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PhishNet: Predictive Blacklisting to
Detect Phishing Attacks

Pawan Prakash, Manish Kumar, Ramana Rao Kompella, Minaxi Gupta†

Purdue University, †Indiana University

Abstract—Phishing has been easy and effective way for trickery
and deception on the Internet. While solutions such as URL
blacklisting have been effective to some degree, their reliance
on exact match with the blacklisted entries makes it easy for
attackers to evade. We start with the observation that attackers
often employ simple modifications (e.g., changing top level do-
main) to URLs. Our system, PhishNet, exploits this observation
using two components. In the first component, we propose five
heuristics to enumerate simple combinations of known phishing
sites to discover new phishing URLs. The second component
consists of an approximate matching algorithm that dissects a
URL into multiple components that are matched individually
against entries in the blacklist. In our evaluation with real-time
blacklist feeds, we discovered around 18,000 new phishing URLs
from a set of 6,000 new blacklist entries. We also show that our
approximate matching algorithm leads to very few false positives
(3%) and negatives (5%).

I. INTRODUCTION

The simplicity and ubiquity of the Web has fueled the

revolution of electronic commerce, but has also attracted

several miscreants into committing fraud by setting up fake

web sites mimicking real businesses, in order to lure inno-

cent users into revealing sensitive information such as bank

account numbers, credit cards, and passwords. Such phishing

attacks are extremely common today and are increasing by

the day [1]. One popular solution to address this problem is to

add additional security features within an Internet browser that

warns users whenever a phishing site is being accessed. Such

browser security is often provided by a mechanism known as

‘blacklisting’, which matches a given URL with a list of URLs

belonging to a blacklist. Most blacklists are generated by a

combination of procedures that involve automatic mechanisms

and humans.
Although blacklists provide simplicity in design and ease

of implementation by browsers and many other application, a

major problem with blacklists is incompleteness. The reason is

that today’s cyber-criminals are extremely savvy; they employ

many sophisticated techniques to evade blacklists. At some

level, the incompleteness problem cannot be solved easily

since malicious URLs cannot be known before a certain

amount of prevalence in the wild. Despite the inherent diffi-

culty in exhaustive prediction, we observe that malicious URLs

do often tend to occur in groups that are close to each other

either syntactically (e.g., www1.rogue.com, www2.rogue.com)

or semantically (e.g., two URLs with hostnames resolving to

the same IP address). There are two direct implications of this

simple observation. First, if we can exploit this observation

to systematically discover new sources of maliciousness in

and around the original blacklist entries and add them to

the blacklist, that would significantly increase its resilience

to evasion. Second, we can deviate from the exact match

implementation of a blacklist to an approximate match that is

aware of several of the legal mutations that often exist within

these URLs. In this paper, we describe the architecture of

PhishNet, a system that combines these two ideas to improve

the resilience and efficiency of blacklists significantly.

PhishNet comprises two major components: 1) a URL pre-

diction component (Section II) that works in an offline fashion,

examines current blacklists and systematically generates new

URLs by employing various heuristics (e.g., changing the

top-level domains). Further, it tests whether the new URLs

generated are indeed malicious with the help of DNS queries

and content matching techniques in an automated fashion,

thus ensuring minimal human effort. 2) an approximate URL

matching component (Section III) which performs an approx-

imate match of a new URL with the existing blacklist. It uses

novel data structures to perform approximate matches with an

incoming URL based on regular expressions and hash maps

to catch syntactic and semantic variations.

To evaluate the URL prediction component, we collected

live feeds from PhishTank [2] over 24 days and generated

about 1.5 million combinations from 6,000 URLs that resulted

in about 18,000 new URLs after the vetting process. Using

malicious URLs from PhishTank and SpamScatter [3], and

benign URLs from DMOZ and Yahoo, we found that our

system enjoys low false negatives (less than 3%) and false

positives (less than 5%). In comparison with the Google Safe

Browsing alternative, PhishNet is significantly faster even

though it employs approximate matching.

II. COMPONENT 1: PREDICTING MALICIOUS URLS

In this section, we describe the first component of the

PhishNet, which predicts new malicious URLs from existing

blacklist entries. We study five different heuristics that allow

synthesizing new URLs from existing blacklist entries. Our

heuristics are derived based on prior studies [1], [4] that have

observed the prevalence of lexical similarities in URLs as well

as our own observations on the PhishTank database [2]. The

basic idea of our approach is to combine pieces of known

phishing URLs (parent) from a blacklist to generate new URLs

(child). We then test the existence of these child URLs using

a verification process (section II-B).
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A. Heuristics for generating new URLs

Typical blacklist URLs have the following structure: http:

//domain.TLD/directory/filename?query string. The directory

specifies the path with the file which is passed with a query

string, together forming the pathname portion of the URL.

Our heuristics (discussed below) involve interchanging these

field values among URLs clustered together lexically or along

some other dimension.
1) H1, Replacing TLDs: Our first prediction heuristic relies

on proactively finding such variants of original blacklist entries

obtained by changing the TLDs. We use 3, 210 effective

top-level domains (TLDs)—longest portion of hostname that

should be treated as top-level domain (e.g., co.in)—obtained

from [5]. Thus, for each new URL that enters a given blacklist,

we replace the effective TLD of the URL with 3, 209 other

effective TLDs that form the candidate child URLs that need

to be validated.
2) H2, IP address equivalence: Separate phishing cam-

paigns on the same infrastructure (same IP addresses) may

share the directory or path structure among each other. In

order to obtain new URLs using this heuristic, we maintain

host equivalence classes in which phishing URLs having same

IP addresses are grouped together into clusters. We then create

new URLs by considering all combinations of hostnames and

pathnames.
3) H3, Directory structure similarity: The basic intuition

here is that, there is a good chance that two URLs sharing

a common directory structure may incorporate similar set

of file names. For example, if www.abc.com/online/signin/

paypal.htm and www.xyz.com/online/signin/ebay.htm are two

known phishing URLs then our heuristic predicts the exis-

tence of www.abc.com/online/signin/ebay.htm and www.xyz.

com/online/signin/paypal.htm. We maintain a path equivalence

class in which URLs with similar directory structure are

grouped together. We build new URLs by exchanging the

filenames among URLs belonging to the same group.
4) H4, Query string substitution: Query string is

often a very simple way to inflicting subtle changes to

the URL without changing the ultimate destination. In

our analysis of the PhishTank database, we observed

several URLs with exact same directory structure differing

only in query string part of the URL. Thus, if we have

two URLs, www.abc.com/online/signin/ebay?XYZ, and

www.xyz.com/online/signin/paypal?ABC, we create two

new URLs, www.abc.com/online/signin/ebay?ABC and

www.xyz.com/online/signin/paypal?XYZ. In order to ensure

we have finite combinations, we only consider existing

combinations in the blacklist. As in H3 we create path

equivalence class and build new URLs by exchanging the

query strings among URLs.
5) H5, Brand name equivalence: The key observation be-

hind our brand name heuristic is that, phishers often target

multiple brand names using the same URL structure method.

For example, RockPhish gang [6] uses this method in their

fraud infrastructure. We, therefore, build new URLs by sub-

stituting brand names occurring in phishing URLs with other
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Fig. 1. Computing the score of a new URL in PhishNet. If the score is
above a threshold, we flag the URL as a phishing site.

brand names, in essence treating all brands as an equivalence

class. Thus, for n URLs that have a brand name embedded

within them, we substitute each occurrence of a brand name

with k other brand names. We use a list of 64 brand names

most targeted by phishers.

B. Verification

Once we create the child URLs, we subject them to a

validation process whereby we eliminate URLs that are either

non-existent or are non-phishing sites. As a first step, we

conduct a DNS lookup to filter out sites that cannot be

resolved. For each of the resolved URLs, we try to establish

a connection to the corresponding server. For each successful

connection, we initiate a HTTP GET request to obtain content

from the server. If the HTTP header from the server has

status code 200/202 (successful request), we perform a content

similarity between the parent and the child URLs using a

publicly available similarity detection tool [7]. If the URL’s

content has sharp resemblance (above say 90%) with the parent

URL, we can conclude that the child URL is a legitimate bad

site that needs to be added to the blacklist.

III. COMPONENT 2: APPROXIMATE MATCHING

Motivated by the success of heuristics to predict new URLs

to add to the blacklists (as described in Section IV-A), we use

the fundamental principles behind these heuristics to devise

an approximate matching component within PhishNet that

determines whether a given URL is a phishing site or not,

even when the exact URL does not match any entry in the

blacklist. It performs an approximate match of a given URL

to the entries in the blacklist by first breaking the input URL

into four different entities—IP address, hostname, directory

structure and brand name (as shown in Figure 1)—and, scoring

individual entities by matching them with the corresponding

fragments of the original entries to generate one final score.

If the score is greater than a pre-configured threshold, it

flags the URL as a potential phishing site. We now describe

these individual modules within the approximate matching

component and our scoring technique in more detail next.

A. M1: Matching IP address

As we found in heuristic H2, there are many phishing URLs

with different domains which resolve to the same IP address.

In the IP address module of our component, we perform a

direct match of the IP address of URL with the IP addresses
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of the blacklist entries and assign a normalized score based on

the number of blacklist entries that map to a given IP address.

The score is formally computed as follows. If IP address IPi

is common to ni URLs, the score assigned to the URL is:

ni − min{ni}

max{ni} − min{ni} + 1
(1)

where min{ni} (max{ni}) corresponds to the minimum

(maximum) of the number of phishing URLs hosted by

blacklisted entries of IP addresses.

B. M2: Matching hostname

In the second module of this component, we focus on

performing hostname match with those in the blacklist and

assign a score based on the relative prevalence of the hostname

among all the blacklist URLs. We note that a significant

percentage of phishing URLs either have domains specifically

registered for hosting phishing sites or are hosted on free/paid-

for web-hosting services (WHS). They need to be considered

differently since WHS-based sites typically have a different

structure than those that are non-WHS sites. We identify

whether an incoming URL consists of a WHS or not by

matching the primary domain in a pre-computed list of hosting

sites. This classification helps in developing a better approach

to devise our data structures and to assign different scoring

techniques. We describe these individually next.

ORIGINAL BLACKLIST

U3 = signin.paypal.edu

U1 = sbc1.malign.com

U2 = sbc2.maligner.net

U6 = cracker.freehosting1.com

U4 = signin.ebay.com

U5 = phisher.freehosting1.com

 cracker.freehosting1.com

phisher.freehosting1.com
signin.paypal.edu
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expressions

regular

−

Hashmap for 
Free hosting sites

U5

U6

Um

−
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Fig. 2. Data structures used in hostname representation.

1) Matching WHSes: URLs from the blacklist database are

clustered on the basis of their primary domains and stored in

a hash map with the primary domain as the key. The value

corresponding to a key in this hash map represents the number

of URLs sharing the same WHS as their primary domain

name. In Figure 2, freehosting1 is a key in the hashmap and the

corresponding value is the hashtable consisting of URLs U5,

U6, Um. The primary domain of an incoming URL is looked

up in the hash map. If the match succeeds, a confidence score

is computed using the same function as the expression in (1)

on the number of URLs that have the same primary domain. In

essence, the higher the number of malicious sites a particular

WHS is known to have hosted before, the higher the score

that is assigned to that WHS.

2) Matching non-WHSes: The URLs that are not based on

WHSes, are clustered on the basis of syntactic similarity across

labels (i.e., words separated by dot in an URL). For example,

the URLs http://chaseonline.chase.com.illifi.com.mx and http:

//chaseonline.chase.com.hhili.com.mx only differ the fourth

label. To handle such URLs, we first dissect the hostname

portion of such URLs into individual labels. Our approximate

matching data structure comprises multiple tries—one for each

of the label positions. We process the phishing URLs from our

database by considering the sets of labels at each and every

position and then form regular expressions representative of

these groups of labels.

The regular expressions formed at each label are stored in

a trie data structure. Corresponding to each leaf in the trie, we

store the associated regular expression. The score of a given

regular expression is computed similar to the expression in (1),

with ni referring to the number of URLs that match a given

regular expression. An incoming hostname is broken down

into its corresponding labels and is searched in corresponding

tries. A regular expression match in any label returns the score

associated with the leaf. We compute the average normalized

score from the individual label matches as the overall score

from this component.

Example. Figure 2 shows the construction of regular ex-

pressions and tries from an example set of 4 non-WHS

URLs. The three unique labels—{sbc1, sbc2, signin}—are

first converted into two regular expressions {sbc[0-9], signin},

both of which are then represented in the trie data structure

(with a special $ sign indicating a wild card number match).

Thus, this representation using regular expressions allows

PhishNet to be resilient against simple subtle variations of

labels. In Figure 2, U1 and U2 are the two URLs which have

the regular expression sbc[0-9] in their first label. So when

an input hostname contains a label which matches this regular

expression, it will be assigned a normalized score computed

using expression (1) with ni = 2.

C. M3: Matching directory structure

This module consists of a hash map with directory structure

as the key. Corresponding to each key in the hash map, the

number of phishing URLs in our database that contain that

directory structure is maintained. The philosophy of this design

follows from the heuristics H3 (directory structure similar-

ity) and H4 (query string substitution), both of which rely

on combining phishing URLs that share the same directory

structure with different filename portion or query strings. In

effect, this ensures that we assign a high score to an incoming

URL, if it has the same directory structure seen before in

hosting many phishing URLs in the past. The calculation of

the normalization score is done similarly as in (1), with ni
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representing the number of URLs corresponding to a directory

structure in the hash map.

D. M4: Matching brand names

This component of our system checks for existence of brand

names in pathname and query string of URLs. The brand

names are assigned a frequency score which is normalized

using (1), with ni being the number of occurrences of the

brand name. An incoming URL is checked against the brand

names contained in our list. In case of a match, the normalized

score corresponding to that brand is returned. The confidence

scores returned from each test above is used to compute a

final cumulative score. We have assigned different weights to

different components of PhishNet. We selected the weights

empirically, but loosely based on the yield of new URLs we

obtained from different heuristics. For example, high yield

of “directory structure similarity” heuristics shown in section

IV-A motivated us to assign a higher weight to the path com-

ponent. If w1, w2, w3 and w4 are the weights assigned to the

different components and c1, c2, c3 and c4 are the confidence

scores, then the final cumulative score is
∑

4

i=1
wi × ci.

IV. EVALUATION

We now validate the efficacy of our heuristics in generating

new phishing URLs, and analyze the performance of our

approximate matching component.

A. COMPONENT 1: Predicting Malicious URLs

Our goal is to evaluate the efficacy of the heuristics outlined

in Section II-A in identifying new sources of maliciousness.

As earlier studies suggest that phishing domains are live for

a very short period of time [4], we build a system that

collects live URLs from PhishTank feeds every 6 hours, applies

heuristics to generate new URLs and validates them. Using

this methodology, we have collected URLs over a period of

24 days starting from 2nd July 2009 to 25th July 2009. Table

I presents individual results of each of the heuristics.

As a result of the five heuristics, we generated almost

1.55 million child URLs from the approximately 6,000 parent

URLs. Out of these 1.55 million URLs, only about 14% URLs

had an associated DNS entry. For about 80% of the URLs with

DNS hits, we could connect to the server. About half (84,932

out of 172,449) of GET requests in our experiments received

404 reply which implies “page not found” message. For about

20% of the URLs, we could fetch the content (status code

200), which we then, compared against the parent URL using

the page similarity tool [7]. For all heuristics we find a bi-

modal distribution with most URLs either having high or low

similarity scores. In other words, several of the tested URLs

seem to be conclusively similar or dissimilar; conclusively

similar ones with greater than 90% similarity are reported as

our new phishing URLs.

B. COMPONENT 2: Approximate Match

We evaluate the effectiveness of the approximate matching

component in terms of the false positives and false negatives
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suffered in detecting phishing URLs and, the amount of

time it takes to process a URL. In all the experiments, we

use data from four sources. We use two sources of phish-

ing URLs—PhishTank (consists of about 18, 000 URLs) and

SpamScatter (14, 000 URLs). In addition to these two, we

have 100, 000 benign URLs from an open directory service

called DMOZ [8], and almost 20, 000 benign URLs from

Yahoo Random URL generator (YRUG) [9]. Our experimental

methodology is similar to that in [10]. The experimental setup

consists of two phases—training and testing. In the training

phase, we create various data structures (Section III) using

the phishing URLs. During testing, an input URL is flagged

as a phishing or a genuine site. If a benign (malicious) site

is (not) flagged as malicious, it is counted as a false positive

(negative). For the purposes of our evaluation, we have used

the following weight assignment to different normalized scores

from individual modules: W(M1) = 1.0, W(M2) = 1.0, W(M3)

= 1.5, and W(M4) = 1.5. The larger weight associated with

M3 and M4 are because of the relatively larger number of

new URLs found with heuristics H3 and H5. The final score

computed lies between 0 and 5.

To obtain appropriate threshold, we compute the cumulative

distribution (CDF) of score values output by our system

when both trained and tested on either malign or benign

URLs. We divide the data set into two halves by picking

URLs at random and use one half for training and one half

for testing. From Figure 3, we can observe a clear trade-

off between false positives and negatives; a higher threshold

would result in increased false negatives, while lowering the

threshold would result in more false positives. Depending on

what an administrator deems acceptable, one can pick different

threshold values. We observe that a threshold of 1 ensures a

good balance between false positives and negatives.

C. Comparison with Google’s browser blacklist

Google Safe Browsing API [11] allows end user to ex-

amine the nature of a URL by comparing against Google’s

constantly-updated list of suspected phishing and malware

pages. We start with 153 URLs which were present both

in Google’s blacklist and PhishTank. We apply our URL

prediction heuristics on these parent URLs and checked the

predicted ones within Google’s blacklist through the safe

browsing API. We found out that about 312 new URLs created
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H1 H2 H3 H4 H5
(TLD) (IP) (Directory) (Query) (Brand) Total

URLs Gen 1,369,083 6,213 115,896 44,810 14,109 1,550,111

DNS Hits 46,443 5,267 114,891 41,673 7,612 215,886

Connected to Server 28,813 4,336 112,015 20,776 6,509 172,449

HTTP Status Code

200 6,486 408 19,242 8,255 627 35,018

3XX 288 12 8,347 3,280 371 12,298

302 5,266 256 7,691 3,782 692 17,687

4XX 221 2,193 1,617 15 261 4,307

404 9,846 1,460 63,850 5,383 4,393 84,932

5XX 400 2 11,149 1 49 11,601

Similarity Value

0-29 6,245 106 7,367 1,445 - 15,163

30-59 25 6 461 0 - 492

60-89 79 46 808 0 - 933

90-100 137 250 10,606 6,810 - 17,803

TABLE I
NEW URLS OBTAINED AS A RESULT OF APPLYING HEURISTICS H1-H5 ON ABOUT 6,000 URLS COLLECTED FROM THE PHISHTANK FEED.

by our heuristics were also present in the Google’s blacklist,

which indicates that our system produces good results.

We also compare the amount of time taken by Google’s

API and by PhishNet’s approximate matching component. We

find that, on an average, our system performs 80 times faster

than Google’s API (1ms lookup time compared to about 80ms

for Google). This excludes the time taken by an end user to

download the Google blacklists locally and also excludes the

time taken by PhishNet for DNS resolution of the URLs.

V. RELATED WORK

While several prior techniques have been proposed for de-

tecting phishing attacks, to the best of our knowledge, we are

the first to design a system that involves systematic generation

of new URLs. Our work derives important observations about

basic differences between phishing and non-phishing URLs

from [4]. They point out subtle features about the anatomy

of phishing URLs and how these phishing campaigns are

launched using web services like URL aliasing and Web

hosting. The Anti Phishing Work Group [1] also regularly

publishes facts and figures about phishing such as list of TLDs

and brand names targeted, trends in phishing URL structure,

etc., that can be used to derive more heuristics.

In [12], the authors propose highly predictive blacklists that

use a page rank-style algorithm to estimate the likelihood that

an IP address be malign. Ma et al. consider the problem

of matching URLs with blacklist entries in [10]. They rely

on tens of thousands of features based on extra information

from outside sources such as WhoIS, registrar information,

etc., to train a machine-learning based classifier. In contrast,

our algorithm operates with very few lexical features in the

URLs, yet achieves similar false positive and negative rates.

CANTINA also looks at features related to content, lexical

and WHOIS to classify the phishing URLs [13].

VI. CONCLUSIONS

Blacklisting is the most common technique to defend

against phishing attacks. In this paper, we proposed PhishNet

to address major problems associated with blacklists. PhishNet

has two major components. The first grows blacklists by

generating new URL variations from the original ones but

after vetting them through DNS and content matching. The

second component consists of an approximate matching data

structure that assigns a score to each URL based on piece-wise

similarity with existing URLs. PhishNet suffers from low false

positives and is remarkably effective at flagging new URLs

that were not part of the original blacklist. While we have

outlined several heuristics, there could be more. Exhaustively

identifying new heuristics and evaluating their efficacy is a

problem we will address in our future work.
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