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Talk in a Nutshell 

Scaling a shared-memory MapReduce system on a 256-thread 

machine with NUMA characteristics 

Major challenges & solutions 

• Memory mgmt and locality => locality-aware task distribution 

• Data structure design => mechanisms to tolerate NUMA latencies 

• Interactions with the OS => thread pool and concurrent allocators 

Results & lessons learnt  

• Improved speedup by up to 19x (average 2.5x) 

• Scalability of the OS still the major bottleneck 



Background 
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MapReduce and Phoenix 

MapReduce 

• A functional parallel programming framework for large clusters 

• Users only provide map / reduce functions 

Map: processes input data to generate intermediate key / value pairs 

Reduce: merges intermediate pairs with the same key 

• Runtime for MapReduce  

Automatically parallelizes computation 

Manages data distribution / result collection 

Phoenix: shared-memory implementation of MapReduce 

• An efficient programming model for both CMPs and SMPs [HPCA’07] 
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Phoenix on a 256-Thread System 

4 UltraSPARC T2+ chips connected by a single hub chip 

1. Large number of threads (256 HW threads) 

2. Non-uniform memory access (NUMA) characteristics 

300 cycles to access local memory, +100 cycles for remote memory 

chip 0 chip 1 

chip 2 chip 3 

hub 

mem 0 

mem 3 mem 2 

mem 1 
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The Problem: Application Scalability 

Baseline Phoenix scales well on a single socket machine 

Performance plummets with multiple sockets & large thread counts 

Speedup on a Single Socket UltraSPARC T2 Speedup on a 4-Socket UltraSPARC T2+ 
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The Problem: OS Scalability 

OS / libraries exhibit NUMA effects as well 

• Latency increases rapidly when crossing chip boundary 

• Similar behavior on a 32-core Opteron running Linux 

Synchronization Primitive Performance on the 4-Socket Machine 



Optimizing the Phoenix Runtime  
on a Large-Scale NUMA System 
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Optimization Approach 

Focus on the unique position of runtimes in a software stack 

• Runtimes exhibit complex interactions with user code & OS 

Optimization approach should be multi-layered as well 

• Algorithm should be NUMA aware 

• Implementation should be optimized around NUMA challenges 

• OS interaction should be minimized as much as possible 

App 

Phoenix Runtime 

OS 

HW 

Algorithmic Level 

Implementation Level 

OS Interaction Level 
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Algorithmic Optimizations 

App 

Phoenix Runtime 

OS 

HW 

Algorithmic Level 

Implementation Level 

OS Interaction Level 



 Yoo, Phoenix2 October 6, 2009 

Algorithmic Optimizations (contd.) 

Runtime algorithm itself should be NUMA-aware 

Problem: original Phoenix did not distinguish local vs. remote threads 

• On Solaris, the physical frames for mmap()ed data spread out across 
multiple locality groups (a chip + a dedicated memory channel) 

• Blind task assignment can have local threads work on remote data 

chip 0 chip 1 

chip 2 chip 3 

hub 

mem 0 

mem 3 mem 2 

mem 1 remote 

access 

remote 

access 

remote 

access 
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Algorithmic Optimizations (contd.) 

Solution: locality-aware task distribution 

• Utilize per-locality group task queues 

• Distribute tasks according to their locality group 

• Threads work on their local task queue first, then perform task stealing 

chip 0 chip 1 

chip 2 chip 3 

hub 

mem 0 

mem 3 mem 2 

mem 1 
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Implementation Optimizations 

App 

Phoenix Runtime 

OS 

HW 

Algorithmic Level 

Implementation Level 

OS Interaction Level 
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Implementation Optimizations (contd.) 

Runtime implementation should handle large data sets efficiently 

Problem: Phoenix core data structure not efficient at handling large-scale data 

Map Phase 

• Each column of pointers amounts to a fixed-size hash table 

• keys_array and vals_array all thread-local 
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Implementation Optimizations (contd.) 

Reduce Phase 

• Each row amounts to one reduce task 

• Mismatch in access pattern results in remote accesses 

1 

“orange” 

“orange” 

reduce task index 

2 4 1 

2 4 1 1 

Copy and pass to 
user reduce function 

keys_array 

vals_array 

vals_array 

keys_array 
remote 

access 

2-D array of pointers 

5 1 3 1 

5 3 1 1 
large chunk of 

contiguous 

memory 

remote 

access 
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Implementation Optimizations (contd.) 

“apple” 

keys_array 

2 

vals_array 

4 

“banana” 

“orange” 

“pear” 

Solution 1: make the hash bucket count user-tunable 

• Adjust the bucket count to get few keys per bucket 

2-D array of pointers 
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Implementation Optimizations (contd.) 

Solution 2: implement iterator interface to vals_array 

• Removed copying / allocating the large value array 

• Buffer implemented as distributed chunks of memory 

• Implemented prefetch mechanism behind the interface 

1 

“orange” 

“orange” 

reduce task index 

2 4 1 

keys_array 

vals_array 

vals_array 

keys_array 

2-D array of pointers 

5 1 3 1 

&vals_array 

Expose iterator to 
user reduce function 

&vals_array 2 4 1 1 

Copy and pass to 
user reduce function 

5 3 1 1 

prefetch! 
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Other Optimizations Tried 

Replace hash table with more sophisticated data structures 

• Large amount of access traffic  

• Simple changes negated the performance improvement 

E.g., excessive pointer indirection 

Combiners 

• Only works for commutative and associative reduce functions 

• Perform local reduction at the end of the map phase 

• Little difference once the prefetcher was in place 

Could be good for energy 

See paper for details 
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OS Interaction Optimizations 

App 

Phoenix Runtime 

OS 

HW 

Algorithmic Level 

Implementation Level 

OS Interaction Level 
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OS Interaction Optimizations (contd.) 

Runtimes should deliberately manage OS interactions 

1. Memory management => memory allocator performance 

• Problem: large, unpredictable amount of intermediate / final data 

• Solution 

Sensitivity study on various memory allocators 

At high thread count, allocator performance limited by sbrk() 

2. Thread creation => mmap() 

• Problem: stack deallocation (munmap()) in thread join 

• Solution 

Implement thread pool 

Reuse threads over various MapReduce phases and instances 



Results 
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Experiment Settings 

4-Socket UltraSPARC T2+ 

Workloads released in the original Phoenix 

• Input set significantly increased to stress the large-scale machine 

Solaris 5.10, GCC 4.2.1 –O3 

Similar performance improvements and challenges on a 32-

thread Opteron system (8-sockets, quad-core chips) running 

Linux 
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Scalability Summary 

Significant scalability improvement 

Scalability of the Original Phoenix Scalability of the Optimized Version 

workloads scale up to 
256 threads 

limited by OS scalability issues 
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Execution Time Improvement 

Optimizations more effective for NUMA 

Relative Speedup over the Original Phoenix 

little variation 
average: 1.5x, max: 2.8x 

significant improvement 
average: 2.53x, max: 19x 
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Analysis: Thread Pool 

kmeans performs a sequence of MapReduces 

• 160 iterations, 163,840 threads 

Thread pool effectively reduces the number of calls to munmap() 

threads before after

8 20 10

16 1,947 13

32 4,499 18

64 9,956 33

128 14,661 44

256 14,697 102

Number of Calls to munmap() on kmeans 

kmeans Performance Improvement due to Thread Pool 

3.47x improvement 
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Analysis: Locality-Aware Task Distribution 

Locality group hit rate (% of tasks supplied from local memory) 

Significant locality group hit rate improvement under NUMA 
environment 

Locality Group Hit Rate on string_match 

forced misses result 

in similar hit rate 

improved hit rates 
= improved performance 
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Analysis: Hash Table Size 

No single hash table size worked for all the workloads 

• Some workloads generated only a small / fixed number of unique keys 

• For those that did benefit, the improvement was not consistent 

Recommended values provided for each application 

word_count Sensitivity to Hash Table Size 

trend reverses with more 
threads 

kmeans Sensitivity to Hash Table Size 

no thread count leads 

to speedup 



Why Are Some Applications Not Scaling? 
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Non-Scalable Workloads 

Non-scalable workloads shared two common trends 

1. Significant idle time increase 

2. Increased portion of kernel time over total useful computation 

Execution Time Breakdown on histogram 

idle time increase 

kernel time increases 

significantly 
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Profiler Analysis 

histogram 

• 64 % execution time spent idling for data page fault 

linear_regression 

• 63 % execution time spent idling for data page fault 

word_count 

• 28 % of its execution time in sbrk() called inside the memory 

allocator 

• 27 % of execution time idling for data pages 

Memory allocator and mmap()turned out to be the bottleneck 

Not the physical I/O problem 

• OS buffer cache warmed up by repeating the same experiment with 

the same input 
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Memory Allocator Scalability 

Memory Allocator Scalability Comparison on word_count 

sbrk() scalability a major issue 

• A single user-level lock serialized accesses 

• Per-address space locks protected in-kernel virtual memory objects 

mmap() even worse 
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mmap() Scalability 

Microbenchmark: mmap()user file and calculate the sum by 

streaming through data chunks 

mmap() Microbenchmark Scalability

mmap() alone does not scale 

Kernel lock serialization on per process page table 
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Conclusion 

Multi-layered optimization approach proved to be effective 

• Average 2.5x speedup, maximum 19x 

OS scalability issues need to be addressed for further scalability 

• Memory management and I/O 

• Opens up a new research opportunity 
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Questions? 

The Phoenix System for MapReduce Programming, v2.0 

• Publicly available at http://mapreduce.stanford.edu 


