N PERVASIVE
| PARALLELISM
4/ LABORATORY

Phoenix Rebirth:
Scalable MapReduce on a Large-Scale
Shared-Memory System

Richard Yoo, Anthony Romano, Christos Kozyrakis
Stanford University
http://mapreduce.stanford.edu

2
% Talk in a Nutshell

1 Scaling a shared-memory MapReduce system on a 256-thread
machine with NUMA characteristics

1 Major challenges & solutions
* Memory mgmt and locality => locality-aware task distribution
* Data structure design => mechanisms to tolerate NUMA latencies

* Interactions with the OS => thread pool and concurrent allocators

1 Results & lessons learnt
* Improved speedup by up to 19x (average 2.5x)
* Scalability of the OS still the major bottleneck

Yoo, Phoenix2 October 6, 2009

Background

% MapReduce and Phoenix

1 MapReduce

* A functional parallel programming framework for large clusters
* Users only provide map / reduce functions
" Map: processes input data to generate intermediate key / value pairs

" Reduce: merges intermediate pairs with the same key

* Runtime for MapReduce
" Automatically parallelizes computation

® Manages data distribution / result collection

 Phoenix: shared-memory implementation of MapReduce
* An efficient programming model for both CMPs and SMPs [HPCA’07]

Yoo, Phoenix2 October 6, 2009

Phoenix on a 256-Thread System

1 4 UltraSPARC T2+ chips connected by a single hub chip
|. Large number of threads (256 HW threads)

2. Non-uniform memory access (NUMA) characteristics

® 300 cycles to access local memory, +100 cycles for remote memory

m m

Yoo, Phoenix2 October 6, 2009

The Problem: Application Scalability

25
20 S
o 15 =#-histogram
§ =#=kmeans
§ 10 =><linear_regression
~@-pca
string_match
5
=&=word_count
O T T T T T T
1 2 4 8 16 132 64
#threads

Speedup on a 4-Socket UltraSPARC T2+

[Baseline Phoenix scales well on a single socket machine

1 Performance plummets with multiple sockets & large thread counts

Yoo, Phoenix2 October 6, 2009

)

The Problem: OS Scalability

execution time (usec)

8.0E+02

7.0E+02

6.0E+02

5.0E+02

4.0E+02

3.0E+02

2.0E+02

1.0E+02

0.0E+00

=&—pthread_mutex

‘/{ / =-pthread_semaphore
A\
M’/ ¥

1 10 19 28 37 46 55 €44 73 82 91 100109118127

ttthreads

Synchronization Primitive Performance on the 4-Socket Machine

] OS / libraries exhibit NUMA effects as well

* Latency increases rapidly when crossing chip boundary

* Similar behavior on a 32-core Opteron running Linux

Yoo, Phoenix2

October 6, 2009

)

Optimizing the Phoenix Runtime
on a Large-Scale NUMA System

% Optimization Approach

t t Algorithmic Level

Implementation Level

‘ ‘ OS Interaction Level

O Focus on the unique position of runtimes in a software stack

* Runtimes exhibit complex interactions with user code & OS

1 Optimization approach should be multi-layered as well
* Algorithm should be NUMA aware
* Implementation should be optimized around NUMA challenges
* OS interaction should be minimized as much as possible

Yoo, Phoenix2 October 6, 2009

Algorithmic Optimizations

t t Algorithmic Level

Implementation Level

‘ ‘ OS Interaction Level

Yoo, Phoenix2 October 6, 2009

10

Algorithmic Optimizations (contd.)

Runtime algorithm itself should be NUMA-aware

O Problem: original Phoenix did not distinguish local vs. remote threads

* On Solaris, the physical frames for mmap()ed data spread out across
multiple locality groups (a chip + a dedicated memory channel)

* Blind task assignment can have local threads work on remote data

Wy v
remote
aCCess

remote
aCCess

Yoo, Phoenix2

hub

remote
chip3 » access

October 6, 2009

11

Algorithmic Optimizations (contd.)

O Solution: locality-aware task distribution
* Utilize per-locality group task queues
* Distribute tasks according to their locality group

* Threads work on their local task queue first, then perform task stealing

m ﬁ

Yoo, Phoenix2 October 6, 2009

hub

12

Implementation Optimizations

t t Algorithmic Level

Implementation Level

‘ ‘ OS Interaction Level

Yoo, Phoenix2 October 6, 2009

13

% Implementation Optimizations (contd.)

Runtime implementation should handle large data sets efficiently

L Problem: Phoenix core data structure not efficient at handling large-scale data

L Map Phase

* Each column of pointers amounts to a fixed-size hash table
® Kkeys array and vals_array all thread-local

map thread id
num_map_threads

””) Z too many —
o keys buffer

> reallocations

%asks

h(‘“oran

num_red @e

2-D array of pointers

keys_array

Yoo, Phoenix2 October 6, 2009 14

i NN
4 U o

Implementation Optimizations (contd.)

(] Reduce Phase

* Each row amounts to one reduce task

* Mismatch in access pattern results in remote accesses

reduce task index « ’
: j—> “orange

remote
> access

large chunk of
contiguous |
memory

[N

and pass to
educe function

Yoo, Phoenix2 October 6, 2009

% Implementation Optimizations (contd.)

L Solution |: make the hash bucket count user-tunable

* Adjust the bucket count to get few keys per bucket

/

“aPPIe”

ESZNR

“banana”

“orange”

“Pear’,

4

2-D arr

ay o

f pointe

'S

Yoo, Phoenix2

keys_array

October 6, 2009

vals_array

16

Implementation Optimizations (contd.)

[Solution 2: implement iterator interface to vals_array
* Removed copying / allocating the large value array
e Buffer implemented as distributed chunks of memory
* Implemented prefetch mechanism behind the interface

reduce task index ‘ ’
: | j—> “orange

keys_array
\ 4
| S| 3|11 [<:-

. vals_array
2-PD array of pointers

“orange” 204 (0115|311
‘l’ keys_array : I:> Exqgpysanidepatotdo

Yl 4| b user reduce function

vals_array

Yoo, Phoenix2 October 6, 2009

% Other Optimizations Tried

1 Replace hash table with more sophisticated data structures
* Large amount of access traffic

* Simple changes negated the performance improvement

" E.g., excessive pointer indirection

(d Combiners
* Only works for commutative and associative reduce functions
* Perform local reduction at the end of the map phase

* Little difference once the prefetcher was in place

" Could be good for energy

 See paper for details

Yoo, Phoenix2 October 6, 2009

18

OS Interaction Optimizations

Yoo, Phoenix2

Tt 1
3

Algorithmic Level

Implementation Level

OS Interaction Level

October 6, 2009

19

% OS Interaction Optimizations (contd.)

Runtimes should deliberately manage OS interactions

|. Memory management => memory allocator performance
* Problem: large, unpredictable amount of intermediate / final data

* Solution
® Sensitivity study on various memory allocators

® At high thread count, allocator performance limited by sbrk()

2. Thread creation => mmap()
* Problem: stack deallocation (nunmap()) in thread join

* Solution
" Implement thread pool

" Reuse threads over various MapReduce phases and instances

Yoo, Phoenix2 October 6, 2009

20

Results

)

Experiment Settings

1 4-Socket UltraSPARC T2+

1 Workloads released in the original Phoenix

* Input set significantly increased to stress the large-scale machine

4 Solaris 5.10, GCC 4.2.1 -O3

 Similar performance improvements and challenges on a 32-
thread Opteron system (8-sockets, quad-core chips) running
Linux

Yoo, Phoenix2 October 6, 2009

22

Scalability Summary

120
100
80 == histogram
S =d=kmeans
<
g,_ 60 =>linear_regression
(7,]

=J=matrix_multiply

40 /\ =@=pca
// \ string_match
4 =®=word_count

20

1 2 4 8 16 32 64 128 256
#threads

Scalability of the Opgmeldahdensibon

[Significant scalability improvement

Yoo, Phoenix2 October 6, 2009

23

10

19

speedu

#threads
Relative Speedup over the Original Phoenix

1 Optimizations more effective for NUMA

Yoo, Phoenix2 October 6, 2009

24

Analysis: Thread Pool

H baseline M tpool

250

threads |before |[after = 200
8 20 10 9

16] 1,947 I3 aEJ 150
32| 4,499 |8 =

64 9,956 33 _S ™\

128 14661 44 5 100

256 14,697 102 %

U
o

Number of Calls to mnunmap() on kmeans

8 16 32 64 128 256

#threads
kmeans Performance Improvement due to Thread Pool

L kmeans performs a sequence of MapReduces
* 160 iterations, 163,840 threads
L Thread pool effectively reduces the number of calls to munmap ()

Yoo, Phoenix2 October 6, 2009

Analysis: Locality-Aware Task Distribution

1 Locality group hit rate (% of tasks supplied from local memory)

1 Significant locality group hit rate improvement under NUMA
environment

Yoo, Phoenix2

locality grou

I baseline M |ocator_t speedup

50%
45%
40%

25%
20%
15%
10%
5%
0%

| Lt

N
| (0]

#threads
Locality Group Hit Rate on string_match

October 6, 2009

11

- 1.08

- 1.06

- 1.04

- 1.02

- 0.98

- 0.96

- 0.94

speedup

26

Analysis: Hash Table Size

256 M8k

[m—

1.4
1.2 N\

0.8 -
0.6 -
0.4 -
0.2 -

normalized execution tin

32 64 128 256
#threads

kmeans Sensitivity to Hash Table Size

[No single hash table size worked for all the workloads
* Some workloads generated only a small / fixed number of unique keys
* For those that did benefit, the improvement was not consistent

J Recommended values provided for each application

Yoo, Phoenix2 October 6, 2009

Why Are Some Applications Not Scaling?

£
Z
-

L

Non-Scalable Workloads

B gys W yser idle =>¢=sys/ eff
5
4.5 [—\ 0.9
—_ 4 0.8
3
&L 35 0.7
[))
E 3 / 0.6
o
— 05 &
— 0.4
o 1.5 0.3
1 - 0.2
0.5 0.1
0 0
32 64 128 256
#threads

Execution Time Breakdown on histogram

J Non-scalable workloads shared two common trends

|. Significant idle time increase

2. Increased portion of kernel time over total useful computation

Yoo, Phoenix2 October 6, 2009

% Profiler Analysis

O histogram

* 64 % execution time spent idling for data page fault

d linear_regression

* 63 % execution time spent idling for data page fault

d word_count

* 28 % of its execution time in SOrk() called inside the memory
allocator

* 27 % of execution time idling for data pages

(d Memory allocator and mmap () turned out to be the bottleneck
(Not the physical I/O problem

* OS buffer cache warmed up by repeating the same experiment with
the same input

Yoo, Phoenix2 October 6, 2009

30

% Memory Allocator Scalability

30

25

|/
20 ﬁ\\

S //\\ =&—malloc
©
E'g’_ 15 ; =8 mtmalloc
“ 10 /\ hoard

\ =>&=libumem

5 - ==libumem_mmap

O T T T T T T T T 1
1 2 4 8 16 32 64 128 256

#threads
Memory Allocator Scalability Comparison on word_count

O sbrk() scalability a major issue
* Assingle user-level lock serialized accesses
* Per-address space locks protected in-kernel virtual memory objects

O mmap() even worse

Yoo, Phoenix2 October 6, 2009

mmap() Scalability

 Microbenchmark: mmap ()user file and calculate the sum by
streaming through data chunks

10
9
8 <
7
S 6 Y
3 . / N sk
g / ~B-64k
3 , 4m
2 L 256m
1 —M
0

1 2 4 8 16 32 64 128 256

#threads
mmap () Microbenchmark Scalability

d mmap() alone does not scale

 Kernel lock serialization on per process page table

Yoo, Phoenix2 October 6, 2009

32

%

Conclusion

 Multi-layered optimization approach proved to be effective

* Average 2.5x speedup, maximum |9x
1 OS scalability issues need to be addressed for further scalability

* Memory management and I/O

* Opens up a new research opportunity

Yoo, Phoenix2 October 6, 2009

33

Questions?

(d The Phoenix System for MapReduce Programming, v2.0

* Publicly available at http://mapreduce.stanford.edu

Yoo, Phoenix2 October 6, 2009

34

