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% Talk in a Nutshell

1 Scaling a shared-memory MapReduce system on a 256-thread
machine with NUMA characteristics

1 Major challenges & solutions
* Memory mgmt and locality => locality-aware task distribution
* Data structure design => mechanisms to tolerate NUMA latencies

* Interactions with the OS => thread pool and concurrent allocators

1 Results & lessons learnt
* Improved speedup by up to 19x (average 2.5x)
* Scalability of the OS still the major bottleneck
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% MapReduce and Phoenix

1 MapReduce

* A functional parallel programming framework for large clusters
* Users only provide map / reduce functions
" Map: processes input data to generate intermediate key / value pairs

" Reduce: merges intermediate pairs with the same key

* Runtime for MapReduce
" Automatically parallelizes computation

® Manages data distribution / result collection

 Phoenix: shared-memory implementation of MapReduce
* An efficient programming model for both CMPs and SMPs [HPCA’07]
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Phoenix on a 256-Thread System

1 4 UltraSPARC T2+ chips connected by a single hub chip
|. Large number of threads (256 HW threads)

2. Non-uniform memory access (NUMA) characteristics

® 300 cycles to access local memory, +100 cycles for remote memory

m m
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The Problem: Application Scalability
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Speedup on a 4-Socket UltraSPARC T2+

[ Baseline Phoenix scales well on a single socket machine

1 Performance plummets with multiple sockets & large thread counts
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The Problem: OS Scalability
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Synchronization Primitive Performance on the 4-Socket Machine

] OS / libraries exhibit NUMA effects as well

* Latency increases rapidly when crossing chip boundary

* Similar behavior on a 32-core Opteron running Linux

Yoo, Phoenix2

October 6, 2009



)

Optimizing the Phoenix Runtime
on a Large-Scale NUMA System




% Optimization Approach

t t Algorithmic Level

Implementation Level

‘ ‘ OS Interaction Level

O Focus on the unique position of runtimes in a software stack

* Runtimes exhibit complex interactions with user code & OS

1 Optimization approach should be multi-layered as well
* Algorithm should be NUMA aware
* Implementation should be optimized around NUMA challenges
* OS interaction should be minimized as much as possible
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Algorithmic Optimizations

t t Algorithmic Level

Implementation Level

‘ ‘ OS Interaction Level
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Algorithmic Optimizations (contd.)

Runtime algorithm itself should be NUMA-aware

O Problem: original Phoenix did not distinguish local vs. remote threads

* On Solaris, the physical frames for mmap()ed data spread out across
multiple locality groups (a chip + a dedicated memory channel)

* Blind task assignment can have local threads work on remote data
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Algorithmic Optimizations (contd.)

O Solution: locality-aware task distribution
* Utilize per-locality group task queues
* Distribute tasks according to their locality group

* Threads work on their local task queue first, then perform task stealing

m ﬁ

Yoo, Phoenix2 October 6, 2009

hub

12



Implementation Optimizations

t t Algorithmic Level

Implementation Level

‘ ‘ OS Interaction Level
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% Implementation Optimizations (contd.)

Runtime implementation should handle large data sets efficiently

L Problem: Phoenix core data structure not efficient at handling large-scale data

L Map Phase

* Each column of pointers amounts to a fixed-size hash table
® Kkeys array and vals_array all thread-local

map thread id
num_map_threads

””) Z too many —
o keys buffer

> reallocations

%asks

h(‘“oran

num_red @e

2-D array of pointers

keys_array

Yoo, Phoenix2 October 6, 2009 14



i NN
4 U o

Implementation Optimizations (contd.)

(] Reduce Phase

* Each row amounts to one reduce task

* Mismatch in access pattern results in remote accesses
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% Implementation Optimizations (contd.)

L Solution |: make the hash bucket count user-tunable

* Adjust the bucket count to get few keys per bucket
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Implementation Optimizations (contd.)

[ Solution 2: implement iterator interface to vals_array
* Removed copying / allocating the large value array
e Buffer implemented as distributed chunks of memory
* Implemented prefetch mechanism behind the interface
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% Other Optimizations Tried

1 Replace hash table with more sophisticated data structures
* Large amount of access traffic

* Simple changes negated the performance improvement

" E.g., excessive pointer indirection

(d Combiners
* Only works for commutative and associative reduce functions
* Perform local reduction at the end of the map phase

* Little difference once the prefetcher was in place

" Could be good for energy

 See paper for details
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OS Interaction Optimizations
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% OS Interaction Optimizations (contd.)

Runtimes should deliberately manage OS interactions

|. Memory management => memory allocator performance
* Problem: large, unpredictable amount of intermediate / final data

* Solution
® Sensitivity study on various memory allocators

® At high thread count, allocator performance limited by sbrk()

2. Thread creation => mmap()
* Problem: stack deallocation (nunmap()) in thread join

* Solution
" Implement thread pool

" Reuse threads over various MapReduce phases and instances
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Experiment Settings

1 4-Socket UltraSPARC T2+

1 Workloads released in the original Phoenix

* Input set significantly increased to stress the large-scale machine

4 Solaris 5.10, GCC 4.2.1 -O3

 Similar performance improvements and challenges on a 32-
thread Opteron system (8-sockets, quad-core chips) running
Linux
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Scalability Summary
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[ Significant scalability improvement
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1 Optimizations more effective for NUMA
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Analysis: Thread Pool
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L kmeans performs a sequence of MapReduces
* 160 iterations, 163,840 threads
L Thread pool effectively reduces the number of calls to munmap ()
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Analysis: Locality-Aware Task Distribution

1 Locality group hit rate (% of tasks supplied from local memory)

1 Significant locality group hit rate improvement under NUMA
environment
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Analysis: Hash Table Size
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[ No single hash table size worked for all the workloads
* Some workloads generated only a small / fixed number of unique keys
* For those that did benefit, the improvement was not consistent

J Recommended values provided for each application
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Why Are Some Applications Not Scaling?
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Execution Time Breakdown on histogram

J Non-scalable workloads shared two common trends

|. Significant idle time increase

2. Increased portion of kernel time over total useful computation
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% Profiler Analysis

O histogram

* 64 % execution time spent idling for data page fault

d linear_regression

* 63 % execution time spent idling for data page fault

d word_count

* 28 % of its execution time in SOrk() called inside the memory
allocator

* 27 % of execution time idling for data pages

(d Memory allocator and mmap () turned out to be the bottleneck
( Not the physical I/O problem

* OS buffer cache warmed up by repeating the same experiment with
the same input
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% Memory Allocator Scalability
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O sbrk() scalability a major issue
* Assingle user-level lock serialized accesses
* Per-address space locks protected in-kernel virtual memory objects

O mmap() even worse
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mmap() Scalability

 Microbenchmark: mmap ()user file and calculate the sum by
streaming through data chunks
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d mmap() alone does not scale

 Kernel lock serialization on per process page table
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Conclusion

 Multi-layered optimization approach proved to be effective

* Average 2.5x speedup, maximum |9x
1 OS scalability issues need to be addressed for further scalability

* Memory management and I/O

* Opens up a new research opportunity
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Questions?

(d The Phoenix System for MapReduce Programming, v2.0

* Publicly available at http://mapreduce.stanford.edu
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