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Summary

Green peach aphid (GPA) Myzus persicae (Sülzer) is a phloem-feeding insect with an exceptionally wide host

range. Previously, it has been shown that Arabidopsis thaliana PHYTOALEXIN DEFICIENT4 (PAD4), which is

expressed at elevated levels in response to GPA infestation, is required for resistance to GPA in the Arabidopsis

accession Columbia. We demonstrate here that the role of PAD4 in the response to GPA is conserved in

Arabidopsis accessions Wassilewskija and Landsberg erecta. Electrical monitoring of aphid feeding behavior

revealed that PAD4 modulates a phloem-based defense mechanism against GPA. GPA spends more time

actively feeding from the sieve elements of pad4 mutants than from wild-type plants, and less time feeding on

transgenic plants in which PAD4 is ectopically expressed. The activity of PAD4 in limiting phloem sap uptake

serves as a deterrent in host-plant choice, and restricts aphid population size. In Arabidopsis defense against

pathogens, all known PAD4 functions require its signaling and stabilizing partner EDS1 (ENHANCED DISEASE

SUSCEPTIBILITY1). Bioassays with eds1 mutants alone or in combination with pad4 and with plants

conditionally expressing PAD4 under the control of a dexamethasone-inducible promoter reveal that PAD4-

modulated defense against GPA does not involve EDS1. Thus, a PAD4 mode of action that is uncoupled from

EDS1 determines the extent of aphid feeding in the phloem.
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Introduction

Aphids are phloem-feeding insects that use their stylet-like

mouthparts to obtain plant sap (Pollard, 1973). Aphids limit

plant productivity by manipulating resource allocation pat-

terns in the host plant (Dixon, 1998) and vectoring plant

viruses (Kennedy et al., 1962; Matthews, 1991). Plants have

evolved multiple mechanisms to defend themselves against

aphids, including antibiotic factors restricting insect fecun-

dity and anti-xenotic factors deterring insects from settling

on the host and feeding. These defense mechanisms can be

exerted at various stages of plant–aphid interaction. They

can be employed externally when the aphid probes the plant

surface, in the internal tissue layers when the aphid stylet

finds its way to the sieve elements, and during the sieve

element phase (SEP) when the aphid taps into sieve ele-

ments. For example, glandular trichomes present on leaf

surfaces produce volatile and non-volatile metabolites that

affect aphid behavior and performance (Neal et al., 1990),

while tissue damage that occurs during stylet penetration
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causes the release of thiocyanates in Brassica species that

are toxic to some aphids (Rask et al., 2000). Also, the sealing

of sieve elements in response to aphid stylet penetration,

presumably because of coagulation of phloem proteins and

callose deposition, can have a direct impact on sap avail-

ability to the aphid (Will and van Bel, 2006). In a susceptible

host, aphids are able to suppress mechanisms that trigger

sealing of sieve elements, thus allowing the insect to feed

from one site for a period of hours to days (Tjallingii, 2006;

Will and van Bel, 2006).

Aphids secrete two types of saliva into the plant host

(Miles, 1987). A gelling saliva, which is first secreted before

stylet insertion and then continuously after penetration of

the plant surface, envelops the stylet and seals the wound

inflicted by stylet penetration (Tjallingii, 2006). This may

prevent the release of host factors that promote plugging of

sieve plates upon stylet insertion (Will and van Bel, 2006). In

contrast, a watery saliva that is continuously secreted during

feeding may interact with phloem proteins to prevent their

coagulation (Will and van Bel, 2006). Salivary secretions may

also contain effectors that modulate plant defense

responses (Miles, 1999). For example, the action of salivary

polysaccharases on plant cell walls could release oligosac-

charides that elicit plant defenses. Alternatively, polyphenol

oxidases and peroxidases present in watery saliva are likely

to detoxify phenolic allelochemicals and hydrogen peroxide,

respectively, produced by the plant host.

The polyphagous green peach aphid (GPA) Myzus persicae

(Sülzer) (Hemiptera: Aphididae) has an exceptionally wide

host range covering more than 50 families of plants

(Blackman and Eastop, 2000). GPA feeding results in the

activation of premature leaf senescence in Arabidopsis

thaliana, characterized by expression of the SENESCENCE

ASSOCIATED GENES SAG13, SAG21 and SAG27, chlorosis

and cell death (Pegadaraju et al., 2005). The activation of

premature leaf senescence correlates with the ability of

Arabidopsis to limit GPA population size. GPA numbers were

diminished on the hypersenescent ssi2 and cpr5 mutants

compared to wild-type (WT) plants (Pegadaraju et al., 2005).

In contrast, delayed activation of premature leaf senescence

was accompanied by an increase in GPA numbers on the

Arabidopsis pad4 (phytoalexin deficient4) mutant compared

to WT (Pegadaraju et al., 2005). PAD4 controls the synthesis

of defense signals including the phenolic molecule salicylic

acid (SA) and the indole derivative camalexin in resistance to

invasive pathogens (Bartsch et al., 2006; Glazebrook et al.,

1997; Jirage et al., 1999; Zhou et al., 1998). Genetic analysis,

however, has pointed to a role of PAD4 in defense against

GPA that is independent of SA and camalexin (Pegadaraju

et al., 2005).

PAD4 encodes a nucleo-cytoplasmic protein that has

sequence similarity to lipases (Feys et al., 2001, 2005; Jirage

et al., 1999). In Arabidopsis, all of the defense signaling

activities of PAD4 identified so far were in combination with

EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1), which

encodes a structurally related protein that is also distributed

between the cytoplasm and nucleus (Falk et al., 1999; Feys

et al., 2005). EDS1 interacts with PAD4 in yeast and plant

extracts and is required for accumulation of PAD4 protein

(Feys et al., 2001, 2005). Another lipase-like protein, SAG101

(SENESCENCE ASSOCIATED GENE101) (He and Gan, 2002),

has been identified as an additional component of the EDS1

defense pathway that accumulates in the nucleus and

interacts with the EDS1 protein in this compartment (Feys

et al., 2005). SAG101 is partially redundant with PAD4 in

Arabidopsis resistance to pathogens. The presence of spa-

tially distinct EDS1–PAD4 and EDS1–SAG101 complexes

inside the cell suggests that EDS1 functions as an adaptor

for PAD4 and SAG101 in a defense signal relay (Feys et al.,

2005). PAD4 and EDS1 are also needed for transmission of

defense signals to cells beyond the initial sites of pathogen

infection (Rustérucci et al., 2001; Wiermer et al., 2005).

In this study, we demonstrate that PAD4 is necessary to

control the level of GPA feeding activity in the phloem. The

PAD4-mediated resistance involves both antibiotic and anti-

xenotic factors and operates independently of both EDS1

and SAG101.

Results

Ectopic expression of Arabidopsis PAD4 confers enhanced

resistance to GPA

Previously, it was shown that PAD4 transcripts accumulated

in leaves of WT Arabidopsis as early as 3 h post-infestation

(hpi) with GPA (Pegadaraju et al., 2005). Also, no-choice

bioassays with WT (Col-0) and pad4-1 mutant plants re-

vealed that PAD4 is needed to promote the antibiosis that

decreases GPA reproduction (Pegadaraju et al., 2005). To

investigate further the role of PAD4 in aphid resistance, we

studied the impact of ectopic expression of PAD4 from the

CaMV 35S promoter on the plant response to GPA. Several

independent 35S:PAD4 transgenic lines were created in the

pad4-5 null mutant in accession Ws-0 (see Experimental

procedures), and therefore the PAD4 mRNA accumulating in

these plants is derived only from the transgene. As shown in

Figure 1 (a,b), ectopic expression of PAD4 mRNA in one

representative 35S:PAD4 line did not cause enhanced accu-

mulation of SAG13 and SAG21 mRNAs or lead to sponta-

neous cell death in leaves. However, the GPA-feeding

induced accumulation of SAG13 and SAG21 transcripts was

faster in leaves of 35S:PAD4 plants than in WT. These tran-

scripts were detected as early as 3 hpi in GPA-infested

leaves of the 35S:PAD4 line, compared to 12 hpi in GPA-

infested WT leaves. Cell death was also induced more rap-

idly in GPA-infested 35S:PAD4 leaves than in WT. Occasional

clusters of dead cells were observed as early as 6 hpi (data

not shown) and were abundant in 35S:PAD4 leaves at 24 hpi,
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whereas cell death was first observed at 48 hpi in GPA-

infested WT leaves (Figure 1b). In a no-choice bioassay,

numbers of GPA were significantly lower on two indepen-

dent 35S:PAD4 transgenic lines compared to WT (Figure 1c).

We conclude that increased PAD4 expression enhances

antibiosis to GPA.

PAD4 promotes anti-xenosis to GPA

To determine whether anti-xenotic (deterrent) factors are

also involved in PAD4-mediated Arabidopsis defense

against GPA, host choice by the aphid was studied. Adult

apterous (wingless) insects were given the choice of feeding

on WT (Col-0) or pad4-1 mutant plants by releasing 20

insects equidistant from WT and pad4-1 plants grown in the

same pot. The number of adult insects that had settled on

plants was monitored over a 48 h period. The numbers of

GPA that had settled on the WT plant remained relatively

constant between 12–48 h after release (Figure 2a). In con-

trast, the number of GPA that had settled on the pad4-1

mutant gradually increased until 24 h after release. At 24 and

48 h after release, GPA showed a significant preference for

the pad4-1 mutant over WT (P < 0.05). When given a choice

between the WT and 35S:PAD4 line 1, GPA preferred the WT

plant (P < 0.05) (Figure 2b). These data indicate that PAD4

promotes anti-xenosis in addition to antibiosis to GPA in

Arabidopsis.

(a)

(b)

(c)

Figure 1. Ectopic expression of PHYTOALEXIN DEFICIENT4 (PAD4) triggers a

more rapid response and confers heightened resistance to green peach aphid

(GPA) compared with wild-type.

(a) Reverse transcription-polymerase chain reaction (RT-PCR) analysis of

PAD4, SAG13 and SAG21 and ACT8 expression in leaves of wile-type (WT)

accession Ws-0 (upper panel) and a transgenic 35S:PAD4 plant line 1 (lower

panel) that ectopically expresses PAD4. RT-PCR was performed on RNA

extracted from non-infested (–GPA) and GPA-infested (+GPA) plants at 3, 6,

12, 24 and 48 hpi. The ACT8 gene served as a control for RNA quality in the RT-

PCR reaction.

(b) Trypan blue staining of leaves from non-infested (–GPA) and GPA-infested

(+GPA) WT and 35S:PAD4 line 1 at 24 and 48 hpi. The arrows indicate areas

containing intensely stained dead cells.

(c) Comparison of GPA numbers on WT Ws-0 and two independently derived

35S:PAD4 lines in a no-choice bioassay. The numbers of GPA were counted

2 days after infestation with 20 adult apterous aphids. All values are means

for 15 plants �SE. Different letters above the bars indicate values that are

significantly different (P < 0.05) from each other by Student’s t-test.

Figure 2. PHYTOALEXIN DEFICIENT4 (PAD4) promotes anti-xenosis to green

peach aphid (GPA).

(a) Choice test comparison of GPA preference for wild-type (WT) Col-0 versus

pad4-1 mutant plants.

(b) Choice test comparison of GPA preference for WT Ws-0 versus 35S:PAD4

plants.

GPA numbers on a minimum of four plants of each genotype were analyzed

for each time point. The means were separated using paired t-test (P < 0.05).

Asterisks indicate significant differences between the pad4-1 or 35S:PAD4

plant and the corresponding WT at that time point.
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PAD4 is required for phloem-based resistance to GPA

To study which aphid feeding stages are affected by PAD4

expression, the electrical penetration graph (EPG) technique

was utilized to compare GPA behavior between WT (Col-0)

and pad4-1 mutants, and between WT (Ws-0) and 35S:PAD4

transgenic plants. A representative EPG waveform produced

by GPA probing on a WT (Col-0) plant is shown in Figure S1.

Electrically recorded stylet penetration activities were cate-

gorized into various waveforms, and the mean time spent on

various activities documented (Tables 1 and 2). Parameters

measured include the time to first probe, total duration of

pathway phase (penetrating between cells), time to reach

first sieve element phase (SEP) when the stylet is located in a

sieve element, sum of the duration of all SEPs in a total of 8 h

recording time, and the proportion of available SEP from the

beginning of the first SEP until the end of the recording. GPA

spent similar amounts of time on average for the time to first

probe, total duration of pathway phase and time to reach

first SEP on WT (Col-0) and pad4-1 mutants (Table 1), and on

WT (Ws-0) and 35S:PAD4 plants (Table 2). The similarity of

these GPA behavioral parameters on the various plant lines

suggests that neither surface features nor cell-wall proper-

ties play a decisive role in PAD4-mediated resistance to this

aphid. Measurements of other parameters such as the sum

of SEP duration in a total of 8 h of recording time and the

percentage of available SEP actually spent in SEP, however,

revealed a significant difference between pad4-1 and WT

(Table 1). GPA spent more time in SEP on pad4-1 plants

compared to WT Col-0 (v2 = 21.65, d.f. = 1, P < 0.05),

reflecting more time spent feeding on the phloem sap of

pad4-1. Moreover, the percentage of available SEP actually

spent in SEP was greater on pad4-1 than on WT (v2 = 20.65,

d.f. = 1, P < 0.05) suggesting that GPA consumes more

photoassimilates from the pad4-1 mutant.

Consistent with an effect of PAD4 on aphid feeding, GPA

spent significantly less time in SEP on 35S:PAD4 transgenic

plants compared to WT Ws-0 (Table 2) (v2 = 7.9, d.f. = 1,

P < 0.05). Also, the percentage of available SEP actually

spent in SEP was lower on the 35S:PAD4 transgenic plant

than on WT (v2 = 5.08, d.f. = 1, P < 0.05). These results

support the hypothesis that Arabidopsis PAD4 regulates

phloem-based resistance against GPA. The PAD4-dependent

anti-xenotic effect observed in the choice test (Figure 2a,b)

could derive from a PAD4-mediated limitation on phloem

sap uptake by GPA.

PAD4-conditioned resistance to GPA is independent of

EDS1 and SAG101

In leaves, the activity of PAD4 in plant defense against

pathogens is within an EDS1-regulated pathway (Feys et al.,

2005). We therefore tested whether the PAD4 activity found

here that restricts GPA feeding from phloem also depends

on EDS1. EDS1 transcripts accumulated to a higher level in

GPA-infested leaves than non-infested leaves of WT plants

(Figure 3). The increase in EDS1 expression in GPA-infested

plants mirrored that of PAD4, with both mRNAs accumu-

lating to higher levels than in control non-infested plants by

3 hpi. A no-choice test was performed to evaluate GPA

performance on an eds1 RNAi line in accession Col-0 in

which the endogenous EDS1 gene was stably silenced using

double-stranded RNA interference technology (Feys et al.,

Table 1 Mean time (h) �SE spent by green peach aphid (GPA) on
various activities on wild type (WT) and phytoalexin deficient4
(pad4-1) plants during 8 h of recording time

Parameters WT (Col-0) pad4-1

Time to first probe 0.32 � 0.13 0.32 � 0.14
Time to first sieve
element phase (SEP)

2.64 � 0.41 2.21 � 0.27

Total duration of
pathway phase

4.62 � 0.37 3.88 � 0.35

Sum of SEP in a total of
8 h recording time

0.69 � 0.14 2.39 � 0.29*

Available SEP from the
beginning of the first
SEP until the end of
recording time

5.36 � 0.41 5.79 � 0.27

Percentage of available
SEP actually spent in SEPa

13.77 � 0.02 42.86 � 0.05*

*Significantly different from the WT accession Col-0 (P < 0.05).
aAvailable SEP was used to calculate the percentage of available SEP
actually spent in SEP. For example, if the GPA reaches the SEP after
4 h from the start of the experiment, and continues to the end of the
recording time (8 h), the value is 100%. If the GPA reaches the SEP
after 6 h from the start of the experiment and continues to the end of
the recording time (8 h), the value is also 100%, but it exhibits lower
total SEP.

Table 2 Mean time (h) �SE spent by green peach aphid (GPA) on
various activities on wild type (WT) and 35S:PHYTOALEXIN DEFI-
CIENT4 (PAD4) transgenic plants during 8 h of recording time

Parameters WT (Ws-0) 35S:PAD4 line 1

Time to first probe 0.35 � 0.15 0.42 � 0.27
Time to first sieve
element phase (SEP)

3.76 � 0.49 4.92 � 0.63

Total duration of
pathway phase

4.55 � 0.39 4.05 � 0.48

Sum of SEP in a total of
8 h recording time

1.14 � 0.24 0.42 � 0.13*

Available SEP from the
beginning of the first
SEP until the end of
recording time

4.24 � 0.49 3.08 � 0.63

Percentage of available
SEP actually spent in SEPa

26.96 � 0.06 15.45 � 0.05*

*Significantly different from the WT accession Ws-0 (P < 0.05).
aSee Table 1 for details of percentage SEP calculations.
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2005). As controls, GPA performance on WT Col-0 plants and

the pad4-1 mutant was monitored. As expected, the num-

bers of GPA were higher on the pad4-1 mutant than the WT

(Figure 4a). However, GPA numbers on the eds1 RNAi line

were comparable to those on WT plants, suggesting that

EDS1 is not important for plant defense against GPA.

Arabidopsis accession Col-0 expresses an EDS1-like gene

that contributes to the total EDS1 activity (Feys et al., 2005).

Hence, GPA performance was assessed on the eds1-1 and

eds1-2 null mutants whose corresponding WT accessions

Ws-0 and Ler, respectively, lack a functional EDS1-like gene.

GPA performance was also assessed on the pad4 null

mutants, pad4-5 and pad4-2, in the Ws-0 and Ler back-

grounds, respectively. The numbers of GPA on the eds1-1

(Figure 4b) and eds1-2 (Figure 4c) mutants were comparable

to those on WT, whereas the GPA numbers on the pad4-5

and pad4-2 mutants were higher. GPA numbers on the

pad4-5 eds1-1 double mutant were similar to those on the

pad4-5 single mutant (Figure 4b). Also, GPA feeding-

induced accumulation of SAG13 and SAG21 transcripts

and cell death were unaffected in the eds1 RNAi line

(Figure S2).

The discovery of an EDS1-independent activity of PAD4 in

aphid resistance was surprising as PAD4 protein accumula-

tion in soluble leaf extracts requires EDS1, and all detectable

PAD4 is associated with EDS1 (Feys et al., 2005). We tested

further whether PAD4-mediated defense against GPA is

uncoupled from EDS1 in Arabidopsis by comparing the

responses of stable transgenic pad4-5 and pad4-5 eds1-1

lines expressing PAD4 (denoted d-P4) under the control of a

Dex-inducible promoter (see Experimental procedures). As

shown in Figure 5 (a), PAD4 mRNA was not detectable in

pad4-5 d-P4 and pad4-5 eds1-1 d-P4 plants pre-treated with

water, nor in a pad4-5 transgenic line containing the empty

vector (d-C), 2 days after infestation with GPA. PAD4 tran-

scripts accumulated in GPA-infested leaves of pad4-5 d-P4

and pad4-5 eds1-1 d-P4 transgenic plants but not in pad4-5

d-C leaves that were treated with Dex, confirming the Dex-

inducibility of the d-P4 transgene. As expected, PAD4 mRNA

derived from the endogenous PAD4 gene was expressed in

both water- and Dex-treated GPA-infested WT and eds1-1

mutant plants but not in the non-transgenic pad4-5 mutant.

In a no-choice bioassay, GPA numbers were higher on all

water-treated plants that contained the pad4-5 mutant allele

compared with water-treated WT and eds1-1 mutant plants

(Figure 5b). In contrast, numbers of GPA were lower on Dex-

treated pad4-5 d-P4 plants, demonstrating the ability of the

Dex-inducible PAD4 construct to complement pad4-5 in

aphid resistance. Significantly, Dex-induced expression of

PAD4 also resulted in lower GPA numbers on pad4-5 eds1-1

d-P4 plants. As eds1-1 is a null mutant allele, these results

provide strong evidence that PAD4 can function without

EDS1 in Arabidopsis defense against GPA.

Previously, SAG101 was shown to modulate PAD4 protein

levels and possess signaling activity that is partially redun-

dant with PAD4 in resistance to pathogens (Feys et al., 2005).

Figure 3. EDS1 expression is induced in response to green peach aphid (GPA)

infestation.

Real time-polymerase chain reaction (RT-PCR) analysis of PAD4, EDS1,

SAG101 and ACT8 expression in leaves of non-infested (–GPA) and GPA-

infested (+GPA) WT Col-0 plants. RT-PCR was performed on RNA extracted

from leaves at 3, 6, 12, 24 and 48 hpi. ACT8 served as a control for RNA quality

in the RT-PCR reaction.

Figure 4. EDS1 and SAG101 are not required for Arabidopsis defense against

green peach aphid (GPA).

(a) GPA numbers on wild-type (WT) Col-0, pad4-1, eds1 RNAi, sag101 and

pad4-1 sag101 plants.

(b) GPA numbers on WT Ws-0, pad4-5, eds1-1 and pad4-5 eds1-1 plants.

(c) GPA numbers on WT Ler, pad4-2 and eds1-2 plants.

The numbers of aphid in the no-choice assays were calculated 2 days after

infestation of each plant with 15 GPA. All values are means from a minimum

of 10 plants �SE. Different letters above the bars indicate values that are

significantly different (P < 0.05) from each other by Student’s t-test.

336 Venkatramana Pegadaraju et al.

ª 2007 The Authors
Journal compilation ª 2007 Blackwell Publishing Ltd, The Plant Journal, (2007), 52, 332–341



A no-choice test was performed to determine whether

SAG101 also contributes to defense against GPA by com-

paring the numbers of GPA on WT (Col-0), pad4-1, sag101,

and pad4-1 sag101 double mutant plants at 48 hpi. As shown

in Figure 4(a), GPA numbers on sag101 were comparable to

those on WT. In contrast, the numbers of GPA on pad4-1

sag101 were significantly higher than on WT and sag101

plants, and statistically comparable to those on pad4-1.

SAG101 expression was undetectable in GPA-infested WT

Arabidopsis leaves (Figure 3). These results show that

SAG101, like EDS1, is dispensable for the PAD4-dependent

mechanism in resistance to GPA. Consistent with this

conclusion, SAG13 and SAG21 transcripts accumulated to

high levels in GPA-infested sag101 mutant plants (Fig-

ure S2a), and cell death was prevalent in GPA-infested

leaves of the sag101 mutant (Figure S2b).

Discussion

We provide evidence that a PAD4-dependent mechanism

acts within the phloem sieve elements to restrict GPA

infestation of Arabidopsis plants. This PAD4-conditioned

resistance leads to an accelerated cell-death program (Fig-

ures 1b and S2b) (Pegadaraju et al., 2005). It also limits the

aphid population (Figures 1c, 4a–c and 5b), and serves as an

effective deterrent to aphid feeding (Figure 2a,b and

Tables 1 and 2). It is likely that these barriers to aphid feed-

ing derive from PAD4 activity in limiting phloem sap uptake,

as monitored by EPG. This activity is a novel molecular

feature of PAD4 as it operates independently of EDS1, a

component that is indispensable for PAD4 function in leaves

against various invasive pathogens (Wiermer et al., 2005).

Despite differences in GPA performance between WT

plants of Arabidopsis accessions Col-0, Ws-0 and Ler

(Figure 4a–c), the role of PAD4 in plant defense against

GPA is conserved in these accessions (Figures 1c, 4a–c and

5b). Significantly, PAD4-modulated resistance to GPA in-

volves both antibiosis (restricting aphid population size) and

anti-xenosis (deterring aphid settling and feeding). Antibio-

sis was evident in the no-choice assay in which the presence

of PAD4 limited the size of the GPA population (Figures 1c,

4a–c and 5b). Numbers of GPA were higher on three different

pad4 mutants than the corresponding WT plants. Con-

versely, GPA numbers were lower on transgenic 35S:PAD4

plants that ectopically express PAD4 from the 35S promoter

(Figure 1c), as well as plants that conditionally expressed a

PAD4 transgene in response to Dex treatment (Figure 5b). A

deterrent role for PAD4 towards GPA settling on Arabidopsis

was evident in the choice test. When given a choice between

the pad4-1 mutant and WT, adult insects preferred pad4-1

(Figure 2a). Insects also preferred the WT plant over the

35S:PAD4 transgenic plant (Figure 2b), consistent with PAD4

determining the extent of anti-xenosis.

Previous comparative analyses of aphid feeding behavior

between resistant and susceptible plants using the EPG

technique have allowed the elucidation of host mechanisms

and identification of specific tissues that are important in

resistance to aphids (Bernays and Funk, 2000; Kaloshian

et al., 2000; Klingler et al., 2005; Prado and Tjallingii, 1994,

1997, 1999; Reese et al., 1994; Zehnder et al., 2001). Leaf

surface features, cell-wall properties and composition of

intercellular spaces could affect GPA performance on a

plant. These factors should influence the time to first probe,

and the total duration of time taken by the aphid to reach a

sieve element. No significant differences were observed

between the time to first probe, total duration of pathway

phase, and time to reach first SEP between WT (Col-0) and

pad4-1 mutants (Table 1), or between WT (Ws-0) and

35S:PAD4 plants (Table 2). Based on this observation, we

conclude that PAD4 does not significantly alter surface

features or cell-wall properties that could contribute towards

resistance to GPA. As GPA spent a longer time in SEP on the

pad4-1 mutant compared to WT, and a shorter time in SEP

on the 35S:PAD4 plant, we propose instead that a PAD4-

dependent resistance factor or mechanism operates in the

phloem.

(a)

(b)

Figure 5. EDS1 is not required for PHYTOALEXIN DEFICIENT4 (PAD4)-med-

iated restriction of green peach aphid (GPA) infestation.

(a) Real time-polymerase chain reaction analysis of PAD4 and ACT8 expres-

sion in GPA-infested leaves of WT Ws-0, pad4-5, eds1-1, pad4-5 eds1-1, and

pad4-5 or pad4-5 eds1-1 plants containing the Dex-inducible PAD4 transgene

d-P4, or pad4-5 plants containing the empty vector transgene d-C. Plants were

pre-treated with water or 0.05 lM dexamethasone 2 days prior to release of

GPA. Leaf samples for RNA extraction were harvested 2 days after infestation

of each plant with 20 GPA.

(b) Comparison of GPA numbers 2 days after infestation of plants treated as in

(a). All values are the means of six plants �SE. Analysis of variance (ANOVA)

for GPA population was conducted using PROC GLM (SAS Institute). The

means were separated using Student’s t-test (P < 0.05). Asterisks indicate

significant differences in aphid numbers between the Dex-treated plant and

its corresponding water-treated control.
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The PAD4-dependent resistance could be derived from

PAD4 protein expressed within the phloem sieve element or

companion cells. Alternatively, PAD4 activation in other

tissues by aphids could stimulate a phloem-specific pro-

gram. Previously, PAD4 was found to be necessary for

transmission of mobile signals leading to cell death in

the Arabidopsis lsd1 (lesions simulating death1) mutant

(Rustérucci et al., 2001). Also, activation of systemic

acquired resistance against pathogens, which is dependent

on the translocation of a factor(s) primarily through the

phloem (Guedes et al., 1980; Kiefer and Slusarenko, 2003;

Ross, 1966), requires functional PAD4 (Wiermer et al., 2005;

L. Jorda, A. Maldonado, C. Lamb and J. E. Parker, Max-

Planck Institute for Breeding Research, unpublished data).

However, the involvement of PAD4 in long-distance signal-

ing associated with systemic acquired resistance is part of

an EDS1-regulated pathway (Rustérucci et al., 2001), argu-

ing against it contributing to the resistance in the phloem

described here.

We propose that a PAD4-dependent phloem-specific

factor limits the total duration of phloem sap ingestion

and hence the amount of sap consumed by GPA. During

the phloem phase, the insect ingests sap and/or secretes

saliva into the sieve element (Prado and Tjallingii, 1994;

Tjallingii, 2006). Reduced phloem sap ingestion has been

found to be associated with host resistance in several

other aphid–plant interactions (Chen et al., 1997; van

Helden and Tjallingii, 1993; Kaloshian et al., 2000; Klingler

et al., 2005; Mesfin et al., 1992; Paul et al., 1996). Several

processes operating individually or in concert could limit

phloem sap ingestion by aphids. For example, alleloche-

micals present in the phloem might limit aphid feeding.

PAD4 has been shown to influence the synthesis of

antimicrobial indole and phenolic compounds and other

as yet structurally uncharacterized signal intermediates in

Arabidopsis responses to pathogens (Bartsch et al., 2006;

Glazebrook et al., 1997; Jirage et al., 1999; Zhou et al.,

1998). The possibility that PAD4 modulates the synthesis

of phloem-located compounds that are directly detrimental

to GPA cannot be excluded. Changes in the source–sink

relationship in response to GPA feeding could also affect

phloem sap composition to limit GPA feeding. Alterna-

tively, protein coagulation at aphid feeding sites might

result in the plugging of sieve elements, thereby prevent-

ing feeding (Kehr, 2006; Will and van Bel, 2006). In

Arabidopsis leaves exposed to pathogens or photo-oxida-

tive stress, PAD4 is needed to transduce reactive oxygen

species-generated signals leading to cell death (Mateo

et al., 2004; Rustérucci et al., 2001). It may be that PAD4

alters the reactive oxygen species composition of the sieve

elements. Protein coagulation reactions in sieve elements

are sensitive to increases in oxygen concentration (Alosi

et al., 1988; Kehr, 2006). Thus, any increase in the level of

reactive oxygen species in the sieve elements is likely to

induce protein clogging. Whatever the precise biochemical

processes involved, PAD4-dependent mechanisms operat-

ing in the phloem in response to GPA feeding are effective

in limiting aphid infestation.

Genetic and molecular data point to EDS1 as the central

molecule in a defense pathway against invasive pathogens

that requires the partially redundant signaling functions of

PAD4 and SAG101 (Feys et al., 2001, 2005; Lipka et al., 2005).

EDS1 mRNA was also induced with similar kinetics to PAD4

in response to GPA infestation (Figure 3). Our finding that

EDS1 and SAG101 are dispensable for PAD4-conditioned

resistance to GPA in the phloem (Figures 4a–c and 5b) was

therefore unexpected. Previously, it was shown that PAD4

protein is severely depleted in eds1 mutant leaf extracts, and

that all of the detectable PAD4 pool is associated with EDS1

protein (Feys et al., 2005). PAD4 protein may not require

EDS1 for its function in aphid resistance in the phloem sieve

elements or associated cells, and it will be important to

establish whether PAD4 accumulates in cells associated with

the phloem even in the absence of EDS1. Alternatively, the

small amount of residual PAD4 protein that was observed in

leaf extracts of eds1 mutant plants (Feys et al., 2005) may be

sufficient and competent to exert full PAD4 function in aphid

resistance. The dispensability of SAG101 in PAD4-condi-

tioned resistance to GPA (Figure 4a) points to different

molecular attributes of PAD4 in defense signal relay, as pad4

sag101 mutants are acutely compromised in resistance to

host- and non-host-adapted pathogens (Feys et al., 2005;

Lipka et al., 2005).

In conclusion, our results reveal a novel function of PAD4

in phloem-based defense against GPA. The identification of

PAD4 as a key modulator of plant aphid resistance will aid

the characterization of defense mechanisms that target

sap-sucking insects.

Experimental procedures

Plant cultivation and aphid propagation

Plants and insects were cultivated at 22�C in growth chambers
programmed for a 12 h light (100 lE m)2 sec)1) and 12 h dark cycle
as previously described (Pegadaraju et al., 2005). A GPA colony was
propagated on a 50:50 mixture of commercially available radish
(Early Scarlet Globe) and mustard (Florida Broadleaf) plants.
Voucher specimens of GPA (#194) were deposited in the Kansas
State University Museum of Entomological and Prairie Arthropod
Research. Four-week-old soil-grown Arabidopsis plants at the
rosette stage were used for all studies. All experiments were
performed at least three times with similar results.

Arabidopsis mutants and transgenic lines

The pad4-1, sag101-1 and sag101-1 pad4-1 mutants and an eds1
RNAi line in Arabidopsis accession Col-0 (Feys et al., 2005), the
pad4-2 and eds1-2 mutants in accession Ler, and the pad4-5
T-DNA insertion, eds1-1 and pad4-5 eds1-1 mutants in accession
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Ws-0 have been described previously (Feys et al., 2001, 2005;
Glazebrook et al., 1997). Multiple independent transgenic lines in
the pad4-5 background were selected that express a single copy
of a PAD4 transgene under the control of the CaMV 35S promoter
with a C-terminal StrepII tag in the pAMPAT binary vector (Witte
et al., 2004). 35S:PAD4 lines 1 and 2 used in this study fully
complemented the pad4-5 loss of resistance to Pseudomonas
syringae bacteria and to the oomycete pathogen Hyaloperonos-
pora parasitica (data not shown). pad4-5 transgenic lines
expressing PAD4 fused to an N-terminal c-Myc5 epitope tag under
the control of a dexamethasone-inducible promoter were created
using the pTA7001 vector (Aoyama and Chua, 1997). One trans-
genic line (denoted d-P4) that exhibited no detectable basal but
strong Dex-inducible expression of PAD4, and a control line
expressing an empty pTA7001 vector (denoted d-C), were selected
for analysis. Line d-P4 in pad4-5 was crossed with pad4-5 eds1-1,
and the double mutant expressing homozygous Dex:PAD4 was
selected using gene-specific primers.

No-choice and choice tests

No-choice tests were performed as previously described
(Pegadaraju et al., 2005). The numbers of aphids were counted
2 days after release of mature apterous (wingless) insects on each
plant.

For the choice test, 20 adult apterous aphids were released on the
soil in the center of a 15 cm wide pot containing one WT and one
pad4-1 mutant plant, or one WT and one 35S:PAD4 plant, appro-
ximately 4 cm from the two plants. The numbers of adult GPA on
each plant were counted at various time points after release of the
insects. GPA numbers on a minimum of four plants of each
genotype were analyzed for each time point.

Dexamethasone treatment

Dexamethasone (Sigma-Aldrich, http://www.sigmaaldrich.com/)
was dissolved in 100% ethanol to make a 30 mM stock, which was
further diluted in water to give a 0.05 lM solution. Four-week-old
plants were sprayed to run-off with the 0.05 lM Dex solution, or with
water as control, and covered with a transparent plastic dome. Two
days later, the plastic dome was removed, and 20 insects were
released on each plant for no-choice assays. RNA for RT-PCR anal-
ysis was harvested 2 days after the release of insects.

Histochemistry and microscopy

Trypan blue staining of leaves was performed as previously
described (Rate et al., 1999).

RNA analysis

Gene-specific PCR primers for ACT8 (At1 g49240), SAG13
(At2 g29350) and SAG21 (At4 g02380) were as previously described
(Pegadaraju et al., 2005). Primers PAD4-F (5¢-ACCGAGGAACATCA-
GAGGTAC-3¢) and PAD4-R (5¢-AAATTCGCAATGTCGAGTGGC-3¢),
EDS1-F (5¢-CACCAGATCATGGTCAGCCTC-3¢) and EDS1-R (5¢-TTT-
TGGGAAGCGTAATCCACC-3¢), and SAG101-F (5¢-AAGGTTCTG-
CACTTGGGAAGC-3¢) and SAG101-R (5¢-GAGAATGATGGGTTG-
TTCTCGG -3¢) were used for PCR amplification of PAD4 (At3 g52430),
EDS1 (At3 g48090) and SAG101 (At5 g14930), respectively. RNA for
RT-PCR analysis was extracted from Arabidopsis leaves as previ-
ously described (Pegadaraju et al., 2005). A two-step RT-PCR was

performed on these samples. Total RNA (2 lg) was mixed with
oligo(dT) primers (Promega, http://www.promega.com/), and the
volume was made up to a total of 15 ll with water. This mixture was
incubated at 70�C for 5 min, and then chilled on ice for 2-3 min. Then,
5 ll of M-MLV RT buffer (Promega), 1.25 ll dNTP mix (10nM each),
1 ll M-MLV reverse transcriptase (Promega) and 2.75 ll of water
were added to the above mix, and cDNA synthesis allowed to pro-
ceed at 37�C for 1 h. Aliquots (1 ll) of this cDNA were used in the
subsequent PCR. PCR conditions were as follows: 95�C for 5 min,
followed by 25 cycles of 95�C for 30 sec, 60�C for 30 sec, and 72�C for
30 sec, with a final extension at 72�C for 7 min.

Electrical penetration graph

The EPG technique (Reese et al., 2000; Tjallingii, 1988; Walker,
2000) was used to study the feeding behavior of aphids. Drops that
occur during the EPG analysis allow monitoring of stylet activities
such as non-probing (when the style is penetrating plant tissue in a
largely intercellular manner), the SEP (when the stylet is located in
a sieve element) and the xylem phase (when the stylet is located in
the xylem element). A thin gold wire (2–4 cm long, 10 lm diame-
ter) was glued to the dorsum of the aphid using conductive paint
(colloidal silver, Ted Pella Inc.; http://www.tedpella.com), and the
other end of the wire was connected to the EPG probe. An output
wire from the EPG monitor was inserted into the soil in which the
plant was rooted. All plants and insects were held inside a Faraday
cage during the recording at an ambient temperature of 22�C. The
feeding behavior of individual aphids was monitored for 8 h. A
four-channel GIGA-8 direct current amplifier (Wageningen Agri-
cultural University, Wageningen, The Netherlands) was used for
simultaneous recording from four individual aphids on four plants
(two channels for the pad4-1 or 35S:PAD4 plant and two for the WT
plant). Twenty replications were performed, and waveform
recordings obtained were analyzed using the EPG analysis soft-
ware PROBE 3.0 (W.F. Tjallingii, Wageningen University, Wagenin-
gen, The Netherlands). The mean time spent by aphids on various
activities was analyzed by the non-parametric Kruskal–Wallis’ test
(P < 0.05) (SAS/STAT Software; http://www.sas.com).
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Figure S2. EDS1 and SAG101 are not required for the activation of
SAG expression and cell death in GPA-infested plants.
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