
RESEARCH Open Access

phishGILLNET—phishing detection methodology
using probabilistic latent semantic analysis,
AdaBoost, and co-training
Venkatesh Ramanathan* and Harry Wechsler

Abstract

Identity theft is one of the most profitable crimes committed by felons. In the cyber space, this is commonly

achieved using phishing. We propose here robust server side methodology to detect phishing attacks, called

phishGILLNET, which incorporates the power of natural language processing and machine learning techniques.

phishGILLNET is a multi-layered approach to detect phishing attacks. The first layer (phishGILLNET1) employs

Probabilistic Latent Semantic Analysis (PLSA) to build a topic model. The topic model handles synonym (multiple

words with similar meaning), polysemy (words with multiple meanings), and other linguistic variations found in

phishing. Intentional misspelled words found in phishing are handled using Levenshtein editing and Google APIs

for correction. Based on term document frequency matrix as input PLSA finds phishing and non-phishing topics

using tempered expectation maximization. The performance of phishGILLNET1 is evaluated using PLSA fold in

technique and the classification is achieved using Fisher similarity. The second layer of phishGILLNET

(phishGILLNET2) employs AdaBoost to build a robust classifier. Using probability distributions of the best PLSA

topics as features the classifier is built using AdaBoost. The third layer (phishGILLNET3) further expands

phishGILLNET2 by building a classifier from labeled and unlabeled examples by employing Co-Training.

Experiments were conducted using one of the largest public corpus of email data containing 400,000 emails.

Results show that phishGILLNET3 outperforms state of the art phishing detection methods and achieves F-measure

of 100%. Moreover, phishGILLNET3 requires only a small percentage (10%) of data be annotated thus saving

significant time, labor, and avoiding errors incurred in human annotation.

Keywords: identity theft, machine learning, natural language processing, phishing, probabilistic latent semantic

analysis, boosting, co-training

1 Introduction
Stealing a person’s identity is one of the most profitable

crimes committed by criminals. Among 1.3 million com-

plaints received by the Federal Trade Commission in

2009, identity theft ranked first and accounted for 21% of

the complaints costing consumers over 1.7 billion US

dollars [1]. Identity theft has been around for many years

while the means of committing it has changed with tech-

nology. The traditional way criminals steal a person’s

identity is by killing the individual. Another way to steal

identity is using phone scams, where in, criminals inform

the person that they have won a sweepstake, and

convince the user to reveal some personal information to

claim the money. The more popular method of identity

theft that is prevalent even today is called Dumpster

Diving. When people discard letters, financial records,

and other personal information in the garbage dump

without shredding, criminals scavenge those dumps look-

ing for sensitive information such as credit card, bank

account social security numbers, and use that informa-

tion to commit crimes.

With the advent of Internet, the most popular way to

steal identity is through “phishing”. Like in traditional

fishing where fishermen trolls the river in a boat to catch

fish, in “phishing”, attackers trolls the Internet using

email message with convincing content as baits to steal

users personal information. The email directs the user
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via a hyperlink to a website owned by criminals that

looks very similar to a legitimate website. The user will

then be asked to enter personal and financial information

either to update existing information or to purchase a

product. In reality, this lets the criminal to have access to

that valuable information which they then use to commit

fraud or to sell it to a bidder. Phishers can also trick

users into downloading malicious codes or malware after

they click on a link embedded in the email. This is a use-

ful tool in crimes like economic espionage where sensi-

tive internal communications can be accessed and trade

secrets stolen. Phishing has been around since 1996 but

has become more common and more sophisticated.

Recent phishing attack on the Gmail system stole emails

of US government officials, contractors, and military

personnel [2].

Considerable research has been done towards protect-

ing users from phishing attacks. They include firewalls,

black listing certain domains and Internet protocol (IP)

addresses, spam filtering techniques, client side toolbars,

and user education. Each of these existing techniques has

some advantages and some disadvantages. For example,

existing filters have misclassification rates, the blacklist

approach is harder to maintain with every expanding IP

address/domain space, while the user ignores client side

toolbar warnings.

The main contribution of this research is a multi-layered

phishing detection method using previously developed

modeling techniques that includes topic modeling techni-

que Probabilistic Latent Semantic Analysis (PLSA), classi-

fier ensemble technique AdaBoost and Co-Training

algorithm that employs labeled and unlabeled data. The

main goal of our novel approach is to detect phishing

before it gets to the user. Towards that goal, we have

developed the detection method, called phishGILLNET,

by incorporating the power of natural language processing

techniques. Similar to a “gillnet” that catches fish by its gill

thus preventing its movement once caught, phishGILL-

NET tries to catch phishing attacks by the tone, wordings,

and other linguistic variations in the content. By serving as

a server side filter, phishGILLNET prevents movement of

a phish towards the end user. The first layer of phishGILL-

NET (phishGILLNET1) employs PLSA to build a topic

model and uses a topic level similarity function for classifi-

cation. Unlike earlier approach that employed topic mod-

els, our model employed editing function and dictionary

lookups to specifically account for intentionally misspelled

words in phishing emails. The second layer of phishGILL-

NET (phishGILLNET2) employs classifier ensemble tech-

nique AdaBoost and topic probabilities as features to build

a robust classifier using several base learners. To further

expand phishGILLNET to handle labeled and unlabeled

email data, the third layer (phishGILLNET3) employs Co-

Training to build a classifier using topic distributions as

features and the best classification technique obtained in

the second layer. To the best of the authors’ knowledge,

this is the first attempt that demonstrates the power of

topic model using Co-Training for phishing detection.

The size of the corpus we employed is significantly larger

(approximately 400,000) than that employed by authors of

the Co-Training technique (few thousands) as well as by

earlier researchers. Thus, our research is an additional

proof of concept of the Co-Training algorithm in employ-

ing unlabeled data.

This article is organized as follows. We first review the

state-of-the-art protection techniques and present their

advantages and disadvantages (see Section 2). The multi-

layered phishing detection method phishGILLNET is pre-

sented in Section 3. The modeling techniques employed

by phishGILLNET namely PLSA, AdaBoost, and Co-

Training are described in Sections 4, 5, and 6, respectively.

The experimental design is presented in Section 7. The

architectural components and results obtained on the pub-

lic corpus for each layer of phishGILLNET, namely, phish-

GILLNET1, phishGILLNET2, and phishGILLNET3, are

presented in Sections 8, 9, and 10, respectively. The per-

formance comparison with the state-of-the-art tools is

presented in Section 11. This article concludes with a dis-

cussion of the developed methodology and suggestions for

future research in Section 12.

2 Background
The primary motivation for attackers using phishing is to

steal identity from users. Several techniques have been

developed to protect users from phishing attacks. The

protection strategies are classified according to where in

the attack flow that strategy belongs (see Figure 1). In

Figure 1, the protection techniques are numbered 1-6

and shaded in grey. phishGILLNET is a server-side filter/

classifier (numbered 3 in Figure 1). Non-shaded ones are

the main components in the data flow. Some of the

detection tools and their advantages and disadvantages

are summarized in Table 1.

Network Level Protection

The network level protection is typically achieved by

blocking a range of IP addresses or a set of domains from

entering the network. DNSBL [3] is a database widely used

for this purpose by several Internet service providers. This

list is updated with new addresses, after observing for a

period of time abusive behavior. Hence, this approach is

reactive. Attackers evade this protection technique by

hijacking legitimate user’s PC and constantly moving from

one IP to another IP address. Snort [4] is an open source

software that is employed at network level. Rules to

enforce protection must constantly be manually updated.
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Kim and Huh [5] compared four different classification

techniques to detect DNS-poisoning-based phishing

attacks using routing information gathered over 1-week

period. Authors observed that k-nearest neighbor algo-

rithm achieved best results with a false positive rate of

0.7% and true positive rate of 99.4%.

Authentication

There are two levels of authentication: user level and

domain level. Typically, the email service provider

authenticates user, before he or she sends an email (user

level). The domain level authentication is performed in

the provider-provider communication (one mail server

Figure 1 Phishing protection techniques.

Table 1 Phishing detection tools

Tool Type Description Advantages Disadvantages

Snort [4] Network
Level

Heuristic/rule engine Good at detecting level attacks Rules require manual adjustments. Does
not look at content.

SpamAssassin [9] Server
Side
Filter

Heuristic engine that uses
email specific features

Good at detecting email
header spoofing.

High false positives

PILFER [10] Server
Side
Filter

Utilize 10 features
extracted from email to
classify

Better performance than
SpamAssasin.

Did not use content from body of the
email.
Susceptible to short lived phish domains.

SpoofGuard [30] Client
Side
Tool

Plug-in to a browser Warns user if link points to
phish site.

Users do not pay attention to warnings.
Not all email clients are browser based.

CatchingPhish [31] Client
Side
Tool

Detects fake website
based on rendered
images

Browser independent.
Good results on small data sets.

Processing time is high. Susceptible to
screen resolution.

CallingID [32], CloudMark [33],
Netcraft [34], and FirePhish [35]

Client
Side
Tool

Utilizes blacklist of
domains.

Good for domains that employ
domain level authentication.

Phish domains are short lived. Does not
look at email content.

eBay Account Guard[36] Client
Side
Tool

Utilizes blacklist of eBay
URLs

Protects eBay users. Specific website tool.

IE Phishing Filter[37] Client
Side
Tool

Records specific user
website visiting patterns.

Adapts to user website visit
pattern.

Works only on internet explorer.
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to the other mail server). The user level authentication

is performed using password as credentials. The pass-

word authentication can easily be cracked as evidenced

by surge in phishing attacks. Microsoft has developed a

technology called Sender ID [6] while Yahoo has a simi-

lar technology called DomainKey [7]. Both these techni-

ques perform domain level authentication. In order for

these domain level techniques to work, providers on the

sender and the recipient side must implement the same

technology. Due to lack of agreement between email

providers, this technology is not that prevalent.

Server Side Filters and Classifiers

Server side filters and classifiers typically extract features

from the email and train a classifier to classify phishing

email versus non-phishing email. Classifiers can be

trained directly on various features extracted from the

data or by applying dimensionality reduction techniques

before training the classifier. Kim et al. [8] applied three

dimensionality reduction methods, namely, Centroid,

Orthogonal Centroid, and Linear Discriminant Analysis

and tested their effectiveness on three different classifiers:

Support Vector Machines, k-Nearest Neighbor, and

Centroid-based classification. Authors concluded that

dimension reduction techniques achieve high efficiency

without sacrificing prediction accuracy. SpamAssassin [9]

is a widely used host-level filter. This is a rule-based filter

that requires constantly changing for the rule to be effec-

tive. Attackers figure out the rule being employed and

bypass these filters by appropriately constructing the

email. PILFER [10] is another email classifier that is

trained using ten features extracted from email data.

Both these filters have high misclassification rates. Abu-

Nimeh et al. [11] presented a comparative evaluation of

classification techniques such as Logistic Regression,

Bayesian Adaptive Regression Trees, Support Vector

Machines, Random Forests, and Neural Network.

Authors trained the classifier using 43 features on a pri-

vate ham email and public phishing email data and

showed that random forest outperformed other classifiers

when weighted equally but resulted in worst false positive

rate. Neural network had the highest Area Under ROC

Curve. Later work by Abu-Nimeh et al. [12] developed a

method to detect phishing using Bayesian Additive

Regression Trees and obtained better prediction than

their earlier work. Miyamoto et al. [13] did a similar

comparison of machine learning techniques for phishing

website detection using about 3,000 website data. They

obtained F-measure of 0.85 using AdaBoost. Toolan and

Carthy [14] classified emails using C5.0 algorithm and

ensemble of different classifiers. Authors obtained an

F-measure of 99.31% using the publicly available dataset

(PhishingCorpus and SpamAssassin) of 8 K emails. Gan-

sterer and Pölz [15] developed a feature-based classifier

for ternary classification, spam versus phish versus good.

Authors utilized 11,000 phishing emails from a proprie-

tary data source and publicly available TREC corpus for

good and spam and obtained a classification accuracy of

97%. Bergholz et al. [16] trained a classifier using features

obtained using Dynamic Markov Chain and Class-Topic

Models. Authors obtained results better than PILFER on

the same public corpus and showed effectiveness of topic

features. Later work by Bergholz et al. [17,18] included

additional features such as identification of hidden salt-

ing, embedded logos and external links and evaluated on

a proprietary real life data from a commercial internet

provider of size 40 K. Toolan and Carthy [19] proposed

and ranked 40 different features using the information

gain criteria. Khonji et al. [20] did an evaluation of fea-

ture selection algorithms and feature subset search meth-

ods on the same public corpus that most of the other

research has been conducted. The study showed feature

subset of 21 heuristic features yielded F-measure of

99.39%. Al-Momani et al. [21] achieved classification

accuracy of 99.7% by applying a clustering algorithm for

phishing detection while Zhan and Thomas [22] obtained

a true positive rate of 99% by applying Stochastic Learn-

ing Weak Estimation approach. Yearwood et al. [23]

obtained profiles of phishing activity by solving the pro-

blem using a multi-class classification problem utilizing

features extracted from URLs in the emails. This study is

closely related to Bergholz et al. [16,17], in the sense that,

we use topic model PLSA (as compared to CLTOM) for

phishing detection. However, our topic model is built to

account for intentional misspelling and uses part-of-

speech (verbs, nouns, adjectives, and adverbs) to build

the model. We also show the effectiveness of our method

on a large corpus of unlabeled data using Co-Training.

Several research has been done for phishing website

detection. Xiang et al. [24] proposed a layered anti-phish-

ing approach for detecting phishing web sites. Authors

used a comprehensive feature-based detection algorithm

to detect and filter out non-login form web pages and

achieved 92% true positive rate and 0.4% false positive

rate. Khonji et al. [25] proposed a technique for detecting

phishing website by lexically analyzing URL tokens.

Authors evaluated 70 K phishing URLs and obtained clas-

sification accuracy of 97%. Zhang et al. [26] proposed a

text classifier, image classifier, and an algorithm that fused

the two-classifier results to detect phishing web page

detection and they concluded that fusion outperformed

the performance of individual classifiers. Hsu et al. [27]

proposed a solution for phish URL detection using suffix

tree clustering methodology while Khonji et al. [28] pro-

posed a heuristic solution. Wenyin et al. [29] developed an

approach to detect phishing target from the content of the

webpage. Most of the above research is limited to website

detection; however, we propose a generic content-based
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approach that can be applied to email, web pages, blogs,

and social networking posts.

Client Side Tools

Tools that operate on the client side (i.e., user’s machine)

include user profile filters and browser-based toolbars.

SpoofGuard [30], CatchingPhish [31], CallingID [32],

CloudMark [33], NetCraft [34], FirePhish [35], eBay tool-

bar [36], and IE Phishing Filter [37] are some of the client

side tools. User profile filters observe user’s website visit-

ing pattern and maintain a list of URLs in local database.

When a user visit’s a URL that is different from his/her

website visits, it warns the user with a dialog. Toolbars

are built and trained using the typical pattern of phishing

website URLs. Some patterns of phish website URLs

include IP address in the URL, long URLs, many dots in

the URL, etc. This technique is very susceptible to tech-

nology changes (such as IPV4 versus IPV6, tiny URLs)

and hence it is not robust. Moreover, most users do not

pay attention to the warning dialogs and hence it is not

an effective protection technique. Abu-Nimeh and Nair

[38] presented a new attack using DNS poisoning that

bypass the client side toolbars. Their evaluation of seven

tools concluded that none of them were able to detect

the attack there by making these tools ineffective. Jain

and Richariya [39] implemented a prototype web browser

to detect phishing URLs. Authors did not compare their

implementation with other browser-based tools and

hence the effectiveness of the tool is not clear. Lin et al.

[40] evaluated domain highlighting, the approach where

browser highlights the domain name in the address bar,

and concluded that this approach cannot be relied upon

solely to detect and prevent phishing attacks. Chen et al.

[41] presented a scientific assessment of user interface

design elements such as font type, color, message place-

ment, icon type, etc., used in various tools and concluded

that existing tools fail to consider preference of the user

while displaying warning and errors. Author’s findings

conclude that users prefer customization and personali-

zation of these tools. Felt and Wagner [42] examined the

threat of phishing on mobile devices. Authors analyzed

100 mobile applications and 85 web sites and found that

attackers can spoof mobile web site. Authors found that

Android and Apple-sponsored sites are top phish targets.

Prevent Against Duplication

This technique involves making the legitimate website

harder to reproduce. In all legitimate websites, the login

page is not protected. Hence, an attacker can easily

copy the code, styles, graphics, and HTML to create a

fake website. Hence, a protection approach could be to

make this copy harder. There is no earlier work done in

this area and hence it should be subject for future

research.

User Education

This involves educating the user about phishing attacks

and pattern of phish email. The basic mode of educating

user is posting help pages in websites and warning the

user about phishing. MailFrontier [43] has setup a website

containing screenshots of several phish emails. Robila and

Ragucci [44] evaluated the effect of user education in

differentiating phishing and good emails. The authors pre-

sented a lecture on how to identify phishing emails and

the harm of falling for a phish in an introduction to com-

puting class. At the end of the lecture, the authors pre-

sented student with both phishing and good emails.

Students were then asked to identify the email type. The

study concluded that students identified phishing emails

correctly after the lecture. Students also acknowledged the

usefulness of the lecture. Similar study was also conducted

at the Indiana University [45]. Arachchilage and Cole [46]

designed an educational mobile game for home computers

to protect users from phishing attacks. The game was

designed to educate users to recognize phishing URLs.

Authors developed a prototype simulator using Google

App Inventor Emulator. Tseng et al. [47] also designed a

game to educate users about phishing based on the con-

tent of the website. Moore and Clayton [48] conducted a

study of how attackers discover potential hosts for phish-

ing websites and concluded that search engine as one pri-

mary source. Authors of the study concluded public

disclosure of phishing sites, such as the one done by

phishtank.com, significantly reduces host compromise by

attackers.

Existing protection techniques are ineffective in stopping

the phishing attacks from reaching the end user. Network

level protection using domain and IP address blacklisting

require periodic updates and are reactive in nature as list

can be updated only after observing abuse pattern for

some time period. Moreover, attackers can compromise

legitimate user’s machine to conduct phishing attacks and

hence blacklisting may block legitimate user from using

the web. Existing server side filters and classifiers result in

misclassification and use feature sets that are susceptible

to technology changes. The classifiers that use content for

attack detection do not consider intentionally misspelled,

conjoined, and disjointed words. Attackers make subtle

changes to the text of the email by using different words

at different times and by using misspelled words to avoid

detection by filters that require an exact word match.

Thus, these filters often fail to detect phishing emails. Cli-

ent side tools and filters expose the user one step closer to

the attack. As users do not pay attention to warning dia-

logs, they end up falling for phishing attacks. The goal of

this research is to stop the attack before it reaches the

user. This is accomplished by building a robust multi-

layered content-driven phishing detection methodology,

phishGILLNET, which is described in Section 3.
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3 phishGILLNET methodology
A schematic representation of phishGILLNET is shown

in Figure 2. Gillnetting is a common fishing method used

by fishermen in the ocean and in some freshwater areas

[49]. A “gillnet”, as the name implies, is a net that catches

a fish by its “gill”. It is a layer of netting hung vertically in

the water by a float line on the top and a weighted line at

the bottom. The mesh size, depth, and length of gillnet

are determined by the species of fish that fishermen is

trying to catch. The net allows the head of the fish to

pass through but not its body. When the fish attempts to

pass through, it gets stuck in the net by its gill and could

neither move forward nor backward. Just like a gillnet is

used to catch a fish by its gill, phishGILLNET is used to

catch phishing attacks based on the linguistic variation in

the content.

phishGILLNET is a multi-layered methodology for

detecting phishing attacks (Figure 3). Just like gillnet

comes in various mesh sizes, the mesh size of the first

layer of phishGILLNET (phishGILLNET1) is larger than

the second layer (phishGILLNET2) and the second layer

(phishGILLNET2) is larger than the third layer (phish-

GILLNET3). Phishing attacks missed by phishGILLNET1

are caught by phishGILLNET2 and the ones missed by

phishGILLNET2 are caught by phishGILLNET3. All

three layers of phishGILLNET employ PLSA (see Section

4) to build a topic model that discovers phishing topics

and non-phishing topics. phishGILLNET1 performs clas-

sification on unseen data using Fisher similarity function.

phishGILNET2 builds a finer mesh utilizing PLSA topic

features and AdaBoost (see Section 5). By employing

PLSA, AdaBoost, and Co-Training (see Section 6), phish-

GILLNET3 further expands detection capability by build-

ing robust classifier from labeled and unlabeled data.

In order to build PLSA topic model, which all three

layers of phishGILLNET employs, the methodology

requires preparation of Term Document Frequency

(TDF) matrix. Figure 4 shows the main components to

build TDF, namely, Parser and TDF Matrix Builder.

Both these components are described below:

Parser

Raw email data are typically present in Multipart Inter-

net Mail Extension (MIME) format. phishGILLNET uti-

lizes words and hyperlinks present in the body of the

email to build PLSA model. Parser consists of the

following:

MIME Parser

Parses email MIME message and extracts email headers

and email body. Email body is further separated into

HTML body part and text body part. For emails con-

taining only text MIME part, the parser extracts text

and hyperlinks. In a phishing email, these hyperlinks

link to the phishing website.

HTML Parser

MIME message-containing HTML body part is included

as multipart/html part in the email body part. When the

MIME parser detects a HTML part, it invokes the

HTML parser to separate out text, style-sheets, hyper-

links, and scripts. For the purpose of building PLSA

model, both text and hyperlinks are considered.

Tokenizer

This tokenizes text present in email body and hyperlinks

into separate words. Tokenizer utilizes white space (tabs,

space, new lines) as token delimiters for the text. The hyper-

links are tokenized after replacing all non-alphanumeric

characters with space.

TDF Matrix Builder

A term-document matrix describes the frequency of

terms that occur in a collection of documents. The rows

of the matrix correspond to document (di) in the collec-

tion and the columns correspond to terms (wj) that pre-

sent in those documents. For the text part, the terms wj

belong to one of the part-of-speech tags (adjectives,

adverbs, nouns, and verbs). For the hyperlinks part, all

terms are used to build TDF. The matrix entries n(di, wj)

denote the number of times word wj occurs in document

Attacker Phishing Server phishGILLNET User 

Figure 2 phishGILLNET.
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di. Prior to building TDF Matrix, the following pre-pro-

cessing steps must be accomplished.

Stop Words Removal

Stops words are words that do not contain important

significance for building the model. Some example stop

words include the, at, like, etc. We remove stop words

from all the tokenized email text.

Stemming

Stemming is a method for removing inflexional endings

from certain words. For example, word “consigned”,

after stemming becomes “consign”. Porter’s Stemming

[50] algorithm is employed to stem words in email body.

Dictionary Lookup

WordNet [51] dictionary is employed to lookup words

in dictionary. WorldNet database has Part-of-Speech

(POS) extractor. It identifies verbs, nouns, adverbs, and

adjectives. Words found in WorldNet database forms

part of the input for building TDF matrix using text.

For the hyperlinks TDF, WordNet lookup and spell

checker is skipped.

Spell Checker

Attackers intentionally misspell words in a phishing

email to avoid detection by standard spam filters. For

words that are not found in WordNet database, Google’s

spell check API [52] is utilized to retrieve words that are

similar to the misspelled word.

Levenshtein Distance

Levenshtein distance [53] is a metric for measuring the

amount by which two words differ. The metric is also

called edit distance. It is the minimum edit operations

required to transform one word to another. The edit

operations include insertion, deletion, and substitution of

a new character. In a phish email, there are misspelled

Phishing 

Email 
Non Phishing (Good/Spam) Email

phishGILLNET1 

(PLSA) 

phishGILLNET2 

(PLSA + AdaBoost) 

phishGILLNET3 

(PLSA + AdaBoost + 
Co-Training) 

TDF 

Figure 3 Multi-layered phishGILLNET.
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words, which after edit operation is found in dictionary.

Examples include “vuln’a’rability”, “youaccounts”, etc.

Also, there are terms made of garbage characters that are

never found in dictionary. We consider only misspelled

words that can be corrected after certain edit operation.

After obtaining the suggested words using Google API,

Levenshtein distance is computed. Only those words

whose edit distance is less than some configured thresh-

old (default value of 5) are further included for building

TDF matrix.

Build TDF Matrix

For email body text, using words, (specifically adjectives,

adverbs, nouns, and verbs), that found directly in diction-

ary and edited words using Levenshtein’ edit operation,

the term-document-frequency matrix is created. For

email hyperlinks, all terms are used to build TDF matrix.

Thus, phishGILLNET accounts for misspelled words,

conjoined words, and POS tags present in email body

before building the TDF matrix. Once the TDF matrix

is built using components described above, all three

layers of phishGILLNET employs PLSA to build the

topic model for phishing detection. The PLSA modeling

technique is described in the following section.

4 PLSA
PLSA is a technique for topic discovery proposed by

Hofmann [54,55]. The technique is closely related to

Latent Semantic Analysis (LSA). While LSA is based on

the foundations of linear algebra to perform a Singular

Value Decomposition of co-occurrence tables, PLSA is a

statistical method that defines a latent class model to

perform probabilistic mixture decomposition. PLSA

handles both synonyms, different words with similar

meanings, and polysemy, words whose meaning changes

according to context. PLSA has been applied in the field

of information retrieval, natural language processing,

machine learning, and image processing.

Model

The PLSA model maps the high-dimensional vector of

words of a document to a lower dimensional vector of

topics. The PLSA modeling is shown in Figure 5. Sup-

pose we have a collection of documents, di Î {d1, d2,...,

di}, and a set of words that occur in those documents wj

Î { w1, w2,...,wJ}. PLSA then associates a latent topic vari-

able zk Î {z1, z2,...,zK} with the occurrence of each word

in a particular document. PLSA assumes conditional

independence, such that words and documents are con-

ditionally independent for a given topic. Thus, the PLSA

model for the word-document co-occurrence can be

expressed using the following join probability model:

P(di, wj) = P(di)

k
∑

k=1

P(wj|zk)P(zk|di)

Figure 4 Parser and TDF matrix builder.
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where, P(di) is the probability that a word will be

observed in a given document di, P(wj|zk) is the prob-

ability of a particular word conditioned on latent topic

variable zk, P(zk|di) is the probability distribution of spe-

cific document over the latent variable space, and K is

the number of topics. The probability P(wj|zk) corre-

sponds to words that make up a given topic while the

probability P(zk|di) corresponds to topics that a given

document belong to. Unlike traditional cluster algorithm

wherein a document may belong to just one cluster,

PLSA gives the probabilities with which a given docu-

ment may belong to one or more topics.

Expectation Maximization (EM) Algorithm

The model parameters P(wj|zk) and P(zk|di) are esti-

mated by maximizing the data log-likelihood using EM

algorithm [20,21]. The maximum likelihood is

l =
∑

di∈D

∑

wj∈W

n(di, wj) log P(di, wj)

By applying Bayes’ rule, E-Step of the EM algorithm is

given by

P(zk|di, wj) =
P(zk)P(wj|zk)P(di|zk)

∑

l∈K

P(zl)P(wj|zl)P(di|zl)
.

The M-Step obtained by maximizing the expected

data log-likelihood is given by following expressions

P(wj|zk) =

∑

di∈D

n(di, wj)P(zk|di, wj)

∑

wm∈W

∑

di∈D

n(di, wm)P(zk|di, wm)

P(zk|di) =

∑

wj∈W

n(di, wj)P(zk|di, wj)

n(di)

The model parameters are estimated by iteratively

alternating the E-Step and the M-Step until some

desired termination criteria is satisfied. Stopping criteria

may include no measurable difference in the log-likeli-

hood between successive iterations or the maximum

number of iterations.

TEM Algorithm

In order for the PLSA model to generalize well on

“new” (unseen) documents, Hofmann [54,55] proposed a

modified EM algorithm for PLSA called TEM algorithm.

TEM is closely based on deterministic annealing. In

TEM, a control parameter b is introduced in the E-step

of the algorithm. The modified E-step is given as

follows:

P(zk|di, wj) =
P(zk)[P(wj|zk)P(di|zk)]β

∑

zt∈Z

P(zt)[P(wj|zt)P(di|zt)]β
.

In the above expression, substituting b with value of 1

yields the E-step of standard EM algorithm. The main

advantage of the TEM algorithm over the standard EM

algorithm is that TEM avoids model over-fitting. The

optimal value of b is obtained by starting with a value

of 1, evaluate the performance of EM on a held-out

dataset, decrease the value of b, and check if the perfor-

mance improves. The iterative procedure is stopped

when there is no measurable increase in performance.

Figure 5 PLSA model.
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Folding-In

When a new (unseen) document is given, to compute the

probability distribution of topic(s) that new documents

belong to, a folding-in technique is employed. In PLSA,

this is achieved by keeping the distribution of words that

make up a topic (P(wj|zk)) fixed while the distribution of

topics that new document belong to (P(zk|dnew)) is adapted

at each M-step. The distribution P(wj|zk) is obtained dur-

ing the training phase of PLSA. The E-Step of the EM

algorithm for folding-in is given by

P(zk|dnew, wj) =
P(zk)P(wj|zk)P(dnew|zk)

∑

zt∈Z

P(zt)P(wj|zt)P(dnew|zt)
.

and for the M-Step, P(wj|zk) is obtained from the

training phase. The distribution of topics to new docu-

ment is given by the following expression

P(zk|dnew) =

∑

wi∈W

n(dnew, wj)P(zk|dnew, wj)

n(dnew)

Classification

The folding-in technique yields the probability distribution

of new (unseen) documents belonging to one or more

topics (P(zk|dnew)). Given a training set of labeled samples,

belonging to one or more categories, the category of the

new unlabeled document is obtained using a similarity

function. After obtaining probability estimates using fold-

in, to categorize new documents to a specific category,

similarity scores between new documents and documents

in the training set are computed. The category of the docu-

ment in the training set that yields the highest similarity

score is the category of the new document. A commonly

used similarity function is the Euclidean distance function.

However, the Euclidean distance is not a good metric for

computing similarity between two probability distributions.

Hofmann [54,55] derived the following Fisher-Kernel func-

tions for the generative statistical PLSA model. The kernel

consists of two components. The Kernel function due to

the contribution of topic probabilities is given by

K1(di, dn) =
∑

zk=Z

P(zk|di)P(zk|dn)/P(zk).

The above kernel function computes the overlap

between topics and thus captures words with similar

meanings and words that belong to the same topic. The

contribution due to word to topic probability distribu-

tion is given by the following kernel function.

K2(di, dn) =
∑

wj∈W

P(wj|di)P(wj|dn)
∑

zk∈Z

P(zk|di, wj)P(zk|dn, wj)

P(wj|zk)
.

In the above kernel function K2, words with multiple

meanings (polysemy) contribute to the similarity score.

The PLSA technique described above is applied to all

the layers of phishGILLNET. The classification in phish-

GILLNET1 is achieved using the Fisher similarity func-

tion described here.

5 AdaBoost
The classification using similarity function is an efficient

technique but not as robust as employing classification

technique. To cope with data variability, one employs clas-

sifier ensemble. The idea behind classifier ensemble is to

combine predictions of multiple classifiers and produce a

single classifier. The prediction result from the combined

classifier is generally better than that of individual classi-

fiers. Results from an ensemble are less dependent on

strangeness of employing a single training set and thus it

reduces bias and variance. There are several ways of form-

ing an ensemble or a collection. The two most popular

ones are bagging and boosting. Both these methods rely

on re-sampling of the data to obtain different training sets

for each of the classifiers. Here, we employ the boosting

technique, specifically, AdaBoost.

The idea behind AdaBoost, developed by Freund and

Schapire [56], is to produce a series of classifiers. The

training data used for each member of the series is chosen

based on the performance of earlier classifiers in the series.

Incorrectly predicted examples are selected more fre-

quently than correctly predicted examples. Thus, boosting

produces classifiers that are better in prediction that the

current ensemble. Unlike bagging, AdaBoost considers

performance of the earlier classifiers. The algorithm is

detailed as follows:

Given input training data (x1, y1), (x2, y2),....,(xm, ym),

where xi belongs to feature space X and yi belongs to

label set Y = {-1, +1},

Step 0: Initialize weights for the first iteration, D1(i) =

1/m

For iteration index t = 1,...,T, where T is the number

of iterations,

Step 1: Train a weak learner using distribution Dt.

Step 2: Obtain weak hypothesis

ht : X → {−1, +1}

with error

εt =
∑

i:ht(xi) �=yi

Dt(i).

Step 3: Compute

αt =
1

2
ln

(

1 − εt

εt

)

.
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Step 4: Updates weights for this step

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is the normalization factor.

The final strong classifier, which is a weighted major-

ity of T weak hypothesis, is given as

H(x) = sign

(

∑

t∈T

αtht(x)

)

.

phishGILLNET2 employs AdaBoost using several

learning algorithms such as C4.5 decision trees [57],

rule-based classifier RIPPER [58], random forest [59],

support vector machines [60], and logistic regression

[61] to build a robust classifier. The features to build

the classifier are the topic distribution probabilities

obtained from the PLSA model.

6 Co-Training
One of the major problems in building a classifier is the

non-availability of labeled data. A classification task for

phishing detection requires labeled phish examples and

non-phish examples. While there are many data sources

for obtaining general spam emails and good emails, there

is very few labeled phishing email public corpus. As phish-

ing emails and general spam emails share similar charac-

teristics, human annotation result in incorrect labeling and

hence the available corpus may not be perfect. Co-Train-

ing is an algorithm to solve this non-availability problem.

The algorithm is proposed by Blum and Mitchell [62], for

the problem of semi-supervised learning where there are

both labeled and unlabeled examples. The goal of Co-

Training is to enhance performance of learning algorithm

when only a small set of labeled examples is available. The

algorithm trains two classifiers separately on two sufficient

and redundant views of the examples and lets the two

classifiers label unlabeled examples for each other. The

assumptions of the algorithm are that each view is condi-

tionally independent given the class label and that each

view is sufficient on its own for the purpose of classifica-

tion. The algorithm works as follows: Given a set of

labeled training instances (L) and a set of unlabeled

instances (U), select u instances randomly from U to cre-

ate a smaller pool U’. Iterate for k iterations the following

steps:

• Split each instance x, and build two views x1 and x2.
• Use the training set L to build a classifier h1 using

x1.

• Use the training set L to build a classifier h2 using

x2.

• Label p positive and n negative instances from U’

using the classifier h1.

• Label p positive and n negative instances from U’

using the classifier h2.

• Add labeled instances to the training set L.

• Select 2 x (p + n) instances from unlabeled set U

and to add it pool U’.

The idea behind the Co-Training algorithm is that the

classifier h1 adds examples to the labeled set which are in

turn used by the classifier h2 in the next iteration and

vice versa. This process should make classifiers h1 and h2
to agree with each other after several iterations. Blum

and Mitchell [62] validated the Co-Training algorithm

using 1,051 web page data where x1 consisted of words

that appeared on the web page and x2 consisted of words

in all the hyper links that pointed to the web page.

Nigam and Ghani [63] proposed a variant to the Co-

Training called Co-EM algorithm. The Co-EM algorithm

is not incremental in nature and it labels all unlabeled

data at each iteration. Furthermore, only the data labeled

by one classifier are used by the other classifier and vice

versa. Co-Training was applied to email domain by Kir-

itchenko and Matwin [64]. Authors used Co-Training to

classify interesting versus uninteresting email. Chan et al.

[65] demonstrated Co-Training for spam classification on

a corpus of 2,883 emails. Wan [66] applied Co-Training

to cross-lingual sentiment classification. Kumar and

Daumé [67] extended Co-Training to unsupervised spec-

tral clustering algorithm where in clusters identified in

one view is used to label data in other view so as to mod-

ify the graph structure.

Here, we propose to utilize Co-Training to evaluate the

effectiveness of topic model to classify phishing on a large

corpus of labeled and unlabeled data. phishGILLNET3

employs Co-Training to build classifiers on two views of

the data, namely text view and hyperlink view, starting

with small labeled sample and pool of unlabeled samples,

and iteratively build a robust classifier for phishing detec-

tion. The experimental design including the datasets

employed, data preparation, training and test strategies,

and performance measures, is described in the following

section.

7 Experimental design
In this section, we present the details on experiments

designed to build and evaluate phishGILLNET. This

includes datasets employed, data preparation, training and

test strategies, and measures to evaluate performance.

7.1 Datasets

Four publicly available email datasets and one publicly

available phish URL dataset were used to evaluate phish-

GILLNET. Email datasets include (i) ham (good) emails

from SpamAssassin corpus [68], (ii) phishing emails

from the PhishingCorpus [69], (iii) good emails from

Enron Email Dataset [70], and (iv) spam emails from
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SPAM Archive [71]. Phish URL dataset includes (v)

PhishTank [72].

(i) SpamAssassin [68]

SpamAssassin corpus contains a total of 6,047 messages,

of which, 4,150 messages are good and the remaining are

spam. These messages were collected by the SpamAssassin

project for the years 2002-2003 and made available to the

research community. For evaluation in this study, spam

messages are not used (only 4,150 good messages are used

instead).

(ii) PhishingCorpus [69]

PhishingCorpus contains 4,550 phishing emails. These

emails were collected by an individual for the period

2004-2007 and donated to the research community. For

evaluation, all the phishing emails from this corpus were

used.

(iii) Enron Email Dataset [70]

This dataset contains data from about 150 senior manage-

ment people of Enron that was made public by the Federal

Energy Regulatory Commission during its investigation.

This dataset contains approximately 500,000 emails. Out

of the Enron emails, we employed 136,226 emails from

the inbox and sent folder of the mailbox, thus ensuring

only good emails from this corpus.

(iv) SPAM Archive [71]

SPAM archive contains spam emails collected by Bruce

Guenter [71] using various bait accounts since 1998. We

used all spam emails of January 2011 through November

2011. This accounted for 336,070 emails thus size of the

total corpus was 470,000 (approximately). SPAM archive

does not distinguish between “spam” and “phishing”

emails. Thus, it is an ideal dataset to evaluate the architec-

ture using Co-Training, which is a semi-supervised algo-

rithm that employs labeled and unlabeled data.

(v) PhishTank [72]

PhishTank URLs are manually verified by human experts

that it is a confirmed phish attack. We collected 48,000

phish URLs from phishtank.com for the year 2011.

7.2 Data preparation

Two sets of public dataset combinations were used to

build and evaluate the PLSA model. The first set of experi-

ments (combination1) employed datasets (i) & (ii) while

the second set of experiments (combination2) employed

(iii) & (iv). The first set is a much smaller public corpus

than the second set. In combination1, there are a total of

8,700 messages, 4,550 phishing, and 4,150 good emails.

While in combination1 all emails are labeled, the combi-

nation2, specifically (iv), does not distinguish between

phishing and spam emails. In order to compute misclassi-

fication errors, phishing emails in SPAM archive were seg-

regated using the following semi automated approach.

Hyperlinks in emails were extracted using a HTML parser.

SURBL [73] provides a reputation lookup service for

domains that are confirmed phish hosting domains. By

using a combination of phishtank.com URLs and domain

reputation data from SURBL, if a match is found for the

SURBL domains or phishtank URL in the hyperlinks pre-

sent in an email, then that email is labeled as a “phish”

email. This resulted in phish emails of 47,783 out of

336,070 spam emails. Thus, the distribution of emails in

combination2 is 10% phish, 61% spam, and 29% good.

According to the Internet Security Threat Report 2010

from Symantec [74], that collected and analyzed billions of

emails from 2009, in a realistic mail system, 85-90% of all

emails are spam and 5-10% of all spam emails are phish.

Thus, to have realistic distribution of data in combina-

tion2, our experiments were conducted with 10% phish,

80% spam, and 10% good emails. Thus, the size of the cor-

pus used for combination2 is 400,000 emails, which is 10

times the size of corpus used by Bergholz et al. [17] and

one of the largest email corpus used for phishing detec-

tion. Also, we used public corpus and hence our results

can be reproduced.

All the messages were parsed using a MIME parser to

separate email headers from email body. Multipart mes-

sages containing HTML parts were further parsed using

a HTML parser to extract the body text and hyperlinks.

Both MIME and HTML parsers were written in this

study using Java programming language. For evaluation,

only messages that contain body text and hyperlinks

were considered. Thus, messages that failed parser and

attachments were not included for building models.

7.3 Training and testing

Experiments were conducted using k-fold cross-validation

strategy with a k value of 10. Thus, 90% of the dataset was

used during training and 10% of the dataset was used for

testing. In order to build the PLSA model, the training

data are further split into 90% for building the topic model

and 10% for computing perplexity, thus, independent data-

sets for training, computing perplexity, and testing. The

TDF matrix builder (see Section 3) is used to build the

term-document matrix for each set. The topic distribution

probabilities on the test set is derived using PLSA fold-in

(see Section 4). Classification in phishGILLNET1 (see Sec-

tion 8) is achieved using Fisher similarity function while

phishGILLNET2 (see Section 9) employs AdaBoost and

phishGILLNET3 employs AdaBoost and Co-Training (see

Section 10).

7.4 Performance evaluation metrics

The quality of the PLSA model is evaluated using two

measures of performance, namely, log-likelihood and

perplexity. The training dataset is split into a set for

building the model (training data) and a set (held out)

for validating the model using these performance

measures.
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Log Likelihood

The log likelihood on the training dataset can be com-

puted using the following expression.

l(Training Data) =
∑

di∈D

∑

wj∈W

n(di, wj) log P(di, wj)

Perplexity

Perplexity, a measure of uncertainty in natural language

models, gives a better assessment of how well the model

generalizes on unseen (new) data. The lower the per-

plexity, the better the generalization and hence the clas-

sification. Perplexity for a PLSA model is defined by

Hofmann [54,55] as follows

Perplexity = P(HeldOutData) = exp

⎡

⎢

⎣
−

∑

h,j

n(dh, wj) log P(wj|dh)

∑

h,j

n(dh, wj)

⎤

⎥

⎦

where n(dh, wj) is the number of times the word wj

occurs in held out document dh and P(wj|dh) is the

probability that word wj occurs in document dh. One

can see that classification is proportional to the number

of topics.

The classification performance is measured using the

following standard measures of performance, namely,

Precision, Recall, F-measure, and Area under the ROC

Curve (AUC). They are defined as follows

Perplexity = P(HeldOutData) = exp

⎡

⎢

⎣
−

∑

h,j

n(dh, wj) log P(wj|dh)

∑

h,j

n(dh, wj)

⎤

⎥

⎦

Precision =
TP

TP + F

Recal =
TP

TP + FN

F =
2 ∗ (precision × Recall)

(precision + Recall)

where TP is number of true positive, FP is number of

false positive, and FN is number of false negative. ROC

curve is a plot of true positive rate versus false positive

rate. The two-dimensional depiction of classifier perfor-

mance in a ROC curve is reduced to single scalar value

representing expected performance by computing the

AUC. The AUC of a classifier is equal to the probability

that a classifier will rank a randomly chosen positive

example higher than the randomly chosen negative

example.

Experiments conducted using publicly available data-

sets and performance of each layer of phishGILLNET

are reported in the following sections.

8 phishGILLNET1
phishGILLNET1 is the top layer of the multi-layered

phishing detection methodology. It employs PLSA topic

modeling technique to discover phishing and non-phish-

ing topics and Fisher similarity function for classification.

The architecture of phishGILLNET1 and experimental

results are reported in this section.

8.1 Architecture

The architecture of phishGILLNET1 is shown in Figure 6.

The architecture has four main components: parser, TDF

matrix builder, PLSA model trainer, PLSA fold-in and

Classifier. The architecture employs the parser to parse

data and TDF matrix builder to build the TDF matrix

(described in Section 3). It employs the PLSA modeling

technique (described in Section 4) to build the topic

model.

PLSA Model Trainer

The input to the model is the TDF matrix of the training

dataset. In this study, TEM algorithm described earlier in

Section 4 was employed to build the topic model. PLSA

algorithm is implemented using Java programming

language.

Initialization

PLSA requires number of topics, K, to be specified at

initialization similar to cluster analysis. The probability

distributions are initialized using random numbers.

E-Step

The joint probability distribution values are computed

using initialized probability distribution.

M-Step

In the M-step, word-topic and topic-document probabil-

ities are computed using expressions given in PLSA

model section.

Compute Performance Metric

Performance measure, log likelihood, and perplexity are

computed according to the equations given in the

experimental design section (see Section 7).

PLSA Fold-In

In fold-in, test data probability distributions are com-

puted using the P(w|z) value from the training phase as

input. The TEM algorithm is employed to compute dis-

tributions on the test data set, while P(w|z) is kept fixed.
Classifier

phishGILLNET1 categorizes email as phishing versus

non-phishing using a similarity function. Using labeled

emails as input dataset, containing phishing emails and

non-phishing emails, topic distribution probabilities and

word distribution probabilities are obtained by building

a PLSA model. The similarity score is computed using

Fisher Kernel similarity function between test emails

and emails in the training set. The label of the training

email that yields the highest similarity score is consid-

ered the label of the test email.
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8.2 Results

Experiments were conducted using two combinations of

datasets, combination1 containing 8 K emails and combi-

nation2 containing 400 K emails (see Section 7). Experi-

ments were repeated on two machines (i) Mac OS X

(10.6.5), 2.66 GHz Intel Core i7, 4 GB RAM and (ii) Cent

OS (linux 2.6.18), 1.99 GHz Intel Core 2 Duo, 4 GB RAM.

The average computation time is measured and reported

here. For phishing detection, PLSA model consisting of

phishing and non-phishing topics is first developed. Parsed

email data are used to build the TDF matrix. After various

pre-processing steps, that includes tokenization, stop

words removal, and porter’s stemming, the POS tags are

extracted using WordNet [51]. We further observed phish-

ing emails contained intentionally misspelled words, such

as, “verificacion”, “verifcation”, and conjoined words such

as “yourchasebank”, “yourpaypal”. Words that were not

found in WordNet direct lookup were further processed

using Google’s suggestion API [52] and Levenshtein [53]

editing function. If the edit distance is within the threshold

value of 5 and if the second lookup in WordNet suc-

ceeded, those words were added to build the TDF matrix.

The TEM algorithm, detailed in Section 4, is employed

to build the PLSA model. The number of topics, K, chosen

for evaluation includes values ranging from 2 to 200. The

maximum number of TEM iterations for convergence was

set to 500. The annealing parameter b was initialized to

value of 1.0 and decremented in increments of 0.25 to see

if performance improves on the held out dataset.

Results from the PLSA model training and model eva-

luation are presented in Tables 2, 3, and 4 and Figure 7.

In Table 2 the word-to-topic distribution probabilities of

top 12 words for two topics (a phishing topic and a non-

phishing topic) are shown. From this table, it is evident
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Figure 6 phishGILLNET1 architecture.

Table 2 phishGILLNET1–PLSA word/topic probability

distribution

Topic (z) (phishing) Topic (z) (non-phishing)

Word (w) Probability P(w|z) Word (w) Probability P(w|z)

Bank 0.058 Ocean 0.024

Online 0.046 Honolulu 0.014

Banking 0.033 Imminent 0.013

America 0.032 Assuring 0.010

Account 0.021 Handsome 0.009

Update 0.019 Builder 0.007

Security 0.017 Lush 0.005

Customer 0.014 Lousy 0.005

Below 0.013 Roads 0.005

Link 0.013 Vantage 0.005

Click 0.011 Sweetness 0.005

Please 0.011 Wine 0.004
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which words make up a phishing topic and which words

make up a good topic. Two methods of evaluating the

performance of a PLSA model, log likelihood on the

training data and perplexity on the held out, were used.

A model that yields lowest log-likelihood on the training

data is considered the best model. The number of EM

steps was varied from 1 to 350. The plot obtained for the

(number of topics) K value of 10 topics on combination1

datasets is shown in Figure 7. As it can be seen from the

figure, the negative log-likelihood (see Section 7) drops

steeply until EM iterations of 15 and drops gradually

after that indicating (almost) convergence and triggering

the stopping criteria. The log-likelihood is not a good

measure for model generalization. The model with the

lowest perplexity is the one that generalizes well for clas-

sifying new/unseen data. In order to evaluate perfor-

mance on held out data, the number of topics was varied

from K = 2 to K = 200. As it can be seen from Table 3 on

the dataset combination1, the perplexity for a K value of

10 yielded 278 and did not change significantly for higher

values of K. On the dataset combination2, a K value of

200 yielded 1,475 and did not change significantly for

values larger than 200. The PLSA models were then eval-

uated for classification performance on test data. This

requires computation of topic/document probability dis-

tributions on test data. This is achieved using the PLSA’s

folding-in technique where the TEM algorithm is

employed by keeping the word/topic probability distribu-

tions fixed. The Fisher similarity score was then com-

puted between each test data and training data. The label

of the training data that yields the highest similarity score

is the label of the test data. It can be seen from Table 4

that the PLSA model yielded F-measure of 98.3% on

dataset combination1 and 98.1% on dataset combina-

tion2. Results on the large public corpus of 400 K emails

show the robustness of phishGILLNET1 for phishing

detection. A K value of 200 yielded the best F-measure

and lowest false positive on dataset combination2. One

can see (Table 4) that performance is almost perfect for

K value of 200 and both precision and F-measure are

very close to 1. The corresponding computation time

(average on two machines) on 200 topic model on dataset

combination2 is approximately 3 h.

In order to compare the performance of phishGILL-

NET1 with that of support vector machines, the TDF

matrix of dataset combination2 was utilized. To build the

SVM classifier, first the dimensionality reduction techni-

que, Principal Component Analysis, was applied to TDF

for computation reasons. In addition, features were

selected by applying the information gain criteria. WEKA

software using the libSVM library was used to build the

SVM classifier. Results from SVM with feature selection

are reported in Table 5. It can be seen that SVM results

(F-measure of 95.9%) are worse than phishGILLNET1

(F-measure of 98.1%). In addition, SVM took close to 9 h

to train, whereas phishGILLNET1 using 200 topics took

approximately 3 h.

9 phishGILLNET2
phishGILLNET2 is a finer layer than phishGILLNET1.

Instead of using Fisher similarity function for categoriza-

tion using topic distribution probabilities, AdaBoost is

employed to build a robust classifier using PLSA topic

distribution probabilities as feature. Furthermore,

Table 3 phishGILLNET1–PLSA model performance

Number of topics Dataset combination1 (8 K public corpus) Dataset combination2 (400 K public corpus)

Perplexity Computation time (min) Perplexity Computation time (min)

2 523.56 1.65 6742.42 32.31

10 278.81 2.52 4441.96 45.20

25 277.62 3.12 1748.55 52.00

50 274.31 3.63 1593.10 65.00

100 273.33 7.42 1461.78 112.50

200 271.27 15.38 1425.36 185.20

Table 4 phishGILLNET1–classification performance

Number of topics Dataset combination1 (8 K public corpus) Dataset combination2 (400 K public corpus)

FPR Precision F-measure FPR Precision F-measure

2 0.02 0.977 0.975 0.025 0.971 0.970

10 0.00 0.983 0.983 0.014 0.976 0.976

25 0.00 0.983 0.983 0.010 0.977 0.977

50 0.00 0.983 0.983 0.009 0.981 0.980

100 0.00 0.983 0.983 0.004 0.981 0.981

200 0.00 0.983 0.983 0.001 0.981 0.981
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phishGILLNET2 performs 3-class classification (phish,

spam, good) as well as binary classification (phish, not

phish). The architecture of phishGILLNET2 and experi-

mental results are reported next.

9.1 Architecture

The architecture of phishGILLNET2 is shown in Figure 8.

phishGILLNET2 employs AdaBoost as the classifier

ensemble. The PLSA topics are discovered as before in

phishGILLNET1 and topic distribution probabilities on

training data are estimated. AdaBoost classifier ensemble

is built using these probabilities as features and several

weak learners. Existing classification techniques such as

C4.5 decision tree, rule based-classifier (RIPPER), random

forest, support vector machines, and logistic regression are

used as the weak learners in phishGILLNET2. The perfor-

mance of the classifier is compared using the metrics

reported in Section 7. The open source software WEKA

was used for the implementation of phishGILLNET2.

9.2 Results

Experiments were conducted on the public dataset combi-

nation2. The total email corpus of 400,000 emails was

used for validating this architecture (40,000 phish, 40,000

good, and 320,000 spam). Experiments were conducted

using k-fold cross validation, with a k value of 10. Thus,

for each trial, 90% of the emails were used for training and

10% were used for testing. PLSA topic models were built

for number of topics (K) 50, 100, and 200. Each model

thus results in corresponding number of topic distribution

probabilities (features) 50, 100, and 200, respectively. Clas-

sifiers were then built using these features and AdaBoost

algorithm. Experiments were conducted on two machines

(i) Mac OS X (10.6.5), 2.66 GHz Intel Core i7, 4-GB RAM

and (ii) Cent OS (linux 2.6.18), 1.99 GHz Intel Core 2

Duo, 4-GB RAM. The average computation times are

measured and reported here. The computation times

reported here are the times to perform the cross-validation

after extraction of topic features. Time to build the PLSA

models is reported in Section 8.

Results from the experiments are presented in Tables 6

and 7. Only top five performing classifier results are pre-

sented here. The classification performance is reported in

Table 6 for 3-class classification and Table 7 for binary

classification. For the 3-class problem, boosting with the

random forest technique as the base learner yielded the

Figure 7 phishGILLNET1 performance–log likelihood versus number of EM steps.

Table 5 Classification performance of SVM on dataset

combination2

Method FPR Precision F-
measure

Computation time
(min)

SVM with feature
selection

0.14 0.963 0.959 530
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best precision and best F-measure of 97.7% for a K value

of 200. For the 2-class problem, boosting using the logis-

tic regression base learner yielded the best precision and

F-measure of 99.7% for k value of 200. Thus, for the bin-

ary classification phishGILLNET2 resulted in better F-

measure (99.7%) compared to phishGILLNET1 (F-

measure 98.1%). Boosting using random forest technique

yielded 99.5% for the same number of topics in phish-

GILLNET2. Random forest is computationally faster than

most of the other techniques that were evaluated. Results

from phishGILLNET2 shows boosting significantly

improves classification performance.
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Figure 8 phishGILLNET2 architecture.

Table 6 phishGILLNET2–3-Class (phish versus spam versus good) classification performance

Topics Weak learner for boosting TPR FPR Precision Recall F-measure ROC Area Time (s)

50 C4.5 0.954 0.088 0.954 0.954 0.954 0.944 1.84

50 RIPPER 0.964 0.069 0.964 0.964 0.964 0.955 12.07

50 Random forest 0.974 0.079 0.973 0.974 0.973 0.996 3.09

50 SVM 0.91 0.199 0.907 0.91 0.908 0.867 12.41

50 Logistic 0.909 0.238 0.905 0.909 0.905 0.957 2.42

100 C4.5 0.967 0.068 0.967 0.967 0.967 0.961 5.06

100 RIPPER 0.974 0.043 0.975 0.974 0.975 0.971 16.6

100 Random forest 0.976 0.075 0.975 0.976 0.975 0.997 3.31

100 SVM 0.964 0.095 0.964 0.964 0.963 0.94 11.32

100 Logistic 0.971 0.065 0.97 0.971 0.97 0.989 5.05

200 C4.5 0.969 0.061 0.969 0.969 0.969 0.961 8.93

200 RIPPER 0.972 0.048 0.973 0.972 0.972 0.968 24.77

200 Random forest 0.977 0.06 0.977 0.977 0.977 0.996 3.7

200 SVM 0.97 0.071 0.971 0.97 0.97 0.953 18.62

200 Logistic 0.971 0.065 0.97 0.97 0.97 0.989 6.15
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10 phishGILLNET3
phishGILLNET3 is the third layer of the multi-layered

phishGILLNET. This layer employs AdaBoost and Co-

Training algorithm to build a robust classifier using

large corpus of unlabeled data. Labeling data to build

classifiers require significant time and human labor.

phishGILLNET3 eliminates the need for fully labeled

corpus. The architecture and experimental results are

reported next.

10.1 Architecture

The architecture of phishGILLNET3 is shown in Figure 9.

The motivation for this implementation is to evaluate the

robustness of topic model, specifically PLSA, on a large

corpus of unlabeled data. This architecture implements

the Co-Training algorithm and applies to the email

domain. The algorithm starts with small corpus of labeled

emails (phishing and non-phishing). Using parser compo-

nents (see Section 3), email data are parsed into text pre-

sent in the body of the email and hyper links. The text and

hyper links form two views for applying the Co-Training

algorithm. One of the assumptions behind the Co-Train-

ing algorithm is that the two views should not be perfectly

co-related. In a phishing email, the text in body of the

email will contain enticing content asking the user to click

the hyperlink and the hyperlink and accompanying web

content will contain the impersonating entity. There may

be some correlation between the two views (body text and

Table 7 phishGILLNET2–binary (phish versus not phish) classification performance

Topics Weak learner for boosting TPR FPR Precision Recall F-measure ROC Area Time (s)

50 C4.5 0.985 0.055 0.985 0.985 0.985 0.966 0.79

50 RIPPER 0.989 0.051 0.989 0.989 0.989 0.968 4.17

50 Random forest 0.993 0.053 0.993 0.993 0.993 0.999 1.31

50 SVM 0.939 0.355 0.935 0.939 0.937 0.792 12.67

50 Logistic 0.938 0.421 0.932 0.938 0.933 0.957 1.0

100 C4.5 0.995 0.02 0.995 0.995 0.995 0.987 1.58

100 RIPPER 0.997 0.012 0.997 0.997 0.997 0.993 6.82

100 Random forest 0.994 0.052 0.994 0.994 0.994 0.999 2.32

100 SVM 0.992 0.069 0.992 0.992 0.992 0.961 10.55

100 Logistic 0.995 0.023 0.995 0.995 0.995 0.994 2.17

200 C4.5 0.996 0.019 0.996 0.996 0.996 0.991 2.51

200 RIPPER 0.994 0.024 0.994 0.994 0.994 0.987 7.85

200 Random forest 0.995 0.037 0.995 0.995 0.995 0.999 2.87

200 SVM 0.988 0.098 0.988 0.988 0.988 0.945 10.78

200 Logistic 0.997 0.018 0.997 0.997 0.997 0.997 4.11
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hyperlinks) but not perfect correlation. In addition, review

of literature (see Section 2) shows that classifiers built just

using hyperlinks and just using body text yields good clas-

sification performance. Hence, we apply co-training to the

email body text and hyperlink views. For the body text, all

words in the email are used to build the PLSA model for

text view. For the hyperlinks, terms are extracted by repla-

cing all non-alphanumeric characters as token separator in

the hyperlinks. These terms are used to build the PLSA

model for the hyperlink view.

For both views, once the PLSA model is built, the topic

distribution probabilities are extracted as features. These

features are used to build the classifier. The text classifier

and the hyperlink classifier classify unlabeled email data

and most confidently predicted email data are added to

labeled corpus for the next iteration of co-training. The

process repeats until there is no more unlabeled data to

label.

10.2 Results

Experiments were conducted using the dataset combina-

tion2. Experiments were repeated on two machines to

measure the computation time. Of the total corpus of

400 K, 10% of the data (40 K) was used as labeled data (L)

for the first iteration of the Co-Training algorithm. The

parameters that yielded the best performance in phish-

GILLNET2 are employed to build phishGILLNET3. This

implies that number of topics K is 200 and the weak lear-

ner for the AdaBoost is logistic regression (see Table 7).

The parameters of the Co-Training algorithm are p

(phish) = 200 and n (not phish) = 1800. This unbalanced

dataset is realistic with proportion of phishing emails in

large-scale mail systems. The size of the unlabeled pool U’

is 5000. After each iterations of Co-Training, the text view

classifier labels 2,000 emails and the hyperlink view labels

2,000 emails resulting in 4,000 additional labeled data for

the next iteration of Co-Training. The pool U’ is replen-

ished by selecting 4,000 additional emails randomly from

the unlabeled set U.

Results from the Co-Training algorithm of the combined

hyper link and text classifiers are tabulated in Table 8.

After ten iterations of Co-Training, it is evident that phish-

GILLNET3 results in better performance than phishGILL-

NET2 (99.8% as compared 99.7%). More iterations of the

algorithm resulted in an F-measure 100%. Results show the

robustness of PLSA, AdaBoost, and Co-Training algorithm

to detect phishing. Moreover, phishGILLNET3 achieves

superior performance using 10% of the labeled data thus

saving time, effort, and errors associated with human

annotation.

11 Performance comparison
The performance of phishing detection architecture,

phishGILLNET, is compared with state-of-the-art

research that attempted to solve phishing detection. Per-

formance of each layer of phishGILLNET was compared

with ten different published researches ranging from year

2007 to 2011. Comparison was also performed using sup-

port vector machines using words (instead of topic prob-

abilities) as features. In Table 9 we show characteristics

of our work and the state-of-the-art research. The corpus

used by phishGILLNET is exclusively public where as in

the state-of-the-art six of them have used public, two pri-

vate, and the other two mix of private and public. phish-

GILLNET has used the largest public corpus of size 400

K emails. Thus, results from phishGILLNET are repeata-

ble. The corpus used by phishGILLNET is ten times

more than the next [17] in terms of size. Thus, phish-

GILLNET demonstrates the scalability aspect. The most

recent public corpus (year 2011) is used by phishGILL-

NET for evaluation. phishGILLNET2 supports both 3-

class (phish, spam, good) and binary (phish, not-phish)

classification. The only method that performs 3-class

classification is that of Gansterer and Pölz [15]. All the

others perform binary classification. phishGILLNET3 is

the only method that handles unlabeled data. This is the

most powerful feature and important contribution of

phishGILLNET. To the best of authors’ knowledge, there

is no other study that applied Co-Training for phishing

detection and certainly not at this scale. The closest

research study is by Chan et al. [65] who applied Co-

Training for spam classification on a small dataset of

2,883 emails.

Results of phishGILLNET comparing the state-of-the-

art research are tabulated in Tables 10 and 11. The perfor-

mance metric that is compared is the F-measure (for bin-

ary classification) and accuracy (for 3-class classification).

On the 3-class classification (see Table 10), the compari-

son of phishGILLNET2 with the study of Gansterer and

Pölz [15] on the accuracy metric shows that phishGILL-

NET2 resulted in a better performance (97.7%) compared

with the best result obtained by Gansterer and Pölz [15].

Table 8 phishGILLNET3–binary (phish versus not phish)

classification performance

Iteration
number

TPR FPR Precision Recall F-
measure

ROC
area

5 0.997 0.014 0.997 0.997 0.997 0.987

10 0.998 0.015 0.998 0.998 0.998 0.99

15 0.999 0.014 0.999 0.999 0.999 0.989

20 1.0 0.012 1.0 1.0 1.0 0.991

25 1.0 0.012 1.0 1.0 1.0 0.991

30 1.0 0.013 1.0 1.0 1.0 0.991

35 1.0 0.015 1.0 1.0 1.0 0.991

40 1.0 0.009 1.0 1.0 1.0 0.993

45 1.0 0.0009 1.0 1.0 1.0 0.999

(PLSA 200 topics + AdaBoost with logistic regression weak learner + Co-

Training)
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Thus, topic features using AdaBoost are robust for 3-class

classification.

For the binary classification, of the ten state-of-the-art

researches, only seven of them reported F-measure

results. It is evident from the results in Table 11 that

phishGILLNET3 resulted in an F-measure of 100%.

phishGILLNET3 is the top ranked method followed by

Bergholz et al. [17], which reported an F-measure of

99.89%. Thus, it is evident that the PLSA, AdaBoost,

and Co-Training algorithm employed by phishGILL-

NET3 significantly boosts performance. Moreover,

phishGILLNET3 has the additional advantage of not

requiring 100% labeled samples thus saving significant

manual work. Not relying heavily on manual annotation

also has the advantage of the method being less prone

to human error and disagreement, as one may consider

a spam email as good email and vice versa. Thus, phish-

GILLNET3 is not only superior on F-measure, but also

has these additional advantages. phishGILLNET2, that

employed AdaBoost classifier and did not employ Co-

Training, came close third with an F-measure of 99.70.

However, phishGILLNET2 required fully labeled sam-

ples unlike phishGILLNET3. Another interesting obser-

vation is the top four of the top ten methods employed

topic features for building classifiers. While the second

and fourth ranked methods utilized features in addition

to topic features, phishGILLNET utilized exclusively

topic features. Thus, results from the top four methods

prove the robustness of using topic features for phishing

classification.

12 Conclusions
A multi-layered methodology, called phishGILLNET, is

proposed and evaluated for phishing detection. All three

layers of phishGILLNET employ PLSA to discover phish-

ing and non-phishing topics. phishGILLNET1 categorizes

unseen data using Fisher similarity. phishGILLNET2

employs AdaBoost using PLSA topic features and builds

a better classifier than phishGILLNET1. phishGILLNET3

builds a robust classifier using only a fraction of labeled

samples and applying Co-Training to label additional

samples. The novelty of this architecture comes from

employing semantic features to build the detection

model. Intentional misspelled words found in phishing

are handled using Levenshtein editing and Google APIs

for correction before building the TDF matrix. One of

the important contributions of this article is the use of

Co-Training on a large corpus of unlabeled data to detect

phishing attacks.

The architecture developed is compared with ten state-

of-the-art methods. The performance of phishGILLNET3

is better than all the other competing methods and

achieves an F-measure of 100%. Evaluation of phishGILL-

NET3 is done on a very large dataset (400 K emails)

Table 9 phishGILLNET and competing methods characteristics

Method Year of
publication

Corpus (public/
private/mix

Max
data

Year when data source used
generated

3-class
classification

Can handle
unlabelled?

Chan et al. [65] 2004 Public 2.8 K NA No Yes

PILFER [10] 2007 Public 7.8 K 2002-2006 No No

Abu-Nimeh et al.
[11]

2007 Private 2.8 K 2005-2006 No No

Bergholz et al. [16] 2008 Public 8 K 2004-2007 No No

Abu-Nimeh et al.
[12]

2009 Mix 6.5 K 2006-2007 No No

Gansterer and
Pölz [15]

2009 Mix 15 K 2007 Yes No

Toolan and Carthy
[19]

2010 Public 8.3 K 2004-2007 No No

Bergholz et al. [17] 2010 Private 40 K 2007 No No

Khonji et al. [20] 2011 Public 8.2 K 2003-2007 No No

Al-Momani et al.
[21]

2011 Public 8.7 K 2003-2007 No No

phishGILLNET1 - Public 8.7 K 2003-2007 No No

phishGILLNET2 - Public 400 K 2011 (phish-40 K, spam 320 K) Yes No

2001 (good-40 K)

phiahGILLNET3 - Public 400 K 2011 (phish-40 K, spam-320 K) No Yes

2001 (good-40 K)

Table 10 Performance comparison–3-class classification

Method Accuracy (%) Rank

phishGILLNET2 97.70 1

Gansterer and Pölz [15] 97.00 2
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compared to other competing methods. Moreover, the

corpus used is publicly available and hence experiments

could be reproduced. phishGILLNET3 also has the power-

ful feature of incorporating unlabeled data during training.

phishGILLNET is domain neural. It can be employed to

detect phishing attacks at social networking posts (Face-

book, Twitter, etc.), instant messages, chat, blog posts, etc.

As long as the content is available in text, MIME and

HTML formats, this architecture can handle all of them.

Thus, phishGILLNET is a significant research contribution

to detect phishing attacks.
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