
Mao et al. EURASIP Journal onWireless Communications and

Networking (2019) 2019:43

https://doi.org/10.1186/s13638-019-1361-0

RESEARCH Open Access

Phishing page detection via learning
classifiers from page layout feature
Jian Mao1* , Jingdong Bian1,2†, Wenqian Tian1,2†, Shishi Zhu1,2, Tao Wei3, Aili Li4 and Zhenkai Liang5

Abstract

The web technology has become the cornerstone of a wide range of platforms, such as mobile services and smart

Internet-of-things (IoT) systems. In such platforms, users’ data are aggregated to a cloud-based platform, where web

applications are used as a key interface to access and configure user data. Securing the web interface requires solutions

to deal with threats from both technical vulnerabilities and social factors. Phishing attacks are one of the most

commonly exploited vectors in social engineering attacks. The attackers use web pages visually mimicking legitimate

web sites, such as banking and government services, to collect users’ sensitive information. Existing phishing defense

mechanisms based on URLs or page contents are often evaded by attackers. Recent research has demonstrated that

visual layout similarity can be used as a robust basis to detect phishing attacks. In particular, features extracted from

CSS layout files can be used to measure page similarity. However, it needs human expertise in specifying how to

measure page similarity based on such features. In this paper, we aim to enable automated page-layout-based

phishing detection techniques using machine learning techniques. We propose a learning-based aggregation

analysis mechanism to decide page layout similarity, which is used to detect phishing pages. We prototype our

solution and evaluate four popular machine learning classifiers on their accuracy and the factors affecting their results.

Keywords: Anti-phishing, Machine learning, Aggregation analysis

1 Introduction
The web technology has become the cornerstone of a wide

range of platforms, such as mobile services and smart

Internet-of-things (IoT) systems. In such platforms, users’

data are aggregated to a cloud-based platform, where web

applications are used as a key interface to access and

configure user data. Securing the web interface requires

solutions to deal with threats from both technical vulner-

abilities and social factors.

Phishing attacks are one of the most common form of

social engineering attacks. In a web-based phishing attack,

attackers use web pages visually mimicking legitimate web

sites, such as banking and government services, to deceive

the victims to input their sensitive information (e.g., bank

accounts and social security number). Though phishing

attacks do not require advanced technical knowledge and

these attack techniques are becoming familiar to users,

*Correspondence: maojian@buaa.edu.cn
†Jingdong Bian and Wenqian Tian contributed equally to this work.
1School of Cyber Science and Technology, Beihang University, Xueyuan Road,

Beijing 100083, China

Full list of author information is available at the end of the article

they are still causing major financial damages. Accord-

ing to the report from the Anti-Phishing Working Group

(APWG), there are 1,220,523 phishing attacks reported in

2016, which is a 65% increase over 2015 [1].

Several types of anti-phishing solutions have been

developed for web-based phishing solutions. The tradi-

tional URL-based anti-phishing solutions [2–5] try to

decide whether a page is a phishing page based on its

URL. They are limited by the timeliness of malicious URL

database update. The solutions based on page contents

[6, 7] rely on the context or image processing techniques

to detect phishing attacks, which can cause high perfor-

mance overhead. As the phishing pages usually maintain

similar page layouts to their target websites, the similar-

ity of page layouts has been demonstrated as an impor-

tant metric to detect phishing pages [8, 9]. In particular,

features extracted from CSS layout files are used to mea-

sure page similarity. However, these measurements heav-

ily rely on human experiences and thus may not be

comprehensive to detect new attacks. How to compre-

hensively evaluate the pages’ similarity remains a great

challenge.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-019-1361-0&domain=pdf
http://orcid.org/0000-0002-0404-6466
mailto: maojian@buaa.edu.cn
http://creativecommons.org/licenses/by/4.0/

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 2 of 14

Machine learning has been widely used in many areas

to create automated solutions. Researchers also use

machine learning to detect phishing attacks based on var-

ious features [10–14]. The solutions show the potential

of machine learning techniques to detect phishing

attacks. In this paper, we aim to explore learning

techniques to develop efficient phishing page detec-

tion techniques that are difficult to bypass. Our solu-

tion is based on the aggregation analysis mechanism

to automatically generate rules to determine layout

similarity of web pages and then detect phishing

pages. Our approach consists of two phases. It first

trains a similarity classifier using page layout fea-

tures, then uses the classifier to detect phishing

pages.

1.1 Experimental method

We prototyped our approach and evaluated it based

on four learning classifiers, namely, Support Vector

Machine (SVM), Decision Tree, AdaBoost, and Random

Forest. Our evaluation used more than 490 phishing

web pages from phishtank.com that mimic 46 target

pages, from which we extracted over 20,000 testing sam-

ples. Using experiment results, we show the strength

and weakness of the classifiers in detecting similar pages

and analyzed the effective influences caused by the

size of dataset and the sample distributions. It also

shows that our approach is effective in creating clas-

sifiers and detecting phishing pages via page layout

similarity.

In summary, wemade the following contributions in this

paper:

• We propose a learning-based mechanism to evaluate

the similarity of web page layouts and identify

phishing pages.

• We define the rules to extract and create effective

page layout features and develop a phishing page

classifier based on four typical learning algorithms,

Supporting Vector Machine, Decision Tree,

AdaBoost, and Random Forest.

• We prototyped our approach and evaluated it with

real-world web page samples from phishtank.com.

The experiment results illustrate the efficiency of our

approach.

1.2 Paper organization

The rest of this paper is organized as follows. We discuss

closely related work in Section 2. Section 3 introduces

the background of our work and gives an overview of

our approach. Section 4 presents our main algorithm.

Section 5 presents the evaluation results. We conclude the

paper in Section 6.

2 Related work
In this section, we discuss past research work that is

closely related to our approach. We focus on phishing

detection techniques that are based on page features

intrinsic to page visual appearance, instead of external

page features, such as URLs.

2.1 Page-feature-based phishing detection

Eric et al. [15] proposed a scheme that selects text pieces,

images, and overall visual appearance as the basic prop-

erties to compare the similarity of two pages. Chen et al.

[16] presented another algorithm to detect visually similar

pages according to Getstalt theory, in which they process

the webpage as an indivisible entity. CANTINA [6] detects

phishing pages based on “term frequency-inverse docu-

ment frequency (TF-IDF).” SpoofGuard [17] uses domain

name,URL, link, and image as the critical features to check

suspicious pages. GoldPhish [18] uses optical character

recognition from a rendered page to extract page infor-

mation. It then uses search engines to decide whether

the page content is consistent with its domain and thus

identifies phishing sites. Zhang et al. [19] used spatial lay-

out characteristics from web pages and used as a basis

to decide page similarity. Moghimi et al. [20] discovered

a rule-based scheme that used two novel feature sets to

detect phishing in internet banking. One feature set is

used to evaluate the identity of page resources, and the

other is utilized to identify the access protocol. Wardman

et al. [21] used file-level similarity between two web pages

and to detect phishing web sites. Phishing-Alarm uses CSS

layout features that are efficient and robust in detecting

phishing web sites [8]. In contrast, to identify new fea-

tures as a basis for phishing detection, this paper focuses

on how to automatically learn classifiers of similar pages

from CSS features.

2.2 Learning-based phishing detection

Machine learning has been applied to web page classi-

fication in detecting phishing. Pan et al. [10] presented

an SVM-based page classifier for detection of phishing

sites. Xiang et al. [11] proposedCANTINA+ that takes the

15 features from URL, HTML Document Object Model

(DOM), third party services, and search engines. It trains

these features using Support Vector Machine (SVM) to

detect phishing attacks. Abu-Nimeh et al. [22] compared

six machine learning algorithms for phishing detection,

including Bayesian Additive Regression Trees, Logical

Regression, Support Vector Machine, Random Forest,

Neural Network, and Regression Tree. Lee et al. [12] lever-

aged a linear chain CRF model to understand web brows-

ing behaviors of users on phishing web sites and predicted

behavior under the context to detect phishing attacks.

Abdelhamid et al. [13] proposed an associative classi-

fication method for web site phishing detection based

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 3 of 14

on multi-label classifiers. Bottazzi et al. [23] proposed a

framework in Android mobile devices for phishing detec-

tion, which includes a machine learning detection engine

for protecting from new phishing activities. Abdelhamid

et al. [14] investigated several machine-learning-based

phishing detection techniques on their pros and cons,

including evaluation with real-world dataset on their per-

formance. In our preliminary work [24], we used two

classifiers to detect phishing attacks from page layout

features.

We summarize the properties of typical learning-based

phishing detection approaches and make a comparison

with our scheme in Table 1.

3 Background and overview
In this section, we introduce the background for our solu-

tion, define the problem, and describe the overall solution.

3.1 Page layout features

Cascading Style Sheets (CSS) is the commonly used visual

layout definition of web pages. Widely supported by

browsers, CSS rules specify how different classes of web

page components should appear, for example, the font

type and the color of the body of a page.

In our previous work [8, 9], we have demonstrated that

CSS-based page layout features can be used as the basis to

detect phishing pages, where we convert CSS into a nor-

malized representation called influence vector. It consists

of two parts: a property, and one or more declarations.

Each declaration consists of a value and one or more selec-

tors. In addition, the selectors can be classified into four

categories tag, ID, class, and others.

For example, given the CSS rule set of a web page,

{. . . , [Selectori{. . . ; [Propertyj : Valuek ; . . .] , . . .}] , . . .},

its influence vector will be defined as
{

. . . ,Propertyj :
[

. . . ;
{

Value
j
k :

[

. . . , Selector
j,k
i ; . . .

]}

, . . .
]

, . . . ,
}

.

where j means the jth property of one page, k means the

kth property value in the jth property of the page, and i

means the ith selector that has Propertyj and Value
j
k .

Table 1 Comparison of learning-based phishing detection

Detection Input features Input samples Classifiers Precision

Pan et al. [10] 7 features About 380 1 ***

Xiang et al. [11] 15 features About 8120 6 ****

Abdelhamid et al. [22] 16 features About 1350 6 **

Mao et al. [24] 1 feature About 2930 2 **

Our work 1 feature About 26580 4 **

The precision in the table means the degree of correct detection

*The precision is below 90%

**The precision is in 90–95%

***The precision is in 95–97%

****The precision is in 97–100%

More concretely, from the following CSS rules,

div {padding : 2px; },

p {padding : 3px; color : #ff 0000},

.class1 {padding : 2px; color : #ff 0000},

.class2 {padding : 3px},

#id1 {padding : 2px; color : #ff 0000},

#id2 {padding : 3px; color : #00ff 00}.

the corresponding influence vector will be

padding :

[

{′′2px′′ :
[

′′div′′,′′ .class1′′,′′ #id1′′
]

},

{′′3px′′ :[′′ p′′,′′ .class2′′,′′ #id2′′] }.

]

,

color :

[

{′′#ff 0000′′ :[′′ p′′,′′ .class1′′,′′ #id1′′] },

{′′#00ff 00′′ :[′′ .class2′′,′′ #id2′′,′′ #id3′′] }

]

.

Note that this is a basic form to represent the page

features from CSS layouts. Considering the influence

impacts, our approach includes additional influence fac-

tors of a page layout. For example, if the element size does

matter to the detection effect, we will include it into the

feature representation.

3.2 Learning-based layout similarity detection

The metric we used in our previous work is mainly based

on human experiences and may not comprehensively rep-

resent all the statistical similarity properties between page

layouts of phishing pages and legitimate pages. Especially,

the threshold, a critical parameter of that approach, is

selected based on the similarity score distribution of the

collected samples. As a result, its accuracy heavily relies

on the completeness of the sample collection and attackers

may craft new phishing pages to bypass the detection.

Our goal is to develop methods that can detect the

similarity among two page layouts by comprehensively

“considering” layout features. Machine learning mecha-

nisms are typically used in such situations, where they are

used to infer similarity models according to the statistical

properties retrieved from the training samples.

The problem addressed by our paper can be formulated

as follows: Taking a set of labeled benign and malicious

pages as inputs, we extract CSS features and identify

learning algorithms to detect visually similar pages based

on these CSS features. The page similarity will help to

detect phishing pages.

3.3 Approach overview

As shown in Fig. 1, our approach includes two phases: sim-

ilarity classifier training and phishing web page detection

based on layout similarity.

3.3.1 Similarity classifier training

We first obtain a classifier to decide page similarity from

layout features. This phase consists of the pre-processing

stage and the training stage. The pre-processing stage

takes as inputs two categories of pre-prepared web page

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 4 of 14

a

b

Fig. 1 Overview of our approach. a Train layout similarity classifier. b Detect suspicious web page

pairs, visually similar web page pairs and visually different

web page pairs. Our approach obtains features from web

page layouts and creates the comparison vectors, which

summarize the key similarity features, of every web page

pairs accordingly. We label the comparison vector as “c1”

to represent a pair of similar web pages. Correspondingly,

the visually different web page pair is labelled as “c0.” The

classifier training stage takes as inputs the labelled com-

parison vectors from the training set. The similar page

classifier obtained in this stage can be used to determine

whether two web pages are similar according to their

comparison vectors.

3.3.2 Phishingweb page detection based on layout

similarity

The trained classifier can then be used to detect phishing

pages. When a user opens a new web page, “WPage_S”

(illustrated in a yellow block in Fig. 1b), our detector pre-

processes the web page by extracting the layout features

of the new page and creating comparison vectors between

the “WPage_S” and the pages, “WPage_1, ..., WPage_n”

in web page database Web Page Feature DB, respectively.

The classifier obtained in phase I takes the comparison

vectors as inputs and determines the labels of each vec-

tor. If the comparison vector of web page pair “(WPage_S,

WPage_i)” is classified as “c0,” it means “WPage_S” is

visually different from “WPage_i” and the system will go

to test the next vector. Otherwise, it means “WPage_S”

is visually similar as “WPage_i.” Once the classifier out-

puts a “c1” labelled vector, the system will send a warning

message to alert users.

4 Learning-based similar page layout
classification

In this section, we describe the key part of our approach,

a learning-based classification module based on CSS fea-

tures to identify similar web pages. It includes two steps,

property vector extraction and classifier building. We first

extract the features of the web pages and combine two

pages’ effective CSS features into a comparison prop-

erty vector. The learning-based classifier training module

takes the labelled comparison vectors as inputs, where 1

denotes that two pages are similar and 0 denotes that two

pages are visually different. The output of the training

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 5 of 14

module is a similar page classifier that takes web pages’

features as inputs and outputs 1 or 0 to represent similar

pages or different pages respectively.

4.1 Property vector extraction

One of the challenges faced by our approach is to

extract features from page layouts and represent them

into formats that are easily processed by learning tech-

niques. In this step, we present the rules that quantify

the CSS elements’ impact of a web page and combine

CSS features of two pages into one comparison property

vector.

4.1.1 Property vector generation

As in our previous work [8, 9], we use the area of elements

in a page to demonstrate their impacts on page layout. The

larger the area is, the more impact it has on the page lay-

out. As our main goal is to learn classifiers without human

expertises, instead of manually decide how to use the area

information, we extract area properties as a part of the

influence vectors extracted from CSS layouts, which we

call property vector in this paper.

To avoid the inaccuracy of detection in different page

window sizes, in this paper, we use the relative area,

i.e., the proportion of an element’s area to the whole

page window size. Because page visual appearance is

affected by CSS selectors’ properties and values, which

are not CSS names of selectors, we associate the area

information with properties in the representation. We

extract and express CSS features to the pattern shown as

follows:
[

. . . ,Propertyj

{

. . . ;Valuekj : AreaInf o
k
j , . . .

}

, . . . ,
]

.

where j denotes the jth property in a page and k denotes

the kth value in Propertyj.

Different from the representation used in our past work,

we incorporate the relative area size of page elements into

the features. We rank the CSS objects in the decreasing

order by area proportion in a Propertyj, i.e., AreaInf o
1
j >

AreaInf o2j > ... > AreaInf onj .

Forexample, assumingpageshavecommonthreeproperties:

Property1=“height,” Property2=“width,” Property3=“color.”

There are target Page1 and suspicious Page2. Here is an

illustrative example of the vector representation.

Page1 :[“height"{16px : 0.26, 20px : 0.2},

“width"{344px : 0.2}, “color"{#fffff 0 : 0.1}]

Page2 :[“height"{14px : 0.28},

“width"{320px : 0.2}, “color"{#ffffff : 0.15}]

One practical challenge is that different pages have dif-

ferent numbers of CSS selectors and declarations. If we

want to merge two pages, we should unify the dimen-

sion of properties of different pages and then they can

be combined. To understand the effective CSS prop-

erties used in web page CSS files, we collect all the

properties from all the web pages for training and test-

ing and made a statistics, shown in Fig. 2. We make a

union set of the properties, denoted by �, where � =

{Property1,Property2, ...,Propertyk}. We make the length

of the union set |�| = k as the dimension of the property

vector. So, we can unify effective CSS features of one page

into the following pattern:

Pagei[Property1{. . .},Property2{. . .}, . . . ,Propertyk{. . .}]

0

100

200

300

400

500

600

700

800

Fig. 2 Distribution of CSS properties. Properties from all the web pages collected for training and testing

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 6 of 14

Different pages have the same k property expressed as

above. For simplicity, we can represent the pattern as

follows:

Page1
[

P1
{

V 1
1 : A1

1, ...,V
m1
1 : A

m1
1

}

,

P2
{

V 1
2 : A1

2, ...,V
m2
2 : A

m2
2

}

, ...,

Pk
{

V 1
k : A1

k , ...,V
mk

k : A
mk

k

}]

where P denotes the property, V denotes the value, A

denotes the area proportion. Different propertiesmay have

different numbers of values.

In order to quantify CSS features, we should transfer

their property values into computable type. So we do some

simplified encoding in property values. For examples, we

transfer color:#ffffff to color:(255,255,255) and take away

units of width:16px to get width:16.

4.1.2 Comparison vector generation

Given the two pages, we quantify their common CSS

features into a comparison vector. The procedure is as

follows:

• Wefirst unify the property values of the same property

into the same dimension. For the same property P k , if

Page1 hasm1 values
{

V 1
k : A1

k , . . . ,V
m1

k : A
m1

k

}

and

Page2 hasm2 values
{

V 1
k : A1

k , . . . ,V
m2

k : A
m2

k

}

. We

choose the larger value ofm1 andm2, denoted bym,

and extend the page property of the smaller one to

the length ofm by adding zeros. The outputs in this

step are Page1
{

V 1
k : A1

k , . . . ,V
m
k : Am

k

}

and Page2
{

V 1
k : A1

k , ...,V
m
k : Am

k

}

with the same dimension.

• We compute the difference between Page1 : V i
k and

Page2 : V i
k where i ∈ m and use the maximum value of

Page1 : Ai
k and Page2 : Ai

k to multiply the difference

value. The result is denoted by εik . ε
i
k = |Page1 :

V 1
k − Page2 : V 1

k | × max
(

Page1 : Ai
k ,Page2 : Ai

k

)

.

Then, we get a value in i th {Vk : Ak} as the i th
dimension of their comparison property vector.

• We calculate all the εik of Pk and obtain

εk = sum
(

εik ,wherei= 1, 2, ...,m
)

.
• After repeating the previous steps k times, we finally

get the comparison property vector of Page1 and

Page2 denoted as [ε1, ε2,... ,εk].

For the above example, after apply simplified encoding,

the features become:

Page1 :[16 : 0.26, 20 : 0.2, 344 : 0.2, (255, 255, 240) : 0.1]
Page2 :[14 : 0.28, 0 : 0, 320 : 0.2, (255, 255, 255) : 0.15]
ε1 = |16 − 14| × 0.28 + |20 − 0| × 0.2 = 4.56
ε2 = |344 − 320| × 0.2 = 4.8
ε3=(|255−255|+|255−255|+|240−255|)×0.15=2.25

So, the common property vector is: [4.56, 4.8, 2.25]. After

representing all page features into comparison vectors,

they are ready to be processed by the learning algorithms.

Table 2 Comparison of the four classification algorithms

Classifier Robustness Efficiency Dataset scale

SVM ◦ ◦ ◦ ◦◦ *

DT ◦ ◦ ◦ ◦ *

AB ◦◦ ◦ **

RF ◦ ◦ ◦ ◦◦ **

“◦” represents the performance level

“*” represents the scale of affordable dataset

4.2 Classifier building

We consider our approach as a two-category classification

problem. We set the output of the classifier as a binary

output, 1 or 0, and make the comparison property vec-

tors in the dataset as inputs. We divide the dataset into

two parts. One is used to train the classifier, and the other

is the testing set used to evaluate the performance. Let

Ŵ1 = {xi}
m
i=1 be a set of M training vectors, where xi is a

k-dimension vector labelled by yi ∈ {±1}, with yi = 1 and

yi = -1 indicating xi to the class 1 and class 2 respectively.

And Ŵ2 = {xi}
n
i=1 be a set of N testing vectors.

We use the following four classifiers in our approach,

including Support Vector Machine (SVM) [25, 26], Deci-

sion Tree (DT) [27, 28], AdaBoost (AB) [29, 30], and Ran-

dom Forest (RF) [31, 32]. The property comparison of the

four classification algorithms is summarized in Table 2,

with detailed explanation as follows.

• Support Vector Machine (SVM). SVM aims to

maximize the margin between classes closest points

to find an optimal separating hyperplane between

them. The minority of support vectors (SV) produced

after training determines the result of classifiers,

which avoids dimension disaster and offers a good

performance in robustness.
• Decision tree (DT). DT classifies items by making

decisions at each branch to obtain as much as

entropy gain as possible. A decision tree consists of a

root node, several internal nodes, and leaf nodes. Leaf

nodes denote the result of the classifier, and other

nodes denote each attribute. Every route from the

root node to a leaf node corresponds a determining

test sequence. It follows the rule of

divide-and-conquer.
• AdaBoost (AB). Boosting is a kind of ensemble

learning algorithms that promote weak learner to

Table 3 Dataset for classifier

Source PhishTank

Dataset Positive samples Negative samples

Training set 3719 17926

Testing set 414 1992

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 7 of 14

Fig. 3 Result of SVM with regard to gamma. According to the experiment results shown in this figure, the accuracy is around 96%, while the rest of

the three metrics are mostly above 80%. With the rising of gamma, the value of accuracy and F1 almost remain constant, while recall falls down a

little and precision goes up a little. When gamma is about 0.0002, the four metrics get close to the best performances

strong learner. AB is a representative of this kind of

boosting. Its training starts with a base learner and

adjusts the distribution of samples based on the

performance of the base learner. Then, it trains the

next base learner based on the adjusted distribution

of samples iteratively. Their outputs are given

different weights that contribute to the final output of

the boosted classifier. It is a kind of serial ensemble

algorithm.
• Random Forest (RF). Different from boosting,

Bagging is a parallel ensemble learning algorithm. It

samples different sets form the training set, trains

base learners based on these different sample sets,

and combines the base learners to produce a good

result. RF is an expansion of Bagging technique that

builds lots of decision trees for training and outputs

the most-voting class. It introduces the random

attribute selective to make stronger generalization.

In our approach, we use Ŵ1 to train a classifier model

and use Ŵ2 to test its performance. When the input of

a comparison property vector gets output 1, it means

Fig. 4 Result of Decision Tree with regard to depth of tree. According to the experiment results, the four metrics remain constant whenmax_depth

is above 20, and their values may fluctuate a little. The accuracy is about 93%, while the precision is the lowest, which is around 80%. When

max_depth is about 25, the four metrics achieve the best

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 8 of 14

Fig. 5 Result of AdaBoost with regard to n_estimators. The four metrics displayed in this figure are above 82.5%, and their values increase slightly

when the value of n_estimators increases. The accuracy is close to 94%. When n_estimators is about 250, the system obtains a relatively optimal

performance

the two pages are similar. The suspicious page will

be determined to be malicious. When the input of a

comparison property vector gets output 0, it means the

two pages are not similar. The suspicious page will be

determined to be benign. We evaluate four classifiers in

the next section.

5 Evaluation
In this section, we evaluate our approach. In order to eval-

uate the effectiveness of our solution, we deploy several

machine learning classifiers to evaluate the performance.

We use four metrics accuracy, precision, recall, and F1

score, to analyze the results of our approach. Accuracy

equals to the proportion of the number of web pages

that are correctly detected as phishing pages or normal

pages to the number of total sample web pages. Precision

equals to the proportion of the number of web pages that

are correctly detected as phishing pages to the number

of total detected web pages. Recall equals to the pro-

portion of the number of web pages that are correctly

detected as phishing pages to the number of total phishing

samples.

Fig. 6 Result of Random Forest with regard to n_estimators. The accuracy is above 96%, and the rest of the three metrics are above 90% and their

values keep nearly stable over different values of n_estimators. The system gets a better performance, when n_estimators is about 100

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 9 of 14

Fig. 7 Result of SVM with different ratios of positive/negative samples. We tested the Support-vector-machine classifiers using the following

positive/negative ratios: 7.089, 3.499, 2.081, 1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075, and 0.058

The accuracy, precision, and recall (as shown in Eqs. (1),

(2), and (3)) are calculated the same as in [9].

Precision =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

True positive (TP) is the number of correctly classi-

fied phishing pages. True negative (TN) is the number

of correctly classified legitimate pages. False negative

(FN) is the number of phishing pages misclassified as

legitimate pages. False positive (FP) is the number of

legitimate pages misclassified as phishing pages. Besides,

we use F1 score (Eq. (4)) as a metric to evaluate our

approach.

F1 = 2 ×
Precision × Recall

Precision + Recall
(4)

Dataset preparation. We collect phishing websites from

phishtank.com. We first check and filter those invalid

Fig. 8 Result of DT with different ratios of positive/negative samples. We tested the Decision Tree classifiers using the following positive/negative

ratios: 7.089, 3.499, 2.081, 1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075, and 0.058

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 10 of 14

Fig. 9 Result of AB with different ratios of positive/negative samples. We tested the AdaBoost classifiers using the following positive/negative ratios:

7.089, 3.499, 2.081, 1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075, and 0.058

pages manually. We then exclude the pages whose lay-

out elements are too small and whose layout appear-

ance is totally different from their target. We select

46 target pages, 448 suspicious pages, and 40 normal

pages different from target pages to test our approach.

In property vector extraction, we obtain 4133 compar-

ison vectors as positive samples whose label is set to

1 and 19918 comparison vectors as negative samples

whose label is set to 0. Positive samples consist of pairs

of target pages and corresponding similar suspicious

pages. Negative samples consist of pairs of target pages

and corresponding dissimilar suspicious pages, pairs of

normal pages and suspicious pages, and pairs of nor-

mal pages and target pages. There are 24051 sam-

ples in total to evaluate our four classifiers, shown in

Table 3.

5.1 Classifier effectiveness

We first evaluate the classifiers’ effectiveness under dif-

ferent parameters. In these experiments, we use all of our

effective 24051 samples mentioned above to evaluate and

ignore the unbalance of positive and negative samples,

which we will analyze the impact in the next experiment.

The results are as follows:

Fig. 10 Result of RF with different ratios of positive/negative samples. We tested the Random Forest classifiers using the following positive/negative

ratios: 7.089, 3.499, 2.081, 1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075, and 0.058

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 11 of 14

Fig. 11 Result of SVM with different training set size. We test the SVM classifier using subsets with the following sizes: 803, 1622, 2357, 3201, 4043,

4909, 5628, 6425, 7230, and 8155, where the ratio of positive/negative is close to 1. The accuracy is high, which is above 95%. With the increase of

data size, the results get better

• Support Vector Machine (SVM). We employ SVM as

the classifier and test four metrics regarding the

parameter gamma in the SVM algorithm. According

to the experiment results shown in Fig. 3, the

accuracy is around 96%, while the rest three metrics

are mostly above 80%. With the rising of gamma, the
value of accuracy and F1 almost remain constant,

while recall falls down a little and precision goes up a

little. When gamma is about 0.0002, the four metrics

get close to their best performance.
• Decision Tree (DT). We employ DT as the classifier

and test four metrics regarding the parameter

max_depth in the DT algorithm. The results are

shown in Fig. 4, where the four metrics remain

constant whenmax_depth is above 20, and their

values may fluctuate a little. The accuracy is about

93%, while the precision is the lowest, which is

around 80%. Whenmax_depth is about 25, the four

metrics achieve the best.
• AdaBoost (AB). We employ AB as the classifier and

test four metrics regarding the parameter

n_estimators in the AB algorithm. The four metrics

displayed in Fig. 5 are above 82.5%, and their values

increase slightly when the value of n_estimators

Fig. 12 Result of DT with different training set size. We test the Decision Tree classifier using subsets with the following sizes: 803, 1622, 2357, 3201,

4043, 4909, 5628, 6425, 7230, and 8155, where the ratio of positive/negative is close to 1. The accuracy is high, which is above 95%. With the increase

of the data size, the results get better

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 12 of 14

Fig. 13 Result of AB with different training set size. We test the AdaBoost Decision Tree classifier using subsets with the following sizes: 803, 1622,

2357, 3201, 4043, 4909, 5628, 6425, 7230, and 8155, where the ratio of positive/negative is close to 1. The accuracy is high, which is above 95%. With

the increase of the data size, the results get better

increases. The accuracy is close to 94%. When

n_estimators is about 250, the system obtains a

relatively optimal performance.
• Random Forest (RF). We employ RF as the classifier

and test four metrics regarding the parameter

n_estimators in the RF algorithm. Figure 6 gives the

experiment results, and we can see that the accuracy

is above 96%, and the rest of the three metrics are

above 90% and their values keep nearly stable over

different values of n_estimators. The system gets a

better performance, when n_estimators is about 100.

5.2 Effectiveness of positive-negative sample

distributions

Here, we evaluate the effect of the ratio of posi-

tive/negative samples. We change the number of negative

samples to control the ratio.We tested the classifiers using

the following positive/negative ratios: 7.089, 3.499, 2.081,

1.375, 0.988, 0.727, 0.462, 0.346, 0.278, 0.139, 0.099, 0.075,

and 0.058. The results are shown in Figs. 7, 8, 9, and 10.

The accuracy decreases with the increase of the ratio,

while all three other metrics increase. A ratio of 1 to 2 is

recommended.

Fig. 14 Result of RF with different training set size. We test the Random Forest classifier using subsets with the following sizes: 803, 1622, 2357, 3201,

4043, 4909, 5628, 6425, 7230, and 8155, where the ratio of positive/negative is close to 1. The accuracy is high, which is above 95%. With the increase

of the data size, the results get better

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 13 of 14

Table 4 Test results of the four classifiers

Classifier Accuracy Precision Recall F1

SVM 0.96948 0.96235 0.86115 0.90134

DT 0.93676 0.80674 0.90015 0.84467

AB 0.94500 0.85218 0.93378 0.87145

RF 0.97310 0.93695 0.92046 0.92078

5.3 Sensitivity to size of training set

Finally, we evaluate how the size of the training set

affects the detection results. Here, we test classifiers using

subsets with the following sizes: 803, 1622, 2357, 3201,

4043, 4909, 5628, 6425, 7230, and 8155, where the ratio

of positive/negative is close to 1. The results are shown in

Figs. 11, 12, 13, and 14. The accuracy is above 95%. With

the increase of data size, SVM and Random Forest explic-

itly improve their performance, while Decision Tree and

AdaBoost have implicit tendency under the distribution

of the testing samples.

5.4 Results and discussion

According to the experiment results, we present the best

performance values of each classifier in Table 4. Among

these four classifiers, Random Forest performs the best by

considering all the four metrics. All the classifiers show

more than 93% accuracy and more than 84% F1, which

demonstrates that our approach can make an effective

detection in phishing websites.

Table 5 illustrates three metrics of our work and

four other approaches (CANTINA [6], CANTINA+ [11],

Corbetta et al. [33], and Zhang et.al [19].

Although the metrics of our approach is not the best,

it still performs better than Corbetta et.al [33] and Zhang

et.al [19]. However, with respect to other approaches, our

method is light-weight as it only takes one class of fea-

tures, CSS structure, as the input to identify the similarity

of web pages and detect phishing attacks. Moreover, our

method is independent of the language of web pages.

In addition, according to the evaluation conducted in

Sections 5.2 and 5.3, the accuracy and robustness of such

learning-based solutions are greatly influenced/limited by

the size of the dataset and the distribution of the testing

Table 5 The precision, recall, and F1 score of our work and other

approaches

Approaches Precision (%) Recall (%) F1

CANTINA [6] 94.2 97.0 0.956

CANTINA+ [11] 97.5 93.47 0.963

Corbetta et.al [33] 95.3 73.08 0.827

Zhang et.al [19] 91.0 91.90 0.915

Our work 93.7 92.05 0.921

samples. More testing samples and the adjustment of

classifier parameters will promote our results.

6 Conclusion
In phishing web site detection, comprehensively evaluat-

ing page similarity remains a great challenge. In this paper,

we propose a learning-based aggregation analysis mech-

anism to determine similarity of page layouts and detect

phishing pages. Our approach automatically trains clas-

sifiers to determine web page similarity from CSS layout

features, which does not require human expertise. We

prototyped our approach and evaluated it using a large

amount of phishing web pages. The experiment results

demonstrate that our approach is accurate and effective in

determining similarity from page layouts. Our approach

can effectively enhance the performance of existing anti-

phishing mechanisms.

Abbreviations

AB: AdaBoost; CSS: Cascading style sheets; DT: Decision tree; IoT: Internet of

things; RF: Random forest; SVM: Support vector machine

Acknowledgements

Not applicable.

Funding

This work was supported in part by the National Key R&D Program of China

(No. 2017YFB0802400), the National Natural Science Foundation of China (No.

61402029, No. 61471028, No. U11733115), the Funding Project of Shanghai

Key Laboratory of Integrated Administration Technologies for Information

Security (No. AGK201708), the Singapore Ministry of Education under National

University of Singapore (NUS) Grant R-252-000-666-114.

Availability of data andmaterials

Data sharing not applicable to this article as no datasets were generated or

analysed during the current study.

Authors’ contributions

The authors have contributed jointly to the manuscript. All authors have read

and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1School of Cyber Science and Technology, Beihang University, Xueyuan Road,

Beijing 100083, China. 2School of Electronic and Information Engineering,

Beihang University, Xueyuan Road, Beijing 100083, China. 3Baidu USA LLC,

Bordeaux Drive, SunnyVale 94089, USA. 4 Information Technology Service

Center, China National Petroleum Corporation, Beijing, China. 5School of

Computing, National University of Singapore, Lower Kent Ridge Road,

Singapore 117417, Singapore.

Received: 13 September 2018 Accepted: 29 January 2019

References

1. APWG, Statistical highlights for 4th quarter 2016. http://docs.apwg.org/

reports/apwg_trends_report_q4_2016.pdf. Accessed 26 July 2018

2. P. Likarish, E. Jung, D. Dunbar, T. E. Hansen, J. P. Hourcade, in Proceedings

of IEEE International Conference on Communications, ICC’08. B-apt: Bayesian

anti-phishing toolbar (IEEE, Beijing, 2008), pp. 1745–1749

http://docs.apwg.org/reports/apwg_trends_report_q4_2016.pdf
http://docs.apwg.org/reports/apwg_trends_report_q4_2016.pdf

Mao et al. EURASIP Journal onWireless Communications and Networking (2019) 2019:43 Page 14 of 14

3. Cloudmark Inc., Couldmark toolbar (2018). https://www.cloudmark.com/

en/s/products/cloudmark-safe-messaging-cloud. Accessed 26 July 2018

4. T. Ronda, S. Saroiu, A. Wolman, itrustpage: a user-assisted anti-phishing

tool. ACM SIGOPS Oper. Syst. Rev. 42(4), 261–272 (2008)

5. I. Fette, N. Sadeh, A. Tomasic, in Proceedings of the 16th International

Conference onWorldWideWeb. Learning to detect phishing emails (ACM,

Banff, Alberta, Canada, 2007), pp. 649–656
6. Y. Zhang, J. I. Hong, L. F. Cranor, in Proceedings of the 16th International

Conference onWorldWideWeb. Cantina: a content-based approach to

detecting phishing web sites (ACM, Banff, Alberta, Canada, 2007),

pp. 639–648

7. A. Nourian, S. Ishtiaq, M. Maheswaran, in Proceedings of 5th International

Conference on Collaborative Computing: Networking, Applications and

Worksharing, Washington, DC, USA,. Castle: A scocial framework for

collaborative anti-phishing databases (IEEE, 2009), pp. 1–10

8. J. Mao, W. Tian, P. Li, T. Wei, Z. Liang, in Proceedings of the 12th International

Conference onWireless Algorithms, Systems, and Applications. Phishing

website detection based on effective css features of web pages (Spinger,

Guilin, 2017), pp. 804–815

9. J. Mao, W. Tian, P. Li, T. Wei, Z. Liang, Phishing-alarm: robust and efficient

phishing detection via page component similarity. IEEE Access. 5,

17020–17030 (2017)

10. Y. Pan, X. Ding, in Proceedings of the 22nd Computer Security Applications

Conference(ACSAC). Anomaly based web phishing page detection (IEEE,

Miami Beach, Florida, 2006), pp. 381–392

11. G. Xiang, J. Hong, C. P. Rose, L. Cranor, Cantina+: a feature-rich machine

learning framework for detecting phishing web sites. ACM Trans. Inf. Syst.

(TISSEC). 14(2), 1–28 (2011)

12. L. Lee, K. Lee, Y. Juan, H. Chen, Y. Tseng, in Proceedings of the 23rd

International Conference onWorldWideWeb. Users’ behavioral prediction

for phishing detection (ACM, Seoul, 2014), pp. 337–338

13. N. Abdelhamid, A. Ayesh, F. Thabtah, Phishing detection based associative

classification data mining. Expert Syst. Appl. 41(13), 5948–5959 (2014)

14. N. Abdelhamid, F. Thabtah, H. Abdel-Jaber, in Proceedings of IEEE

International Conference on Intelligence and Security Informatics. Phishing

detection: a recent intelligent machine learning comparison based on

models content and features (IEEE, Beijing, China, 2017), pp. 72–77

15. E. Medvet, E. Kirda, C. Kruegel, in Proceedings of the 4th International

Conference on Security and Privacy in Communication Netowrks.

Visual-similarity-based phishing detection (ACM, Istanbul, 2008), pp. 1–6

16. T.-C. Chen, S. Dick, J. Miller, Detecting visually similar web pages:

application to phishing detection. ACM Trans. Internet Technol. 10(2),

1–38 (2010)

17. N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, J. C. Mitchell, in Proceedings

of the 11th Annual Network and Distributed System Security Symposium

(NDSS). Client-side defense against web-based identity theft (Internet

Society, San Diego, 2004), pp. 1–16

18. M. Dunlop, S. Groat, D. Shelly, in Proceedings of the 5th International

Conference on Internet Monitoring and Protection (ICIMP). Goldphish: using

images for content-based phishing analysis (IEEE, Barcelona, 2010),

pp. 123–128

19. W. Zhang, H. Lu, B. Xu, H. Yang, Web phishing detection based on page

spatial layout similarity. Informatica. 37(3), 231–244 (2013)

20. M. Moghimi, A. Y. Varjani, New rule-based phishing detection method.

Expert Syst. Appl. 53, 231–242 (2016)

21. B. Wardman, T. Stallings, G. Warner, A. Skjellum, in eCrime Researchers

Summit. High-performance content-based phishing attack detection

(IEEE, San Diego, California, 2011), pp. 1–9

22. S. Abu-Nimeh, D. Nappa, X. Wang, S. Nair, in Proceedings of the

Anti-phishingWorking Groups 2nd Annual eCrime Researchers Summit. A

comparison of machine learning techniques for phishing detection

(ACM, Pittsburgh, Pennsylvania, 2007), pp. 60–69

23. G. Bottazzi, E. Casalicchio, D. Cingolani, F. Marturana, M. Piu, in Proceedings

of the 2015 IEEE International Conference on Computer and Information

Technology; Ubiquitous Computing and Communications; Dependable,

Autonomic and Secure Computing; Pervasive Intelligence and Computing

(CIT/IUCC/DASC/PICOM). MP-Shield: a framework for phishing detection in

mobile devices (IEEE, Liverpool, 2015), pp. 1977–1983

24. J. Mao, J. Bian, W. Tian, S. Zhu, T. Wei, A. Li, Z. Liang, in Proceedings of

International Conference On Identification, Information and Knowledge in

the Internet of Things (IIKI). Detecting phishing websites via aggregation

analysis of page layouts (Elsevier, Qufu, China, 2017), pp. 224–230

25. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3),

273–297 (1995)

26. Wikipedia, Support vector machine (2018). https://en.wikipedia.org/wiki/

Support_vector_machine/, [Online]. Accessed 26 July 2018

27. L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and

Regression Trees. (Wadsworth and Brooks/Cole Advanced Books and

Software, Monterey, CA, 1984)

28. Wikipedia, Decision tree learning (2018). https://en.wikipedia.org/wiki/

Decision_tree_learning/, [Online]. Accessed 26 July 2018

29. Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line

learning and an application to boosting. Comput, J., Syst. Sci. 55(1),

119–139 (1997)

30. Wikipedia, AdaBoost (2018). https://en.wikipedia.org/wiki/AdaBoost/,

[Online]. Accessed 26 July 2018

31. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

32. Wikipedia, Random forest (2018). https://en.wikipedia.org/wiki/

Random_forest/, [Online]. Accessed 26 July 2018

33. J. Corbetta, L. Invernizzi, C. Kruegel, G. Vigna, in Proceedings of International

Symposium on Research in Attacks, Intrusions, and Defenses. Eyes of a

human, eyes of a program: leveraging different views of the web for

analysis and detection (Springer, Gothenburg, 2014), pp. 130–149

https://www.cloudmark.com/en/s/products/cloudmark-safe-messaging-cloud
https://www.cloudmark.com/en/s/products/cloudmark-safe-messaging-cloud
https://en.wikipedia.org/wiki/Support_vector_machine/
https://en.wikipedia.org/wiki/Support_vector_machine/
https://en.wikipedia.org/wiki/Decision_tree_learning/
https://en.wikipedia.org/wiki/Decision_tree_learning/
https://en.wikipedia.org/wiki/AdaBoost/
https://en.wikipedia.org/wiki/Random_forest/
https://en.wikipedia.org/wiki/Random_forest/

	Abstract
	Keywords

	Introduction
	Experimental method
	Paper organization

	Related work
	Page-feature-based phishing detection
	Learning-based phishing detection

	Background and overview
	Page layout features
	Learning-based layout similarity detection
	Approach overview
	Similarity classifier training
	Phishing web page detection based on layout similarity

	Learning-based similar page layout classification
	Property vector extraction
	Property vector generation
	Comparison vector generation

	Classifier building

	Evaluation
	Dataset preparation.
	Classifier effectiveness
	Effectiveness of positive-negative sample distributions
	Sensitivity to size of training set
	Results and discussion

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

