

of the cryostat. The compressor which supplies air bearings was upgraded to a

more powerful model and the three circular thrust pads were redesigned in order to

provide more lift. The cryostat is rotated using a stepper motor located outside the

shielded room. A rubber belt couples the drive from the motor to the drive pulley.

Gearing has been added during this work such that the motor now has to rotate

55/15 times faster in order to achieve the same angular velocity as before. This

has improved the stability of the rotation since noise from the motor steps is less at

higher motor speeds. Another beneficial effect is that both the minimum angular

velocity (7 × 10−3 rad/s) and acceleration (10−3 rad/s−2) have been reduced.

The dilution refrigerator is an Oxford Instruments 400 unit that has been modified

so that the still pumping line is on the axis of rotation. The nuclear demagneti-

zation stage [63] consists of a large piece of slotted copper attached to the mixing

chamber using three vespel supports. Thermal contact to the 3He liquid is pro-

vided by several copper discs coated in silver sinter. The nuclear stage is cooled

by the mixing chamber via a thermal link consisting of several silver wires and an

aluminium superconducting heat switch. The demagnetization magnetic field is
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Figure 4.1: Schematic diagram of the rotating cryostat. Access to the lower part

of the cryostat is through a pit within the concrete block. The shielded room is

completed by raising a steel box around the lower part of the cryostat. The three

legs which support the cryostat were replaced by air springs during the course of

this work (see section 4.5)
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provided by an 8 Tesla Oxford Instruments superconducting solenoid mounted on

the outside of the vacuum can. The nuclear stage was typically cooled for three

days in an 8 T field prior to demagnetization reaching a temperature of around 15

mK.

The bottom of the nuclear stage is fixed to the inner radiation shield using nylon

cord that is threaded between a vespel ring, that slides over a Stycast peg on the

bottom of the copper piece, and a brass ring attached to the inside of the radiation

shield to form a cartwheel structure. The inner and outer radiation shields and

the outer radiation shield and vacuum can are held together in a similar way.

4.3 The heat leak problem

During early runs of the experiment it was discovered that there was a large heat

leak into the nuclear stage which varied with the time of day and the demag-

netization field. The heat leak reached a maximum value of about 1 µW, with

a demagnetization field of 1 T, in the morning and decayed in the evening to a

value around 300 nW overnight. This reduced the time taken to warm from the

B-A phase transition to the normal state (a temperature difference of 0.36 mK at

29.34 bar) to a few hours, making the experiment very difficult to perform. In low

demagnetization fields of around 0.1 T the heat leak was approximately 5 nW.

The heat leak varied approximately with the square of the demagnetization field,

indicating that the problem was due to vibration. Any electrical conductor that

vibrates in a magnetic field will generate eddy current heating [59],

Q̇e = PV Ḃ2/ρR, (4.1)

where V and ρR are the volume and electrical resistance of the conductor, Ḃ is the

time derivative of magnetic field seen by the conductor and P is a factor which

depends upon the geometry of the conductor. Vibration measurements described

in the next section show that the heat leak was chiefly due to external vibra-
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tion causing relative motion between the nuclear stage and the demagnetization

solenoid.

The heat leak was calculated using

Q̇ =
nλnB

2

µ0

(

1

T1

−
1

T2

)

1

∆t
, (4.2)

where n is the number of moles of refrigerant in the main field, λn is the molar

nuclear Curie constant of the refrigerant and ∆t is the time taken for the nuclear

stage to warm from temperature T1 to T2. In our case, n = 4 and λn = 4 × 10−12

Km3/mol for Cu resulting in equation 4.2 becoming

Q̇ =
8.576B2

∆t

(

1

T1

−
1

T2

)

, (4.3)

where the temperatures are in mK and the magnetic field B is given as a percentage

of the maximum field (8 T).

4.4 Vibration measurements

4.4.1 Vibration detectors

Extensive measurements of vibration were carried out in many places in the labo-

ratory using Geospace GS11-D vertical vibration detectors [65]. Figure 4.2 shows

the electrical circuit used to monitor the output of the vibration detectors. The

output of each detector was passed through a low pass filter and then amplified

using EG&G voltage preamplifiers with the gain set to 1000. The pre-amp output

was then passed to a Hewlett Packard 54600A oscilloscope that was used to store

several seconds of data (typically 4 s). A PC then took a fast Fourier transform

of the stored signal so that the vibrations could be analyzed in terms of their

frequency components.

The vertical vibration detectors showed that all parts of the lab suffered from

vibration in the 5-30 Hz range, although the amplitude varied considerably between
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positions. Several example vibration spectra are shown in figure 4.3. The rotating

platform was found to have the highest level of vibration and floating the platform

on the air bearings made little difference. The platform level was two to three

orders of magnitude greater than the level observed on the concrete block and the

floor of the shielded room, suggesting that the cryostat had at least one mechanical

resonance that was being excited by the vibration of the supporting concrete block.

This was tested by attaching a mechanical oscillator to the platform. The oscillator

was driven at a set frequency and the output of the vibration detector at the drive

frequency was measured using a lock-in amplifier. The lock-in outputs as a function

of drive frequency are shown in figure 4.4 for a vibration detector on the rotating

platform and the horizontal coil on the bottom of the nuclear stage. Both of these

show a large peak at ∼ 13 Hz and some other peaks at higher frequencies.

A plot of the level of vibration on the rotating platform summed between frequen-

cies from 5 to 30 Hz is shown in figure 4.5. There is a clear increase in vibration at

7am, followed by several other peaks during the daytime and a gradual decrease

in the evening. This pattern is approximately the same each weekday but the

amplitudes are three to four times lower during the weekend and the peaks are

less sharp. The source of the vibration is unclear but the most likely candidate

are buses and other heavy vehicles on the major road that is a short distance from

the lab, although this has not been directly verified.

4.4.2 Search coils

The relative motion of the nuclear stage and the demagnetization solenoid was

measured by placing four identical small coils, each with 3150 turns of Cu wire,

in several different positions on the nuclear stage. Figure 4.6 shows where each

of the coils was placed. Two were attached to the underside of the experimental

platform and the other two to the very bottom of the slotted Cu piece, with the

axis of the coils in each pair perpendicular to one another.
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The voltage generated by motion of the coils in the magnetic field was measured

and converted to a fast Fourier transform using exactly the same process and

circuit as that used for the vibration detectors (figure 4.2). Example frequency

spectra from the search coils are shown in figure 4.7. The peaks on the spectra are

at exactly the same frequencies as the peaks on the vibration spectra obtained on

the rotating platform (figure 4.3). The coil with the largest amplitude signal was

the one at the bottom of the nuclear stage whose axis was perpendicular to the

rotational axis of the cryostat, indicating that the Cu nuclear stage was moving

like a solid pendulum. The summed voltage for frequencies between 5 Hz and 30

Hz as a function of time of day for this particular coil and the horizontal coil on

the experimental platform are shown in figures 4.8 and 4.9. They both show a

very similar time dependence to the vibrations of the platform.

4.5 Solutions to the vibration problem

Vibration isolation is one of the key elements in the design of modern cryostats

(for example see [66]) and although care was taken to try and minimize the effects

of vibration in the design of the rotating cryostat it still causes problems. There

are several approaches that could be taken to solve the problem. One would be to

try and eliminate the source of vibration but this is clearly not viable. Another

would be to isolate the cryostat from the vibrations of the concrete block and a

third would be to prevent motion of the nuclear stage relative to the solenoid by

securing them together more firmly. The changes made were a combination of the

latter two approaches.

The first substantial change was to anchor a steel I-beam onto each of the two

beams on the roof of the shielded room that support the weight of the drive pulley

and rotating seals. This was done in order to stiffen the existing beams and prevent

them from flexing. This slightly reduced the amplitude of vibration on the rotating

platform but made very little difference to heat leak.
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The next major change made was to install three Firestone Airmount 224 air

springs [67] under each corner of the triangular support frame. Most of this work

was performed by Derek Cousins and Steve May. The air springs have a natural

frequency of around 2 Hz and hence are able to isolate the cryostat from most of the

vibration occurring in the concrete block. Figure 4.10 shows how the air springs

have been incorporated. Each air spring is housed in an aluminium container that

limits the maximum horizontal and vertical movement to a few millimeters. This is

needed in case the air bearings (or the compressor) fail which would lead to friction

between the cryostat and the bearings and as a consequence a large torque on the

support frame would be exerted and hence a shearing force on the air springs if

their horizontal motion was not constrained. The pressure in each air spring is

controlled by a Newport levelling valve [68] positioned adjacent to each leg which

acts to keep the air springs inflated to a constant height. The compressed air is

supplied by the compressor that also supplies both sets of air bearings.

Figure 4.11 shows vibration spectra measured on the rotating platform with the

air springs inflated. The vibration is at least three orders of magnitude smaller

than before the air springs were fitted (see figure 4.3a). There is also a peak at

∼2.5 Hz which corresponds to the natural frequency of the air springs.

The motion between the nuclear stage and magnet has been reduced by doubling

the number of spokes on each of the three cartwheels that hold the bottoms of

the nuclear stage, radiation shields and vacuum can together. The most notable

difference this has made is that the cryostat is now much less sensitive to distur-

bance caused during helium and nitrogen transfers and also when the cryostat is

accidently knocked. The dilution unit was also stiffened by inserting extra support

rods between the still plate and the plate below the concentric heat exchanger.

The heat leak, with the air springs inflated and the improved cartwheels installed,

is now ≤ 10 nW at a demagnetization field of 1 T, an improvement of two orders

of magnitude compared to the situation before the air springs were installed. This

means that the time taken for the experiment to warm through temperature region
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of the A-phase at 29 bar at constant field is now one week, even with many hours of

rotation each day. The cryostat has been rotated up to 1 rad/s with the air springs

inflated without any problems. There is some low frequency vibration (∼2-5 Hz)

when the cryostat is rotating but this does not cause any significant increase of the

heating of the nuclear stage. Overall, the improvements have made a considerable

difference and the cryostat is performing better than ever.
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Figure 4.2: Circuit used to obtain vibration spectra.
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Figure 4.3: Example vibration spectra on (a) the rotating platform, (b) the con-

crete block which supports the rotating cryostat and (c) on the support frame of

the other Manchester demagnetization cryostat which is located in the basement.
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Figure 4.4: Resonance curves for (a) vibration detector on rotating platform and

(b) horizontal coil on the bottom of the nuclear stage.
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Figure 4.5: Level of vibration between 5 and 30 Hz over a 24 hour period.
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Figure 4.6: Location of coils used to measure relative motion between the nuclear

stage and magnet.
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(c) Nuclear stage - horizontal axis (d) Nuclear stage - vertical axis

Figure 4.7: Example voltage spectra from each of the four search coils.
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Figure 4.8: Variation of vibration for the horizontal coil on the bottom of the

nuclear stage as a function of time of day.
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Figure 4.9: Variation of vibration for the horizontal coil on the experimental plat-

form as a function of time of day.
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Figure 4.10: Air spring assembly.
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Figure 4.11: Vibration spectrum on the rotating platform with the air springs

inflated. The corresponding spectrum before the air springs were installed is shown

in figure 4.3a.
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Chapter 5

Effect of rotation on texture

formation

5.1 Introduction

In section 2.1 it was shown that uniform textures are needed in order to observe

any quantitative effect due to orbital ferromagnetism. We have investigated the

conditions needed to produce a uniform texture. The uniformity of the texture is

characterized by the frequency shift obtained on sweeping magnetic field through

the Fréedericksz field, HF . A uniform texture shows a larger frequency shift than

a non-uniform texture due to a greater change in superfluid density (ρs⊥ → ρs‖).

Section 5.2 outlines how the field sweeps were performed and analyzed and gives

some examples for various textures. The effect of rotation whilst cooling through

the superfluid transition is described in section 5.3 and possible explanations are

then given in section 5.4.
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5.2 Field sweeps

The method used for measuring the frequency and bandwidth of the torsional os-

cillator was described in section 3.6. Just before the start of a sweep the computer

would estimate the present resonant frequency and change the drive frequency to

this value, then the drive frequency and voltage were kept constant during the field

sweep. The field sweep was then started after a short pause to allow the oscillator

to adjust to the change in drive frequency. The coil current was provided by an

Agilent 6628A DC precision current source. The current was typically ramped in

1 mA steps, although often with smaller steps close to HF . A pause of duration 6

seconds normally followed each step and then the lock-in outputs were measured

60 times over the next six seconds and the average values were then used to calcu-

late νR and νB using equations 3.16 - 3.18. The time constant of the lock-in was

3 seconds.

Figures 5.1 and 5.2 shows the response of the torsional oscillator for both directions

of magnetic field. There is a clear asymmetry between the two. The Fréedericksz

transition occurs at a different coil current. The difference in this example is 2.2

Gauss, far greater than the expected effect of orbital ferromagnetism. This is

caused by a vertical component of magnetic field that became trapped inside the

Nb shield when it became superconducting. It is for this reason that it is better

to sweep field in the same direction and reverse the direction of l when trying to

observe the effect of orbital ferromagnetism.

The magnitude of the trapped field was found to be greatest if the box that

completes the shielded room was raised before cooling down the cryostat. It seems

that the box has become slightly magnetized due to the main demagnetization

solenoid being ramped up and down over a period of many years. The trapped

field was therefore minimized to 0.8 Gauss by cooling down the cryostat (and hence

cooling the Nb shield into the superconducting state) before raising the box. A

magnetic shield made from a high permeability material known as mu-metal was
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Figure 5.1: Resonant frequency shift for field swept in opposite directions. The

difference is due to the presence of a 2.2 G trapped field.
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Figure 5.2: Shift in bandwidth for field swept in opposite directions.
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added in later runs of the experiment to reduce the trapped field to such a low

level that it could not be resolved between fields sweeps in opposite directions. In

all the following measurements that are presented in this and later chapters either

the trapped field has been measured and subtracted from the data or the data was

taken after the installation of the mu-metal shield.

Figures 5.3 and 5.4 shows two example field sweeps at a temperature of ∼ 0.88Tc.

One is for a uniform l-texture prepared by cooling slowly through Tc whilst rotating

the cryostat (more details are given in the following section) and the other for a

highly non-uniform texture that was formed by warming from the B-phase into the

A-phase, apparently causing a poly-domain sample with many regions of l-up and

down. In this case there is no sharp Fréedericksz transition due to the presence

of domain walls (see section 2.5.1) and the frequency shift is small due to small

change in the average superfluid density. It has also been found that such a texture

can support a persistent current due to vortices becoming pinned after rotation

has been stopped. More details are given in chapter 7.

The field sweeps were all taken whilst the 3He was slowly warming. The effect

of temperature drift during the sweeps was removed by subtracting a straight line

found by a least squares fit to data points taken at low field (before the texture

distorts) of the sweep of interest and the following sweep. The frequency was then

scaled such that the scaled frequency ν̄R was equal to one when H < HF and zero

at the minimum frequency. It was found that the scaled frequency data around

HF was well represented by the following empirical function

ν̄R =
(

1 + ep1(H−p2)
)−0.5

(5.1)

where p1 and p2 are fitting parameters. The Fréedericksz transition field is then

found by extrapolating tangent to the curve. Figure 5.5 shows an example.

In theory the resonant frequency should have an infinite slope at the Fréedericksz

transition for a uniform texture in an infinite slab (see chapter 2). In practice there

are several factors which can cause the transition to become rounded. Firstly, a real
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Figure 5.3: Resonant frequency shift for a uniform texture (closed square) and a

non-uniform texture (open circle) created by warming from the B-phase.
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slab has a finite size and is bounded by a perimeter wall. The boundary condition

that l must be perpendicular to the perimeter wall results in a region of distorted

texture at the outer edge of the slab (see figure 6.6) which will increase in size when

a magnetic field is applied (even for fields less than HF ). This will cause rounding

of the Fréedericksz transition with the severity of the rounding depending on the

aspect ratio (2R/D) of the slab [69]. In our case the aspect ratio of 40 means that

the effect of the outer edge can be ignored. Further rounding of the transition can

be caused if the slab upper and lower boundaries are not parallel (i.e. a position

dependent slab thickness) then the transition would occur at different places in the

slab at different magnetic fields since HF ∝ 1/D. This is unlikely though since the

normal state measurements fit the hydrodynamic theory so well (see chapter 3).

Another possibility is that the magnetic field is inhomogeneous over the volume of

the slab but this again is unlikely since the coil was carefully designed to provide a

homogeneous field. The most likely cause of rounding in this case is probably due

to the direction of magnetic field being at a slight angle to the normal to the slab

boundaries. The design of the experiment would probably have to be changed in

order to rectify this.

5.3 Effect of rotation

Rotating the cryostat during slow cooling into superfluid state is expected to pro-

duce an array of vortices with the lowest free energy. It was shown in section

2.5.2 that in our geometry continuous (Anderson-Toulouse (AT)) vortices should

be produced in preference to singular vortices when angular velocities greater than

0.066 rad/s are used. A previous experiment in Manchester [27], which also used

a slab geometry with a slab thickness of 0.1 mm, showed that cooling into the

superfluid state while rotating could produce a uniform texture. It is thought

that this is due to the effect of the AT vortices since they favour being embedded

in a texture of a particular direction. Rotation in the opposite direction to that
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used during cooling through the transition leads to either vortices of higher energy

being created or the direction of the texture has to be reversed. It is likely that

both processes occur and enough bursts of rotation eventually leads to a uniform

texture of the opposite orientation to the original one. It is this ability to obtain

and reverse uniform l-textures that led us to believe we might be able to detect the

expected effect of orbital ferromagnetism by first measuring HF for one direction

of l then reversing the texture and again measuring HF to look for small difference

that the orbital ferromagnetism is expected to cause (see chapter 2).

The effect of varying the angular velocity during cooling through Tc has been

investigated. The textural sample was prepared by starting rotation whilst in the

normal state. The liquid was then cooled slowly (typically with a cooling rate of

a few µK/min) into the superfluid state. Rotation was continued until the sample

had cooled well below Tc and the cryostat was then stopped. The uniformity of

the texture was then probed by sweeping the magnetic field and observing the

maximum shift in resonant frequency (∆νRM). Such measurement were done for

zero applied field (H = 0) and in the small field (H = 2.2 G) that was trapped

by the Nb shield. Any field applied in the vertical direction is likely to cause

non-uniformity in the texture since it favours d (and hence l) to be parallel to the

slab boundaries. Some people in the past have tried to improve the uniformity of

the texture by applying a field of several hundred Gauss parallel to the boundaries

[56] but they found this made little or no difference.

Figure 5.6 shows the maximum shift in resonant frequency ∆νRM as a function

of temperature for various rotation velocities that were used during cooling into

the superfluid state in a vertical field of 2.2 G. ∆νRM for a texture created by

warming from the B-phase into the A-phase is also shown for comparison. This

is found to create a highly non-uniform texture. The variation of ∆νRM as a

function of the preparation angular velocity for textures prepared with zero and

non-zero magnetic field is shown in figure 5.6. For the zero field case, varying

the angular velocity seemed to make little or no difference to the quality of the
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texture. There is scatter of around ±0.5mHz in the data as shown from the several

samples prepared with Ω = 0.42 rad/s. If several further short (e.g. a few minutes)

bursts of rotation in the same direction as that used whilst cooling, and with high

acceleration and deceleration (∼ 0.04 rad/s2), were applied then the texture could

be improved slightly but not below the lower dashed line shown on the figure.

Then any further rotations did not change ∆νRM so this was interpreted as being

the uniform texture. However, the application of a small field (∼ 0.5HF ) creates

a minimum in ∆νRM at Ω ∼0.42 rad/s which is the uniform texture. Cooling

at other angular velocities produces non-uniform textures but they can also be

improved by a further burst of rotation in the original direction.

No detailed model has yet been found to explain this behaviour, but there are

several speculations that we can make. It is possible that a different type of

vortex, one that does not help to orientate the texture, is nucleated when a small

field is applied such as the singular phase vortex described in chapters 1 and 2.

This seems unlikely as it would contradict the calculated phase diagram shown

in figure 2.14 which shows that singular vortices are less likely to occur at non-

zero fields, but the observed effect could be due to vortices with structures more

complicated than the radial AT vortex which was used to simplify calculations.

It could also be due to the way in which AT vortices interact with each other

and the surrounding bulk texture. The distance between the vortex centers for

double-quantum vortices is

d ≃

(

h

2msΩ

)1/2

(5.2)

so the distance between vortices decreases as Ω increases. The calculations in

chapter 2 show that the radial extent of the soft core of the vortices is comparable

to the slab thickness, so that low angular velocities correspond to the regime

where the cores are weakly interacting (d >> D) and high angular velocities lead

to strongly interacting cores (d < 2D). In the weakly interacting case, the vortices

may have little influence on the bulk l-texture surrounding them and so will not

improve the quality of the textures compared to those prepared without rotation.
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One might expect that the vortices will have a strong stabilizing influence on the

surrounding texture for the case when the cores are almost overlapping (d ≥ D).

Then at angular higher velocities the texture is distorted by overlapping cores or

perhaps an array of single quantum continuous vortices (such as Mermin-Ho) form,

leaving behind a non-uniform texture when rotation is stopped.

Clearly further measurements and more theoretical calculations of possible vortex

arrays and their free-energies are needed to clarify the situation. The zero-field

measurements need to be extended to Ω > 0.46 rad/s in order to see if the quality

of the texture deteriorates in the same way that the non-zero field measurements

do. Measurements at other fields would also help, such as determining if the

minimum in ∆νRM is dependent on the applied field. This should be the case

if the reason for the minimum is due to near-overlapping of the vortex soft cores

since applying a field perpendicular to the slab leads to the soft core size increasing,

resulting in overlapping occurring at lower Ω. Similarly, a field applied parallel to

the slab would reduce the size of the soft cores and hence increase the value of Ω

at which the cores should overlap. So although these preliminary measurements

cannot be fully explained they do show that such studies have the potential to

help understand some of the dynamics of vortices in a slab.

5.4 Measurement of HF

The measured values of HFD for both uniform and non-uniform textures that were

prepared in a magnetic field of 2.2 G are shown in figure 5.8. The uniform textures

are those prepared with Ω = 0.42 rad/s and the non-uniform textures are those

prepared with other values of Ω. The solid line shows the theoretical calculation,

given by equation 2.11:

HFD = π

(

K ′
b

∆χ

)1/2

.

At temperatures below Tc the quantity HFD depends on the Fermi liquid param-

eters F s
1 ,F a

0 and F a
1 as well as strong coupling corrections to the A-phase energy
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Figure 5.6: Maximum frequency shift for textures prepared with different rota-

tion velocities during cooling through Tc in a magnetic field of 2.2 Gauss. The

shifts observed for textures formed by warming from the B-phase are shown for

comparison.
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Figure 5.7: Maximum shift in resonant frequency at T = 0.89Tc as a function

of angular velocity during cooling through Tc. The open and closed circles are

for textures prepared in a vertical field of 2.2G and zero field respectively. The

upper dashed line denotes textures prepared by warming from the B phase and the

lower line shows the lowest observed, which is thought to correspond to a uniform

texture. The upper horizontal axis shows the intervortex spacing.
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gap. The numerical evaluation of the susceptibility anisotropy, ∆χ, and the bend-

ing energy, K ′
b is detailed in appendix C of [45]. In the present case, the BCS

energy gap was used without any strong coupling energy corrections.

The measurements are below the theoretical curve but are in excellent agreement

with the measurements of Hook et al. [18] (described in section 1.4.2). The uniform

texture typically has higher values of HF compared to the non-uniform textures,

which is what would be expected since defects in the texture (such as the domain

walls considered in chapter 2) provide a seed from which the distorted texture can

grow. There is also less scatter in the measurements for the uniform texture. The

spread in values for uniform textures is around 5% whereas it is almost 20% for the

other textures, similar to the 15% spread observed by Hook and coworkers. The

high spread is again likely to be due to the presence of defects of varying number

and perhaps of different types. It is shown in chapter 7 that the presence of defects

in the texture can lead to a persistent superflow remaining after rotation has been

stopped, which reduces HF because the superflow helps to distort the l texture.

The expected effect of orbital ferromagnetism, calculated in section 2.4, is to cause

shifts in HF of ∼ 0.1% HF between the zero field states that have l parallel and

antiparallel to the field direction. No shifts in HF have yet been observed in this

experiment that can be attributed to the orbital ferromagnetism. Repeated field

sweeps for a particular sample give values of HF that have a scatter of ∼ 1%.

The scatter is least when the heat leak into the superfluid is lowest indicating that

thermal currents in the superfluid may be responsible for some of the scatter. As

discussed above there is ∼ 5% scatter in the measurements of HF for several sam-

ples of uniform textures. There is certainly no systematic shift between textures

prepared with opposite senses of rotation (which it is thought leads to uniform

textures with l up and down). This may indicate that, although the uniformity

of the textures prepared whilst rotating during cooling is better in comparison to

those produced without rotation, there may still be some defects present which

can cause rounding of the transition and can also trap a small number of vortices
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after rotation is stopped. Assuming that we have been able to obtain uniform

textures, where the orbital magnetic moment of each Cooper pair is aligned in the

same direction, then we can place an upper limit on the orbital magnetic moment

of 10−10µB per atom. This is still an order of magnitude greater predicted value

[21]. It seems that the best way to try and measure the orbital ferromagnetism

would be to use much higher magnetic fields. It was shown in section 2.4.2 that

at very high fields (∼ 10 T) the ferromagnetic energy term dominates the dipolar

term such that a uniform l texture is restored along with a uniform d texture that

is perpendicular to l. Such an experiment may be possible using multi domain

samples (in which case a rotating cryostat would not be needed) since domains

with l antiparallel to H should grow at the expense of domains with l oriented in

the opposite direction.
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Chapter 6

Rotation while superfluid:

uniform textures

6.1 Introduction

Some of the effects of rotating the cryostat while cooling into the A-phase were

discussed in the last chapter where the vortex structures with the lowest free-

energy should be formed. This chapter is concerned with the effects of starting

and stopping rotation while already in the superfluid state. In this case the vortices

that are formed are those with the lowest critical velocity, even if they do not have

the lowest free-energy. The critical velocity for continuous vortices is lower than

for singular vortices due to the much larger vortex core. Experiments in Helsinki

have shown that singular vortices, as well as several other vortex structures, can

be formed by rotation while cooling into the superfluid state [70, 71] but that

rotation of the superfluid creates either double-quantum continuous vortices [72]

or continuous vortex sheets [73] depending on how the cryostat is rotated (e.g. in

the Helsinki experiments oscillatory rotation with high frequencies produces vortex

sheets).
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There are several reasons why continuous vortices in superfluid 3He-A form a more

ideal system that vortices in superfluid 4He . The main reason is that the vortex

core radii are much larger in 3He making vortex free states possible since the

vortices are less likely to be pinned by imperfections on the container walls. Also,

vortex nucleation is an intrinsic process for 3He whereas in superfluid 4He it

is generally an extrinsic process. In 3He-A the boundary condition forces the l

texture to be perpendicular to the container walls so that vortices are formed, due

to an instability in the texture, at least a textural bending length (∼ 10µm) away

from the walls.

The observed response of the torsional oscillator when the experiment is accel-

erated and decelerated is detailed in section 6.2 and a theoretical model of this

behaviour is described in section 6.3. Measured values of the vortex critical ve-

locity for uniform textures are presented in sections 6.4 and section 6.5 describes

the a preliminary study of what happens when the cryostat is rotated in different

directions. The effect of rotation upon non-uniform textures is described in the

following chapter.

6.2 Acceleration and deceleration of a superfluid

When a superfluid initially at rest with respect to its container (with radius R)

is then slowly rotated with angular velocity, Ω, the superfluid component will

remain stationary (vs = 0) and the normal fluid component will undergo solid

body rotation (vn = rΩ), so a counterflow is generated over the whole container

(figure 6.1a) . Further acceleration leads to the counterflow increasing until the

critical velocity for vortex nucleation, vc, is reached at the edge of the container.

At this point a vortex will be formed at the edge of the container and this will

then migrate towards the center due to the Magnus force acting on the vortex line

(figure 6.1b) and the counterflow velocity at the edge of the slab simultaneously

drops below vc. Increasing Ω leads to a new vortex being nucleated each time
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(a) (b) (c)

Figure 6.1: Accelerating superfluid (a) counterflow (b) vortex nucleation and (c)

vortex cluster surrounded by a vortex free counterflow region.

(a) (b) (c) (d)

Figure 6.2: Decelerating superfluid (b) vortex cluster expands with a constant

number of vortices, the counterflow region shrinks (c) the vortex cluster fills the

whole container with no counterflow region (d) further deceleration results in vor-

tices annihilating at the container walls.
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the counterflow velocity at the edge of the container exceeds vc so that a cluster

of vortices form in the central region of the container surrounded by a vortex-

free counterflow region near to the container walls (figure 6.1c). The radius of

the vortex cluster in the continuum approximation, where the number of vortices

Nv ≫ 1, is

Rc = Reff

√

1 −
Ωc

Ω
(6.1)

where Reff and Ωc = Reffvc is the radius and angular velocity at which the

nucleation of the first vortex occur. The number density of vortices in the cluster

is

nv =
2Ω

κ
(6.2)

where κ is the circulation of each vortex (κ = 2κ0 for double-quantum vortices).

The motion of the vortices mimic solid body rotation so that counterflow inside

the cluster is minimized (v̄s ≈ vn). The superfluid velocity outside the cluster is

inversely proportional to radius. Thus the critical counterflow at Reff is

vn(Reff ) − vs(Reff ) = ΩReff −
Nvκ

2πReff

= vc (6.3)

where Nv is the number of vortices present,

Nv =
2πR2

eff

κ
(Ω − Ωc). (6.4)

If Ω is now decreased from the maximum angular velocity reached, Ωmax, then the

vortex array will start to expand with the number of vortices constant and the

counterflow region will shrink (figure 6.2b). The radius of the cluster is then given

by

Rc = Reff

√

1

Ω
(Ωmax − Ωc). (6.5)

Eventually the vortex cluster will fill the whole container (Rc = R), with no

counterflow region (figure 6.2c), when the angular velocity reaches

Ω0 = Ωc +
R2

eff

R2
(Ωmax − Ωc) . (6.6)

Further deceleration then leads to vortices annihilating at the container walls (fig-

ure 6.2d) with the density of vortices given by equation 6.2. Eventually all the
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vortices will have been annihilated unless there is some mechanism that pins some

of the vortices, preventing them from annihilating, and leading to a metastable

persistent superflow after rotation has been stopped.

6.3 Rotation sweeps

We now turn to examine the behaviour of 3He-A in a slab when it is rotated.

The sweeps of angular velocity were carried out using a similar procedure to the

magnetic field sweeps (described in section 5.2). The rotation was changed in

steps with a pause in between each step to allow the texture and vortices to

settle. The pause allowed depended upon the increment in angular velocity and

varied between 30 to 300 seconds. The resonant frequency and bandwidth of the

oscillator were measured several times after the pause and the average value of

these measurements was used. Then the angular velocity was changed and the

procedure was repeated.

A typical plot of the behaviour of resonant frequency and bandwidth observed

during a sweep of angular velocity is shown in figures 6.3 and 6.4. The cryostat

was rotated from stationary to 0.42 rad/s and then back to stationary. At low

angular velocities there is no change in frequency and bandwidth, until a critical

value of angular velocity is reached and then there is a sharp transition both in the

resonant frequency and in the bandwidth. This is because the counterflow at the

edge of the slab reaches the Fréedericksz threshold velocity, vF , and the texture in

that region becomes distorted. Further increases of angular velocity then results

in more texture becoming distorted. Eventually the critical velocity for vortex

nucleation, vc, is reached, leading to a vortex cluster in the center of the slab that

increases in size with increasing angular velocity. The vortices are embedded in

a region of uniform texture that extends slightly outside the cluster resulting in

the resonant frequency increasing. The counterflow belt then consists of a narrow

region of uniform texture and an outer region of distorted texture separated by
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the radius RUT at which the counterflow is

vn(RUT ) − vs(RUT ) = vF . (6.7)

Deceleration then causes the vortex cluster to expand and the region of distorted

texture shrinks, causing the resonant frequency to increase, until eventually the

vortex cluster fills the whole slab and the resonant frequency returns to the starting

value when RUT = R. Further deceleration then leads to vortices annihilating at

the outside walls of the slab. Both the frequency and bandwidth return to their

original values when rotation has stopped.

There are thus five distinct regimes observed during the rotation sweeps. The first

three occur during acceleration and the other two during subsequent deceleration.

They are each described in order below:

1) When Ω < vF/R, there is a uniform texture throughout the whole slab (RUT =

R) and hence there will be no shift in the resonant frequency.

2) When vF/R ≤ Ω < Ωc, the radius of the uniform texture is RUT = vF/Ω and

the texture is distorted by the flow everywhere outside this radius. The amount

of distortion is greatest near to the perimeter of the slab where the counterflow

velocity is greatest.

3) When Ωc ≤ Ω ≤ Ωmax, there is a vortex cluster in the center of the slab with

a radius given by equation 6.1 and the number of vortices is given by equation

6.4. The texture will be distorted when the counterflow exceeds the Fréedericksz

velocity, so the radius of the region with uniform texture is found from

vF = ΩRUT −
R2

eff

RUT

(Ω − Ωc) (6.8)

which has the solution

RUT =
1

2Ω

(

vF +
√

v2
F + 4ΩR2

eff (Ω − Ωc)
)

. (6.9)

4) When ΩA = vFR + R2
effR

2(Ωmax − Ωc) ≤ Ω ≤ Ωmax during deceleration the

vortex cluster expands with a constant number of vortices. The radius of the
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Figure 6.3: Resonant frequency of torsional oscillator during a sweep of rotation.

The solid and open circles represent acceleration and deceleration respectively.
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uniform texture is then similar to the previous equation,

RUT =
1

2Ω

(

(vF +
√

v2
F + 4ΩR2

eff (Ωmax − Ωc)
)

. (6.10)

5) When Ω <= ΩA during deceleration the counterflow belt will only consist of uni-

form texture since the counterflow velocity has been reduced below the Fréedericksz

velocity and so RUT = 1.

Figure 6.5 combines the above five regimes, showing how RUT/R varies as a func-

tion of angular velocity for a complete cycle of rotation between 0 and 0.5 rad/s.

The simplest way to convert RUT into the torsional oscillator frequency shift is

to assume that the distorted texture is purely azimuthal. This is a good approx-

imation apart from the small region just outside RUT where the texture is only

slightly distorted and the region close to the slab boundaries where l is forced to

be perpendicular to the walls. The frequency shift is given by

∆νR = ∆νRaz

(

(

RUT

R

)4

− 1

)

(6.11)

where the power of four allows for the fact that the frequency shift is greatest for

fluid nearer to the outer perimeter of the slab since the contribution to the moment

of inertia is proportional to R4 and ∆νRaz is a scaling factor that is adjusted to fit

the experimental data.

Equation 6.11 and the simple model for RUT were used to perform least squares

fits to the experimentally observed frequency shifts during sweeps of rotation.

Initially, Reff , vF , Ωc and ∆νRaz were all used as fitting parameters. It was

found that Reff appeared to be constant for all temperatures below 0.98Tc with

an average value of Reff = 4.72 ± 0.01 mm (compared to the slab radius, R = 5

mm), giving the distance from the side walls where the vortices are created as

R−Reff = 0.28 mm. This is comparable to the slab thickness of 0.26 mm which

is not surprising since the texture within one slab thickness from the slab perimeter

is expected to be distorted and additionally constrained by the presence of another
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boundary. A numerical simulation of the texture in close to the side walls is shown

in figure 6.6 (similar to the calculations of Maki [49]). Figures 6.7 to 6.10 show

the frequency shift for four rotation sweeps that were performed at approximately

the same temperature but with different values of Ωmax and figures 6.11 to 6.14

show the frequency shifts for several rotation sweeps with the same value of Ωmax

but at different temperatures. The solid lines are least squares fits using the

model described above and three adjustable parameters (vF , Ωc and ∆νRaz). The

overall quality of the fits is good considering the simplifying assumptions that are

used in the model. There is rounding of the textural Fréedericksz flow transition,

which is not accounted for in the model, due to the region of distorted texture

at the outer perimeter where the texture will change even for angular velocities

less than ΩF . There is also some disagreement between the data and the model

fits at angular velocities where there is a clear change in behaviour, such as at

Ωc. This is not surprising since the model is based upon extreme limits where

there are either no vortices or very many vortices and so it is unlikely that the

model will give a good description of the system at angular velocities that are in

between these two regimes. The values of ∆νRaz found from the fits are plotted

against temperature in figure 6.15. Comparison with figure 5.6 shows that the

frequency shifts caused by applying field and rotation are similar. The changes in

the dimensionless parameter F1 (see chapter 3) are of the right order of magnitude

when compared to the expected responses of the torsional oscillator shown in figure

3.10.

6.4 Vortex critical velocity

The critical velocity for nucleation of double-quantum continuous vortices in 3He-

A has been extensively studied by the Helsinki group using NMR [74]. They used

three different cylindrical sample containers with varying degrees of surface rough-

ness. No systematic correlation between vc and the roughness of the container used
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Figure 6.7: Rotation sweep with Ωmax = 0.183 rad/s and T = 0.91Tc. The solid

curve is a least squares fit using the model described in the text.
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Figure 6.8: Rotation sweep with Ωmax = 0.228 rad/s and T = 0.92Tc.
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Figure 6.9: Rotation sweep with Ωmax = 0.343 rad/s and T = 0.92Tc.
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Figure 6.10: Rotation sweep with Ωmax = 0.457 rad/s and T = 0.92Tc.
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Figure 6.11: Rotation sweep with Ωmax = 0.457 rad/s and T = 0.89Tc.
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Figure 6.12: Rotation sweep with Ωmax = 0.457 rad/s and T = 0.95Tc.
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Figure 6.13: Rotation sweep with Ωmax = 0.457 rad/s and T = 0.97Tc.
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Figure 6.14: Rotation sweep with Ωmax = 0.457 rad/s and T = 0.99Tc.
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was found indicating that nucleation of vortices in 3He-A is an intrinsic process.

The values of vc as a function of temperature showed considerable scatter, with

the lower values around 0.25 mm/s and the upper values at 1.5 mm/s, although

the scatter was reduced when the sample was slowly cooled into the superfluid

state while rotating which should from the equilibrium texture and then reason-

able agreement with the theoretically calculated critical velocities was obtained

[75]. It was also found that vortices were sometimes formed in a burst like manner

when ≈ 90 vortex lines were suddenly nucleated. This was explained as being due

to a textural transition to a state where the critical velocity for vortex nucleation

was lower.

Measurements of vc at different temperatures for several samples that were thought

to be uniform textures are shown in figure 6.16. The values are of the same order

as the critical velocities found in the Helsinki experiment, a strong indication that

the vortices are also continuous in our experiment. The scatter of the data is

considerably less in comparison to the Helsinki work, probably because there is

better control over the texture in our slab geometry.

6.5 Rotation sweeps in both directions

All of the rotation sweeps presented in the previous sections of this chapter were

performed using the same direction of rotation as that used while cooling into

the superfluid state. Rotation sweeps with the opposite sense of direction are

slightly different. Figure 6.17 shows the frequency shifts for three rotation sweeps

with small angular velocities (|Ω| < |Ωc|) for different directions of rotation. The

magnitude of ΩF is noticeably reduced for the first sweep in the opposite direction

and for all further sweeps in either direction with |Ω| < |Ωc|. This difference is due

to a small persistent superflow near the edge of the slab consisting of approximately

15 quanta of circulation caused by vortices remaining in the slab. Rotation in the

opposite direction helps to unpin these vortices and results in a lower value of ΩF .
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Figure 6.15: Frequency scaling factor obtained from least squares fits as a function

of temperature.
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Figure 6.16: Critical velocity for vortex nucleation as a function of temperature.

The critical angular velocity is Ωc = vc/Reff where Reff is the effective radius of

4.72 mm.
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Figure 6.18 shows a series of rotation sweeps that were all performed in the same

direction as that used while cooling. The first sweep was done before any rotation

in the opposite direction and then all subsequent sweeps were performed after the

cryostat had been rotated for one minute in the opposite direction at very small

angular velocities. These further sweeps have values of ΩF that are shifted to lower

and lower angular velocities with steps in between each value corresponding to a

reduction in the number of vortices that are trapped. The fact that the vortices

can be unpinned by rotation at very small angular velocities in the other direction

suggests that they are only weakly pinned. The source of the pinning is currently

unknown but it is possible that extrinsic influences such as imperfections in the

epoxy surfaces or the edge of the fill line in the center may play a role. The next

chapter describes the much stronger pinning caused by defects in the texture.

Figure 6.19 show several rotation sweeps for both directions of rotation after the

trapped vortices have been removed. There is still a small difference between the

two directions with the sweeps in the original direction of rotation showing a much

more rounded transition. Every sample of uniform texture that has been studied

so far has shown this slight asymmetry after pinned vortices have been removed.

A possible explanation for the difference is that in every single domain l texture

there should always be one quantum of circulation at the outer perimeter due to

the bending of the l texture to satisfy the boundary condition (see figure 6.6),

resulting in a small but well defined persistent current. It is hoped that numerical

simulations will show if this is the correct explanation.
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Figure 6.17: The frequency shift for three rotation sweeps with different directions

of rotation. The black symbols are for a sweep performed with the same direction

of rotation as that used while cooling (positive Ω). A sweep in the opposite direc-

tion (red symbols) was then performed followed by another sweep in the original

direction (blue symbols).
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Figure 6.18: Frequency shifts for several rotation sweeps, all with the same sense

of rotation, performed after very small rotations in the opposite direction. ΩF

decreases each time due to some of the vortices being unpinned.
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Figure 6.19: Several rotation sweeps for a texture that has been rotated in both

directions to remove trapped vortices. The blue sweeps are for angular velocities

in the same direction as that used while cooling and the red sweeps are for the

opposite direction.
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Chapter 7

Rotation while superfluid:

non-uniform textures

7.1 Introduction

The previous chapter discussed rotation of an initially uniform texture and showed

how two critical velocities could be obtained from the rotation sweeps. This chapter

will discuss what happens when non-uniform textures are rotated. The behaviour

is quite different to that of the uniform textures, where weak pinning of a few

vortices was observed, since it seems that a substantial number of vortices can be

strongly pinned by defects in the texture, leading to a persistent superflow near

the perimeter of the slab after rotation has been stopped. As shown in chapter

5, non-uniform textures can be obtained by cooling from the normal state with

no rotation or by warming from the superfluid B-phase. The effect of rotation on

both these types of texture is discussed in section 7.2 and the results of an initial

investigation into the lifetime and decay of the persistent superflow is described

in section 7.3. Section 7.4 shows how the persistent currents depends upon the

angular velocity of the cryostat and section 7.5 describes results obtained from

magnetic field sweeps on textures with and without a persistent current. Section
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7.6 discusses possible models to explain the magnitude of the persistent currents.

7.2 Rotation sweeps

The rotation sweeps for uniform textures, described in the previous chapter, were

reproducible and showed little hysteresis in either the resonant frequency or the

bandwidth. This is not the case for non-uniform textures. Figures 7.1 and 7.2

show the shifts in resonant frequency for a series of rotation sweeps performed on

a texture formed by warming into the A phase from the B phase while the cryostat

was stationary. The first sweep of rotation had positive Ω up to a maximum of

0.42 rad/s. When rotation was started the frequency initially decreased before

starting to increase at higher angular velocities. The magnitude of the maximum

shift of resonant frequency is less than that for uniform textures at a comparable

temperature, indicating that the uniformity of the texture is poor. Deceleration

led to the frequency increasing before levelling off, similar to the measurements

on uniform textures. However, in this case, the frequency then decreases as the

cryostat decelerates to low angular velocities such that the frequency after rotation

has stopped is clearly lower than the initial value. A second sweep of rotation,

in the same direction as the first, was then performed. This time the frequency

increased for small angular velocities. It reached a maximum at Ω ≃ 0.03 rad/s

before decreasing. The behaviour during the rest of the sweep was then similar

to that observed during the first sweep. All further sweeps for this direction of

rotation were identical to the second sweep. Two sweeps of rotation in the opposite

sense (negative Ω) were then performed. These sweeps showed similar behaviour to

the first and second sweeps in the positive direction because the frequency initially

decreased when rotation was started on the first sweep and the frequency then

increased during the first part of the second sweep. The measurements described

above clearly show that the superfluid had some memory of the previous rotation

history even after rotation had been stopped. This must be due to a persistent
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Figure 7.1: Resonant frequency shifts for a series of rotation sweeps performed on

a texture created by warming from the B phase. The central region is shown in

figure 7.2. The magnitude of the maximum frequency shift is less for the sweeps

with negative Ω due to the sweeps being performed at a higher temperature.
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superflow resulting from some vortices that are pinned and therefore unable to

annihilate at the container walls. Such behaviour was not observed for uniform

textures so the pinning must be due to defects (e.g. domain walls) in the texture.

The maximum observed in the resonant frequency for small angular velocities is

expected to correspond to the minimum counterflow when the angular velocity of

the cryostat (and hence the normal component of the fluid) matches the angular

velocity of the superflow, Ωpers at the effective radius for vortex nucleation, Reff ,

which was found from the rotation sweeps on uniform textures described in chapter

6. When the cryostat is stationary there is a small but non-zero counterflow which

will tend to distort l in regions where the texture is non-uniform (i.e. at domain

walls), leading to a decrease in frequency. The frequency and bandwidth shifts for

rotation sweeps with small angular velocities (Ω < Ωc) performed after rotation at

0.4 rad/s are shown in figures 7.3 and 7.4. The angular velocity of the persistent

current was deduced from the position of the maximum frequency. For sweeps up

to angular velocities not exceeding the critical value for vortex nucleation (Ωc) the

frequency shifts were reproducible during acceleration and deceleration and the

angular velocity of the persistent current was steady for many hours (see section

7.3). Persistent currents could also be trapped in textures that were prepared

by cooling from the normal state (N to A) without rotation. Figure 7.5 shows the

frequency shift for such a sample. The behaviour is similar to the sweeps described

above with the frequency increasing when rotation is started, but in this case the

frequency at low angular velocity shows a flat plateau, with a width ∼ 2ΩF , and

then a sharp decrease in frequency instead of the rounded peak observed for the

B to A textures. This suggests that the texture near the perimeter of the slab is

more uniform for the N to A textures. A persistent current could also be trapped

in some textures created while rotating during cooling into the superfluid state if

the cooling rate was too high. A series of rotation sweeps for such a texture is

shown in figure 7.6. The large frequency shifts indicate a near uniform texture.

The magnitude of the maximum possible trapped persistent current for all of the

above textures is approximately the same, Ωpers ≃ 0.03 rad/s, corresponding to
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Figure 7.3: Resonant frequency shifts for small angular velocities. The solid and

hollow symbols are during acceleration and deceleration respectively. The solid

line is a quadratic polynomial fit to the points during acceleration. The maximum

frequency is not at Ω = 0 due to the presence of a small persistent current, Ωpers.
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approximately 60 circulation quanta (or 30 doubly quantized vortices).

7.3 Lifetime and decay of persistent currents

The lifetime and decay of the persistent superflow were investigated by sweeping

angular velocity from zero to 0.05 rad/s and then back to zero approximately every

10 hours after a persistent current had been generated. This enabled the position

of the maximum in the resonant frequency, and hence Ωpers, to be monitored as

a function of the time since the state had been created. Figure 7.7 shows the

variation of Ωpers with time for a texture that had been created by warming from

the B-phase (see previous section). In this case, there was no observable decay

in Ωpers for the 33 hours after it had been created, but then there was a jump

downwards in Ωpers of ≃ 0.013 rad/s during a routine cryogen transfer. Another

jump of approximately the same magnitude occurred 25 hours later since there

was a jump upwards in the resonant frequency of the oscillator (see figure 7.8).

This second jump occurred on a day where there was very little activity in the

department.

An initial study of the lifetime of a persistent current in a texture formed by

cooling from the normal state (without rotation) found no observable decrease in

Ωpers during the 60 hours after it had been created.

7.4 Dependence of Ωpers on Ωmax

Figures 7.9 and 7.10 show the dependence of Ωpers upon the maximum angular

velocity of the cryostat during a rotation sweep for textures prepared by warming

from the B phase and by cooling from the normal state respectively. The cryostat

was not rotated during the transition into the A phase so there was no initial per-

sistent current in both cases. Rotation sweeps were then performed with positive

123



-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

 

 

S
h

if
t 

in
 b

a
n

d
w

id
th

 (
m

H
z
)

Angular velocity Ω (rad/s)

Figure 7.4: Shifts in bandwidth for small angular velocities. The solid and hollow

symbols are during acceleration and deceleration respectively.
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Figure 7.5: Example rotation sweep for a texture created by cooling from the

normal state while the cryostat was stationary. The solid and open symbols are

for acceleration and deceleration respectively.
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Figure 7.6: Rotation sweeps for a texture formed by rapid cooling from the normal

state while rotating with positive Ω. The numbers denote the order in which the

sweeps were performed.
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Figure 7.8: Jump in resonant frequency due to decay of persistent current. This

event occurred 58 hours after the persistent current had been created.
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Ω and the maximum angular velocity, Ωmax, was increased on each subsequent

sweep. The persistent current angular velocity for each value of Ωmax was found

by measuring the position of the frequency maximum during acceleration on the

following sweep. The sweep with Ωmax = 0.46 rad/s was repeated and then the

process was repeated for rotation in the opposite sense (negative Ω).

The maximum persistent current that could be sustained for both types of textures

was ≃ 0.03 rad/s. However, the behaviour for small Ωmax was different. In the B

to A case, the minimum angular velocity (Ωmax = Ωc) needed to create a non-zero

persistent current is less than 0.035 rad/s but for the N to A case the critical

angular velocity is Ωc = 0.06 rad/s and Ωpers reaches a maximum when Ωmax ≃

2Ωc.

If the cryostat is then rotated in the opposite direction Ωpers initially decreases until

eventually a persistent current in the other direction is generated. The angular

velocities where Ωpers = 0 are approximately -0.03 rad/s for the B to A texture and

-0.07 rad/s for the N to A texture. The cycle was not completed by then rotating in

the original direction but further studies are currently being carried out to study

the behaviour of Ωpers for these texture, including experiments to test whether

reproducible behaviour is observed over several cycles of Ωmax. Possible models

that could explain the persistent currents are discussed in section 7.6 including an

explanation of the lines on figures 7.9 and 7.10.

7.5 Field sweeps

The frequency shift for number of field sweeps are shown in figures 7.11 to 7.13.

Figure 7.11 shows two field sweeps for a N to A (with no rotation) texture. The

first sweep was performed after cooling into the superfluid transition but before the

cryostat was rotated. The transition field, HF is 3.7 Gauss but the rounding of the

transition and the frequency shift indicate that the texture was non-uniform. The
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Figure 7.9: Persistent current angular velocity as a function of maximum angular

for a texture prepared by warming from the B-phase. The solid line shows the

expected behaviour in the limit of strong pinning.
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Figure 7.10: Persistent current angular velocity as a function of maximum angular

for a texture prepared by cooling from the normal state with no rotation. The

dashed line indicates the slope expected for the case of strong pinning.
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cryostat was then rotated up to 0.46 rad/s and then stopped in order to generate a

persistent current. The second field sweep was then performed. There are several

differences from the first sweep. The transition field is much lower and also more

rounded due to the presence of persistent superflow assisting the field in distorting

the texture. The frequency shift is also larger and does not tend to the same value

at high field as the previous sweep. This indicates that the texture is distorting in

a different manner. The texture during the first sweep was likely to be planar but

the persistent superflow would favour an azimuthal texture (see chapter 3) due to

the orienting effect of the counterflow.

Figure 7.12 shows two field sweeps for a texture created by rapidly cooling from

the normal state. The cryostat was rotated during the superfluid transition and

when rotation was stopped a persistent current remained. A field sweep was then

performed, this showed similar behaviour to the second field sweep described for

the case above. A second field sweep was done while the cryostat was rotating

at a constant angular velocity the same magnitude and direction as that of the

persistent current, Ω = Ωpers. This field sweep had a higher transition field because

the orienting effect of the persistent superflow was minimized by matching the

normal and superfluid angular velocities (i.e. the counterflow was minimized).

Figure 7.13 shows field sweeps for a texture created by warming from the B phase.

One was before the cryostat was rotated and the second was carried out after

rotation had generated a persistent current. In this case, unlike the measurement

described above, there is very little that is different between the field sweeps.

This is perhaps because the texture is highly non-uniform so the presence of the

persistent superflow make little difference to how the texture distorts.
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Figure 7.11: Frequency shift for magnetic field sweeps before (solid squares) and

after (open circles) rotation for a texture prepared by cooling from the normal

state with the cryostat stationary.
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Figure 7.12: Frequency shift for magnetic fields when a persistent current is

present. One is with the cryostat stationary (open squares) and the other is when

the cryostat is rotating with angular velocity 0.034 rad/s (solid squares).
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7.6 Possible models

It is clear when comparing the results for defect-free textures in the previous chap-

ter and those of non-uniform textures with many defects presented in this chapter

that the observed behaviour is strikingly different. The textures are hysteretic due

to a persistent superflow generated by trapped vortices. The defects in the texture

are in some way responsible for trapping the vortices such that there is an energy

barrier preventing the vortices from escaping although the actual mechanism re-

sponsible for this behaviour has not yet been found. Another difference is that

the critical velocities for vortex nucleation (and hence generation of a persistent

current) for the non-uniform textures are at least a factor of two smaller than for

uniform textures (figure 6.16). This may indicate that the vortices are nucleated in

regions of inhomogeneous texture or that the structure of the vortices is different

such that perhaps the vortex sheet, studied extensively in Helsinki, may play some

sort of role.

No model has yet been developed to completely explain the observed hysteresis

of Ωpers with Ωmax although there are a few candidates. It is possible that the

experimental data could be due to a combination of several mechanisms. The solid

lines in figures 7.9 and 7.10 show behaviour that is very similar to that expected if

all of the vortices are pinned. The expected hysteresis loop for Ωpers against Ωmax in

the limit of strong pinning, along with schematic diagrams showing what happens

at each stage, is shown in figure 7.14. When the sample is first rotated (regime

1 in figure 7.14), no vortices are generated until Ωmax = Ωc. Ωpers then increases

linearly with increasing Ωmax (regime 2) due to all of the vortices becoming pinned.

However, Ωpers reaches a constant maximum value of Ωc for Ωmax > 2Ωc (regimes 3

and 4) due to the nucleation of vortices of opposite circulation (antivortices) during

deceleration when the counterflow at the edge of the slab reaches vn − vs = −vc.

Rotation in the opposite sense (regime 5) leads to more antivortices being produced

until a state with Ωpers = 0 (regime 6) is reached at Ωmax = −Ωc. Further rotation

in this direction will then generate a persistent current with negative circulation,
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Ωpers < 0.

Comparison of the strong pinning model with the experimental data for the B to

A (figure 7.9) and N to A (figure 7.10) shows a number of similarities although

the agreement is not perfect in both cases. The B to A texture does have a

maximum value of Ωpers that is comparable to Ωc but the slope of Ωpers against

Ωmax is less than what is expected from the model. However, when the sample was

rotated in the opposite direction the agreement was considerably better. Ideally,

several cycles of the hysteresis loop should be performed because the behaviour

may be different when the sample is first rotated. The major difference between

the model and the data for the N to A texture is that the maximum persistent

current is a factor of two less than the model would predict since the maximum

is ≃ 0.5Ωc hence the slope of the data points for Ω < 2Ωc is less than the model

predicts, as for the B to A texture. The fact that the maximum possible Ωpers for

both types of texture are similar, even though the critical velocities are about a

factor of two different, suggests that perhaps the number of vortices that can be

trapped is limited by a maximum pinning force which is the same for both types

of texture. Again, further study is needed to clarify the underlying mechanisms.

It may also be useful to repeat the experiment using a different technique that is

non-invasive such as NMR. The torsional oscillator technique used in this work is

mainly sensitive to the effects of flow on the l texture at the perimeter of the slab

whereas NMR experiments are sensitive to the number and structure of vortices

and hence would provide useful insight into the behaviour of the trapped vortices.

The disadvantage of NMR is that it requires a finite magnetic field, whereas the

torsional oscillator can be used in zero and non-zero fields.
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Figure 7.13: Frequency shift for magnetic field sweeps before (solid squares) and

after (open circles) rotation for a texture prepared by warming from the B phase.
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Chapter 8

Conclusions

The original motivation of this experiment was to measure the predicted orbital

ferromagnetism. We have calculated its expected effect on textures in a slab ge-

ometry but we have not been able to observe these effects experimentally. At the

moment we can claim that the orbital ferromagnetic moment must be less than

10−10µB per atom. This upper limit is still an order of magnitude greater than

Leggett’s prediction [21]. Our calculations show that experiments utilizing very

high fields (∼ 10 T) may be more successful because the ferromagnetic energy

term would then dominate the dipolar energy resulting in a uniform texture with

l and d perpendicular to each other.

We have also calculated other textures including a dipole-locked domain wall and

the simplest continuous vortex for our geometry, which is the double quantum ra-

dial Anderson-Toulouse vortex. Our calculations suggest that continuous vortices

should be formed in preference to singular vortices when cooling into the super-

fluid state for the angular velocities used during this experiment (∼ 0.4 rad/s).

Further work is planned to extend these calculations to AT vortices that have an

azimuthal component of l and to also include the effects of dipole-unlocking.

The magnetic field induced Fréedericksz transition has been used to qualitatively
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study the uniformity of the texture by observing both the sharpness of the transi-

tion and the magnitude of the maximum frequency shift. Uniform textures were

obtained by cooling through the superfluid transition whilst rotating in zero field

at any Ω. The situation was more complicated when a magnetic field of 2.2 G

was used during cooling but uniform textures could only be obtained using an

angular velocity of Ω ≃ 0.4 rad/s. The Fréedericksz transition was found to be

sharpest for uniform textures since the presence of defects and persistent currents

in non-uniform textures resulted in transitions that were much more rounded.

We have developed a simple model to explain the resonant frequency shifts ob-

served when the cryostat is rotated while in the superfluid state. The excellent

agreement between the model and experiment over a wide temperature range sug-

gests that the behaviour of the vortex cluster is well described by the continuum

model. Our results provide clear evidence that the vortices are created at an ef-

fective radius that is approximately one slab thickness from the outer perimeter.

We have measured both the critical velocity for alignment of the l texture by flow

and the critical velocity for vortex nucleation. The values for the vortex critical

velocity in our geometry are consistent with previous experiments in other geome-

tries [74]. We find that what we identify as uniform textures are able to trap

approximately 10 quanta of circulation after rotation has been stopped. However,

these pinned vortices are easily removed by small angular velocity rotations in the

opposite direction of rotation suggesting that the pinning is quite weak.

Initial studies of the effect of rotation upon non-uniform textures formed by cooling

from the normal state and by warming from the B phase (without rotation in

both cases) has showed that a substantial persistent current of approximately

60 circulation quanta in either direction can be generated and sustained for many

hours in both these textures. The lack of such an effect in uniform textures suggests

that the persistent currents must be stabilized by defects in the texture and not

by some external constraint. The exact mechanism causing this behaviour is not

yet understood, and this experiment is still ongoing in order to clarify the role of
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specific topological defects in the hysteretic behaviour of the persistent currents as

a function of the angular velocity of the cryostat, further experiments using other

techniques may also provide further insight.

Combining all of the above observations we are able to characterize the behaviour

of different textures. Uniform textures exhibits sharp textural transitions due to

applied flow and magnetic fields and the magnitude of the maximum resonant

frequency shifts of the torsional oscillator is large. The vortex critical velocity

is the highest observed in our experiments and there is little hysteresis in rota-

tion sweeps. Approximately 10 circulation quanta can be weakly trapped after a

rotation sweep, but they can be removed by rotating in the opposite direction.

After that a uniform oriented texture with a single quantum of circulation at the

outer perimeter of the slab is achieved. On the other hand, the textures formed

by warming from the B phase exhibit smeared textural transitions with smaller

frequency shifts and the vortex critical velocity is at least a factor of three lower.

This texture also shows hysteretic behaviour when rotation is swept due to long

lived persistent currents. The maximum observed persistent current corresponds

to approximately 60 trapped circulation quanta. Finally, the properties of tex-

tures created by cooling from the normal state without rotation are somewhere in

between the previous two cases. The textural transitions are sharp and the fre-

quency shifts and vortex critical velocity fall somewhere in between the values of

the other two textures. The behaviour is again hysteretic when rotation is swept

with a maximum persistent current of approximately the same magnitude as the

B to A texture.
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