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Abstract

Background: Nutrient availabilities and needs have to be tightly coordinated between organs to ensure a balance 

between uptake and consumption for metabolism, growth, and defense reactions. Since plants often have to grow in 

environments with sub-optimal nutrient availability, a fine tuning is vital. To achieve this, information has to flow cell-

to-cell and over long-distance via xylem and phloem. Recently, specific miRNAs emerged as a new type of regulating 

molecules during stress and nutrient deficiency responses, and miR399 was suggested to be a phloem-mobile long-

distance signal involved in the phosphate starvation response.

Results: We used miRNA microarrays containing all known plant miRNAs and a set of unknown small (s) RNAs earlier 

cloned from Brassica phloem sap [1], to comprehensively analyze the phloem response to nutrient deficiency by 

removing sulfate, copper or iron, respectively, from the growth medium. We show that phloem sap contains a specific 

set of sRNAs that is distinct from leaves and roots, and that the phloem also responds specifically to stress. Upon S and 

Cu deficiencies phloem sap reacts with an increase of the same miRNAs that were earlier characterized in other tissues, 

while no clear positive response to -Fe was observed. However, -Fe led to a reduction of Cu- and P-responsive miRNAs. 

We further demonstrate that under nutrient starvation miR399 and miR395 can be translocated through graft unions 

from wild type scions to rootstocks of the miRNA processing hen1-1 mutant. In contrast, miR171 was not transported. 

Translocation of miR395 led to a down-regulation of one of its targets in rootstocks, suggesting that this transport is of 

functional relevance, and that miR395, in addition to the well characterized miR399, could potentially act as a long-

distance information transmitter.

Conclusions: Phloem sap contains a specific set of sRNAs, of which some specifically accumulate in response to 

nutrient deprivation. From the observation that miR395 and miR399 are phloem-mobile in grafting experiments we 

conclude that translocatable miRNAs might be candidates for information-transmitting molecules, but that grafting 

experiments alone are not sufficient to convincingly assign a signaling function.

Background
The levels of essential inorganic nutrients have to be

tightly controlled inside individual cells and organs, but

information about nutrient uptake and needs also have to

be transferred between organs to optimize nutrient allo-

cation, especially in plants growing under sub-optimal

conditions. If an organ experiences nutrient starvation, it

needs to communicate its requirements to the other

organs in order to increase nutrient uptake or reallocate

resources. This type of communication is probably medi-

ated via the phloem. Recent work showed that microRNA

(miRNA) 399 is potentially involved in long-distance

communication via the phloem following phosphate

deprivation [1-3]. miRNAs are short (21-24 nt), non-

translated RNAs that are processed by Dicer-like proteins

from large, characteristically folded precursor molecules.

The majority of plant miRNAs target transcription fac-

tors and is therefore thought to mainly regulate develop-

mental processes. However, recent studies have also

identified miRNAs that are involved in responses to

nutrient deficiencies. As mentioned earlier, miR399 is

strongly induced during phosphate deprivation [4-7],

while miR395 drastically increases under growth on low

sulfur [8]. In addition to macronutrients like sulfur and

phosphate, also a lack of the micronutrient copper leads

* Correspondence: julia.kehr@upm.es

1 Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de 

Montegancedo, M40 (km38), 28223 Pozuelo de Alarcón/Madrid, Spain
† Contributed equally
Full list of author information is available at the end of the article

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20388194
http://www.biomedcentral.com/


Buhtz et al. BMC Plant Biology 2010, 10:64

http://www.biomedcentral.com/1471-2229/10/64

Page 2 of 13

to an accumulation of miR397, 398, 408, and 857 [9-11].

miRNAs 395, 398 and 399 were recently shown to accu-

mulate not only on the whole plant level, but also strongly

within the phloem [1]. Since sRNAs accumulating in

phloem sap under stress could represent potential long-

distance signaling molecules, we used sRNA microarrays

from LC Sciences to comprehensively analyze phloem

sRNAs. The customized arrays contained, in addition to

all known plant miRNAs, a subset of small RNAs

(sRNAs) of unknown function that was earlier sequenced

from phloem sap of Brassica napus [1]. First we estab-

lished the miRNA patterns of phloem, leaves and roots of

fully nutrient supplied, hydroponically grown oilseed

rape plants to subsequently identify candidates that

respond to growth under S, Cu or Fe deficiency, respec-

tively. In addition, we used the highly -S induced miR395

as an example to examine whether this specific miRNA

can be transported over graft unions when combining

WT Arabidopsis with the miRNA biosynthesis mutant

hen1-1. The specific aims were 1) to find phloem- and

organ-enriched miRNAs, 2) to identify additional miR-

NAs that respond to S and Cu deficiencies, 3) to examine

whether any miRNAs respond to Fe starvation, and 4) to

demonstrate whether miR395 is phloem mobile or not.

Results and Discussion
Phloem sap shows a specific sRNA pattern that is distinct 

from that of inflorescence stem, leaves and roots

To ensure that the sRNAs observed in phloem sap were

not resulting from contamination during sampling, and

in order to identify phloem-enriched sRNAs, we per-

formed a microarray hybridization experiment compar-

ing phloem sap to the surrounding inflorescence stem

tissue. This resulted in the identification of phloem-

enriched sRNAs, while others were less abundant in

phloem sap than in stem tissue (including phloem) col-

lected after phloem sampling from the sampling site. Sig-

nal values for one miRNA per family are depicted in

additional file 1. The distribution of ten miRNAs was re-

evaluated by RNA gel blots from an independent set of

plants, what confirmed the microarray results. miRNAs

162, 167, 168, 169, and 399 strongly accumulated in

phloem samples as compared to inflorescence stem sam-

ples, while miR158, 396 and 397 were stem-enriched.

This indicates that phloem samples are not significantly

contaminated by the contents of the surrounding inflo-

rescence stem cells, what had already previously been

demonstrated [1,12]. The observation that miR167 accu-

mulates in phloem sap confirms an earlier study in pump-

kin that found miR167 20-fold enriched in phloem sap as

compared to the surrounding vascular tissue [13]. Also

the failure to detect miR171 in phloem sap and its low

expression in stem samples is in accordance with earlier

findings [13,14].

We further used the microarrays to identify sRNAs that

preferentially accumulated in phloem sap as compared to

leaf and root samples. To this end we grew plants under

full nutrition (FN) conditions in three successive, com-

pletely independent experiments and compared the

sRNA amounts in phloem samples with that of leaves and

roots. For inter-array comparisons, signal intensities were

normalized to the median signal of each sample. This

approach allowed the detection (signal >100) of 161 miR-

NAs belonging to 37 families in phloem sap, covering all

17 miRNA families earlier detected in samples from soil-

grown Brassica plants by high-throughput pyrosequenc-

ing [1] (indicated by the numbers of sequences obtained

in additional file 1). In addition, we found several miR-

NAs on the arrays that were not identified by the

sequencing approach, suggesting that these miRNAs

were either not present in soil-grown plants or not identi-

fied, possibly due to their low abundance or absence in

the steadily growing databases at the earlier time-point of

data analysis. A reasonable reproducibility between the

experiments was achieved, given that they were com-

pletely independent and that miRNAs are known to be

strongly influenced by developmental stage and growth

conditions [15]. Signal intensities and standard deviations

for one representative of each family are depicted in addi-

tional file 2. Statistical evaluation using the Students t-

test revealed miRNAs that were significantly (p < 0.05)

enriched in phloem, leaves or roots (figure 1). miRNAs

from four families were more abundant in phloem sap

than in leaves and roots under FN, namely miR169 (not

statistically significant), 390, 829, 894, and 1132 (not sig-

nificant) (figure 1). miR1132, together with miR1134

(misnamed miR518), was cloned from wheat [16] and

recently from Brachypodium [17]. Both miRNAs are not

well characterized, thought to be species-specific, and

their possible functions are unknown. However, signal

values were well above the microarray noise. Neverthe-

less this result does not allow a conclusion on whether

these miRNAs really occur in Brassica or if the signals

represent an artifact (e.g. unspecific cross-hybridization)

caused by the microarray technique.

Except for miR390, these miRNAs were also phloem-

enriched as compared to inflorescence stem tissue (addi-

tional file 1). miRNAs from the families 156, 159, 160,

162, 164, 165, 166, 167, 393, 394, 396 and 403 were less

abundant in the phloem as compared to both, leaves and

roots. However, some of these miRNAs (159, 162, and

167) were more abundant in the phloem than in the sur-

rounding stem.

miRNAs from the complete 156, 160, 166, 393, 396, and

528 families were found to be significantly enriched in

roots as compared to leaves and phloem. In rice, miRNAs

156 and 166 have earlier been shown occur at higher lev-

els in roots than in leaves [18]. In addition, miR166 has
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Figure 1 List of miRNAs that were enriched in phloem, leaves or roots, respectively, in plants grown under full nutrition. Only families where at 

least one member showed a statistically significant differential accumulation in one organ are shown (p < 0.05, n = 3). Values are log2s between P/L: phlo-

em vs. leaves, P/R: phloem vs. roots and L/R: leaves vs. roots. Markedly (log2 values >1 or <-1, indicating a two-fold difference) phloem-enriched miRNAs 

are marked in blue, leaf-enriched in green, and root-enriched in red. The statistical significance is indicated as: * p < 0.05; ** p < 0.01; *** p < 0.001.

higher in phloem than in the compared organ

higher in leaves than in the compared organ

higher in roots than in the compared organ

miR P/L P/R L/R miRNA

156 -0.7 -4.3 *** -3.6 *** ath-miR156a

-0.7 -4.3 *** -3.6 *** ath-miR156g

-1.4 -3.3 -2.0 ath-miR156h

-0.9 * -4.5 *** -3.5 *** bna-miR156a

0.8 -1.5 -2.3 * gma-miR156b

-0.9 -4.5 * -3.6 * osa-miR156l

-1.8 -1.3 0.5 pta-miR156a

-1.6 -1.2 0.4 pta-miR156b

0.7 -3.0 -3.7 ptc-miR156k

-0.9 -4.3 ** -3.4 ** sbi-miR156e

-1.4 -1.5 -0.1 smo-miR156b

-1.5 -3.2 -1.6 smo-miR156c

1.3 0.0 -1.3 smo-miR156d

159 -1.3 ** -0.6 0.7 ath-miR159a

-1.3 ** -0.6 0.7 ath-miR159b

-1.6 *** -0.8 0.8 ath-miR159c

-1.4 * -0.6 0.7 osa-miR159a

-1.6 ** -0.8 0.9 osa-miR159c

-1.6 ** -0.8 0.8 osa-miR159d

-1.7 ** -0.8 0.9 osa-miR159e

-1.4 * -0.6 0.8 osa-miR159f

-2.0 *** -1.2 0.9 pta-miR159a

-2.4 -1.8 0.6 pta-miR159b

-3.8 * -5.9 -2.0 ptc-miR159e

-2.0 * -1.3 0.7 ptc-miR159f

-1.6 *** -0.7 0.9 ptc-miR159d

-1.9 *** -1.0 1.0 sof-miR159e

160 -2.4 -4.4 -2.0 ath-miR160a

-2.5 -4.4 * -1.9 osa-miR160e

-2.3 -4.4 * -2.1 * ppt-miR160b

-2.4 -4.6 * -2.2 ppt-miR160c

-2.4 -4.6 -2.2 ppt-miR160d

-3.0 -6.4 -3.4 ppt-miR160g

-3.0 -6.5 -3.5 ppt-miR160h

-2.3 -4.4 -2.1 ptc-miR160g

-2.3 -4.3 -2.0 ptc-miR160h

162 -1.7 * -1.1 0.6 ath-miR162a

-2.4 -1.7 0.7 osa-miR162b

-2.1 * -1.6 0.5 zma-miR162

164 -1.8 ** -2.3 ** -0.6 ath-miR164a

-1.7 ** -2.3 ** -0.6 ath-miR164c

-1.6 *** -2.1 ** -0.5 osa-miR164c

-1.8 ** -2.3 ** -0.5 osa-miR164d

-1.6 *** -2.1 ** -0.4 osa-miR164e

-1.7 *** -2.1 ** -0.4 ptc-miR164f

-1.7 *** -2.2 ** -0.5 sbi-miR164c

165 -2.8 * -4.8 * -2.0 ath-miR165a

166 -2.6 ** -4.1 * -1.6 ath-miR166a

-2.7 * -4.5 -1.8 osa-miR166e

-4.5 -6.5 -2.0 osa-miR166i

-3.1 -5.0 -1.9 osa-miR166k

-2.6 ** -4.0 -1.4 osa-miR166m

-3.0 * -5.0 -2.1 ppt-miR166j

-4.5 -6.6 -2.1 ppt-miR166m

-4.2 -7.9 -3.7 pta-miR166c

-2.7 * -4.3 -1.7 ptc-miR166n

-3.0 * -4.7 -1.7 ptc-miR166p

-2.7 ** -4.1 -1.5 sbi-miR166a

miR P/L P/R L/R miRNA

167 -2.5 *** -2.4 ** 0.1 ath-miR167a

-3.0 ** -3.0 * 0.0 ath-miR167c

-2.5 *** -2.4 ** 0.1 ath-miR167d

-2.6 *** -2.4 * 0.2 ppt-miR167

-2.5 *** -2.4 ** 0.1 ptc-miR167f

-2.7 ** -2.3 0.4 ptc-miR167h

168 0.5 0.5 0.1 ath-miR168a

0.6 0.6 0.0 osa-miR168a

0.8 0.7 -0.1 osa-miR168b

0.9 * 0.9 0.1 sof-miR168b

169 5.5 5.9 0.4 ath-miR169a

5.1 5.4 0.3 ath-miR169b

5.7 5.8 0.1 ath-miR169d

4.7 5.6 0.9 ath-miR169h

7.3 2.7 -4.6 osa-miR169d

5.2 5.5 0.4 osa-miR169e

7.8 3.1 -4.6 osa-miR169n

4.6 -2.6 * -7.2 * osa-miR169q

3.6 4.3 0.7 ptc-miR169ab

4.7 5.4 0.7 ptc-miR169o

4.4 4.5 0.1 ptc-miR169q

5.3 5.9 0.6 ptc-miR169s

6.3 5.0 -1.2 ptc-miR169t

4.0 4.8 0.8 ptc-miR169u

4.4 4.8 0.4 ptc-miR169v

4.4 4.3 -0.1 ptc-miR169x

3.3 -3.0 -6.3 zma-miR169d

-0.9 -3.3 -2.4 zma-miR169e

319 -1.8 -1.0 0.8 ath-miR319a

-1.7 -0.8 0.9 ath-miR319c

-1.8 -0.8 1.0 gma-miR319a

-1.3 -1.2 0.1 gma-miR319c

0.7 -0.5 -1.2 osa-miR319a

-1.6 ** -0.6 1.0 ppt-miR319a

-1.7 -1.1 0.6 pta-miR319

-1.7 ** -0.7 1.0 ptc-miR319e

1.8 0.1 -1.6 ptc-miR319i

390 1.5 * 1.8 * 0.4 ath-miR390a

0.6 0.1 -0.5 pta-miR390

1.2 1.7 * 0.5 ppt-miR390c

391 -3.3 1.6 * 4.9 *** ath-miR391

393 -2.2 -4.1 -1.9 ath-miR393a

-2.0 -3.8 -1.7 bna-miR393

-1.7 -4.0 * -2.3 osa-miR393b

394 -1.2 -1.0 0.2 ath-miR394a

396 -8.2 -9.3 -1.1 ath-miR396a

-11.7 -12.9 -1.2 ath-miR396b

-5.0 * -9.3 -4.3 osa-miR396d

-2.3 -6.5 -4.2 ptc-miR396f

0.0 -5.5 -5.5 ptc-miR396g

403 -3.0 ** -2.4 0.6 ath-miR403

528 3.1 -1.1 -4.2 ** osa-miR528

829 3.5 * 2.9 -0.6 ath-miR829.1

894 2.7 * 1.4 -1.2 ppt-miR894

1132 3.0 0.1 -3.0 * tae-miR1132
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been described to be expressed in roots of Medicago

truncatula, where it functions in root and nodule devel-

opment [19]. In Arabidopsis, miRNAs 156 and 160 occur

root-enriched [20], and miR160 has been implicated with

root development [21,22].

miR391 was the only miRNA that accumulated in

leaves as compared to roots and phloem sap (figure 1). In

an earlier study, miR391 was found to appear preferen-

tially in rosette leaves of Arabidopsis, as compared to

seedlings, flowers and siliques [23]. According to the

same publication, miR391 targets a beta-fructofuranosi-

dase, but its function is currently not well understood.

Although miR391 is regarded as being related to miR390,

differing in only 5 nt [24], both miRNAs showed a quite

distinct organ distribution: while miR391 was clearly leaf-

enriched, miR390 was slightly, but significantly phloem-

enriched, indicating that both miRNAs might still have

distinct localizations and functions.

Interestingly, the unknown sRNAs represented on the

chip were, except for Bn_PsRNA_24, significantly more

abundant in phloem sap as compared to leaves and roots

(figure 2). All Bn_PsRNAs were additionally more abun-

dant in roots than in leaves. Most of these differential

unknown sRNAs had a length of 24 nt, and only five had a

length of 21 nt characteristic for miRNAs (figure 2). Pre-

cursor and target predictions using mfold and psRNA-

Target, respectively (data not shown), provided no

conclusive evidence that any of these sRNAs could repre-

sent a novel miRNA following recently published criteria

[25]. On the one hand, the inability to successfully predict

targets and precursors of the Brassica sRNAs could be

due to the limited EST genome sequence of Brassica

napus publicly available. On the other hand, it could indi-

cate that they are no miRNAs, but rather siRNAs, as yet

unclassified sRNAs, or breakdown products of larger

RNAs. However, the observation that they accumulate in

phloem sap makes them interesting candidates for future

studies.

Phloem small RNA patterns change under nutrient 

deficiency

Since three miRNAs, miR395, 398 and 399, had been pre-

viously shown to accumulate in the phloem under the

corresponding nutrient stress conditions [1], we intended

to identify additional nutrient-responsive phloem sRNAs.

They could represent novel information transmitters dur-

ing nutrient deprivation, as has been suggested for

miR399 under phosphate deficiency [2]. To induce nutri-

ent deprivation, we raised Brassica napus plants in

hydroponic cultures under FN and omitted the respective

nutrient from the medium for two (-S, -Cu experiments)

or three weeks (-Fe experiment), respectively, before sam-

ples were collected. Under -S and -Cu conditions the

plants did not show any obvious stress symptoms at the

time of sampling. However, omitting Fe led to chlorosis

symptoms in very young upper leaves after 4-5 days of

stress (data not shown).

Initial analysis of the expression of selected genes that

are known to be altered by the respective nutrient stress

clearly confirmed that the plants were nutrient deficient

in all three kinds of stress experiments performed (addi-

tional file 3). As expected, S starvation led to an increase

in the expression of the two high-affinity sulfate trans-

porters st1 (AJ416460) and st2 (AJ311388), especially in

roots. Copper deprivation was confirmed by a slight

decrease in the amount of Cu-Zn SOD transcripts, while

the amount of the high-affinity copper transporter

COPT1 increased markedly. Fe deprived plants showed

only a slight reduction in the expression of the iron stor-

Figure 2 List of unknown sRNAs that were organ-enriched grown 

under full nutrition. List of unknown sRNAs, sequenced from Brassica 

phloem sap [1], that showed statistically significant differences be-

tween phloem sap, leaves and roots, respectively (p < 0.05, n = 3). Val-

ues are log2s between P/L: phloem vs. leaves, P/R: phloem vs. roots 

and L/R: leaves vs. roots. Markedly (log2 values >1 or <-1, indicating a 

two-fold difference) phloem-enriched miRNAs are marked in blue, 

leaf-enriched in green, and root-enriched in red. The statistical signifi-

cance is indicated as: * p < 0.05; ** p < 0.01; *** p < 0.001.

sRNA P/L P/R L/R

Bn_PsRNA_03 3.8 * 2.1 -1.7 *

Bn_PsRNA_04 3.4 0.2 -3.1 **

Bn_PsRNA_05 3.6 * 3.5 * -0.1

Bn_PsRNA_07 5.7 * -0.7 -6.4

Bn_PsRNA_10 6.9 ** 3.1 * -3.8

Bn_PsRNA_20 7.0 *** 1.1 -5.9

Bn_PsRNA_24 -1.4 * -4.0 -2.6

Bn_PsRNA_26 3.0 * 1.3 -1.6

Bn_PsRNA_27 3.2 * 1.1 -2.1

Bn_PsRNA_29 2.4 * 1.3 -1.1

Bn_PsRNA_31 5.3 * 3.3 * -2.0

Bn_PsRNA_35 5.6 * 3.6 * -2.0

Bn_PsRNA_41 4.4 * 3.4 * -0.9

Bn_PsRNA_47 4.9 * 3.8 * -1.2

Bn_PsRNA_56 5.1 * 3.5 * -1.6

Bn_PsRNA_57 3.1 * 1.8 -1.3

Bn_PsRNA_65 7.9 ** 2.2 * -5.7

Bn_PsRNA_67 4.0 * 3.4 * -0.6

Bn_PsRNA_69 5.4 * 3.7 * -1.7

Bn_PsRNA_72 6.9 * 3.1 * -3.7

Bn_PsRNA_83 6.2 * 5.8 * -0.4

higher in phloem than in the compared organ
higher in leaves than in the compared organ
higher in roots than in the compared organ
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age protein ferritin LSC30 in leaves and roots, accompa-

nied by an increase in the transcript of the root-specific

iron transporter IRT1 in roots (additional file 3).

Subsequently, material from the same batch of plants

was used for dual-color microarray hybridizations of

stressed and FN samples. Since only one array per stress

experiment was hybridized, we applied specific criteria to

only identify the most drastic positive changes (>four-

fold increases, log2 >2) upon stress treatments and fur-

thermore restricted the analyses to abundant sRNAs with

signal intensities of >100 in one of the two (FN or

stressed) samples.

The response to S deficiency was characterized by a

dramatic increase of the known -S-responsive miR395

(the at-miR395a signal increased from 280 to 76369).

While the amount of no additional miRNA increased, the

amount of miR397 decreased (figure 3).

Growth under copper deficiency is known to induce a

number of physiological responses, including the expres-

sion of specific miRNAs. Recently, the transcription fac-

tor SPL7 (SQUAMOSA promoter binding protein-like7)

has been found to be a central regulator of the copper-

deficiency response. It is able to induce the expression of

miRNAs 397, 398, 408, 857, different copper transport-

ers, and a copper chaperone [26]. Accordingly, our

miRNA microarrays showed that copper deficiency led to

a more than four-fold increase of the known copper-

responsive miRNAs 397 and 408 that target laccases

[1,11] in phloem sap. miR397 also accumulated in roots,

but remained undetectable in leaves, while 408

responded positively in leaves and not in roots (figure 4).

Figure 3 List of nutrient-responsive sRNAs. List of sRNAs that showed a strong positive reaction to S, Cu or Fe deprivation, respectively, shown as 

log2 values of stressed vs. FN samples. Only sRNAs that fulfilled the criteria described in the Methods section (positive response, log2 >2 in one of the 

stress treatments, signal value >100 in FN or deprived sample) in at least one of the comparisons are listed. The insets show results obtained by miRNA 

sqRT-PCR (after 25 cycles) from an independent experiment. To allow a better overview, values for known nutrient starvation-responsive miRNAs (398 

and 857 for -Cu and 2111 for -P) were included, although they only showed a negative response or were not detectable. Arrows indicate directions 

of changes obtained in a second, independent -Cu experiment. n.d.: not detectable (both, FN and stress, signal values <100). X: not on chip.
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The known -Cu-responsive miR398 that targets Cu/Zn

superoxide dismutases also increased, but only nearly

two-fold. A similar accumulation was also detected in

leaves, but not roots (figure 4). miR857 that was found to

be copper-responsive in Arabidopsis [11] was undetect-

able in the phloem, leaves and roots of rapeseed in the

present study (figure 3), probably caused by the different

species, compartment, developmental stage and milder

stress treatment analyzed. Surprisingly, also the phos-

phate-deficiency-responsive miR399 increased more

than four-fold (figure 3). This indicates a slight phosphate

limitation in the -Cu plants, although the plants were

supplied with the same amount of P as in all other experi-

ments. The same was also observed in an independent

repetition of the experiment (indicated by arrows in fig-

ure 3). Interestingly, miR2111 that was recently found to

also respond to phosphate starvation [14] was also accu-

mulating under -Cu, confirming the noticeable phosphate

deficiency already evidenced by the increase of miR399

(figure 3). Our results thus confirm that copper defi-

ciency up-regulates miRNAs that mainly target mRNAs

of enzymes that use copper as cofactors, namely the mul-

ticopper proteins laccases and copper zinc superoxide

dismutases (Cu/Zn SOD). As already discussed by Abdel-

Ghany and Pilon [11], this mechanism is thought to save

Cu for the most important copper-containing proteins

like plastocyanin that is a key protein of photosynthesis

[11].

Under iron deficiency only miR158 increased in the

phloem more than four-fold (ath-miR158a increased

from 231 to 1201), what was verified by sqRT-PCR in an

independent experiment (inset in figure 3). miR158 was

described as a non-conserved miRNA from Arabidopsis

that could, for example, not be detected in citrus [27].

miR158 is predicted to target a pentatricopeptide repeat-

containing protein of unknown function, a lipase, and

xyloglucan-fucosyl transferases [28]. None of these

potential targets has an obvious connection to iron

uptake or metabolism, and thus the increase of miR158

might be a secondary effect on plant development. More-

over, the accumulation of miR158 seemed to be phloem

sap-specific, as it could not be observed in leaf or root

samples (see data submitted to GEO, series accession

number GSE20263). Comparative high-throughput

sequencing of FN and -Fe samples would help to clarify if

an as yet unknown (and therefore not represented on the

chip) sRNA increases under -Fe, or if there is really no

small RNA accumulating during this deprivation

response.

Interestingly, however, miRNAs 397, 398, 399, 408 and

2111 notably decreased during iron starvation, showing

an opposite response to their increases observed under -

Cu (figure 3, figure 4). This response was verified for

miR398, 399, 408 and 2111 by sqRT-PCR from a set of

independently grown plants (inset in figure 3). Decreases

in the levels of -Cu-responsive miRNAs were visible not

only in the phloem, but also in leaves and comparably

weak in roots (figure 4). A decrease of these Cu starva-

tion-responsive miRNAs suggests that copper uptake is

stimulated by iron deficiency, as has already been

observed in Brassica and other plant species [29,30]. The

need for higher Cu uptake under -Fe could be explained

by the fact that many iron and copper-containing

enzymes can substitute for each other when one of the

two elements is present at suboptimal levels, e.g. SODs,

cytochrome oxidase, or diiron oxidase [31,32].

Interestingly, a phloem response opposite to the -Cu

reaction under -Fe was also observed for the -P-respon-

sive miRNAs 399 and 2111, which were more than two-

(399), respectively more than four-fold (2111) decreased.

The responses of miR399 and miR2111 were undetect-

able in leaves and roots (figure 4). This confirms the

Figure 4 Effect of copper and iron deficiency on known nutrient-

responsive miRNAs. Graphic summary of the opposite effect of cop-

per and iron deficiency on the known -Cu responsive miRNAs 397, 398, 

408 and the -P responsive miRNAs 399 and 2111. Phloem responses 

are compared to data obtained from leaves and roots. All data were 

obtained from miRNA array hybridization experiments. Differences be-

tween stress and control plants are shown as log2 values, only Arabi-

dopsis miRNAs are depicted. n.d.: not detectable.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5

-4

-3

-2

-1

0

1

2

3

4

5

lo
g

2
 s

ta
rv

a
ti

o
n

/F
N

roots

leaves

397a 398a 408399 2111

n.d.

n.d.

-5

-4

-3

-2

-1

0

1

2

3

4

5

n.d.

n.d.n.d.

n.d.

n.d. n.d.

n.d.

5

0

-5

5

0

-5

5

0

-5

log2 -Cu/FN
log2 -Fe/FN

phloem



Buhtz et al. BMC Plant Biology 2010, 10:64

http://www.biomedcentral.com/1471-2229/10/64

Page 7 of 13

observation from a previous study that demonstrated that

miR399 responds stronger to -P in phloem sap than in

leaves and roots [2]. The decrease of -P-responsive miR-

NAs in phloem sap suggests that Fe deficiency positively

influences P uptake and metabolism, what has already

been demonstrated in earlier studies e.g. [33,34]. The

other way around, high Fe can lead to lower P concentra-

tions in the plant [34]. If more Fe is taken up during

growth under -Cu in order to replace Fe in Cu-containing

enzymes, this could explain the observed increase of the -

P-responsive miRNAs in phloem sap under Cu depriva-

tion.

Taken together, the data from the -Cu and -Fe experi-

ments indicate a tight link between iron and phosphate

metabolism that has earlier been described. Moreover,

they suggest a close linkage between iron and copper

uptake, although it is known that in higher plants this link

is at least not as close as, for example, in yeast or Chlamy-

domonas, where iron uptake is directly Cu-dependent

[35,36]. It is interesting to note that the tissues/compart-

ments analyzed react differentially to specific stress trig-

gers, but the physiological meaning of this observation

needs to be evaluated in future experiments.

Specific miRNAs that accumulate in phloem sap under 

stress are also mobile in grafting experiments

Whether miRNAs are mobile between cells and over long

distance is still a matter of debate and evidence for trans-

port only exists for one single miRNA, miR399, that was

able to move from shoots to roots in a miR399 overex-

pressor as scion/WT as rootstock graft situation [2,3].

Because miR395 is comparably well studied, its targets

have been validated in Arabidopsis, and it strongly accu-

mulates under sulfur starvation, also within the phloem,

we chose this miRNA to examine whether additional

miRNAs are mobile in vivo. To this end, we performed

grafting experiments using hen1-1 mutants and WT

plants. hen1-1 mutants are inhibited in sRNA methyla-

tion and, as a consequence, the levels of several miRNAs

are markedly decreased [37]. RNA gel blot analysis of the

different miRNAs further analyzed in our study con-

firmed that hen1-1 mutants did not contain any of these

mature miRNAs at detectable levels (data not shown). In

all grafting experiments, hen1-1 mutants retained their

typical phenotype, mainly characterized by growth retar-

dation (figure 5A), what indicates that not all necessary

miRNAs can be translocated between the grafting part-

ners. After the establishment of graft unions, successful

grafts were transferred to media lacking a specific nutri-

ent for two weeks, and miRNA abundance was analyzed

in the different parts of the graft by RNA gel blots. We

first examined the abundance of the phosphate-depen-

dent miR399 in scions and rootstocks under phosphate

starvation as a positive control. As expected, miR399 was

not only clearly detectable in WT rootstocks and scions,

but also in hen1-1 rootstocks of independent grafts with

similar signal strength as in phosphate starved WT root-

stocks (figure 5A). Our data thus confirmed the translo-

catability of miR399 from shoots to roots in a graft

situation. We further chose miR171 as a negative control,

since this miRNA has neither been detected in phloem

sap by sRNA sequencing [1,14,38] nor by our sRNA array

experiments (additional file 1). As assumed, we detected

a signal in the WT rootstocks and scions, but not in the

mutant parts of the grafts, making a phloem transloca-

tion of miR171 highly unlikely (figure 5A).

When analyzing grafts grown under sulfate starvation,

we observed the translocation of miR395 from WT sci-

ons to hen1-1 rootstocks in different independently

grafted plants. We also observed signals for miR395 in

WT scions, but not in WT rootstocks (figure 5A). How-

ever, miR395 has been previously shown to be expressed

in roots under sulfur starvation [39], and we could also

detect signals in roots of intact WT plants (figure 5B).

This result could be reproduced in several independent

experiments. This could indicate that miR395 transloca-

tion from shoot to root is required for root miR395

expression in the WT, but further experiments will be

needed to substantiate this assumption. The earlier stud-

ies of miR399 translocation do not allow any conclusions

about the (non) existence of such a crosstalk, since a com-

parable graft situation of a stressed WT rootstock with an

"unstressed" (not miRNA-producing) scion cannot be

achieved when grafting overexpressors with WT plants

[2,3].

For both, miR399 and miR395, we only found signals in

hen1-1 rootstocks and never in hen1-1 scions, indicating

that mobility was restricted to the direction from shoot-

to-root in Arabidopsis seedlings (figure 5A). The reason

for this unidirectional translocation might lie in the early

developmental stage analyzed, where roots constitute the

only real sink organ that needs nutrient supply from the

phloem translocation stream. However, the results do not

rule out that mobile miRNAs can reach other organs than

roots at different developmental stages with different

source-sink relationships. Our experiments also did not

allow concluding whether mature miR395 or its PT is the

translocated species. In the case of miR399, however, it

has been previously shown that exclusively mature

miRNA and not PTs is transported through graft unions

[2]. In addition, no miRNA precursors were detectable in

B. napus phloem sap [1], suggesting that mature miRNAs

are the translocated molecules.

The graft translocation of miR395 coincides with a down-

regulation of the target APS4

To examine whether the translocation of miR395 from

WT shoots into hen1-1 roots might have physiological
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functions, we analyzed the levels of three experimentally

validated mRNA targets of miR395, the ATP sulfurylases

APS1 and APS4 and the low affinity sulfate transporter

AtSULTR2;1 [8,39]. As a general observation, the tran-

script levels of all three targets seemed to be higher in

shoots of hen1-1 as compared to WT plants (additional

file 4). In addition, the experiments showed that only the

level of ATP sulfurylase APS4 mRNA, but not of APS1 or

the low affinity sulfate transporter SULTR2;1, was notably

decreased in grafted hen1-1 rootstocks as compared to

non-grafted -S starved roots of hen1-1, while housekeep-

ing genes remained constant (figure 6A). A similar reduc-

tion of levels of APS4, but not the other two targets, could

be observed in B. napus WT roots grown under sulfur

starvation (figure 6B). These results indicate that APS4

mRNA might be a target of miR395 in roots, and interest-

ingly, this mRNA has previously been shown to exhibit

root-specific expression [40]. The observation that the

other miR395 target SULTR2;1 was up- and not down-

regulated under -S conditions (figure 6A and 6B, [39])

was earlier explained by the spatially differential expres-

sion of SULTR2;1 and miR395 in xylem parenchyma and

companion cells, respectively [39]. It was suggested that

one of the major functions of miR395 was the down-reg-

ulation of SULTR2;1 expression in the phloem to restrict

SULTR2;1 expression exclusively to the xylem [39].

Is the transport of specific miRNAs of biological relevance 

in intact plants?

Most miRNAs are believed to act in a locally restricted

manner, in contrast to the mobile class of siRNAs [41].

Their limited mobility is suggested by the closely corre-

lating patterns of miRNA transcription and activity [42],

Figure 6 Analysis of the targets of miR395 in roots. Analysis of the 

mRNA levels of the miR395 targets SULTR2;1, APS1 and APS4 by semi-

quantitative RT-PCR. A: PCR results from root tissue of hydroponically 

grown Arabidopsis hen1-1 mutants and WT/hen1-1 rootstocks (35 cy-

cles, UBC10, At5g53300 served as a control). B: Changes of target mR-

NAs in B. napus roots under -S compared to full nutrition (FN) (35 cycles, 

UBP1B, At1g17370 served as a control).
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the spatial restriction of miRNA gene expression [43,44],

and the limited area of mature miRNA localization [45].

However, phloem mobility of miR399 across graft unions

has been demonstrated in earlier studies by grafting

miR399 overexpressor with WT plants [2,3]. In this study,

we observed the transport of miR395 and 399 from WT

scions to hen1-1 mutant rootstocks. Moreover, one of the

miR395 targets, APS4, was down-regulated in grafted

mutant roots. This indicates that miR395, like miR399, is

transported from shoot to root to down-regulate its tar-

get(s). However, the question whether such a miRNA

transport is physiologically relevant remains, since mem-

bers of the miR395 and 399 families can indeed be syn-

thesized in roots of wild type plants under the respective

stress [7,39] (figure 5B). Interestingly, expression of miR-

NAs 395 and 399 was shown to be highly overlapping,

being predominant in vascular tissue, especially in root

phloem companion cells (CC) [7,39].

Different scenarios could explain the observation that

specific miRNAs are present in phloem sap and mobile in

grafting experiments: 1) None of the phloem miRNAs is

specifically targeted for translocation, but instead a por-

tion of all miRNAs highly expressed in CC leaks into

sieve elements. No miRNA would represent a signaling

molecule. 2) A portion of all miRNAs highly expressed in

CC reaches phloem sap, but some of these miRNAs can

act as long-distance regulators under certain physiologi-

cal conditions. 3) Selected miRNAs synthesized in CC are

specifically targeted for transport and only these are

released into the phloem stream. In this case, all miRNAs

present in the phloem would be translocatable informa-

tion transmitters.

No matter how miRNAs reach phloem sap, they would

then be swept away from source to sink organs (in our

system from shoots to roots). The translocated miRNAs

would probably exit the translocation stream into sink

CC in an unspecific manner, as rather unselective

unloading of macromolecules into sink tissues has been

suggested [46]. Here, they would down-regulate their tar-

get mRNAs, no matter whether they are intended to

function as signaling molecules or not.

If certain miRNAs should indeed be translocated to

transmit information, one possible rationale could be that

roots are unable to synthesize sufficient amounts of these

miRNAs under stress, or that they need a trigger from the

shoot to initialize miRNA synthesis. This might be sug-

gested by the absence of mature miR395 in WT root-

stocks of grafted plants that was, however, well detectable

in roots of complete WT plants (figure 5). Another expla-

nation might be that some organs experience nutrient

deprivation earlier than others, and that the translocated

miRNAs serve to coordinate physiological responses with

plant parts that are not yet stressed and therefore do not

yet synthesize stress-responsive miRNAs themselves.

This would resemble the situation in grafted plants,

where only scions of the graft produced the stress-

induced miRNAs (stressed WT in this study, overexpres-

sors in [2]), while rootstocks did not (hen1-1 mutants in

this study, non-stressed WT in [2]).

Conclusions
This study demonstrates that the phloem sap sRNA com-

plement is distinct from that of stems, leaves and roots,

and that a set of phloem-enriched sRNAs exists. It also

shows that the abundance of several phloem sap sRNAs

changes under nutrient deficiency conditions. While the

results confirmed that the known miRNAs reacting to -S

or -Cu, respectively, also respond in phloem sap, they

provided no clear indications that the response to -Fe

involves miRNA regulation, despite of influencing copper

uptake/metabolism.

Grafting studies between WT plants and hen1-1

mutants demonstrated that two phloem stress-reactive

miRNAs, 395 and 399, can indeed be transported from

shoot to root in Arabidopsis seedlings, and that this

translocation leads to a reduction of the amount of their

target mRNAs in roots. The grafting experiments also

revealed that not all miRNAs are phloem translocatable,

since miR171 did not move.

Therefore, this study demonstrates that identifying

phloem-enriched macromolecules and analyzing their

translocation in grafting studies is a very useful approach

to distinguish between phloem translocatable and non-

mobile molecules. It is tempting to classify miR395 and

399 as systemic signaling molecules, because they not

only move from source to sink, but also induce a measur-

able effect on their target mRNAs in sink tissue in graft-

ing experiments. However, we conclude that profiling

phloem components combined to grafting studies is still

not sufficient to doubtless decide whether a phloem-

translocatable macromolecule is really a long-distance

signal or not.

Methods
Plant material and growth conditions

For hydroponic growth, Brassica napus (cv. Drakkar,

Serasem GIE, la Chapelle d'Armentiers, France) seeds

were germinated on wet filter paper for 1 week. Germ

buds were transferred to plastic boxes containing nutri-

ent medium for 10 weeks. Nutrient medium: 0.6 mM

NH4NO3, 1 mM Ca(NO3)2*4H2O, 0.04 mM Fe-EDTA, 0.5

mM K2HPO4, 0.5 mM K2SO4, 0.4 mM Mg(NO3)2*6H2O.

Micro nutrients added: 0.8 μM ZnSO4*7H2O, 9 μM

MnCl2*4H2O, 0.1 μM Na2MoO4*2H2O, 23 μM H3BO3,

0.3 μM CuSO4*5H2O. The pH was adjusted to 4.7 with

37% HCl. Nutrient solutions were changed after 4 weeks,

and then renewed once a week. After 5 to 6 weeks, media
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were constantly aerated by an aquarium air pump (Sera,

Heinsberg). Sulfur and copper starvation were applied for

two, and iron starvation for three weeks before flowering

started by changing to medium without sulfur, copper, or

iron, respectively. Here, 0.5 mM K2SO4 were substituted

by 0.5 mM K2HPO4 and instead of ZnSO4*7H2O and

CuSO4*5H2O as micro nutrients, 1 μM ZnCl2 and 1 μM

CuCl2*2H2O were added for low sulfate experiments. For

copper deprivation, the 0.3 μM CuSO4*5H2O were omit-

ted from the full nutrient solution. For low iron experi-

ments Fe-EDTA was omitted from the medium.

For the growth of Arabidopsis thaliana WT (ecotype

Ler-0) and hen1-1 [47] mutant plant seeds (NASC code

N6583) were surface-sterilized in 70% (v/v) ethanol for 3

min and further incubated in 20% sodium hypochlorite

solution containing 0.1% (v/v) surfactant (Triton X-100)

for 10 min. After exhaustive washing with sterile water,

seeds were placed on plates on half-concentrated MS

medium [48] supplemented with 1% (w/v) sucrose and

solidified with 0.7% (w/v) agar. After keeping them in the

dark for three days at 4°C, seeds were germinated by

transferring the plates in a growth chamber under con-

trolled long day conditions (16 h day, 8 h night) at 25°C

for 13 days. For hydroponic cultivation these plantlets

were transferred into plastic boxes containing the nutri-

ent solution previously described in [49] with minor

modifications in the content of magnesium sulfate, boric

acid and potassium dihydrogen phosphate (4 mM

MgSO4*7H2O and 0.1 mM H3BO3, 2.5 mM KH2PO4).

The hydroponic growth was carried out under short day

conditions (8 h day at 20°C, 16 h night at 16°C). For sulfur

deprivation experiments starvation was applied directly

after the transfer of plantlets to hydroponic culture with

nutrient solution omitting all sulfate-containing compo-

nents for two weeks. Instead of MgSO4*7H2O 0.8 mM

MgCl2*6H2O were added to the medium. Phosphate star-

vation was performed analogously in nutrient solution

that contained potassium nitrate instead of potassium

dihydrogen phosphate.

Micrografting experiments

For micrografting experiments four-day-old Arabidopsis

thaliana wild type and hen1-1 mutant seedlings were cut

transversely using a sterile small razor blade part and

combined within silicon tubing (0.3 mm internal diame-

ter) as previously described [50]. The grafts were grown

on 1.5% (w/v) agar plates with half-strength MS medium

for nine days under controlled short day conditions. Suc-

cessfully grafted plantlets were subsequently grown

hydroponically for two weeks before plant material from

stock and scion was harvested. To avoid contaminations,

the area close to the graft union was omitted from sam-

pling and grafts were microscopically inspected for

adventitious root formation, what led to exclusion from

analysis.

Sampling and RNA isolation

Phloem sampling from Brassica napus plants was per-

formed as described earlier [1,12] from 4 - 8 small punc-

tures into the inflorescence stems. After discarding the

first droplets to avoid contaminations, 500 μl to 1.5 ml

phloem sap from three independent sets of plants were

obtained, yielding about 10-50 μg of total RNA. Total

RNA from phloem sap was isolated by Trizol LS reagent

(Invitrogen) according to manufacturer's instructions.

RNA from 100 mg frozen material of stem, leaf and

root tissue of Brassica napus and Arabidopsis thaliana,

respectively, was extracted using the normal Trizol

reagent. Total RNA from all samples was dissolved in 25

μl DEPC-treated water and RNA concentrations were

determined photometrically with a Biophotometer

(Eppendorf ).

Microarray hybridization

Microarray assays were performed by LC Sciences (Hous-

ton, Texas). The assays started from 2 to 5 μg total RNA

samples that were size fractionated using a YM-100

Microcon centrifugal filter (Millipore) and the sRNAs (<

300 nt) isolated were 3'-extended with a poly(A) tail using

poly(A) polymerase. An oligonucleotide tag was then

ligated to the poly(A) tail for later fluorescent dye stain-

ing. Two different tags were used for the two RNA sam-

ples in dual-sample experiments. Hybridization was

performed overnight on μParaflo microfluidic chips

using a micro-circulation pump (Atactic Technologies).

On the commercial microfluidic chip, each detection

probe consisted of a chemically modified nucleotide cod-

ing segment complementary to a known target plant

miRNA (from miRBase, http://microrna.sanger.ac.uk/

sequences/, releases 10.0 (-S), 10.1(-Fe) or 11.0 (-Cu)).

The known plant miRNAs were mainly from Arabidopsis

thaliana, Oryza sativa, Populus trichocarpa and Phy-

scomitrella patens. Among the total number of unique

miRNA sequences (release 10.0, 623 miRNAs, 10.1, 653

miRNAs and 11.0, 714 miRNAs) all arrays contained a

constant number of 154 miRNAs from Arabidopsis thali-

ana. Additionally to these known miRNAs, the custom-

ized array contained a set of 85 sRNAs of unknown

function that were derived from an earlier high-through-

put sequencing experiment of phloem sap [1] (sequences

and accession numbers in additional file 5). Coding seg-

ments were coupled to a spacer segment of polyethylene

glycol to place the coding segment away from the sub-

strate. The detection probes were prepared by in situ syn-

thesis using PGR (photogenerated reagent) chemistry.

The hybridization melting temperatures were balanced

by chemical modifications of the detection probes. For

http://microrna.sanger.ac.uk/sequences/
http://microrna.sanger.ac.uk/sequences/
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hybridization 100 μL 6 × SSPE buffer (0.90 M NaCl, 60

mM Na2HPO4, 6 mM EDTA, pH 6.8) containing 25% for-

mamide at 34°C were used. After hybridization, signals

were detected after fluorescence labeling using tag-spe-

cific Cy3 and Cy5 dyes. Hybridization images were col-

lected using a laser scanner (GenePix 4000B, Molecular

Devices) and digitized using Array-Pro image analysis

software (Media Cybernetics). Data were analyzed by

first subtracting the background and then normalizing

the signals using a LOWESS (locally-weighted regres-

sion) filter.

To allow inter-array comparisons of FN samples, signal

intensities were normalized to the median signal intensity

of each sample and p-values of the t-test were calculated

for the three replicates of each organ (phloem, leaves, and

roots). Signals with p-values lower than 0.05 were

regarded as being differential.

For the stress experiments (two color hybridizations),

the ratio of the two sets of detected signals (log2 trans-

formed, balanced) and p-values of the t-test were calcu-

lated and signals with p-values lower than 0.01 were

regarded as being differential. Since only one array per

stress was hybridized, we further restricted the data eval-

uation to sRNAs that showed a signal intensity of >100 in

the FN or the stressed sample, an accumulation upon

stress, and a more than four-fold difference (log2s of >2

or <-2) between stress and FN. All microarray data have

been submitted to GEO, series accession No. GSE20263.

Semi-quantitative RT-PCR

For semi-quantitative RT-PCR (sqRT-PCR), Trizol iso-

lated RNA was cleaned with the RNeasy Plant Mini Kit

(Qiagen) and a DNase I digest following the manufactur-

ers instructions was performed. For nutrient stress-

responsive marker gene and miRNA target transcript

analysis, 500 - 1000 ng RNA were used for cDNA synthe-

sis in the presence of 2.5 μM oligo(dT)20 primer (Qiagen),

0.5 mM dNTPs, 5 mM DTT (Invitrogen), 40 U RNase-

OUT RNase Inhibitor (Invitrogen) and 200 U M-MLV

reverse trancriptase (Promega) in 1× M-MLV reverse

transcriptase reaction buffer (Promega) in a final volume

of 20 μl. The reverse transcription reactions were carried

out in a Primus Thermocycler (Peqlab) at 50°C for 45 min

followed by 70°C for 15 min to denature the reverse tran-

scriptase enzyme. 2 μl of the reverse transcription reac-

tion were used for each PCR amplification with gene

specific oligonucleotide primer pairs (additional file 6).

The reaction mixtures containing 1.5 mM MgCl2 (Invit-

rogen), 0.2 mM dNTPs (Promega), 0.2 μM of both for-

ward and backward primer and 2 U of Paq5000 DNA

Polymerase in a 50 μl volume of 1× Paq5000 DNA poly-

merase buffer (Agilent Technologies) were divided into

three equal volumes in reaction tubes and semi-quantita-

tive RT-PCR was performed with different cycle numbers

under the following conditions: 30 s at 94°C, 30 s at 55°C,

1 min at 72°C and a 10 min end-elongation step at 72°C.

The PCR reaction was stopped after a certain number of

cycles and PCR products were separated electrophoreti-

cally in 2% (w/v) agarose gels for size estimation and

semi-quantitative analysis.

PCR of mature miRNAs was performed by following

the method of Shi and Chiang [51]. Total RNA (1 μg) was

first polyadenylated by a poly(A) polymerase [E-PAP,

Poly(A) Tailing Kit (Ambion)] at 37°C for 1 h in a 50-μL

reaction mixture containing 1× E-PAP buffer, 2.5 mM

MnCl2, 1 mM ATP and 1 U E-PAP. Samples were purified

from E-PAP by a further RNA extraction using TriFast FL

reagent (Peqlab) and resolved in 50 μl DEPC-treated

water. 10 μl of the polyadenylated RNA samples were

used as a template for reverse transcription performed as

described above using 0.5 μg poly(T) adapter instead of

the oligo(dT)20 primer. miRNAs were subsequently

amplified using 1 μl of the reverse transcribed sample,

miRNA-specific forward and poly(T) adapter-specific

reverse primers (additional file 6) under the same PCR-

cycler conditions used in sqRT-PCR described above.

RNA gel blot analysis

Gel blot analyzes were performed on 15% denaturing

urea gels as described earlier [1,52].

Additional material

Additional file 1 Comparison of miRNA abundance in phloem sap vs. 

inflorescence stem. Comparison of sRNA microarray analysis of stem tis-

sue (green) and phloem sap (blue) of Brassica napus. Only known miRNAs 

present on the commercial array, only one member per family are depicted. 

The upper graphs show the signal intensities on the array while the lower 

depict the log2 differences between phloem and inflorescence stem. Insets 

show RNA gel blot analyses of selected miRNAs from an independent 

experiment. Numbers indicate the number of sequences that were previ-

ously obtained by phloem sap sequencing [1], asterisks (*) indicate 

sequences from miRNA stars.

Additional file 2 Comparison of sRNA abundances in phloem, leaves 

and roots. sRNA microarray comparison of phloem (blue), leaf (green) and 

root (red) tissue of Brassica napus plants from biologically independent rep-

lications (n = 3). To allow inter-array comparison, signal intensities were nor-

malized to the median signal of each sample. Only known miRNAs present 

on the commercial array and only one member per family are depicted.

Additional file 3 Transcript analysis of known nutrient stress-specific 

genes. Transcript analysis of known nutrient stress-specific genes in leaf 

and root tissue of hydroponically grown Brassica napus plants by semi-

quantitative RT-PCR after 25, 30 and 35 cycles under -S, -Cu and -Fe com-

pared to full nutrition (FN).

Additional file 4 Accumulation of three miR395 targets in WT and 

hen1-1 shoots grown under full nutrition. Levels of the targets SULTR2;1, 

APS1 and APS4 in shoots as detected by sqRT-PCR (35 cycles, UBC10, 

At5g53300 served as a control). FN: full nutrition.

Additional file 5 Sequences of the unknown phloem sap sRNAs repre-

sented on the microarrays. Phloem sap small RNA sequences of Brassica 

napus (Bn_PsRNAs) that were contained on the sRNA microarray 

(sequences were derived from high-throughput sequencing of B. napus 

phloem sap published in [1]).

http://www.biomedcentral.com/content/supplementary/1471-2229-10-64-S1.PPT
http://www.biomedcentral.com/content/supplementary/1471-2229-10-64-S2.PPT
http://www.biomedcentral.com/content/supplementary/1471-2229-10-64-S3.PPT
http://www.biomedcentral.com/content/supplementary/1471-2229-10-64-S4.PPT
http://www.biomedcentral.com/content/supplementary/1471-2229-10-64-S5.XLS
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