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Abstract. Modern botnets rely on domain-generation algorithms
(DGAs) to build resilient command-and-control infrastructures. Given
the prevalence of this mechanism, recent work has focused on the anal-
ysis of DNS traffic to recognize botnets based on their DGAs. While
previous work has concentrated on detection, we focus on supporting
intelligence operations. We propose Phoenix, a mechanism that, in ad-
dition to telling DGA- and non-DGA-generated domains apart using a
combination of string and IP-based features, characterizes the DGAs
behind them, and, most importantly, finds groups of DGA-generated
domains that are representative of the respective botnets. As a result,
Phoenix can associate previously unknown DGA-generated domains to
these groups, and produce novel knowledge about the evolving behavior
of each tracked botnet. We evaluated Phoenix on 1,153,516 domains, in-
cluding DGA-generated domains from modern, well-known botnets: with-
out supervision, it correctly distinguished DGA- vs. non-DGA-generated
domains in 94.8 percent of the cases, characterized families of domains
that belonged to distinct DGAs, and helped researchers “on the field”
in gathering intelligence on suspicious domains to identify the correct
botnet.

1 Introduction

The malware-as-a-service trend is resulting in an increasing number of small,
distinct botnets, which are predicted to replace larger ones [11]. Because of their
size, they can fly under the radar of malware analysts. Keeping track of such a
diverse population and traffic patterns is difficult. The typical objective of botnet
intelligence is to find the addresses or domain names of the command-and-control
(C&C) server of a botnet, with the goal of sinkholing it.

Albeit some botnets use P2P protocols to remove single points of failure,
domain-generation algorithms (DGAs) are still in wide use. As detailed in §2 and
7, researchers have proposed various approaches for finding and characterizing
individual DGA-generated domains. However, such approaches require visibility
of the original DNS queries, complete with source IP addresses. This requires
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low-level DNS sensors to be deployed between the infected machines and their
DNS servers. This entails privacy issues and restricts operation of such schemes
to network administrators of large networks. In addition, the accuracy of client-
IP-based approaches is affected by IP-sharing mechanisms (e.g., NAT).

A higher-level observation point is beneficial both in terms of ease of de-
ployment and of scope. We propose Phoenix, which requires only publicly
available DNS traffic and an initial feed of malicious domains (not necessarily
DGA-generated). With this information, we (1) find DGA-generated domains,
(2) characterize the generation algorithms, (3) isolate logical groups of domains
that represent the respective botnets, and (4) produce novel knowledge about
the evolving behavior of each tracked botnet. Phoenix requires no prior knowl-
edge of the DGAs nor reverse engineering of malware samples. Being based on
recursive-level DNS traffic, our approach guarantees repeatability [16] and pre-
serves the privacy of the infected computers, by not requiring any data about
them.

In brief, Phoenix first models pronounceable domains, likely to be generated
by a human user, and considers DGA-generated those which violate the models
(thus, not making use or learning the characteristics of specific DGAs). In partic-
ular, we apply such filter to well-known blacklists of malicious domains, finding
those that are likely to be DGA-generated as well as malicious. Our technique
is unsupervised, and allows to set the amount of acceptable error a priori (see
§ 4.1). Phoenix then groups these domains according to the domain-to-IP re-
lations. This step also filters out DGA-looking domains that are benign (e.g., a
benign acronym which happens to be unpronounceable). Phoenix then derives
a generic set of fingerprints useful to label new malicious DGA domains, track
botnets’ evolution, or gather insights on their activity (e.g., C&C migrations).

Notably, on Feb 9th, 2013we obtained an undisclosed list of DGA-generated do-
mains for which no knowledge of the respective botnet was available before.
Phoenix correctly labeled these unknown domains as belonging to Conficker.

2 Background and Research Gaps

While botnets with a fully P2P topology are on the rise, DNS is still abused
by cybercriminals to build centralized, yet reliable botnet infrastructures [2, 3,
8, 14, 15, 21]. An effective technique used to improve resiliency to take downs
and tracking is domain flux. In such botnets, the bots and the C&C servers
implement the same algorithm to generate a large and time-dependent list of
domain names based on pseudo-unpredictable seeds. Only one of these DGA-
generated domains is actually registered and pointing to the true IP address of
the C&C. The bots will then generate and query all these domains, according
to the DGA, until a DNS server answers with a non-NXDOMAIN reply, that
is the IP address of the respective (existing) domain. Only the DGA authors
know exactly when the upcoming rendezvous domain has to be registered and
activated, and this avoids the shortcomings that in past allowed researchers to
take over botnets [19].
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DGA-basedbotnets are still prevalent (see, e.g.,https://blog.damballa.com/
archives/1906, or http://threatpost.com/pushdo-malware-resurfaces-

with-dga-capabilities). Finding groups of related DGA-generated domains
provides valuable insights to recognize bots that belong to the same botnet, or to
a set of botnets that share a similar DGA. With this knowledge, analysts can fol-
low their evolution and their (changing) C&Cs over time, where these are hosted,
and the number of machines involved. The task of finding families of related DGA-
generated domains, however, is tedious and labor-intensive, although previous re-
search has devised mechanisms to partially automate it. Reverse-engineering a
DGA still requires effort and, in most of the cases, a malware sample. In this work,
we show how instances of domains names generated from the same DGA can be
generalized to “fingerprint” the generation algorithm itself.

A side effect of DGA mechanisms is that each infected machine performs a
large amount of DNS queries that yield NXDOMAIN replies. Legitimate hosts
have no reasons to generate high volumes of such queries. This observation has
been leveraged by Antonakakis et al. [3] to detect DGA-based bots. Unfortu-
nately, as also noticed by Perdisci et al. [15], this criterion requires to know the
IP addresses of the querying hosts. An alternative technique is proposed in [20],
who grouped together DNS queries originated by the same client to define the
correlation between distinct requests that target the same domains.

These approaches are very interesting to detect infected clients over a large
network over which the analyst has full control. However, they impose undesir-
able requirements in terms of input data and deployment to create a large-scale
observatory and intelligence service. First, relying on the IP addresses of query-
ing hosts is error prone, because of IP-(re)assignment and masquerading policies
employed by ASs. More importantly, access to this information is limited in
scope, because it is available only from DNS servers placed below the recursive
DNS level (e.g., host DNSs). This can be problematic for researchers, but also
for practitioners who want to operate these systems beyond the scope of a sin-
gle network. Finally, of particular interest for researchers, IP information raises
privacy concerns, leading to non-repeatable experiments [16], as datasets that
include these details cannot be made publicly available.

Modeling and characterizing a DGA from the sole domain name is indeed
hard, in particular when observing one domain at a time, because one sample
is not representative of the whole random generation process. Grouping domain
samples to extract the characteristics of the DGA is also challenging: How to
group domains together, or avoid spurious samples that would bias the results?

3 System Overview

Phoenix is divided into three modules, as shown in Fig. 1. The core Discovery
module identifies and models DGA-generated domains. The Detection module
receives one or more domain names with the corresponding DNS traffic, and
uses the models built by the Discovery module to tell whether such domain
names appear to be automatically generated. If that is the case, this module

https://blog.damballa.com/archives/1906
https://blog.damballa.com/archives/1906
http://threatpost.com/pushdo-malware-resurfaces-with-dga-capabilities
http://threatpost.com/pushdo-malware-resurfaces-with-dga-capabilities
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Fig. 1. The Discovery module processes the domain names from a domain reputation
system and identifies DGA-generated domains. The Detection module analyzes a
stream of DNS traffic and recognizes the (previously unknown) domains that resemble
a known DGA. The Intelligence and Insights module provides the analyst with
information useful, for instance, to track a botnet.

labels those domains with an indication of the DGA that is most likely behind
the domain generation process. Last, the Intelligence and Insights module
aggregates, correlates and monitors the results of the previous modules to extract
meaningful information from the observed data (e.g., whether an unknown DGA-
based botnet is migrating across ASs).

3.1 Discovery Module

This module discovers domains that exhibit DGA characteristics. It receives two
input streams. One is a stream of domain names that are generically known to
be malicious. Any blacklist or domain reputation system (e.g., Exposure [6]) can
be used as a source. The second input is a stream of DNS queries and replies
related to such domains and collected above the recursive resolvers, for instance
by a passive and privacy-preserving DNS monitor (e.g., SIE). The blacklists that
we rely on are generated from privacy-preserving DNS traffic too.

Step 1 (Filtering). We extract a set of linguistic features from the domain
names. The goal is to recognize the ones that appear to be the results of auto-
matic generation. For ease of explanation and implementation, Phoenix consid-
ers the linguistic features based on the English language, as discussed in §6.

Differently from previous work, we devised our features to work well on single
domains. Antonakakis et al. [3], Yadav et al. [21, 22], instead, relied on features
extracted from groups of domains, which creates the additional problem of how to
create such groups. The authors circumvented this problem by choosing random
groups of domains. However, there is no rigorous way to verify the validity of
such assumptions. Therefore, as part of our contributions, we made an effort to
design features that require no groupings of domains. We make no assumptions
about the type of DGA that have generated the domains, although we do assume
that at least one exists.
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The output is a set of domains, possibly generated by different DGAs. As op-
posed to requiring DGA-generated domains for training, we use a semi-supervised
technique which requires limited knowledge on benign, non-DGA-generated
domains. The rationale is that obtaining a dataset of these domains is straight-
forward and not lto a specific DGA. At runtime, in case Step 1 lets some benign,
DGA-looking domains through (e.g., <ZIP>.com), Step 2 will remove them.

Step 2 (Clustering). We extract IP-based features from the DNS traffic of
the domains that have passed Step 1. We use these features to cluster together
the domains that have resolved to similar sets of IP addresses—possibly, the
C&C servers. For example, if 5ybdiv.cn and hy093.cn resolved to the same
pool of IPs, we cluster them together. Here, we assume that domains generated
by different DGAs are used by distinct botnets/variants, or at least by different
botmasters, who have crafted a DGA for their C&C strategy. Therefore, this
partitioning to some extent mirrors the different groups of botnets.

Step 3 (Fingerprinting). We extract other features from the clusters to create
models that define the fingerprints of the respective DGAs. The Detection mod-
ule uses these fingerprints as a lookup index to identify the DGA to which domains
never seen before belong. For instance, epu.org and xmsyt.cnwill match two dis-
tinct fingerprints. The notion of similarity is by nomeans based solely on linguistic
similarity: We do consider other IP- and DNS-based features. The output is a set
of clusters with their fingerprints.

3.2 Detection Module

This module receives in input a (previously unseen) domain name d, which can
be either malicious or benign, and uses once again the Filtering step to ver-
ify whether it is automatically generated. Domain names that pass this filter
undergo further checks, which may eventually flag them as not belonging to
any cluster (i.e., not matching any of the fingerprints). Therefore, in this step,
flagging as “DGA generated” a (benign) domain that does not belong to some
DGA is not a major error. It is instead more important not to discard suspicious
domains, in order to maximize the recall. Therefore, for this module only, we
configure the Filtering step with looser parameters (as described in §4.1), so
that we do not discard any domains that may be automatically generated. Then,
this module leverages the cluster fingerprints to characterize the DGA, if any,
that lies behind the previously unseen domain, d.

3.3 Intelligence and Insights Module

The outcome of previous modules builds novel knowledge, by creating clusters
of related domains, by fingerprinting their underlying DGA, and by associating
new domains to such clusters. With this knowledge, the addresses of the C&C
servers and lists of DGA-generated domains can be easily grouped together and
associated. With this information, analysts can track separately the evolution
of the IPs that the groups point to, and use this information to take action.
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For example, recognizing when a C&C is migrated to a new AS is easier when
the set of IPs and domains is small and the characteristics of the DGA are known
and uniform.

Generally speaking, these analyses can lead to high-level intelligence observa-
tions and conjectures, useful for the mitigation of DGA-related threats, for which
we provided two use cases in §5.4. In this, we advance the state of the art by pro-
viding a tool that goes beyond blacklists and domain reputation systems.

4 System Details

We implemented Phoenix in Python using the NumPy package, for statistical
functions, and the SciPy [9] package, for handling sparse matrices. The deploy-
ment is as easy as running a script for each module (§5).

Notation (Domain Names and Suffixes). For the purpose of this work, a domain
name is a sequence of labels separated by dots (e.g., www.example.com) contain-
ing a chosen prefix (e.g., example) and a public suffix (e.g., .com, .co.uk). The
public suffix, or top-level domain (TLD), can contain more than one label (e.g.,
.co.uk). The term effective TLD (eTDL) is thus more correct. A domain name
can be organized hierarchically into more subdomains (e.g., www.example.com,
ssh.example.com). We only consider the first level of a chosen prefix: A DGA
that works on further levels makes little sense, as the first level would still be the
single point of failure. Unless clear from the context, we use the terms domain,
chosen prefix, or prefix as synonyms.

4.1 Step 1: Filtering

We assume that domains generated by DGAs exhibit different linguistic features
than domains crafted by humans with benign intentions. Except for the corner
cases discussed in §6, this assumption is reasonable because benign domains have
the primary purpose of being easily remembered and used by human beings, thus
are usually chosen to meet this goal. On the other hand, DGA-generated domains
exhibit a certain degree of linguistic randomness, as numerous samples of the
same randomized algorithm exist.

Linguistic Features. Given a domain d and its prefix p = pd, we extract two
classes of linguistic features to build a 4-element feature vector for each d. Pilot
experiments showed that using multiple features avoids mistakes due to, for
instance, artificial brand names.

LF1: Meaningful Characters Ratio. Models the ratio of characters of the string
p that comprise a meaningful word. Low values indicate automatic algorithms.
Specifically, we split p into nmeaningful subwords wi of at least 3 symbols: |wi| ≥
3, leaving out as few symbols as possible: R(d) = R(p) = max(

∑n
i=1 |wi|)/|p|. If
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p = facebook, R(p) = (|face| + |book|)/8 = 1, the prefix is fully composed of
meaningful words, whereas p = pub03str, R(p) = (|pub|)/8 = 0.375.

LF2: n-gramNormality Score.This class of features captures the pronounceability
of a domain name. This is a well-studied problem in linguistics, and can be reduced
to quantifying the extent to which a string adheres to the phonotactics of the (En-
glish) language. The more permissible the combinations of phonemes [4, 18], the
more pronounceable a word is. Domains with a low number of such combinations
are likely DGA-generated. We calculate this class of features by extracting the n-
grams of p, which are the substrings of p of length n ∈ {1, 2, 3}, and counting their
occurrences in the (English) language dictionary1. If needed, the dictionary can
be extended to include known benign, yet DGA-looking names. The features are
thus parametric to n: Sn(d) = Sn(p) := (

∑
n-gram t in p count(t))/(|p| − n + 1),

where count(t) are the occurrences of the n-gram t in the dictionary. For example,
S2(facebook) = fa109 + ac343 + ce438 + eb29 + bo118 + oo114 + ok45 = 170.8
seems a non-automatically generated, whereas S2(aawrqv) = aa4+ aw45+ wr17+
rq0 + qv0 = 13.2 seems automatically generated.

Statistical Linguistic Filter. Phoenix uses LF1-2 to build a feature vector
f(d) = [R(d), S1,2,3(d)]

T . It extracts these features from a dataset of benign,
non-DGA-generated domains (Alexa top 100,000) and calculates their mean μ =
[
R,S1, S2, S3

]T
and covariance (matrix) C, which respectively represent the

statistical average values of the features and their correlation. Strictly speaking,
the mean defines the centroid of the dataset in the features’ space, whereas
the covariance identifies the shape of the hyperellipsoid around the centroid
containing all the samples. Our filter constructs a confidence interval, with the
shape of such hyperellipsoid, that allows us to separate non-DGA- from DGA-
generated domains with a measurable, statistical error that we can set a priori.

Distance Measurement. To tell whether a previously unseen domain d′ resem-
bles the typical features of a non-DGA-generated domain, the filter measures
the distance between the feature vector f(d′) = x and the centroid. To this
end, we leverage the Mahalanobis distance: dMah(x) =

√
(x− μ)TC−1(x− μ).

This distance has the property of (1) taking into account the correlation between
features—which is significant, because of how the features are defined, and (2)
operating with scale-invariant datasets.

Distance Threshold. A previously unseen domain d′ is considered as DGA-
generated when its feature vector identifies a point that is too distant from the
centroid: dMah(x) > t. To take a proper decision we define the threshold t as
the p-percentile of the distribution of dMah(x), where (1 − p) is the fraction
of non-DGA-generated domains that we allow to confuse as DGA-generated
domains. In this way, we can set the error a priori. As mentioned in §3.2, the
Discovery module employs a strict threshold, t = Λ, whereas the Detection
module requires a looser threshold, t = λ, where λ < Λ.

Threshold Estimation. To estimate proper values for λ and Λ, we compute
dMah(x) for x = f(d), ∀d ∈ DHGD, whose distribution is plotted in Fig. 2a

1 In our implementation we used http://tinyurl.com/top10000en

http://tinyurl.com/top10000en
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as ECDF. We then set Λ to the 90-percentile and λ to the 70-percentile of
that distribution, as annotated in the figure. Fig. 2b depicts the 99%-variance
preserving 2D projection of the hyperellipsoid associated to DHGD, together with
the confidence interval thresholds calculated as mentioned above.

4.2 Step 2: Clustering

This step receives as input the set of domains d ∈ D that have passed Step 1.
These domains are such that dMah(f(d)) > Λ, which means that d is likely to
be DGA-generated, because they are too far from the centroid.

The goal of this step is to cluster domains according to their similarity. We
define as similar two domains that resolved to “similar” sets of IP addresses.
The rationale is that the botmaster of a DGA-based botnet registers several
domains that, at different points in time, resolve to the same set of IPs (i.e., the
C&C servers). To find similar domains, we represent the domain-to-IP relation
as a bipartite graph, which we convert in a proper data structure that allows us
to apply a spectral clustering algorithm [13]. This returns the groups of similar
domains (i.e., nodes of the graph). In this graph, two sets of node exists: K = |D|
nodes represent the domains, and L = | IPs(D)| nodes represent the IPs. An edge
exists from node d ∈ D to node l ∈ IPs(D) whenever a domain pointed to an IP.

Bipartite Graph Recursive Clustering. To cluster the domain nodes D, we
leverage the DBSCAN clustering algorithm [7].

Data Structure.We encode the bipartite graph as a sparse matrix M ∈ R
L×K

with L rows and K columns. Each cell Ml,k holds the weight of an edge k → l
in the bipartite graph, which represents the fact that domain dk resolves to IP
l. The weight encodes the “importance” of this relation. For each IP l in the
graph, the weights Ml,k, ∀k = 1, . . . ,K are set to 1

|D(l)| , where D(l) ⊂ D is the

subset of domains that point to that IP. This weight encodes the peculiarity of
each IP: The less domains an IP is pointed by, the more characterizing it is.

Domain Similarity. We calculate the matrix S ∈ R
K×K , whose cells encode

the similarity between each pair of domains d and d′. We want to consider two
domains as highly similar when they have peculiar IPs in common. Therefore, we
calculate the similarity matrix from the weights, as S = NT ·N ∈ R

K×K , where
N is basically M normalized by columns (i.e.,

∑L
l=1 Ml,k = 1, ∀k = 1,K). This

similarity matrix implements the rationale that we mentioned at the beginning
of this section.

Domain Features and Clustering. We apply the DBSCAN algorithm hierar-
chically. We compute the first normalized eigenvector v from S. At this point,
each domain name dk can be represented by its feature vk, the k-th element
of v, which is fed to the DBSCAN algorithm to produce the set of R clusters
D = {D1, . . . ,DR} at the current recursive step.

Clustering Stop Criterion. We recursively repeat the clustering process on the
newly created clusters until one of the following conditions is verified:

– a cluster of domains D
′ ∈ D is too small (e.g., it contains less than 25

domains at the first split) thus it is excluded from the final result;
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– a cluster of domains has its M matrix with all the elements greater than
zero, meaning that the bipartite graph it represents is strongly connected;

– a cluster of domains cannot be split further by the DBSCAN algorithm with
the value of ε set. In our experiments, we set ε to a conservative low value of
0.1, so to avoid the generation of clusters that contain domains that are not
similar. Manually setting this value is possible because ε and the DBSCAN
algorithm work on normalized features.

The final output of DBSCAN is D� = {D1, . . . ,DR}. The domains within each
D

r are similar among each other.
Dimensionality Reduction. The clustering algorithm employed has a space

complexity of O(|D|2). To keep the problem feasible we randomly split our
dataset D into I smaller datasets Di, i = 1, . . . , I of approximately the same
size, and cluster each of them independently, where I is the minimum value
such that a space complexity in the order of |Di|2 is affordable. Once each Di

is clustered, we recombine the I clustered sets, D�
i = {D1, . . . ,DRi}, onto the

original dataset D. Note that each Di may yield a different number Ri of clus-
ters. This procedure is very similar to the map-reduce programming paradigm,
where a large computation is parallelized into many computations on smaller
partitions of the original dataset, and the final output is constructed when the
intermediate results become available. We perform the recombination in the fol-
lowing post-processing phase, which is run anyway, even if we do not need any
dimensionality reduction (i.e., when I = 1, or D1 ≡ D).

Clustering Post Processing. We post process the set of clusters of domains
D�

i , ∀i with the following Pruning and Merging procedures. For simplicity,
we set the shorthand notation A ∈ D�

i and B ∈ D�
j to indicate any two sets
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of domains (i.e., clusters) that result from the previous DBSCAN clustering,
possibly with i = j.

Pruning. Clusters of domains that exhibit a nearly one-to-one relation with
the respective IPs are considered unimportant because, by definition, they do
not reflect the concept of DGA-based C&Cs (i.e., many domains, few IPs). Thus,
we filter out the clusters that are flat and show a pattern-free connectivity in
their bipartite domain-IP representation. This allows to remove “noise” from the

dataset. Formally, a cluster A is removed if |IPs(A)|
|A| > γ, where γ is a threshold

that is derived automatically as discussed in §5.
Merging. Given two independent clusters A and B, they are merged together

if the intersection between their respective sets of IPs is not empty. Formally, A
and B are merged if IPs(A) ∩ IPs(B) 
= ∅. This merging is repeated iteratively,
until every combination of two clusters violates the above condition.

The outcome of the post-processing phase is thus a set of clusters of domains
E = {E1, . . . ,EQ} where each E

q (1) exhibits a domain-to-IP pattern and (2) is
disjointed to any other Ep with respect to its IPs. In conclusion, each cluster E
contains the DGA-generated domains employed by the same botnet backed by
the C&C servers at IP addresses IPs(E).

4.3 Step 3: Fingerprinting

The clusters identified with the previous processing are used to extract finger-
prints of the DGAs that generated them. In other words, the goal of this step
is to extract the invariant properties of a DGA. We use these fingerprints in the
Detection module to assign labels to previously unseen domains, if they belong
to one of the clusters. Given a generic cluster E, corresponding to a given DGA,
we extract the following cluster models:

– CM1: C&C Servers Addresses defined as IPs(E).
– CM2: Length Range captures the length of the shortest and longest do-

main names in E.
– CM3: Character Set captures which characters are used during the ran-

dom generation of the domain names, defined as C :=
⋃

e∈E
charset(pe),

where pe is the chosen prefix of e.
– CM4: Numerical Characters Ratio Range [rm, rM ] captures the ra-

tio of numerical characters allowed in a given domain. The boundaries are,

respectively, the minimum and the maximum of num(pe)
|pe| within E, where

num(pe) is the number of numerical characters in the chosen prefix of e.
– CM5: Public Suffix Set The set of eTDL employed by the domains in E.

To some extent, these models define the aposteriori linguistic features of the
domains found within each cluster E. In other words, they define a model of E.

4.4 Detection Module

This module receives a previously unseen domain d and decides whether it is a
automatically generated by running the Filtering step with a loose threshold
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λ. If d is automatically generated, it is matched against the fingerprints of the
known DGAs on the quest for correspondences. In particular, we first select the
candidate clusters {E} that have at least one IP address in common with the IP
addresses that d pointed to: IPs(d) ∩ IPs(E) 
= ∅, ∀E. Then, we select a subset
of candidate clusters such that have the same models CM1–5 of d. Specifically,
the length of the chosen prefix of d, its character set, its numerical characters
ratio, and the eTLD of d must lie within the ranges defined above. The clusters
that survive this selection are chosen as the labels of d.

5 Experimental Evaluation

Validating the results of the Phoenix is challenging, because it produces novel
knowledge. Therefore, we first validate the internal components of each module
(e.g., to verify that they do not produce meaningless results and to assess the
sensitivity of the parameters), and then we validate the whole approach using
contextual information, to make sure that it produces useful knowledge with
respect to publicly available information.

5.1 Evaluation Dataset and Setup

The Discovery module of Phoenix requires a feed of recursive DNS traffic
and a reputation system that tells whether a domain is generally considered as
malicious. For the former data source, we obtained access to the SIE framework
(dnsdb.info), which provides DNS traffic data shared by hundreds of different
network operators. We obtained traffic for about 3 months, totaling around 100B
DNS requests and 4.8M distinct domain names. Differently from previous work,
this type of traffic is privacy preserving and very easy to collect. For the latter
data source we used the Exposure [6] blacklist, which included 107, 179 distinct
domains as of October 1st, 2012.

Differently from previous work, we used DGA-generated domains merely as a
ground truth for validation, not for bootstrapping our systembefore run time.More
precisely, to validate the components of Phoenix we relied on ground truth gen-
erated by publicly available implementations of the DGAs used by Conficker [10]
and Torpig [19], which have been among the earliest and most widespread botnets
that relied onDGAs forC&Ccommunication.Conficker’sDGA is particularly chal-
lenging because it uses non-guessable seeds. With these DGAs we generated five
datasets of domains, which resemble (and in some cases are equivalent to) the do-
mains generated by the actual botnets: 7500, 7750 and 1,101,500 distinct domains
for theConficker.A,Conficker.B andConficker.Cmalware, respectively, and
420 distinct domains for the Torpig dataset. Moreover, we collected the list of
36,346 domains that Microsoft claimed in early 2013 to be related to the activity
of Bamital (http://noticeofpleadings.com/). We used a 4-coremachine with
24GB of physical memory. Any experiment required execution times in the order
of the minutes.

dnsdb.info
http://noticeofpleadings.com/
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Torpig 34.2% 93.0%
Bamital 62.3% 81.4%

Fig. 3. Mahalanobis distance ECDF for different datasets (left), and pre-clustering
selection and recall (right)

5.2 Discovery Validation

Step 1: Filtering. This filter is used in two contexts: by the Discovery module
as a pre-clustering selection to recognize the domains that appear automatically
generated within a feed of malicious domains, and by the Detection module as
a pre-labeling selection. For pre-clustering, the strict threshold Λ is enforced to
make sure that no DGA-looking domains pass the filter and possibly bias the
clustering, whereas for pre-labeling the loose threshold λ is used to allow more
domains to be labeled. The Labeler will eventually filter out the domains that
resemble no known DGA. We test this component in both the contexts against
the datasets of Conficker, Torpig and Bamital (never seen before).

The filter, which is the same in both the contexts, is best visualized by means
of the ECDF of the Mahalanobis distance. Fig. 3 shows the ECDF from the
datasets, compared to the ECDF from the Alexa top 100,000 domains. The plot
shows that each datasets of DGA and non-DGA domains have different distri-
bution: This confirms that our linguistic features are well suited to perform the
discrimination. Indeed, the figure shows that each DGA dataset has a distinctive
distribution, thus their DGAs are also different. On the other hand Conficker
and Torpig’s DGAs have similar linguistic characteristics, although not identi-
cal. Then, we verify which fraction of domains passes the filter and reaches the
Clustering (Λ) step or the Labeler (λ). The results obtained are reported in
the first column of the table in Fig. 3 and show that roughly half of the do-
mains would not contribute to the generation of the clusters: The conservative
settings ensure that only the domains that exhibit the linguistic features more
remarkably are used for clustering. Ultimately, most of the true DGA domains
will be labeled as such before reaching the Labeler. Overall, Phoenix has a
recall of 81.4 to 94.8%, which is remarkable for a non-supervised and completely
automatic approach that requires no training.
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Cluster 6 (Bamital)

50e7f66b0242e579f8ed4b8b91f33d1a.co.cc

bad61b6267f0e20d08154342ef09f152.co.cc

62446a1af3f85b93f4eef982d07cc492.co.cc

0d1a81ab5bdfac9c8c6f6dd4278d99fb.co.cc

f1dad9a359ba766e9f5ec392426ddd30.co.cc

295e2484bddd43bc43387950a4b5da16.co.cc

501815bd2785f103d22e1becb681aa48.co.cc

341af50eb475d1730bd6734c812a60a1.co.cc

49b24bf574b7389bd8d5ba83baa30891.co.cc

a7e3914a88e3725ddafbbf67444cd6f8.co.cc

Cluster 9 (Palevo via PushDo)

7cj1b.cn ff88567.cn ef44ee.cn

fwjp0.cn 0bc3p.cn 9i230.cn

3dcyp.cn azeifko.cn fyyxqftc.cn

hfju38djfhjdi3kd.cn

Cluster 10 (Palevo via PushDo)

ewn.net wyp.net ews.net kpk.net

khz.net uon.org lxx.net kxc.com

yhv.com nrl.net

Cluster 11 (Conficker)

byuyy.biz jbkxbxublgn.biz

kpqzk.org tcmsrdm.org

lvzqxymji.org fbhwgmb.info

aeyyiujxs.org psaehtmx.info

vdrmgyxq.biz mmdbby.biz

Fig. 4. A representative example of a clustering obtained during our evaluation

In the pre-clustering phase, our system filtered out 34–62% of malicious, yet
non-DGA domains. This ensures that the clusters are not “poisoned” with such
domains, thus creating robust, conservative models.

Step 2: Clustering. We ran Phoenix on our dataset and, after the first run
of the DBSCAN clustering, we obtained a clustering for which we provide an
excerpt in Fig. 4 (see [17] for full details). We can see that the clusters belonging
to each botnet is profoundly different from a linguistic point of view. Interestingly,
the clustering is not based on IP features, not linguistic features: This confirms
that using linguistic features for first filtering non-DGA domains and then IP-
based features to cluster them lead to clusters that reflect the actual botnet
groups.

Reality Check. We searched for contextual information to confirm the useful-
ness of the clusters obtained by running Phoenix on our dataset. To this end,
we queried Google for the IP addresses of each cluster to perform manual label-
ing of such clusters with evidence about the malware activity found by other
researchers.

We gathered evidence about a cluster with 33, 771 domains allegedly used by
Conficker (see also Fig.5 in [17]) and another cluster with 3870 domains used by
Bamital. A smaller cluster of 392 domains was assigned to SpyEye (distributed
through PushDo, https://blog.damballa.com/archives/1998), and two clus-
ters of 404 and 58 domains, respectively, were assigned to Palevo (distributed
through PushDo). We found no information to label the remaining 6 clusters as
related to known malware.

https://blog.damballa.com/archives/1998
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Fig. 5. Clustering sensitivity from parameter γ. By studying the number of clusters
(top) and the average intra-cluster entropy over CF2, 4, 5 (bottom), we can choose
the best γ ∈ (0, 2.8).

In conclusion, we successfully isolated domains related to botnet activities
and IP addresses hosting C&C servers. From hereinafter we evaluate how well
such isolation performs in general settings (i.e., not on a specific dataset).

Sensitivity from γ. We evaluated the sensitivity of the clustering result to
the γ threshold used for cluster pruning. To this end, we studied the number of
clusters generated with varying values of γ. A steady number of cluster indicates
low sensitivity from this parameter, which is a desirable property. Moreover,
abrupt changes of the number of clusters caused by certain values of γ can be
used as a decision boundary to this parameter: Fig. 5 fixes that boundary at
γ = 2.8.

We also assessed how γ influences the quality of the clustering to find safety
bounds of this parameter within which the resulting clusters do not contain spu-
rious elements. In other words, we want to study the influence of γ on the cluster
models calculated within each cluster. To this end, we consider the cluster models
for which a simple metric can be easily defined: CM2 (Length Range), CM4
(Numerical Characters Ratio Range) and CM5 (Public Suffix Set). A
clustering quality is high if all the clusters contain domains that are uniform
with respect to these models (e.g., each cluster contain elements with common
public suffix set or length). We quantify such “uniformity” as the entropy of each
model. As Fig. 5 shows, all the models reflect an abrupt change in the uniformity
of the clusters around γ = 2.8, which corroborates the above finding.

In conclusion, values of γ outside (0, 2.8) do not allow the clustering algorithm
to optimally separate clusters of domains.

Correctness. Our claim is that the clustering can distinguish between domains
generated by different DGAs by means of the representative IPs used by such
DGAs (which are likely to be the C&C servers). To confirm this claim in a
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robust way, we evaluate the quality of the clustering with respect to features
other than the IP addresses. In this way, we can show that our clustering tells
different DGAs apart, regardless of the IP addresses in common. In other words,
we show that our clustering is independent from the actual IP addresses used by
the botnets but it is capable of recognizing DGAs in general.

To this end, we ignore CM1 and calculate the models CM2-5 of each cluster
and show that they are distributed differently between any two clusters. We
quantify this difference by means of the p-value of the Kolmogorov-Smirnov (KS)
statistical test, which tells how much two samples (i.e., our CM2-5 calculated
for each couple of clusters) are drawn from two different stochastic processes
(i.e., they belong to two different clusters). p-values toward 1 indicate that two
clusters are not well separated, because they comprise domains that are likely
drawn from the same distribution. On the other hand, p-values close to zero
indicate sharp separation. The results confirm that most of the clusters are well
separated, because their p-value is close to 0. In particular 9 of our 11 clusters are
highly dissimilar, whereas two clusters are not distinguishable from each other
(Clusters 2 and 4). From a manual analysis of these two clusters we can argue
that a common DGA is behind both of them, even if there is no strong evidence
(i.e., DNS features) of this being the case. Cluster 2 include domains such as
46096.com and 04309.com, whereas two samples from Cluster 4 are 88819.com
and 19527.com. The actual p-values obtained in this experiments are detailed
in [17].

5.3 Detection Evaluation

Wewant to evaluate qualitatively howwell theDetectionmodule is able to assign
the correct labels to previously unseen suspicious domains. To this end, we first
run the Discovery module using the historical domain-to-IP relations extracted
from the SIE database for those domains indicated as generically malicious by the
malicious domain filter (which is Exposure blacklist in our case). Once this module
produced the clusters, we validated the outcome of theDetection against a never-
seen-before (random) split of the same type of data.

This means that, given an unseen domain, which matches any cluster model,
Phoenix generates novel knowledge by adding such a domain to the right cluster,
thus effectively assigning a “threat name” to that domain. Domains that do
not match any cluster model are not reported. The quality of the linguistic
features and cluster models clearly affect the false negative rate, because they
are conservative: More relaxed features and cluster models that still maintain a
low degree of false negatives are focus of our ongoing research. The result of the
Detection is a list of previously unseen domains, assigned to a cluster (i.e., a
DGA). Some examples of previously unseen domains are depicted in Fig. 6 along
with some samples of the clusters where they have been assigned to.

These examples show that Phoenix is capable of assigning the correct cluster
to unknown suspicious domains. Indeed, despite the variability of the eTLD,
which is commonly used as anecdotal evidence to discriminate two botnets, our
system correctly models the linguistic features and the domain-to-IP historical
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Previously unseen domains

hy613.cn 5ybdiv.cn 73it.cn 39yq.cn

69wan.cn hy093.cn 08hhwl.cn hy267.cn

hy673.cn onkx.cn xmsyt.cn fyf123.cn

watdj.cn dhjy6.cn algxy.cn g3pp.cn

Previously unseen domains

dky.com ejm.com eko.com blv.com

efu.com elq.com bqs.com dqu.com

bec.com dpl.com eqy.com dyh.com

dur.com bnq.com ccz.com ekv.com

Cluster 9 (Palevo)

pjrn3.cn 3dcyp.cn x0v7r.cn 0iwzc.cn

0bc3p.cn hdnx0.cn 9q0kv.cn 4qy39.cn

5vm53.cn 7ydzr.cn fyj25.cn m5qwz.cn

qwr7.cn xq4ac.cn ygb55.cn v5pgb.cn

Cluster 10 (Palevo)

uon.org jhg.org eks.org kxc.com

mzo.net zuh.com bwn.org khz.net

zuw.org ldt.org lxx.net epu.org

ntz.com cbv.org iqd.com nrl.net

Fig. 6. Labeling of previously unseen domains

relations and performs a better labeling. In the second case the domains were
registered under .cn and share the same generation mechanism.

5.4 Intelligence and Insights

In this section, we describe two use cases of the Intelligence and Insights
module, which provides the analyst with valuable knowledge from the outputs
of the other modules. The correctness of the conclusions drawn from this module
is predicated on the correctness of the two upstream modules, already discussed
in prevoius sections.

Unknown DGA Recognition from Scarce Data. Our system is designed
to automatically label the malicious domains related to botnet activities. This is
done by using the information of the DNS traffic related to them. Interestingly,
some conclusions can be drawn on previously unseen domains even in the unlucky
case that such information is missing (i.e., when no DNS data is available).

On Feb 9th, 2013 we received, via a vetted security mailing list, an inquiry by a
group of researchers. They had found a previously unseen list of DGA-generated
domains that resembled no known botnet. Such list was the only information
that they provided us with. Phoenix correctly labeled these domains with the
fingerprints of a Conficker cluster. This allowed the researchers to narrow down
their investigation.

In conclusion, starting from the sole knowledge of a list of malicious do-
mains that Phoenix had never seen before, we discovered that, according to
our datasets, the only DGA in our dataset able to produce domains with that
linguistic features was the DGA associated with Conficker.

Time Evolution. Associating DGA domains to the activity of a specific botnet
allows to gather further information (e.g., track the botnet evolution) by using
the DGA fingerprints as a “lookup index” to make precise queries.

For instance, given a DGA fingerprint or a sample domain, we can select the
domains of the corresponding cluster EDGA and partition this set at different
granularity (e.g., IPs or ASs) by considering the exact set of IPs (or ASs) that
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Fig. 7. Bamital (left): Migration of C&C from AS9318 to AS4766. Conficker
(right): Evolution that resembles a C&C takedown: the C&C had 3 IPs in AS0860
and 3 sinkholed IPs in AS2637

they point to. Given the activity that we want to monitor, for instance, the DNS
traffic of that botnet, we can then plot one time series for each partition. In
our example, we count the number of DNS requests seen for the domains in that
partition at a certain sampling frequency (e.g., daily). The analysis of the stacked
time series generated allows to draw conclusion about the behavior over time of
the botnet. Fig. 7 shows the case of (a) a migration (the botmaster moved the
C&C servers from one AS to another) followed by (b) a load balancing change
in the final step (the botmaster shut down 2 C&C servers thus reducing the load
balancing).

In a similar vein, Fig. 7 shows an evolution that we may argue being a take-
down operated by security defenders. In particular, at the beginning the botnet
C&C backend was distributed across three ASs in two countries (United States
and Germany). Armed with the knowledge that the IPs in AS2637 and AS1280
are operated by computer security laboratories, we discover that this “waterfall”
pattern concludes into a sinkhole. Without knowledge of the sinkholed IPs, we
can still argue that the C&C was moved to other ASs.

The aforementioned conclusions were drawn by a semi-automatic analysis and
can be interpreted and used as novel intelligence knowledge. The labels of the
DGAs produced by Phoenix were fundamental to perform this type of analysis.

6 Limitations

Despite the good results, Phoenix has some limitations. Previous work lever-
aged NXDOMAIN responses to identify those DGA-generated domains that the
botmaster did not register yet. This allows early detection of DGA activities, be-
cause the bots yield overwhelming amounts of NXDOMAIN replies. Our system,
instead, requires registered domains to function. Therefore, it is fed with data
that takes slightly longer collection periods. This results in a less-responsive
detection of previously unseen DGAs. The advantage is that, differently from
previous work, we can fingerprint the DGAs and, more importantly, we lift the
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observation point such that Phoenix is easier to adopt. Indeed, we believe that
not using NXDOMAIN replies represents a strength of our work, as it makes
our system profoundly different from previous work in ease of deployment and
testing under less-constraining requirements.

The linguistic features computed on the domain names, to decide whether they
are automatically generated or not, capture the likelihood that a given domain
targets English-speaking users. Taking into account different languages, possibly
featuring totally different sounds like Chinese or Swedish, as well as different
encondings, such as UTF8, would pose some challenges. In particular, computing
language-independent features with a multilingual dictionary would flatten the
underlying distributions, rendering the language features less discriminant. To
tackle this limitation, a possible solution consists in inferring the linguistic target
of a given domain (e.g., via TLD analysis or whois queries) so to evaluate its
randomness according to the correct dictionary.

Future DGAs may attempt to evade our linguistic features by creating pro-
nounceable domains. Besides the fact that, to the best of our knowledge, no such
DGAs exist, creating large amounts of pronounceable domains is difficult: Such
DGAs would have a narrow randomization space, which violates the design goals
of domain flux [10, 19].

7 Related Work

The idea of using linguistic features per se is not novel. However, existing ap-
proaches are based on supervised learning and make assumptions on how do-
mains should be grouped before processing. Yadav et al. [21, 22] leverage the
randomization of DGA-generated names to distinguish them from non-DGA ones
by means of linguistic features bi-grams computed over domain sets, which are
then classified as sets of DGA- or non-DGA-related. The work explores different
strategies to group domain in sets before feeding them to the classifier. Our work
is different from these approaches because we require no labeled datasets of DGA
domains to be bootstrapped, thus it is able to find sets of DGA domains with no
prior knowledge. Moreover, our system classifies domains one by one, without
the necessity of performing error-prone apriori grouping.

Phoenix differentiates from the approaches that model DGAs as a mean to
detect botnet activity by the type of knowledge that it produces and by the
less-demanding requirements. Perdisci et al. [15] focused on domains that are
malicious, in general, from the viewpoint of the victims of attacks perpetrated
through botnets (e.g., phishing, spam, drive-by download). Moreover, the de-
tection method of [15] is based on supervised learning. Neugschwandtner et al.
[12] proposed a system that detects malware failover strategies with techniques
based on multi-path exploration. Backup C&C servers and DGA domains are
unveiled through simulated network failures, leading to new blacklists. Although
promising, the approach requires the availability of malware samples. Differently
from [12], we only recursive-level passive DNS traffic.

Phoenix differentiates from the approaches that leverage features of DNS
packets to find new malicious domains by the type of new knowledge inferred
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and by the less-demanding learning technique. For example, [6] is a passive
DNS analysis technique to detect domains associated with malicious activities,
including botnet C&C. The main difference is that Phoenix focuses exclusively
on DGAs rather than inferring a domain’s maliciousness. Instead of training a
classifier on malicious domains, we calculate thresholds for our filters based on
benign—or, at least, human-generated—domains. Systems like [6] and [1] rely
on local recursive DNS. Instead, [2] analyzes DNS traffic collected at the upper
DNS hierarchy with new features such as the requester diversity, requester profile
and resolved-IPs reputation. As the authors notice, the approach is ineffective on
DGA-generated domains, because of their short lifespan, whereas we have showed
extensively that Phoenix can detect and, more importantly, label, previously
unknown DGA domains. Bilge et al. [5] proposed DISCLOSURE, a system that
detects C&C communications from NetFlow data analysis. Using NetFlow data
overcomes the problems of large-scale traffic collection and processing. However,
Disclosure discovers domains involved in C&C communications, not necessarily
DGAs.

Other approaches leverage that DGA-based malware yield disproportionately
large numbers of NX responses. Yadav and Reddy [20] extend [22] and introduce
NXDOMAINs to speedup the detection of DGA-generated domains: registered
DGA-generated domains are recognized because they are queried by any given
client after a series of NXDOMAIN responses. The work differs from ours sub-
stantially, mainly because it requires DNS datasets that include the IP addresses
of the querying clients. Moreover, the approach seems fragile on sampled datasets,
which is a required step when dealing with high-traffic networks. To some extent,
our work is complementary to the use of NXDOMAINs, which can be used to
provide early, yet not very explanatory, warnings. Our system compensates for
this lack through the intelligence and insights module.

8 Conclusion

In addition to telling DGA- and non-DGA-generated domains apart using a com-
bination of linguistic and IP-based features, Phoenix characterizes the DGAs
behind them, and finds groups of DGA-generated domains that are represen-
tative of the respective botnets. As a result, Phoenix can associate previously
unknown DGA-generated domains to these groups, and produce novel knowledge
about the evolving behavior of each tracked botnet. We improve the linguistic
features proposed in previous work and combine them with other features. We
also calculate fingerprints of the domains identified by Phoenix as belonging to
a group of “similar” domains. Contrarily to the existing methods based on NX
domains, our approach does not rely on clients’ IPs, is not affected by NAT or
DHCP, and requires no specific deployment contexts.

We successfully used Phoenix in real-world settings to identify a list of sus-
picious domains as belonging to a live botnet (based on Conficker.B). We be-
lieve that, in addition to the comprehensive evaluation, this latter fact proves
Phoenix’s practicality and effectiveness.
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