
Received April 10, 2020, accepted April 24, 2020, date of publication April 30, 2020, date of current version May 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991403

PhishHaven—An Efficient Real-Time AI Phishing
URLs Detection System

MARIA SAMEEN 1, KYUNGHYUN HAN 2, AND
SEONG OUN HWANG 3, (Senior Member, IEEE)
1Department of IT Convergence Engineering, Gachon University, Seongnam 13120, South Korea
2Department of Electrical and Computer Engineering, Hongik University, Sejong 30016, South Korea
3Department of Computer Engineering, Gachon University, Seongnam 13120, South Korea

Corresponding author: Seong Oun Hwang (sohwang@gachon.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) under

Grant 2020R1A2B5B01002145.

ABSTRACT Different machine learning and deep learning-based approaches have been proposed for design-

ing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing

attacks can be performed by employing a deep neural network-based phishing URL generating system

called DeepPhish. To prevent this kind of attack, we design an ensemble machine learning-based detection

system called PhishHaven to identify AI-generated as well as human-crafted phishing URLs. To the best

of our knowledge, this is the first study to consider detecting phishing attacks by both AI and human

attackers. PhishHaven employs lexical analysis for feature extraction. To further enhance lexical analysis,

we introduce URL HTML Encoding to classify URL on-the-fly and proactively compare with some of the

existing methods. We also introduce a URL Hit approach to deal with tiny URLs, which is an open problem

yet to be solved. Moreover, the final classification of URLs is made on an unbiased voting mechanism in

PhishHaven, which aims to avoid misclassification when the number of votes is equal. To speed up the

ensemble-based machine learning models, PhishHaven employs a multi-threading approach to execute the

classification in parallel, leading to real-time detection. Theoretical analysis of our solution shows that (1) it

can always detect tiny URLs, and (2) it can detect future AI-generated Phishing URLs based on our selected

lexical features with 100% accuracy. Through experiments, we analyze our solutionwith a benchmark dataset

of 100,000 phishing and normal URLs. The results show that PhishHaven can achieve 98.00% accuracy,

outperforming the existing lexical-based human-crafted phishing URLs detection systems.

INDEX TERMS AI-generated phishing URLs, ensemble machine learning, human-crafted phishing URLs,

lexical features, multi-threading, tiny URLs, URL HTML encoding, voting.

I. INTRODUCTION

The distinctive characteristics of machine learning, ranging

from detecting and extrapolating patterns to adapting a new

environment, enable it to be a crucial part of technolog-

ical systems like nuclear power plants monitoring, cyber

and homeland security, computer vision, and IoT(Internet

of Things), to name a few. In [2], the authors demonstrated

through their study that machine learning is effective in pro-

viding security for IoT based systems. With the increasing

demand of security, machine learning-based systems usually

outperform traditional humans-based security monitoring

The associate editor coordinating the review of this manuscript and

approving it for publication was Fuhui Zhou .

systems. Today, when the world heavily relies on electronic

communications, connected devices lead to a variety of online

threats and cyber attacks every day. In [3], the authors dis-

cussed in detail how cyber attacks for smart grids can be

carried out in different phases and forms. In [4], the authors

highlighted how cyber attacks on load forecasting can affect

the crucial operational decisions needed for electricity deliv-

ery. In [5], the authors focused on FDI(false data injection)

attacks and how to mitigate such cyber attacks. And in [6],

the authors investigated the effects of cyber attacks on power

grids.

Among a wide range of online threats and cyber attacks,

phishing is the most common one. Phishing attack is any

fraudulent attempt that involves an activity of disguising

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 83425

https://orcid.org/0000-0002-6086-8974
https://orcid.org/0000-0002-7987-0441
https://orcid.org/0000-0003-4240-6255
https://orcid.org/0000-0001-6880-6244

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

oneself as a trustworthy party to obtain sensitive information.

Phishing attacks can be of different types which include

E-mail spoofing, website forging, social engineering, etc.

One of the subtle yet deceiving methods to perform phishing

attacks is phishing URLs. Phishing URLs are types of URLs

which are especially crafted by phishing attackers. The com-

mon characteristic of these URLs is that they appear to be a

legitimate URL but redirect users to the attackers’ websites.

According to the report published by APWG(Anti-Phishing

Working Group) on November 4, 2019 [7], the number of

phishing attacks has risen to a high-level which were not seen

since late 2016. Their report discussed and demonstrated the

highest level of phishing attacks carried out throughout the

year of 2019 based on 3 quarters.

Several researches have been conducted to prevent, mit-

igate and even to correct phishing attacks. Majority of the

researches are focused on using different machine learning

models, deep learning models and/or the combinations of the

models. In [8], the authors performed a study in detail on

how to build potential cybersecurity systems using machine

learning. Researchers and security analysts tend to improve

phishing URLs detection systems through machine learning

and deep learning models. In [9], the authors studied the opti-

mization of phishingURLs detection systems through genetic

algorithms. Also in [10], the authors designed a phishing

URLs detection system. While over time, phishing adver-

saries have also spanned their horizons(i.e. targeting dif-

ferent end-devices) and enhanced their attacking strategies.

In [11], the authors conducted a study to highlight the phish-

ing attacks performed on mobile devices along with defence

mechanisms and existing challenges. In [1], the authors pro-

posed a model named as ‘‘DeepPhish’’ which is specially

designed to generate AI phishing URLs. DeepPhish [1] takes

Simple Phishing URLs, i.e., human-crafted phishing URLs as

its input and generates new phishing URLs. Majority of these

newly generated phishing URLs, i.e., AI-generated Phishing

URLs are capable enough to easily bypass existing prevalent

phishing detection systems.With this, the near future of cyber

attacks can be easily forecasted where AI will be used to

carry out highly sophisticated malicious attacks, known as

‘‘Offensive AI’’. A report by DARKTRACE [12] showed

how a new paradigm of cybersecurity threats will emerge

with AI driven attacks, enabling attackers to incorporate the

characteristics of AI such as impersonating the trusted users,

mimicking the users’ behaviors, autonomous decision mak-

ing ability, etc. along with existing sophisticated attacks and

malwares. In [13], the authors critically examined ‘‘machine

ethics’’ and concluded that machine ethics is not an appro-

priate technological fix to the social problems arising due to

AI applications.

Furthermore, machine learning and deep learning mod-

els are primarily crafted statistical models to perform spe-

cific tasks effectively without any external instructions, they

still lack accuracy in performing those specific tasks, result-

ing in misclassifications. There can be multiple reasons for

lacking accuracy in a performance, e.g., mis-labeled data,

inappropriate features reduction or selection, over-fitting or

under-fitting of features. One of the most important reasons

behind this lack of performance is the models’ architecture

restrictions. That is, the internal structures of models restrict

models to manipulate and analyze different types of features.

For example, Linear Regressionmodels perform very well for

features or patterns having linear relationships among them,

but perform poorly when there are non-linear relationships.

In [14], the author demonstrated various limitations of three

different types of Boltzmann machine learning procedures.

Due to this, even if we may facilitate models with a) ample

amount of datasets, b) perform proper feature reduction or

selection process, c) avoid over-fitting or under-fitting, mod-

els still somehow fall short of generating accurate results as

models are unable to cater different types of features.

To address the above-mentioned problems, we propose

PhishHaven, an efficient real-time AI-generated Phishing

URLs detection system. Our study of relevant literature

shows that PhishHaven is the first phishing detection

system designed to detect AI-generated Phishing URLs.

PhishHaven is especially designed to detect phishing

URLs generated by DeepPhish [1]. Our proposed system uses

lexical features-based extraction and analysis techniques.

To proactively detect and classify a URL on-the-fly, we addi-

tionally introduce URL HTML Encoding as a lexical feature

to further boost PhishHaven. In addition to this, we intro-

duce URL Hit, an approach to effectively detect tiny URLs.

Furthermore, we also design a new paradigm for executing

ensemble-based machine learning for PhishHaven. This new

paradigm makes parallel execution of ensemble machine

learning models using multi-threading approach for training

and testing phases. PhishHaven also employs unbiased voting

concept in decision-making process to assign final labels

(i.e., either phishing or normal) to the URL(s).

Main contributions of this study can be summarized as:

1) We propose the first AI-generated Phishing URLs

detection systemwhich is capable of detecting phishing

URLs generated by DeepPhish [1] with high precision,

accuracy and F1-measure of 98%. Even for Simple

Phishing URLs, it outperforms the other existing detec-

tion systems with higher precision.

2) We introduce URL HTML Encoding as an addi-

tional lexical feature to classify URLs proactively and

on-the-fly.

3) We introduce a URLHit approach which can detect any

tiny URL that can be from either phishing or normal

category. Our approach is completely independent of

any URL shortening softwares, algorithms, methodolo-

gies and does not require any prior knowledge in this

regard.

4) We propose a new paradigm of execution for ensem-

ble machine learning, which is comprised of parallel

execution of ensemble-based machine learning models

through multi-threading. Parallel execution in training

and testing phases speeds up processes, hence allows to

detect phishing URLs in real time.

83426 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

5) The proposed detection system boasts various desirable

features. First, it is independent of any third-party ser-

vices (i.e., WHOIS, Team Cymru, etc.) because all the

procedures including features extraction from a URL,

examination and classification of a URL are performed

within our detection system. Second, it is independent

of languages because it analyzes URLs only. And third,

it is capable to detect zero-day attacks because our

detection system analyzes URL based on URL’s lexical

features.
The rest of the paper is organized as follows: Section II

discusses our main motivation. Section III provides a brief

overview of different approaches used for designing different

phishing URLs. Section IV presents our proposed solution

along with its methodology and time complexity analysis in

detail. Section V highlights the experiments and evaluations

of our proposed solution. Section VI describes some related

work. Finally, Section VII concludes this paper along with

future work and directions.

II. MOTIVATION

We examine and analyze Simple (human-crafted) Phishing

URLs and AI-generated Phishing URLs through lexical fea-

tures (a process of converting URLs into a sequence of char-

acters) and word clouds (a visual representation of words

which are frequently used in URLs) based analyses. We aim

to analyze the differences in the formation and behaviour of

Simple Phishing URLs and AI-generated Phishing URLs.

A. LEXICAL FEATURES-BASED ANALYSIS

To analyze lexical features-based behaviour and differences

between Simple Phishing URLs and AI-generated Phishing

URLs, we draw plots for behavioural analysis based on fea-

tures’ count against the number of URLs for both, i.e., Simple

Phishing URLs and AI-generated Phishing URLs as shown

in Figure 1 and Figure 2 respectively.

We thoroughly analyze both Figure 1 and Figure 2, and

perform comparative analysis. Firstly, in Simple Phishing

URLs, there are some URLs which consist of more than

one colon(:), i.e., they are some URLs which contain ports

in them, while AI-generated Phishing URLs never consist

of ports. Secondly, in Simple Phishing URLs, there are few

URLs in which more than one double forward slash(//) exist,

i.e., besides segment part they incorporate double forward

slashes in the path section of the URLs, while in AI-generated

Phishing URLs double forward slashes are only use for the

segment part. From plots, we can see that there is a high

variance for dots(.) in Simple Phishing URLs. Sometimes

they use few dots and sometimes upto 15 dots, i.e., sometimes

Simple Phishing URLs incorporate other details in the URLs

apart from domain name, SLDs(second-level domains) and

TLDs(top-level domains). However, in AI-generated Phish-

ing URLs, there is almost no variance. This shows that

AI-generated Phishing URLs usually use dots to add more

information besides domain name, SLDs and TLDs. Simi-

larly, there is a high variance for virgule(/) feature in Simple

FIGURE 1. Behavioural analysis of selected lexical features from Simple
Phishing URLs having the number of URLs on the x-axis and the features
on the y-axis.

FIGURE 2. Behavioural analysis of selected lexical features from
AI-generated Phishing URLs having the number of URLs on
the x-axis and the features on the y-axis.

Phishing URLs. This means that sometimes Simple Phish-

ing URLs incorporate different depths of hierarchical tree

paths, while AI-generated Phishing URLs generally include

longer depths of hierarchical tree paths. It can be seen that

Simple Phishing URLs sometimes may use question mark(?)

for other purposes. But in AI-generated Phishing URLs,

they only count this feature for highlighting query part of

the URLs. In plot, we can see that AI-generated Phishing

VOLUME 8, 2020 83427

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

TABLE 1. Key comparative analysis between Simple Phishing URLs and AI-generated Phishing URLs based on specific lexical features.

URLs consider equals(=) sign in a reasonably good amount

with great diversity, i.e., they use a lot of assignment of

values, IDs, etc. However, in Simple Phishing URLs case,

they rarely use equals sign. It can also be seen that there

is a great variation of words combinations use in Simple

Phishing URLs. On the contrary, there is a subtle amount

of variation of words combinations in AI-generated Phish-

ing URLs. As opposed to the hyphen(-) feature, there is a

great variation of words separations in AI-generated Phishing

URLs. Simple Phishing URLs, in contrast to this, have almost

no variation for word separations.

Since hash(#) and exclamation(!) are used in combination

for highlighting fragment part, therefore, we consider them

together. In Simple Phishing URLs, there are very few URLs

which contain both of them. On the other hand, there are

none in AI-generated Phishing URLs. Plot for ampersand(&)

feature shows that AI-generated Phishing URLs have a great

diversity, i.e., they mostly incorporate different numbers of

queries in URLs. On the other hand, Simple Phishing URLs

consider ampersand feature rarely. In Simple Phishing URLs,

we can see there are some URLs which contain @, i.e., there

are some URLs that incorporate user information part in

them. Conversely, there is none in AI-generated Phishing

URLs category. For percentage(%) feature, Simple Phishing

URLs use it in a fairly good quantity, whereas AI-generated

Phishing URLs use it in a subtle amount. Hence, it shows that

Simple Phishing URLs frequently use URLHTML Encoding

as compared to the AI-generated Phishing URLs. On the

same footing, it can be said that Simple Phishing URLs use

digits([0-9]) quite frequently as compared to AI-generated

Phishing URLs. This concludes that Simple Phishing URLs

use IDs, URL HTML Encodings and alphanumeric charac-

ters more frequently than AI-generated Phishing URLs. For

plus(+) sign, Simple Phishing URLs rarely use this feature.

But whenever they consider this feature, they use it twice

per URL. AI-generated Phishing URLs use plus sign some-

times as compared to Simple Phishing URLs. DeepPhish [1]

usually include plus feature once per URL. Then for semi-

colon(;), none of them, i.e., Simple Phishing URLs and

AI-generated Phishing URLs, consist of this feature. And

finally, for tilde(∼), there are some Simple Phishing URLs

which include and specify home directory in them. However,

AI-generated Phishing URLs do not use this feature.

Table 1 highlights the key comparative analysis of Figure 1

and Figure 2. The reason for performing the behavioural

analysis using the specific lexical features is discussed in the

subsequent section.

B. WORD CLOUDS-BASED ANALYSIS

To further investigate the behavior of AI-generated Phishing

URLs, we employWord Clouds approach.WithWord Clouds

83428 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

FIGURE 3. Frequent terms analysis from Simple Phishing URLs’ Word
Clouds.

approach, we are able to identify terms that are frequently

used by DeepPhish [1] to generate phishing URLs.

From Figure 3, it can be observed that Simple Phishing

URLs usually consist of five different parts, i.e., segment,

netloc, path, query and fragment. From the Figure 3a, we can

deduce that Simple Phishing URLs usually use ‘‘http’’ and

‘‘https’’ as communication protocols. For subdomain, Sim-

ple PhishingURLs use ‘‘www’’ services. In case of SLD, they

have a length of three characters and use ‘‘com’’. But they

have no TLDs in them. For the given data, the frequently used

term for domain name is ‘‘naylorantiques’’. In Figure 3c,

terms including ‘‘php, html, index, upload, identificacao,

accesso, weblinks, internetBanking, do, login, views etc.’’

are frequently used for path. These terms show that they have

been used to fool users and to access users’ information.

On the other hand, in Figure 3d, mostly different values

have been used with terms like ‘‘id, passo, plugin, default,

cliente’’. This means that attackers tried to redirect users to

their pages or locations by assigning their locations’ positions

and IDs. And for fragment, we can see that Simple Phishing

URLs consist of gibberish combinations of alphanumeric

characters just to give a visual illusion to the Internet users

about the phishing URLs as complete URLs.

Figure 4 shows that AI-generated Phishing URLs are

made of four different parts, i.e. segment, netloc, path and

query. Figure 4a depicts that ‘‘http’’ is generally used

FIGURE 4. Frequent terms analysis from DeepPhish [1] URLs’ Word
Clouds.

as a communication protocol inAI-generated PhishingURLs.

Similar to the Simple Phishing URLs, AI-generated Phishing

URLs also use ‘‘www’’ services as a subdomain, ‘‘com’’

as an SLD and also have no TLDs in them. Given the

dataset, we can see that AI-generated Phishing URLs used

two different subdomains, i.e., ‘‘naylorantiques’’ and ‘‘net-

shelldemos’’. In path, AI-generated Phishing URLs include

words combinations like ‘‘identificacao, naylorantiques,

com, home, co, docs, menu, etc.’’ to hide their malicious

sites or to deploy malicious codes by downloading different

files on users’ systems or to trick users to access users’

credentials. For query part, DeepPhish [1] used combination

of bogus terms like ‘‘lnms, q, X, AGN, isch, sa, ORIGEM,

tbm, espv, source, CTA, conta, etc.’’ with numbers to com-

plicate query part. Hence by over-complicating queries, users

are unable to understand things correctly and can be easily

deceived by attackers.

Therefore, based on our exploratory data analysis, we can

conclude that AI-generated Phishing URLs are usually made

up of features that are somehow similar to the Normal URLs.

Due to this, AI-generated Phishing URLs generally tend to

look similar to that of Normal URLs. Thus, most of the time

AI-generated Phishing URLs easily bypass simple phishing

detection systems.

Therefore, this pose a need for a detection system which is

able to even detect AI-generated Phishing URLs efficiently

and effectively.

III. PHISHING URLs’ DESIGN APPROACHES

Since URLs are the first thing that can be used to analyze and

classify any website as phishing or normal. Phishing URLs

always have some distinctive features. Those features can

be incorporated in the phishing URLs through the following

main approaches.

VOLUME 8, 2020 83429

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

1) HIDDEN LINKS

One way of persuading a victim to click on the phishing link

is through Hidden Links. Hidden Link is a type of technique

through which attackers hide the phishing URLs through:
1) Using some keywords, e.g., ‘‘CLICK HERE’’,

‘‘DOWNLOAD’’, ‘‘SUBSCRIBE’’, etc.

2) Replacing with IP addresses

3) Appending other domain names (mostly different

brand names)
This technique helps attackers to easily deceive a vic-

tim and launch a phishing attack without displaying a

phishing URL.

2) COMBOSQUATTING

It is also commonly known as ‘‘Cybersquatting’’ or ‘‘Domain

squatting’’. In this technique, attackers either register or use

the domain name for phishing purposes.

Combosquatting can be carried out in either of the follow-

ing ways:
1) Correctly spelled domain name but appending a string

to it that appears legitimate and anyone can register,

e.g., microsoft-login.com

2) Omitting a period, also known as ‘‘Doppelganger’’

domain. Doppelganger is a type of domain that has

identical spelling to that of a legitimate FQDN(Fully

Qualified Domain Name) but has missing dots between

subdomain and domain, e.g., enwikipedia.org instead

of en.wikipedia.org

3) Adding an extra period, e.g., air.france.com instead of

airfrance.com

3) TINY URLs

URL shortening is an approach that helps in shortening the

expanded or lengthy URLs, hence resulting in tiny URLs.

URL shortening is desirable due to various reasons which

include but not limited to make URLs aesthetically pleasing,

hide underlying confidential addresses, and provide an ease

to remember URLs.

4) TYPOSQUATTING

It is also known as ‘‘URL Hijacking’’, a ‘‘Sting Site’’, or a

‘‘Fake URL’’. It is a form of cybersquatting. It solely relies

on mistakes, in terms of typos, either made by Internet users

while entering the websites in the web browsers or based on

typographical errors which are hard to notice while quick

reading. Hence, any typo error may lead to a phishing page.

This also includes brandjacking.

Typosquatting is usually carried out in one of the five

following ways:
1) Simply misspelled, e.g., applle.com instead of

apple.com

2) Typo based misspelled, e.g., appel.com instead of

apple.com

3) Different domain name, e.g., apples.com instead

apple.com

4) Different TLD, e.g., apple.org instead of apple.com

5) ccTLD(Country Code top-level domain), e.g., apple.cm,

apple.co etc. instead of apple.com
We take into account all these four types of techniques. Our

proposed solution, methodology, and approaches are capable

enough to deal with all of the above mentioned types of

phishing URLs techniques.

IV. PROPOSED SOLUTION: PhishHaven

We propose PhishHaven, a novel phishing URL detection

system. It works as a browser plugin as shown in Figure 5.

The main novelty of PhishHaven lies in its detection, i.e., it

is especially crafted to detect AI-generated Phishing URLs.

Furthermore, PhishHaven is capable to deal with tiny URLs

with our URL Hit approach. In addition to this, it is unique in

terms of its parallel execution of ensemble machine learning

models along with unbiased voting-based classification.

A. DESIGN PRELIMINARIES

To understand how our proposed system works, we need to

understand the following preliminaries.

1) URL HIT

With the motive to obtain sensitive information such as pass

codes, personal credentials etc., phish attackers generally use

tiny URL approach. Therefore, to detect tiny URLs effi-

ciently, it is important to understand how tiny URLs work.

The URL shortening works because of browsers’ redirect

functionality. When a user clicks or types a tiny (shortened)

URL in the browser, the browser sends HTTP request to

the server directing it to fetch the requested page, after

which the server then sends either of the following redirect

requests [29]:
1) 301: Moved Permanently

2) 302: Found

3) 303: See Other

4) 304: Not Modified

5) 305: Use Proxy

6) 307: Temporary Redirect
There is a community of adversaries who took the leverage

of URL shortening approach to fulfill their adversarial goals.

Tiny URL is also one of the characteristics of phishing URLs.

Through tiny URLs, attackers can easily hide paths of mali-

cious pages or deploy a malicious piece of code. Thus, detec-

tion of tiny URLs is also essential. But the characteristics of

tiny URLs make it difficult for the detection systems to detect

tiny URLs.

Although, in [21] and [23], the authors have a rich list of

lexical features and employed various detection approaches;

their models were unable to detect tiny URLs.

With the main aim to detect AI-generated Phishing URLs,

we also introduce a URLHit approach to efficiently deal with

tiny URLs. It is incorporated into our detection system in

a way that whenever a user clicks a URL, let’s say (IURL),

the URL firstly redirects toward our plugin, PhishHaven. The

URL (IURL) is then further hit by our plugin. We then fetch

the response of the respective hit URL (IURL) in terms of

83430 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

FIGURE 5. The architecture of PhishHaven. PhishHaven, a browser plugin, takes a URL and employs URL Hit approach to extract
an extended URL from the server. Then using the Features Extractor subcomponent, PhishHaven extracts selected lexical features
from an extended URL. Next PhishHaven executes the Modelics subcomponent to generate a list of labels, i.e., phishing or normal.
Finally, PhishHaven uses Decision Maker subcomponent to assign the final label to the initial entered URL.

an extended URL, i.e., it returns an actual URL, let’s say

(AURL), after which the very first component of our detec-

tion system, i.e., Features Extractor extracts features from

URL (AURL).

2) FEATURES EXTRACTOR

In order to detect AI-generated Phishing URLs, we employ

an adversarial learning approach. Through this approach,

we extract various features that are found specifically in

AI-generated Phishing URLs. Thus, this approach enables

PhishHaven to detect AI-generated Phishing URLs more

accurately.

a: FEATURES SELECTION

There can be a wide variety of lexical features for classifying

URLs. In our study, we specifically focus on AI-generated

Phishing URLs. Therefore, we analyzed how similar or dis-

tinguishing are the AI-generated Phishing URLs to that of

Simple Phishing and Normal URLs. In this study, we only

analyze DeepPhish [1] generated URLs which is, to the best

of our knowledge, the only AI model designed for generating

phishing URLs.

In the future, there may be many other AI models designed

for generating phishing URLs. Therefore, we study how

Google deals with different URLs which are designed for

different purposes. With this technique, our detection system,

PhishHaven, is able to train on various yet most significant

lexical features.

The two main categories of special characters used to

create a full-fledged URL are:

1) Reserved Characters:

These include dollar sign ($), ampersand (&), plus (+),

common (,), virgule (/), colon (:), semi-colon (;), equals

sign (=), question mark (?), and at (@) symbol. All of

them have various purposes and significant meanings

when used in URLs.

2) Unreserved Characters:

These include space (), quotation marks (‘ ’), less than

(<), greater than (>), hash (#), percent (%), left curly

brace ({), right curly brace (}), pipe (|), backslash (\),

caret (^), tilde (∼), left square bracket ([), right square

bracket (]), and grave accent (‘). They are also known as

‘‘Unsafe Characters’’. These characters if not encoded

properly within the URLs can be easily misunderstood

for various reasons.

Based on these two major categories, we select the list of

lexical features deliberately as mentioned in Table 2 along

with their reasons.

VOLUME 8, 2020 83431

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

TABLE 2. List of selected lexical features along with their characteristics and reasons for their selection.

b: URL HTML ENCODING, A LEXICAL FEATURE

URL HTML Encoding, also known as character encoding,

is essential as it is required to process non-ASCII characters

of the URL. Also, to improve the page-loading time, espe-

cially on slow connections, HTML Encoding is indicated in

the first 1024 bytes of the document.

Therefore, an attacker can play around with character

encoding to hide malicious information embedded in the

URL. Hence, we consider URL HTML Encoding as an addi-

tional lexical feature for phishing URL detection.

Since Features Extractor subcomponent is responsible for

extracting lexical features from an extendedURL;we develop

an approach for this component. We extract features into two

parts.

1) Overall count

In this part, we first take the URL as a whole. Then

we extract all the selected lexical features mentioned

in Table 2 one by one from the whole URL.

2) Individual count

On the other hand, in this part, we first divided URL

into the following five major components, i.e, segment,

netloc, path, query and fragment.

a) Segment is also known as ‘‘scheme’’. It deter-

mines the type of protocol used for accessing the

resources on the Internet, e.g., https, http, ftp, etc.

b) Netloc is also known as ‘‘hostname’’. It deter-

mines the registered name, an IP address and

user information. It is further divided into differ-

ent subcomponents which are subdomain, domain

name, top-level domain, second-level domain and

port.

i) subdomain determines the type of service

used for accessing the resources, e.g., www,

video, etc.

ii) domain name determines registered entity,

e.g., google.

83432 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

FIGURE 6. Lexical features extraction approach from the five components of a URL.

iii) top-level domain or TLD determines country

code, e.g., pk, uk, etc.

iv) second-level domain or SLD determines the

type of a registered entity, e.g., org, edu, com,

etc.

v) port determines which port is used for com-

munication between client and server.

c) Path determines the location of a file on the web

server, e.g., directory/folder/file.

d) Query determines which type of request(s)

are made by a user to the web server, e.g.,

docid=−12548987, etc.

e) Fragment is also known as ‘‘anchor’’. It deter-

mines internal page or internal section references,

e.g., category=blue, etc.

After dividing a URL into its respective five components,

we then extract features from features list in Table 2 from each

component, as shown in Figure 6.

3) MODELICS

Modern operating systems are capable enough to execute

multiple tasks concurrently using multi-threading approach.

Therefore, we leverage the multi-threading to detect

AI-generated Phishing URLs efficiently in real-time.

We design this subcomponent in a way that it acts as a single

process composed ofmultiple threads. Thesemultiple threads

are all the machine learning models running (learning or

predicting) simultaneously, but independent of each other.

Each model (thread) takes extracted features from previous

subcomponent, Features Extractor, as an input and then sends

its respective predicted result individually and independently

to the Decision Maker, the next subcomponent of our detec-

tion system.

4) DECISION MAKER

To avoid simple majority-based voting concept which suf-

fers from a limitation of having equal number of votes for

each value or state; we borrow the voting concept from

Fault-Tolerant mechanism which is used by distributed sys-

tems to achieve a necessary agreement on a single value

or single state by a majority of 2
3 or 67% and design our

mechanism named as Voting.

Our Voting mechanism takes simultaneously generated

prediction results (individual and independent) of each

machine learningmodel and thenmakes a final decision about

the class of a URL based on 67% of classifiers classifying for

either of the class, i.e., phishing or normal.

Algorithm 1 Algorithm for URL Hit

Output: Expanded_URL

Set variable: Tiny_URL

Expanded_URL = requests.get(Tiny_URLs[index])

In a nutshell, our PhishHaven takes a URL from a browser.

It then employs our URL Hit approach on it and fetches

an extended URL. Thereafter, Features Extractor extracts

features from an extended URL, after which the extracted

features are sent to the Modelics subcomponent. And at last,

the Decision Maker subcomponent takes all the outputs from

the Modelics subcomponent, decides and assigns a Final

Label, i.e., phishing or normal to the initially entered URL.

B. METHODOLOGY

With the aim to design an efficient real-time phishing

URLs detection system, we design a PhishHaven which

detects and classifies a URL using four subcomponents.

First subcomponent, URL Hit which extracts extended URLs

from tiny URLs. The second subcomponent is Features

Extractor which extracts selected lexical features from the

extended URLs. Then the third subcomponent, Modelics,

which executes ensemble-based machine learning models in

parallel and collects the classification results. And lastly,

Decision Maker subcomponent which assigns a final class,

i.e., phishing or normal to the URL.

1) URL HIT

When a user enters a URL, a URL is first redirected towards

our detection system. Thereafter, the URL is further hit with

a request of a response in terms of URL by our detection

system. The requested respective response can be either an

expanded URL in case of tiny URL or the same URL in case

of expanded URL as shown in Algorithm 1. The requested

respective response is then passed to the next subcomponent,

i.e., Features Extractor.

2) FEATURES EXTRACTOR

To extract features from extended URL(s), this subcompo-

nent first extracts features from URL(s) as a whole using

Algorithm 3. Then it divides the expanded URLs into their

respective five parts, i.e., segment, netloc, path, query and

fragment as shown in Algorithm 2. After this, the respective

parts of URL(s) also undergo the process of features extrac-

tion as shown in Algorithm 3. We use regular expressions to

extract different types of features after which the extracted

features become the output of this subcomponent.

VOLUME 8, 2020 83433

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

Algorithm 2Algorithm for Components Extraction From

URLs

Input: Expanded_URLs

Output: Segment_List

Netloc_List

Path_List

Query_List

Fragment_List

Set variable: index = 0

for url in Expanded_URLs do

parser = urlparse(url)

Segment_List.insert(index, parser.scheme)

Netloc_List.insert(index, parser.netloc)

Path_List.insert(index, parser.path)

Query_List.insert(index, parser.query)

Fragment_List.insert(index, parser.fragment)

index = index + 1

end for

Algorithm 3 Algorithm for Features Extraction From

URLs and Their Components

Input: Expanded_URLs, Segment_List, Netloc_List,

Path_List, Query_List, Fragment_List

Output: Features_List

for index in No._Features do

Features_List.insert(index, extracted_features)

end for

3) MODELICS

For this subcomponent, different machine learning models

are set in parallel as individual and independent threads.

A set of extracted features from the previous subcomponent,

Features Extractor, becomes an input to this subcomponent.

This subcomponent, Modelics, consists of ten machine

learning models. We categorize machine learning models

according to our case into three categories, i.e., boosting-

based approach, non-learning-based approach and learning-

based approach because we want to introduce variance in

decision making and feature selection processes.

• Boosting-based approach

Classifiers in this category employ voting-based deci-

sion and focus on making weak learners strong. In this

category, we consider AdaBoost and Gradient Boosting

classifiers for the following reasons:

– AdaBoost Classifier alters the distribution of the

samples in the training dataset to increase the

weights of the training samples which are difficult

to classify. Moreover, it focuses on making weak

learners strong by assigning weights to the weak

learners based on data misclassifications. Also,

it makes a final prediction based on the majority

vote by taking the weak learner’s predictions which

are weighted by their individual accuracy. [31], [32]

– Gradient Boosting Classifier minimizes the

overall error of strong learners through gradient

optimization process on each weak learner. It also

minimizes the loss function of the strong learner

in order to focus on misclassified samples in the

training dataset [33].

• Non-learning-based approach

Classifiers in this category are less prone to over-fitting.

For this category, Decision Trees, Random Forest, Extra

Tree classifier, Bagging classifier and K-Nearest Neigh-

bour are considered alongwith the following reasonings:

– Decision Trees considers all the features in the

entire dataset at a time while constructing a model.

It has a high variance [34].

– Random Forest considers random features from

the entire dataset at a time while constructing

a model. The selection of features is carried

out on the basis of best split and with replace-

ment(bootstrapping). It has amedium variance [35].

– Extra Tree Classifier also considers random

features from the entire dataset at a time while

constructing a model. Whereas, the selection of

features is carried out on the basis of random split

and without replacement. It has a low variance [36].

– Bagging Classifier makes multiple groups com-

prised of different features from the entire dataset.

It considers a random combination of features with

the groups. The goal of this classifier is to decrease

the variance [32].

– K-Nearest Neighbour generates clusters based on

features and samples in the training dataset. It then

assigns a cluster to the new sample based on the

distance between the new sample and clusters [37].

• Learning-based approach

This category’s classifiers perform classification

through optimization and drawing decision bound-

aries. We choose three classifiers from this category,

i.e., Logistic Regression, Support Vector Machines and

Neural Networks because of the following reasons:

– Logistic Regression makes a binary classification.

It is a probabilistic approach and assigns samples to

the class based on class probability [34], [38].

– Support Vector Machines draws a decision

boundary based on features from the dataset in

the hyperplane. It is a deterministic approach and,

requires optimization and regularization [39].

– Neural Networks learns the distribution of the

samples in the training dataset and performs

classification based on optimized weights and

biases. It also performs multi-layer optimization by

itself [38], [40].

Each machine learning model takes a set of features and

performs learning (in learning case) and prediction (in pre-

diction case). Then every machine learning model predicts

the class label and sends its prediction result to the next

83434 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

subcomponent. Each model produces output individually and

independent of each other.

We can express this subcomponent mathematically as,

E(X) =































































































AB(X) = sign(6T
i=1αihi(X))

B(X) = sign(6T
i=1sign(fi(X)))

DT (X) = 6C
i=1 − fi(1 − fi)

XT (X) = 6X
i=1 − fi(1 − fi)

GBm(X) = GBm−1(X) + 6T
i=1α

′
im1Rim (X)

KNN (X) = P(y = j|X = x) = (
1

k
6i∈AI (y

i = j))

LR(X) = WX + B

NN (X) = f (b+ 6n
i=1Xiwi)

ˆRF(X) =
1

B′
6B′

i=1RFi(X
′)

SVM (X) =

{

+1, if w.X + b′ ≥ 0

−1, if w.X + b′ < 0

(1)

Here, E is multi-threading of Ensemble Machine Learning

Models where every model is an individual and independent

thread. AB is an AdaBoost Classifier having X as a set of

extracted features along with α, the weights for the classifiers

and T , the number of classifiers. B is a Bagging Classifier

consisting of the frequency of the label (fi), a set of extracted

features (X) and the number of classifiers (T). Next is the

Decision Tree (DT) made up of C number of unique labels

and frequency of the label (fi), whereas XT , an Extra Tree

Classifier consists of X , a set of extracted features and fre-

quency of the label (fi). For Gradient Boosting Classifier

(GB), it has a set of extracted features (X), m number of

iterations, T number of classifiers, step size of α′ and pseudo

residual (R). In KNN , K-Nearest Neighbour, it has probabil-

ity P, feature (x), set of extracted features (X), k number of

neighbours, y number of clusters, set of points close to x (A)

and new sample (j). The Logistic Regression (LR) model uses

the co-efficients of extracted features (W), a set of extracted

features (X) and a slope (B). For NN , Neural Networks,

parameters include bias (b), n number of inputs from the

incoming layer, input to neuron (Xi) and weights (wi). The

parameters Random Forest (R̂F) utilizes include B′ the times

of bagging, regression tree (RFi) and (X’) as a root feature

of (RFi). And for SVM , Support Vector Machines, X is a set

of extracted features, w is the representation of hyperplane in

terms of line and b′ is the representation of slope in terms of

line.

The Algorithm 4 also shows the working of Modelics

subcomponent.

4) DECISION MAKER

Finally, in this subcomponent, a set of prediction results from

the previous subcomponent, Modelics, becomes an input.

This subcomponent is responsible for collecting all the results

and deciding the final class of an initially input URL in the

Features Extractor subcomponent.

Algorithm 4 Algorithm for Modelics

Input: Features_List

Output: Labels_List

Set variable: index = 0

Set: threads_List = list()

Set of ML models: Models = {M1, . . . ,MN}

(Upto N-Procedures)

procedure MODELICS(X_train, y_train, X_test, que)

model = Classifier().fit(X_train, y_train)

prediction = model.predict(X_test)

queue.put(prediction)

end procedure

for M in Models do

M = threading.Thread(target = MODELICS, args =

(X_train, y_train, X_test, que)

M.start()

threads_List.append(M)

end for

for t in threads_List do

Labels_List.insert(index, queue,get())

t.join()

index = index + 1

end for

Decision Maker first collects all the results and then

makes a count of the total number of predicted results

which are labelled as either phishing or normal. Based

on the total count, it then checks for the Final Label as

following:

FinalLabel =

{

Phishing, if NoPL > NoNL

Normal, if NoPL < NoNL
(2)

where,

NoPL is the Number of Phishing Labels

NoNL is the Number of Normal Labels.

Since phishing attacks result in severe damages (e.g., theft

of highly confidential information). Therefore, to refrain

every possibility of phishing attack; we consider 67% of the

classifiers voting for a single class at a time.

Hence, in a case where both classes (i.e. phishing and

normal) have equal number of votes, the Modelics operation

is re-performed. On the other hand, in a scenario where 67%

of the classifiers classify a URL as phishing, it is classified

as phishing, i.e., Case-I. Otherwise as normal, i.e., Case-II.

The Algorithm 5 shows the working of the Decision Maker

subcomponent.

C. TIME COMPLEXITY ANALYSIS

We perform the time complexity analysis of our pro-

posed five algorithms, as shown in Table 3. Firstly, for

URL Hit algorithm, we consider one URL at a time.

Hence URL Hit consumes a constant time, i.e. O(1).

In Algorithm 2, PhishHaven extracts five components from

each expanded URL consuming a constant time O(1).

VOLUME 8, 2020 83435

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

Algorithm 5 Algorithm for Decision Maker

Input: Labels_List

Output: Final_Label

Set variable: count_Phishing = 0

Set variable: count_Normal = 0

for index in Labels_List do

if Labels_List[index] == Phishing then

count_Phishing = count_Phishing + 1

else

count_Normal = count_Normal + 1

end if

end for

if count_Phishing > count_Normal then

Final_Label = ‘‘Phishing’’

else if count_Phishing < count_Normal then

Final_Label = ‘‘Normal’’

else

GO TO PROCEDURE MODELICS()

end if

TABLE 3. Time complexity analysis of algorithms.

Therefore, in the worst-case scenario, PhishHaven will

extract five components from N expanded URLs leading to

time complexity of O(N), after which PhishHaven employs

Algorithm 3 for extracting seventeen lexical features from

both URLs as a whole and their components, thus con-

sumes a constant time of O(1). Next for Modelics algo-

rithm, PhishHaven runs machine learning algorithms in par-

allel but independent of each other through multi-threading.

We choose ten machine learning algorithms as mentioned

and discussed under the Modelics subcomponent. Machine

learning algorithms which consume the longest computation

time are Neural Networks and Support Vector Machines, i.e.

M (represented as a total time complexity including k time

for training, l number of epochs, i number of nodes in the

first layer and j number of nodes in the second layer of

the model i.e. k ∗ l ∗ i ∗ j) and N 3, respectively. There-

fore, PhishHaven needs to wait for Neural Networks and

Support Vector Machines to complete their computation,

thus resulting in overall time complexity for Algorithm 4 as

O(M + N 3). Finally, for Decision Maker algorithm, Phish-

Haven consumes a constant time of O(1) to classify a URL

in the best and average case. But in the worst-case sce-

nario PhishHaven requires to re-compute Algorithm 4, thus

requires a time complexity of O(M + N 3).

TABLE 4. Datasets: Types, sizes and sources.

V. EXPERIMENT

A. SIMULATION ENVIRONMENT

To perform our experiments, we choose the LINUX Ubuntu

16.04 environment. The detection system is developed with

Python version 3.5.4. For features extraction and data

analysis, we use the Python libraries including nltk, re,

numpy, matplotlib, wordcloud, counter, plotly, urlparse and

dnstwist1 [41]. And to design the Modelics subcomponent,

we use pandas, sklearn, threading and seaborn libraries.

B. DATA PREPARATION

To achieve our main goal, i.e., to detect AI-generated Phish-

ing URLs, we used DeepPhish [1], an AI-based model devel-

oped for generating phishing URLs. From DeepPhish [1],

we generated 50,000 AI-generated phishing URLs. For Nor-

mal URLs, we took 50,000 URLs from Alexa. Also, to test

our PhishHaven against Simple Phishing URLs; we took

50,000 Simple Phishing URLs from PhishTank.

To include and prepare our datasets according to recent

phishing cases and current URLs’ format, we downloaded

datasets by September 4th, 2019 from both PhishTank and

Alexa.

To have a fair evaluation of our PhishHaven against

AI-generated Phishing URLs, we consider a 5:5 split ratio

for training and testing datasets. To prepare our experimental

datasets, we first combined AI-generated Phishing URLs and

Normal URLs and shuffled them randomly. Then we applied

Hold-out method to split the dataset into training and testing

datasets. Due to the limitation of variation in the patterns of

the features presented in the URL’s generated from Deep-

Phish [1], applying K-fold validation for evaluating our mod-

els’ efficiency can result in a biased generalization. Hence,

we choose to perform Hold-out method to introduce variation

in the training set while focusing on limiting the overfitting

or over-generalization. For Simple Phishing URLs, we per-

formed the same evaluation procedure as that of AI-generated

Phishing URLs.

C. EVALUATION METRICS

In the field of cybersecurity, security comes first. Keeping this

aspect in mind, we first need to choose the evaluation metric,

that is, which type of performance measure(s) we want to

increase or decrease or we are more considerate about.

Since phishing attacks can cause severe damages and harm

to the end-users, we decide to choose Sensitivity (also known

1Dnstwist is a domain name permutation search tool, which can detect
typoquatting, bitsquatting, and fraudulent websites that share similar looking
domain-names

83436 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

TABLE 5. Confusion matrix.

as ‘‘True Positive Rate’’ or ‘‘Hit Rate’’) as our one of the

main evaluation metrics. TPR is a probability of correctly

detecting the H0 (null hypothesis).

Here we have considered

H0 : Entered URL is phishing

Moreover, we also consider Fall-Out (also known as

‘‘False Positive Rate’’). FPR is a probability of falsely

detecting the H0 (null hypothesis).

To avoid any hindrance faced by users in availing services,

we also evaluate our system through Specificity (also known

as ‘‘True Negative Rate’’). TNR is a probability of correctly

rejecting the H0 (null hypothesis).

where,

TP = correctly identified

TN = correctly rejected

FP = incorrectly identified

FN = incorrectly rejected

True Positive Rate =
TP

TP+ FN

False Positive Rate =
FP

FP+ TN

True Negative Rate =
TN

TN + FP

To evaluate how accurate our PhishHaven works, we also

choose ‘‘Accuracy’’. The Accuracy is defined as

Accuracy =
TP+ TN

TP+ TN + FP+ FN
.

Our main objective behind the selection of TPR, FPR and

TNR is to always prevent a user from any phishing attacker’s

attacks irrespective of any level of loss or damage while

making sure that there are significantly lessmisclassifications

regarding Normal URLs.

Further to evaluate the performance of our selected

machine learning models, we choose to include are Precision,

Recall and F1-measure as;

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1-measure = 2
Precision ∗ Recall

Precision+ Recall

D. PhishHaven ANALYSIS

We evaluate PhishHaven using theoretical analysis as well

as experimental analysis. Through theoretical analysis,

we examine the logical structure of concepts and statements

of PhishHaven. Through experimental analysis, we experi-

mentally prove the logical structures of concepts and state-

ments of PhishHaven.

1) THEORETICAL ANALYSIS

The purpose of conducting the theoretical analysis is to

demonstrate that there is a valid argument in favour of our

proposed hypothesis, i.e.,

Phishhaven Can Detect Ai-Generated Phishing URLs

To prove our hypothesis, we propose two propositions:

Proposition 1, to prove that PhishHaven is capable of

detecting every tiny URL; and Proposition 2, to prove

that our selected lexical features are invariant, hence, lead-

ing to a proof that PhishHaven can detect AI-generated

Phishing URLs.

PROPOSITION 1: URL HIT WORKS FOR EVERY TINY URL

Since PhishHaven is a plugin which means that PhishHaven

works as a middle party between users and servers, all the

entered tiny URLs are first redirected to PhishHaven. Phish-

Haven then employs the URLHit approach, i.e., further sends

the tiny URL(s) to the server. Thereafter, in response of the

sent tiny URL(s), PhishHaven receives an extended URL(s),

and then the features extraction procedure is performed on the

respective extended URL(s).

Hence, we can say that PhishHaven is one to one corre-

spondence (or bijection) function, i.e.:

PhishHaven(IURL) = AURL implies IURL → AURL

where,

IURL = initial URL (tiny URL),

AURL = response URL from server (always be extended).

Furthermore, our proposedURLHit approach is comprised

of three main postulates.

• Postulate 1: Default behaviour

We set URL Hit as the default behavior of our detection

system. With default behavior, we mean irrespective of

the URL form, i.e., either extended or shortened; a URL

always hit by our detection system with a request of a

response in terms of an actual URL. By setting up this

approach, we are able to cater the case of tiny URLs

as the classification is directly applicable on an actual

URL(s) (AURL).

• Postulate 2: Independent of prior knowledge

Sincewe leverage the browser’s redirection property, our

URL Hit approach is independent of any URL shorten-

ing software, e.g., bitly, TinyURL, Polr, etc. URL Hit

works for every URL including those URLs which are

shortened by any algorithm, approach or methodology.

Also, with our approach, any prior information either

regarding URL or shortening software or shortening

algorithm is not required.

• Postulate 3: Consistent

Our proposed approach is consistent, i.e., on a given

input, we always get the same output. The results from

VOLUME 8, 2020 83437

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

FIGURE 7. Case-1.

our approach are free from any randomness and mea-

surement errors.

In other words, the probability of getting the same

extended URL, i.e., (AURL) in response of a URL,

i.e., (IURL) is always 1.

Mathematically this can be defined as:

Since the relationship is IURL → AURL , therefore

Pr[URL_Hit(IURL) = AURL] = 1.

Our assumption for this postulate is that the server is

always active.

Therefore, this proves our Proposition 1 that our URL Hit

approach works for every tiny URL.

PROPOSITION 2: SELECTED FEATURES ARE INVARIANT

PhishHaven extracts and analyzes a set of those lexical fea-

tures which are invariant, i.e., a feature from that set must be

a part of a full-fledged URL. Let U be the superset of lexical

features, S be the set of selected lexical features,M be the set

of lexical features extracted from the DeepPhish [1] URLs

and N be the set of lexical features extracted from the future

AI-generated Phishing URLs.

This proposition consists of two main cases:

• Case 1: N ⊂ S

Since M and N are the subsets of S, i.e.,

M ⊂ S and N ⊂ S,

we can say that all the elements in N must be in S, i.e.,

N = {∀e ∈ N : e ∈ S}.

Hence, this implies that

Pr[∀e ∈ N : e ∈ S] = 1.

• Case 2: N 6⊂ S

This case is further divided into two cases.

1) Case 2a: (N ∩ S) = 0

Since S is comprised of a set of significant lexical

features, and the probability of N not in the proper

subset of S is negligible, we write it as

Pr[N ⊂ U : ∄e ∈ S] = ǫ.

2) Case 2b: (N ∩ S) ⊂ S

Since S contains essential lexical features, which

are necessary to construct a full-fledged URL, it is

FIGURE 8. Case-2a.

FIGURE 9. Case-2b.

evident that N must consist of at least one of the

lexical features from the set S, i.e,

Pr[∃e ∈ N : e ∈ S] = 1.

In other words, we can express it as

N = {{x}, {y} : {x} ∈ U , {y} ∈ S}.

Based on three cases, we can prove that our selected fea-

tures are invariant. Hence, it can be said that a feature from

a set of our selected lexical features must be a part of every

full-fledged URL.

Through Proposition 1 and 2, we proved our proposed

hypothesis. Therefore, we can say that PhishHaven can detect

future AI-generated phishing URLs with 100% accuracy

based on URL Hit and our selected lexical features.

2) EXPERIMENTAL ANALYSIS

We perform experimental analysis of PhishHaven to sup-

port our theoretical analysis. In our experimental analysis,

we perform experiments a) to evaluate the performances of

the selected machine learning models executed in an ensem-

ble manner using multi-threading, b) to evaluate PhishHaven

against AI-generated and Simple Phishing URLs, and c) to

compare PhishHaven against some of the existing lexical

features-based simple phishing URLs detection systems.

Our approach of parallel training and testing of the ensem-

blemachine learningmodels enables PhishHaven to speed-up

the process of URL classification. To evaluate the perfor-

mances of our selected machine learning models which are

appropriate in our case, we evaluate them against Precision,

Recall and F1-measure as shown in Table 6.

It can be seen in Table 6 that among the selected machine

learning models, Support Vector Machines performs signif-

icantly well having 97.68% Precision, 97.63% Recall and

83438 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

TABLE 6. Performances of selected machine learning models.

TABLE 7. PhishHaven evaluation for AI-generated Phishing URLs.

TABLE 8. PhishHaven evaluation for simple phishing URLs.

97.64% F1-measure. The reason Support Vector Machines

work significantly well in our case is that they perform

binary classification efficiently by drawing decision bound-

ary in hyperplane between two classes. Table 10 describes the

parameters setup of our selected ten machine learning models

in our experimental setup.

However, we proposed and employed ensemble-based

machine learning through multi-threading for final classifi-

cation. Therefore, Figure 10 illustrates how the performances

of our selectedmachine learningmodels contribute altogether

to the overall performance and efficiency of our detection

system.

We test our detection system for two different types

of URLs’ detection, i.e., for AI-generated Phishing URLs

and for Simple Phishing URLs. Our evaluation measures,

as shown in Table 7 and Table 8, signify that our detec-

tion system is capable enough to detect efficiently not only

AI-generated Phishing URLs but also Simple Phishing URLs

and Normal URLs.

To evaluate the performance of our detection system,

we choose the following measures: Precision, Recall, Accu-

racy, and F-1measure. To analyze the efficiency of our detec-

tion system, we employ Sensitivity (TPR), Fall-out (FPR) and

Specificity (TNR).

TABLE 9. PhishHaven comparison with some of the existing lexical-based
detection systems for simple phishing URLs.

To further evaluate the performance of PhishHaven in

terms of Simple PhishingURLs detection, we compare Phish-

Haven with some of the existing lexical-based simple phish-

ing URLs detection systems. In Table 9, we can see that

PhishHaven outperforms the existing state-of-the-art detec-

tion systems designed for detecting simple phishing URLs.

From Table 9, we can also see that in [27] they have slightly

higher accuracy than PhishHaven because their dataset is

smaller than ours, i.e., we took a dataset with a wider range

of cases including a variety of significant cases.

VI. RELATED WORK

Phishing detection systems usually utilize several techniques

for detecting and predicting phishing sites. The main tech-

niques are as follows:

A. LISTS AND HEURISTICS-BASED TECHNIQUES

In these techniques, detection mechanisms employ whitelists

or blacklists and a set of rules to compare and classify a

URL either as phishing or normal. Amajor drawback of these

approaches is that they completely fail in detecting newly

generated phishing sites called zero-day phishing sites. Fur-

thermore, they require continuous update of lists and rules.

Also, websites which are similar in terms of URL contents

to those in blacklists or whitelists, and websites which are

similar in terms of appearance to those set heuristics can be

easily misclassified.

In [15], the authors presented a phishing URLs detection

approach based on string-matching which is heavily depen-

dent on blacklists, which consumed significant computation

cost.

On the other hand, in [16], the authors proposed a solution

to improve the blacklisting-based phishing URLs detection

systems. Their approach was not effective against zero-day

attacks. In addition to this, their approach used a significant

amount of computation time with relatively less outcome.

B. CONTENT-BASED TECHNIQUES

This approach analyzes the content of the webpage to classify

the respective page either as phishing or normal. A main lim-

itation which makes this approach not only computationally

inefficient but also not a viable technique for most of the

scenarios is that it requires either source code or the entire

content of the website, i.e., images or text for performing

features extraction and analysis process.

VOLUME 8, 2020 83439

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

TABLE 10. Parameters setup of selected machine learning models.

In [17], the authors applied similarity in CSS(Cascading

Style Sheets) features, i.e., visual features. Their proposed

scheme consumed more time as a whole. In [18], the authors

proposed a phishing webpage detection mechanism. Their

mechanism noticeably outperformed, but consumed a lot of

time. Furthermore, their approach of using stacked models

involves GBDT(Gradient Boosting Decision Tree) for mak-

ing initial and final predictions, added a biased factor in the

final predictions.

The approach proposed in [19] utilized hyperlinks features

extracted from pages’ source codes. Since their approach

completely relied on the analysis of features extracted from

the source code, therefore, the longer the source code,

the higher the time-complexity.

C. THIRD-PARTY-BASED TECHNIQUES

Some detection mechanisms use third-party-based features

and services. The main drawback of this approach is high

error rate in terms of misclassification. The main reason for

misclassification is that they heavily rely on either the age of a

domain or the number of occurrences in search results. There

are likely chances in this approach that newly setup legitimate

sites can be misclassified as phishing sites. In addition to

this, there are chances that the third-party can be biased or

hijacked, e.g., DNS(Domain Name System) spoofing, etc.

In [20], the authors conducted a study on phishing URLs

detection using both lexical and external (third-party-based)

features. Their proposed solution named as ‘‘PhishDef’’

demonstrated that it performed significantly accurate using

only lexical features.

D. LEXICAL FEATURES-BASED TECHNIQUES

This URL classification technique turns out to be a more

promising approach. This technique totally relies on URLs

for features extraction. These features can be count-based

features, binary features, blacklisted words, etc. It is also

computationally efficient as it only takes a URL into consid-

eration, i.e., a line comprises of alphanumeric characters and

symbols.

In [21], the authors designed a phishing detection system

which yielded an accuracy of 94.91% employing lexical

feature analysis. In [22], the authors enhanced the perfor-

mance of phishing URLs detection system through lexical

features. The proposed model in [23] achieved a noticeable

accuracy with the lexical features and consumed relatively

less time since it was independent of any third-party services

and source code analysis. In [24], the authors conducted a

83440 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

FIGURE 10. Graphical illustration of selected machine learning models’ performance.

TABLE 11. Key limitations of features extraction techniques.

study on improving the accuracy of the phishing detection

systems through features selection and ensemble learning

methodology. Their experimental results showed an accuracy

of 95%. The detection system implemented in [25] used

seven different machine learning algorithms. Their approach

and types of selected features overcome many issues like

language and third-party dependency, as well as real-time and

zero-day attacks detection.

E. HYBRID FEATURES-BASED TECHNIQUES

In [26], the authors applied several techniques together such

as whitelist, external features (third-party services), page con-

tents, and TF-IDF techniques. Though the authors proposed

the solution to improve the maintenance process of a black-

list, the classification techniques of HTML page content,

external features and TF-IDF inherited their limitations to

their proposed solution as well. Also, the solution proposed

in [27] employed a combination of various techniques. Their

system heavily relied on source code analysis, verification

from whitelists, third-party-based services and page similar-

ity using screenshots for detection purpose. Hence, this made

their solution more time-consuming and less efficient. On the

other hand, in [28], the authors employed lexical as well

as host-based features to detect phishing URLs. Though the

authors proposed a solution to complement blacklisting and

heuristic-based detection systems but their proposed solution

used host-based properties, hence inherited various limita-

tions of host-based techniques.

From the above discussed studies and comparison shown

in Table 11, we concluded that lexical features-based tech-

niques are more efficient with fewer limitations. Therefore,

we design our detection system based on lexical features

extraction and analysis.

VII. CONCLUSION

In this paper, we proposed PhishHaven, the first AI-generated

Phishing URLs detection system based on ensemble machine

learning. Our proposed system is based on lexical features

analysis. We also introduced URL HTML Encoding as a lex-

VOLUME 8, 2020 83441

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

ical feature to boost our detection system in proactive and on-

the-fly detection of URLs. We further introduced a URL Hit

approach for detecting and classifying tiny URLs. In addition

to this, we presented a new paradigm for ensemble-based

machine learning models execution. Our proposed new

paradigm executes ensemble-based machine learning mod-

els in parallel using multi-threading technique, and results

in real-time detection by significant speed-up in the clas-

sification process. For final classification, we employed an

unbiased voting method.

We evaluated our solution both theoretically and experi-

mentally. In theoretical analysis, we proved that our solu-

tion can detect tiny URLs as well as future AI-generated

Phishing URLs based on our selected lexical features with

100% accuracy. Experimental analyses were conducted for

two cases, i.e., AI-generated and Simple Phishing URLs.The

dataset in the first case consists of AI-generated Phishing

URLs and Normal URLs. The dataset in the second case

consists of Simple Phishing URLs and Normal URLs. For the

first case, the results showed a significantly high accuracy and

F1-measure of 98%, while securing 97% TPR and 99.17%

TNR with noticeably low fall-out of 0.8% FPR. For the sec-

ond case, the results also showed a significantly high accu-

racy and precision of 98%, outperforming the other existing

simple phishing URLs detection systems. Therefore, we can

conclude that the proposed solution efficiently addresses the

detection of AI-generated Phishing URLs in the forthcoming

future as well as Simple Phishing URLs prevalent these days.

Although PhishHaven has achieved a significant accuracy

in classifying both AI-generated and human-crafted phish-

ing URLs, it has a limitation that it can detect only those

AI-generated PhishingURLswhich consist of lexical features

and patterns similar to that of DeepPhish [1]. It is because,

to the best of our knowledge, DeepPhish [1] is the only

AI-based system designed to generate phishing URLs.

We have some future work and directions as follows:

1) PhishHaven can be further enhanced by incorporating

unsupervised learning, i.e., deep learning models

2) The efficiency of PhishHaven can be further improved

in the following ways:

a) Based on our chosen metric, we can filter out-

performing models and only use those models

for making predictions. Hence, with this kind of

model reduction, we can reduce the computation

cost in terms of multi-threading.

b) In continuation of the previous point, we can also

extract the weights assigned by outperforming

models to extract features and consider only those

features. Hence with this type of approach for

features reduction, we can reduce the computa-

tion process and cost in the Features Extractor

subcomponent.

3) By applying multi-threading technique at an input unit

(i.e., at the very initial point where PhishHaven takes

a URL as an input), we can work on multiple URLs

simultaneously, hence incorporating the scalibility

factor in PhishHaven for classifying multiple URLs at

a time.

REFERENCES

[1] A.-C. Bahnsen, I. Torroledo, D. Camacho, and S. Villegas, ‘‘DeepPhish:

Simulating malicious AI,’’ APWG Symp. Electron. Crime Res. (eCrime),

2018, pp. 1–8.

[2] M. Zolanvari,M. A. Teixeira, L. Gupta, K.M. Khan, and R. Jain, ‘‘Machine

learning-based network vulnerability analysis of industrial Internet of

Things,’’ IEEE Internet Things J., vol. 6, no. 4, pp. 6822–6834, Aug. 2019.

[3] C. Peng, H. Sun, M. Yang, and Y.-L. Wang, ‘‘A survey on security commu-

nication and control for smart grids under malicious cyber attacks,’’ IEEE

Trans. Syst., Man, Cybern. Syst., vol. 49, no. 8, pp. 1554–1569, Aug. 2019.

[4] M. Cui, J. Wang, andM. Yue, ‘‘Machine learning-based anomaly detection

for load forecasting under cyberattacks,’’ IEEE Trans. Smart Grid, vol. 10,

no. 5, pp. 5724–5734, Sep. 2019.

[5] M. Al Janaideh, E. Hammad, A. Farraj, and D. Kundur, ‘‘Mitigating

attacks with nonlinear dynamics on actuators in cyber-physical mecha-

tronic systems,’’ IEEE Trans. Ind. Informat., vol. 15, no. 9, pp. 4845–4856,

Sep. 2019.

[6] S. Soltan, Mihalis-Yannakakis, and Gil-Zussman, ‘‘REACT to Cyber-

Physical Attacks on Power grids,’’ACMSIGMETRICSPerform. Eval. Rev.,

vol. 46, no. 2, pp. 50–51, 2019.

[7] Anti-Phishing Working Group (APWG). (2019). Phishing Activity

Trends Report—Third Quarter 2019. https://docs.apwg.org/

reports/apwg_trends_report_q3_2019.pdf

[8] T. Thomas, P. A. Vijayaraghavan, and S. Emmanuel, ‘‘Machine Learning

and Cybersecurity,’’ in Machine Learning Approaches in Cyber Security

Analytics. Singapore: Springer, 2020.

[9] M. T. Suleman and S. M. Awan, ‘‘Optimization of URL-based phishing

websites detection through genetic algorithms,’’ Autom. Control Comput.

Sci., vol. 53, no. 4, pp. 333–341, Jul. 2019.

[10] E. Zhu, Y. Chen, C. Ye, X. Li, and F. Liu, ‘‘OFS-NN: An effective phishing

websites detection model based on optimal feature selection and neural

network,’’ IEEE Access, vol. 7, pp. 73271–73284, 2019.

[11] D. Goel and A. K. Jain, ‘‘Mobile phishing attacks and defence mecha-

nisms: State of art and open research challenges,’’ Comput. Secur., vol. 73,

pp. 519–544, Mar. 2018.

[12] DARKTRACE. (2018). The Next Paradigm Shift AI-Driven Cyber-

Attacks. [Online]. Available: https://www.darktrace.com/en/resources/wp-

ai-driven-cyber-attacks.pdf

[13] M. Brundage, ‘‘Limitations and risks of machine ethics,’’ J. Exp. Theor.

Artif. Intell., vol. 26, no. 3, pp. 355–372, 2014.

[14] C. C. Galland, ‘‘The limitations of deterministic Boltzmannmachine learn-

ing,’’ Netw., Comput. Neural Syst., vol. 4, no. 3, pp. 355–379, Jan. 1993.

[15] D. Abraham and N. S. Raj, ‘‘Approximate string matching algorithm for

phishing detection,’’ in Proc. Int. Conf. Adv. Comput., Commun. Informat.

(ICACCI), Sep. 2014, pp. 2285–2290.

[16] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, ‘‘PhishNet: Pre-

dictive blacklisting to detect phishing attacks,’’ in Proc. IEEE INFOCOM,

Mar. 2010, pp. 1–5.

[17] J. Mao, P. Li, K. Li, T. Wei, and Z. Liang, ‘‘BaitAlarm: Detecting phishing

sites using similarity in fundamental visual features,’’ inProc. 5th Int. Conf.

Intell. Netw. Collaborative Syst., Sep. 2013, pp. 790–795.

[18] Y. Li, Z. Yang, X. Chen, H. Yuan, and W. Liu, ‘‘A stacking model using

URL and HTML features for phishing webpage detection,’’ Future Gener.

Comput. Syst., vol. 94, pp. 27–39, May 2019.

[19] A. K. Jain and B. B. Gupta, ‘‘A machine learning based approach for

phishing detection using hyperlinks information,’’ J. Ambient Intell. Hum.

Comput., vol. 10, no. 5, pp. 2015–2028, May 2019.

[20] A. Le, A. Markopoulou, and M. Faloutsos, ‘‘PhishDef: URL names say it

all,’’ in Proc. IEEE INFOCOM, Apr. 2011, pp. 191–195.

[21] S. Marchal, J. Francois, R. State, and T. Engel, ‘‘PhishStorm: Detecting

phishing with streaming analytics,’’ IEEE Trans. Netw. Service Manage.,

vol. 11, no. 4, pp. 458–471, Dec. 2014.

[22] H. Tupsamudre, A. K. Singh, and S. Lodha, ‘‘Everything is in the name—A

URL based aApproach for phishing detection,’’ in Proc. Int. Symp. Cyber

Secur. Cryptography Mach. Learn. Cham, Switzerland: Springer, 2019,

pp. 231–248.

[23] R. S. Rao, T. Vaishnavi, andA. R. Pais, ‘‘CatchPhish: Detection of phishing

Websites by inspecting URLs,’’ J. Ambient Intell. Hum. Comput., vol. 11,

no. 2, pp. 813–825, Feb. 2020.

83442 VOLUME 8, 2020

M. Sameen et al.: PhishHaven—An Efficient Real-Time AI Phishing URLs Detection System

[24] A. A. Ubing, S. Kamilia, A. Abdullah, N. Jhanjhi, and M. Supramaniam,

‘‘PhishingWebsite detection: An improved accuracy through feature selec-

tion and ensemble learning,’’ Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 1,

pp. 252–257, 2019.

[25] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, ‘‘Machine learning based

phishing detection from URLs,’’ Expert Syst. Appl., vol. 117, pp. 345–357,

Mar. 2019.

[26] C. Whittaker, B. Ryner, and M. Nazif, ‘‘Large-scale automatic classi-

fication of phishing pages,’’ in Proc. NDSS, 2010. [Online]. Available:

http://www.isoc.org/isoc/conferences/ndss/10/pdf/08.pdf

[27] K. Gajera, M. Jangid, P. Mehta, and J. Mittal, ‘‘A novel approach to detect

phishing attack using artificial neural networks combined with pharming

detection,’’ in Proc. 3rd Int. Conf. Electron., Commun. Aerosp. Technol.

(ICECA), Jun. 2019, pp. 196–200.

[28] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, ‘‘Beyond blacklists:

Learning to detect malicious Web sites from suspicious URLs,’’ in Proc.

15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2009,

pp. 1245–1254.

[29] R. Fielding and J. Reschke, Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content, document RFC 7231, Jun. 2014. [Online].

Available: https://www.rfc-editor.org/info/rfc7231

[30] N. Delmotte. (Jun. 2008). HTML URL-Encoding Reference. [Online].

Available: https://www.eso.org/∼ndelmott/url_encode.html

[31] Schapire, Robert E., ‘‘Explaining Adaboost,’’ Empirical Inference. Berlin,

Germany: Springer, 2013, pp. 37–52.

[32] Y. Freund and R. E. Schapire, ‘‘Experiments with a new boosting algo-

rithm,’’ in Proc. Int. Conf. Mach. Learn., vol. 96. 1996, pp. 148–156.

[33] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting

machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[34] Perlich, Claudia, Foster Provost, and Jeffrey S. Simonoff, ‘‘Tree induction

vs. Logistic regression: A learning-curve analysis,’’ J. Mach. Learn. Res.,

vol. 4, pp. 211–255, Jun. 2003.

[35] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,

2001.

[36] Geurts, Pierre, Damien Ernst, and Louis Wehenkel, ‘‘Extremely random-

ized trees,’’ Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.

[37] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, ‘‘KNN model-based

approach in classification,’’ On Move to Meaningful Internet Systems.

Berlin, Germany: Springer, 2003, pp. 986–996.

[38] S. Dreiseitl and L. Ohno-Machado, ‘‘Logistic regression and artificial

neural network classification models: A methodology review,’’ J. Biomed.

Informat., vol. 35, nos. 5–6, pp. 352–359, 2002.

[39] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,

vol. 20, no. 3, pp. 273–297, 1995.

[40] M. W. Gardner and S. R. Dorling, ‘‘Artificial neural networks (the mul-

tilayer perceptron),’’ Atmos. Environ. Rev. Appl., vol. 32, nos. 14–15,

pp. 2627–2636, 1998.

[41] DNS Twist. Accessed: Sep. 4, 2019. [Online]. Available: https://github.

com/elceef/dnstwist

[42] Alexa. Accessed: Sep. 4, 2019. [Online]. Available: https://www.alexa.com

[43] PhishTank. Accessed: Sep. 4, 2019. [Online]. Available: https://www.

phishtank.com

MARIA SAMEEN received the B.S. degree in

computer science from the Institute of Business

Administration (IBA), Karachi, Pakistan, in 2018.

She is currently a Researcher with the Informa-

tion Security and Machine Learning Laboratory,

Gachon University, South Korea. Her research

interests include cybersecurity, network and sys-

tem security, malware analysis, machine learning,

artificial intelligence, and the Internet-of-Things

security.

KYUNGHYUN HAN received the B.S. degree in

computer engineering and theM.S. degree in com-

puter engineering from Hongik University, South

Korea, in 2015 and 2017, respectively. He is cur-

rently a Researcher with the Information Security

and Machine Learning Laboratory, Hongik Uni-

versity. His research interests include cyber secu-

rity, machine learning, and blockchain.

SEONG OUN HWANG (Senior Member, IEEE)

received the B.S. degree in mathematics from

Seoul National University, in 1993, the M.S.

degree in information and communications engi-

neering from the PohangUniversity of Science and

Technology, in 1998, and the Ph.D. degree in com-

puter science from the Korea Advanced Institute of

Science and Technology, South Korea. He worked

as a Software Engineer with LG-CNS Systems,

Inc., from 1994 to 1996. He also worked as a

Senior Researcher with the Electronics and Telecommunications Research

Institute (ETRI), from 1998 to 2007. He worked as a Professor with the

Department of Software and Communications Engineering, Hongik Univer-

sity, from 2008 to 2019. He is currently a Professor with the Department

of Computer Engineering, Gachon University. He is also an Editor of ETRI

Journal. His research interests include cryptography, cybersecurity, and

artificial intelligence.

VOLUME 8, 2020 83443

	INTRODUCTION
	MOTIVATION
	LEXICAL FEATURES-BASED ANALYSIS
	WORD CLOUDS-BASED ANALYSIS

	PHISHING URLs' DESIGN APPROACHES
	HIDDEN LINKS
	COMBOSQUATTING
	TINY URLs
	TYPOSQUATTING

	PROPOSED SOLUTION: PhishHaven
	DESIGN PRELIMINARIES
	URL HIT
	FEATURES EXTRACTOR
	MODELICS
	DECISION MAKER

	METHODOLOGY
	URL HIT
	FEATURES EXTRACTOR
	MODELICS
	DECISION MAKER

	TIME COMPLEXITY ANALYSIS

	EXPERIMENT
	SIMULATION ENVIRONMENT
	DATA PREPARATION
	EVALUATION METRICS
	PhishHaven ANALYSIS
	THEORETICAL ANALYSIS
	EXPERIMENTAL ANALYSIS

	RELATED WORK
	LISTS AND HEURISTICS-BASED TECHNIQUES
	CONTENT-BASED TECHNIQUES
	THIRD-PARTY-BASED TECHNIQUES
	LEXICAL FEATURES-BASED TECHNIQUES
	HYBRID FEATURES-BASED TECHNIQUES

	CONCLUSION
	REFERENCES
	Biographies
	MARIA SAMEEN
	KYUNGHYUN HAN
	SEONG OUN HWANG

