
Phoenix Rebirth:
Scalable MapReduce on a Large-Scale
Shared-Memory System

Richard Yoo, Anthony Romano, Christos Kozyrakis

Stanford University

http://mapreduce.stanford.edu

 Yoo, Phoenix2 October 6, 2009

Talk in a Nutshell

Scaling a shared-memory MapReduce system on a 256-thread

machine with NUMA characteristics

Major challenges & solutions

• Memory mgmt and locality => locality-aware task distribution

• Data structure design => mechanisms to tolerate NUMA latencies

• Interactions with the OS => thread pool and concurrent allocators

Results & lessons learnt

• Improved speedup by up to 19x (average 2.5x)

• Scalability of the OS still the major bottleneck

Background

 Yoo, Phoenix2 October 6, 2009

MapReduce and Phoenix

MapReduce

• A functional parallel programming framework for large clusters

• Users only provide map / reduce functions

Map: processes input data to generate intermediate key / value pairs

Reduce: merges intermediate pairs with the same key

• Runtime for MapReduce

Automatically parallelizes computation

Manages data distribution / result collection

Phoenix: shared-memory implementation of MapReduce

• An efficient programming model for both CMPs and SMPs [HPCA’07]

 Yoo, Phoenix2 October 6, 2009

Phoenix on a 256-Thread System

4 UltraSPARC T2+ chips connected by a single hub chip

1. Large number of threads (256 HW threads)

2. Non-uniform memory access (NUMA) characteristics

300 cycles to access local memory, +100 cycles for remote memory

chip 0 chip 1

chip 2 chip 3

hub

mem 0

mem 3 mem 2

mem 1

 Yoo, Phoenix2 October 6, 2009

The Problem: Application Scalability

Baseline Phoenix scales well on a single socket machine

Performance plummets with multiple sockets & large thread counts

Speedup on a Single Socket UltraSPARC T2 Speedup on a 4-Socket UltraSPARC T2+

 Yoo, Phoenix2 October 6, 2009

The Problem: OS Scalability

OS / libraries exhibit NUMA effects as well

• Latency increases rapidly when crossing chip boundary

• Similar behavior on a 32-core Opteron running Linux

Synchronization Primitive Performance on the 4-Socket Machine

Optimizing the Phoenix Runtime
on a Large-Scale NUMA System

 Yoo, Phoenix2 October 6, 2009

Optimization Approach

Focus on the unique position of runtimes in a software stack

• Runtimes exhibit complex interactions with user code & OS

Optimization approach should be multi-layered as well

• Algorithm should be NUMA aware

• Implementation should be optimized around NUMA challenges

• OS interaction should be minimized as much as possible

App

Phoenix Runtime

OS

HW

Algorithmic Level

Implementation Level

OS Interaction Level

 Yoo, Phoenix2 October 6, 2009

Algorithmic Optimizations

App

Phoenix Runtime

OS

HW

Algorithmic Level

Implementation Level

OS Interaction Level

 Yoo, Phoenix2 October 6, 2009

Algorithmic Optimizations (contd.)

Runtime algorithm itself should be NUMA-aware

Problem: original Phoenix did not distinguish local vs. remote threads

• On Solaris, the physical frames for mmap()ed data spread out across
multiple locality groups (a chip + a dedicated memory channel)

• Blind task assignment can have local threads work on remote data

chip 0 chip 1

chip 2 chip 3

hub

mem 0

mem 3 mem 2

mem 1 remote

access

remote

access

remote

access

 Yoo, Phoenix2 October 6, 2009

Algorithmic Optimizations (contd.)

Solution: locality-aware task distribution

• Utilize per-locality group task queues

• Distribute tasks according to their locality group

• Threads work on their local task queue first, then perform task stealing

chip 0 chip 1

chip 2 chip 3

hub

mem 0

mem 3 mem 2

mem 1

 Yoo, Phoenix2 October 6, 2009

Implementation Optimizations

App

Phoenix Runtime

OS

HW

Algorithmic Level

Implementation Level

OS Interaction Level

 Yoo, Phoenix2 October 6, 2009

Implementation Optimizations (contd.)

Runtime implementation should handle large data sets efficiently

Problem: Phoenix core data structure not efficient at handling large-scale data

Map Phase

• Each column of pointers amounts to a fixed-size hash table

• keys_array and vals_array all thread-local

“apple”

keys_array

2

vals_array

4

“banana”

“orange”

“pear”

map thread id

hash(“orange”)

1

2-D array of pointers

too many

keys buffer

reallocations

num_map_threads

n
u

m
_
re

d
u

c
e
_
ta

s
k
s

 Yoo, Phoenix2 October 6, 2009

Implementation Optimizations (contd.)

Reduce Phase

• Each row amounts to one reduce task

• Mismatch in access pattern results in remote accesses

1

“orange”

“orange”

reduce task index

2 4 1

2 4 1 1

Copy and pass to
user reduce function

keys_array

vals_array

vals_array

keys_array
remote

access

2-D array of pointers

5 1 3 1

5 3 1 1
large chunk of

contiguous

memory

remote

access

 Yoo, Phoenix2 October 6, 2009

Implementation Optimizations (contd.)

“apple”

keys_array

2

vals_array

4

“banana”

“orange”

“pear”

Solution 1: make the hash bucket count user-tunable

• Adjust the bucket count to get few keys per bucket

2-D array of pointers

 Yoo, Phoenix2 October 6, 2009

Implementation Optimizations (contd.)

Solution 2: implement iterator interface to vals_array

• Removed copying / allocating the large value array

• Buffer implemented as distributed chunks of memory

• Implemented prefetch mechanism behind the interface

1

“orange”

“orange”

reduce task index

2 4 1

keys_array

vals_array

vals_array

keys_array

2-D array of pointers

5 1 3 1

&vals_array

Expose iterator to
user reduce function

&vals_array 2 4 1 1

Copy and pass to
user reduce function

5 3 1 1

prefetch!

 Yoo, Phoenix2 October 6, 2009

Other Optimizations Tried

Replace hash table with more sophisticated data structures

• Large amount of access traffic

• Simple changes negated the performance improvement

E.g., excessive pointer indirection

Combiners

• Only works for commutative and associative reduce functions

• Perform local reduction at the end of the map phase

• Little difference once the prefetcher was in place

Could be good for energy

See paper for details

 Yoo, Phoenix2 October 6, 2009

OS Interaction Optimizations

App

Phoenix Runtime

OS

HW

Algorithmic Level

Implementation Level

OS Interaction Level

 Yoo, Phoenix2 October 6, 2009

OS Interaction Optimizations (contd.)

Runtimes should deliberately manage OS interactions

1. Memory management => memory allocator performance

• Problem: large, unpredictable amount of intermediate / final data

• Solution

Sensitivity study on various memory allocators

At high thread count, allocator performance limited by sbrk()

2. Thread creation => mmap()

• Problem: stack deallocation (munmap()) in thread join

• Solution

Implement thread pool

Reuse threads over various MapReduce phases and instances

Results

 Yoo, Phoenix2 October 6, 2009

Experiment Settings

4-Socket UltraSPARC T2+

Workloads released in the original Phoenix

• Input set significantly increased to stress the large-scale machine

Solaris 5.10, GCC 4.2.1 –O3

Similar performance improvements and challenges on a 32-

thread Opteron system (8-sockets, quad-core chips) running

Linux

 Yoo, Phoenix2 October 6, 2009

Scalability Summary

Significant scalability improvement

Scalability of the Original Phoenix Scalability of the Optimized Version

workloads scale up to
256 threads

limited by OS scalability issues

 Yoo, Phoenix2 October 6, 2009

Execution Time Improvement

Optimizations more effective for NUMA

Relative Speedup over the Original Phoenix

little variation
average: 1.5x, max: 2.8x

significant improvement
average: 2.53x, max: 19x

 Yoo, Phoenix2 October 6, 2009

Analysis: Thread Pool

kmeans performs a sequence of MapReduces

• 160 iterations, 163,840 threads

Thread pool effectively reduces the number of calls to munmap()

threads before after

8 20 10

16 1,947 13

32 4,499 18

64 9,956 33

128 14,661 44

256 14,697 102

Number of Calls to munmap() on kmeans

kmeans Performance Improvement due to Thread Pool

3.47x improvement

 Yoo, Phoenix2 October 6, 2009

Analysis: Locality-Aware Task Distribution

Locality group hit rate (% of tasks supplied from local memory)

Significant locality group hit rate improvement under NUMA
environment

Locality Group Hit Rate on string_match

forced misses result

in similar hit rate

improved hit rates
= improved performance

 Yoo, Phoenix2 October 6, 2009

Analysis: Hash Table Size

No single hash table size worked for all the workloads

• Some workloads generated only a small / fixed number of unique keys

• For those that did benefit, the improvement was not consistent

Recommended values provided for each application

word_count Sensitivity to Hash Table Size

trend reverses with more
threads

kmeans Sensitivity to Hash Table Size

no thread count leads

to speedup

Why Are Some Applications Not Scaling?

 Yoo, Phoenix2 October 6, 2009

Non-Scalable Workloads

Non-scalable workloads shared two common trends

1. Significant idle time increase

2. Increased portion of kernel time over total useful computation

Execution Time Breakdown on histogram

idle time increase

kernel time increases

significantly

 Yoo, Phoenix2 October 6, 2009

Profiler Analysis

histogram

• 64 % execution time spent idling for data page fault

linear_regression

• 63 % execution time spent idling for data page fault

word_count

• 28 % of its execution time in sbrk() called inside the memory

allocator

• 27 % of execution time idling for data pages

Memory allocator and mmap()turned out to be the bottleneck

Not the physical I/O problem

• OS buffer cache warmed up by repeating the same experiment with

the same input

 Yoo, Phoenix2 October 6, 2009

Memory Allocator Scalability

Memory Allocator Scalability Comparison on word_count

sbrk() scalability a major issue

• A single user-level lock serialized accesses

• Per-address space locks protected in-kernel virtual memory objects

mmap() even worse

 Yoo, Phoenix2 October 6, 2009

mmap() Scalability

Microbenchmark: mmap()user file and calculate the sum by

streaming through data chunks

mmap() Microbenchmark Scalability

mmap() alone does not scale

Kernel lock serialization on per process page table

 Yoo, Phoenix2 October 6, 2009

Conclusion

Multi-layered optimization approach proved to be effective

• Average 2.5x speedup, maximum 19x

OS scalability issues need to be addressed for further scalability

• Memory management and I/O

• Opens up a new research opportunity

 Yoo, Phoenix2 October 6, 2009

Questions?

The Phoenix System for MapReduce Programming, v2.0

• Publicly available at http://mapreduce.stanford.edu

