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Abstract. With the dawn of quantum computers, higher security than 128 bits has
become desirable for primitives and modes. During the past decade, highly secure
hash functions, MACs, and encryption schemes have been built primarily on top of
keyless permutations, which simplified their analyses and implementation due to the
absence of a key schedule. However, the security of these modes is most often limited
to the birthday bound of the state size, and their analysis may require a different
security model than the easier-to-handle secret-permutation setting. Yet, larger state
and key sizes are desirable not only for permutations but also for other primitives
such as block ciphers. Using the additional public input of tweakable block ciphers for
domain separation allows for exceptionally high security or performance as recently
proposed modes have shown. Therefore, it appears natural to ask for such designs.
While security is fundamental for cryptographic primitives, performance is of similar
relevance. Since 2009, processor-integrated instructions have allowed high throughput
for the AES round function, which already motivated various constructions based
on it. Moreover, the four-fold vectorization of the AES instruction sets in Intel’s Ice
Lake architecture is yet another leap in terms of performance and gives rise to exploit
the AES round function for even more efficient designs.
This work tries to combine all aspects above into a primitive and to build upon
years of existing analysis on its components. We propose Pholkos, a family of (1)
highly efficient, (2) highly secure, and (3) tweakable block ciphers. Pholkos is no
novel round-function design, but utilizes the AES round function, following design
ideas of Haraka and AESQ to profit from earlier analysis results. It extends them
to build a family of primitives with state and key sizes of 256 and 512 bits for
flexible applications, providing high security at high performance. Moreover, we
propose its usage with a 128-bit tweak to instantiate high-security encryption and
authentication schemes such as SCT, ΘCB3, or ZAE. We study its resistance against
the common attack vectors, including differential, linear, and integral distinguishers
using a MILP-based approach and show an isomorphism from the AES to Pholkos-
512 for bounding impossible-differential, or exchange distinguishers from the AES.
Our proposals encrypt at around 1–2 cycles per byte on Skylake processors, while
supporting a much more general application range and considerably higher security
guarantees than comparable primitives and modes such as PAEQ/AESQ, AEGIS,
Tiaoxin346, or Simpira.
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1 Introduction
Large-state Block Ciphers. The capabilities of quantum computing threaten the security
of many cryptographic algorithms. While this threat is of strictly theoretical nature at
the moment, it might become relevant sooner than expected. Symmetric-key systems are
usually unaffected by Shor’s algorithm [Sho97], yet Grover’s algorithm [Gro96] is supposed



Table 1: AESQ-like permutations and large-state block ciphers. RF = round function, Perm. =
permutation, (T)BC = (tweakable) block cipher, SPN = substitution-permutation network.

Construction Type Base Versions (n-k-t in bits)

Permutations
AESQ [BK14a] Perm. AES RF 512
Haraka π256 v2 [KLMR16b] Perm. AES RF 256
Haraka π512 v2 [KLMR16b] Perm. AES RF 512

Block ciphers
ThreeFish [FLS+10] TBC ARX 256-256-128 512-512-128 1024-1024-128
Kalyna [Oli15] BC SPN 128-128 256-256 512-512

to reduce the complexity of the exhaustive key search from O(2n) to O(2n/2) operations
(cf. [ABB+15]). Thus, it is commonly recommended to switch to key lengths of at least
256 bits for 128-bit security [ABB+15, Lil16]. Therefore, primitives with larger block and
key sizes can provide long-term security also in the presence of quantum computers.
Doubling the key length is a useful rule of thumb; however the true impact remains to be
understood better. Kaplan et al. [KLLN16] introduced two settings of quantum attacks
(LQ1 and LQ2), wherein the adversary can employ quantum-computational resources.
While it can ask only conventional queries and perform quantum evaluations in the former,
the latter model also allows quantum queries. Kaplan et al. found that the former model
might lead to little gains compared to classical attacks when the key length is similar to
the block length. Yet, attacks can have significant gains when the key is longer. Thus, an
increase of both block and key length can be effective in both models.

Larger Block Sizes come along with higher security guarantees in modes and reduce the
risk of missed key updates. Usually, block ciphers shall provide security for up to 2min(k,n)

encryptions, where k denotes the key and n the block length. Numerous widespread
schemes and modes for block-cipher-based authentication, encryption, or authenticated
encryption limit the security to the birthday bound of the primitive, i.e., to at most 2n/2

calls to the primitive. This includes the well-known modes CTR, CBC, GCM [MV04], or
OCB [Rog03]. While birthday-bound collisions are often beyond reach when ciphers with
state sizes of n = 128-bit are employed, the key must be changed well before the processed
data reaches the bound. Rekeying can – while easily be forgotten – lead to severe privacy
breaches, as has been demonstrated for 64-bit ciphers [BL16]. Primitives with larger block
sizes can encrypt more data under the same key, decreasing this risk.
For settings that need preimage or collision requirements, existing block-cipher implemen-
tations allow being transformed into a compression function, e.g., using the Davies-Meyer,
or Matyas-Meyer-Oseas conversions. Though, their collision resistance is also limited to
2n/2 calls. Similarly, the security of Wegman-Carter MACs [WC79] (as in GCM) falls
down to the birthday bound. While the complexity class of the attacks is independent of
the block and key sizes, increasing n obviously increases the practical security of these
schemes compared to instantiations with smaller block sizes.

The AES [NIS01] is probably the most widespread block cipher. Since its publication,
it received vast amounts of analysis and earned the trust of the cryptographic community.
Constructions based on the AES round function can profit not only from the existing anal-
ysis of the AES, but also from highly performant hardware instruction sets in widespread
desktop, server, and mobile processors. Using these operations as building blocks promises
great performance on these platforms. From the tenth-generation core-i models, Intel
provided the _mm512_aesenc_epi128 instruction that is expected to further increase the
throughput by a factor of roughly four [DGK19, Int17, Int19].
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Few Block Ciphers and many keyless permutations – already transform larger states
based on the AES. Among AES-based constructions, the AESQ permutation under the
CAESAR candidate PAEQ [BK14a, BK14b] is an AES-based 512-bit permutation that
transforms four parallel AES-states. Each of these substates is transformed individually
through two rounds of AES (a step). To spread the diffusion over the complete state,
after each but the last step, the 32-bit words of all substates are mixed by a word-wise
permutation. Despite its state size, its designers claimed a security of only 256-bits. The
hash function Haraka (v1) [KLMR16a] and Haraka v2 [KLMR16b] use a similar approach;
we focus on v2 hereafter. Haraka-n employs a permutation πn over Fn2 that consists of five
steps of an AESQ-like design. The hash function then uses πn with a simple Davies-Meyer
feed-forward, and truncates the output to 256 bits for the version with larger state. Since
the designers focused on 256-bit (second-)preimage security for short inputs, they could
reduce the number of steps to five. It differs from AESQ only in the chosen round constants
and the permutation between the steps. While the first version suffered from invariants
that allowed collision and preimage attacks [Jea16], Haraka v2 [KLMR16b] addressed the
observations by Jean with an appropriate choice of round constants.
Besides permutations, a few large-state block ciphers exist in literature, e.g., the ThreeFish
family underneath the SHA-3 finalist Skein [FLS+10] is based on modular addition, XOR
and rotations. Moreover, the Ukrainian block-cipher standard Kalyna [Oli15] is a recent
Rijndael-like SPN with state and key lengths of 128, 256, and 512 bits.
Furthermore, three works considered the construction of keystream generators from the
AES round function: AEGIS [WP15], Tiaoxin346 [Nik16], and the constructions by Jean
and Nikolić [JN16]. They received considerable attention from the community for their
very high performance, that is 0.25 (AEGIS 128L [WP15]), 0.1875 (Tiaoxin346 [Nik16]) or
even only 0.125 cycles per byte for particular choices from [JN16], respectively. However,
they represent key-stream generators whose security has been limited to 128 bits under
nonce-respecting adversaries. In contrast, this work aims at primitives with flexible usage
and high security guarantees without nonces.

Tweakable Block Ciphers (TBCs) [LRW02] serve useful for modes that demand a
primitive with several domains. They add an additional public input called the tweak to the
common state and key that can be used as efficient means for separating domains, boosting
the security e.g., in MACs [CLS17, IMPS17, Nai15], modes [PS16], and authenticated
encryption schemes [JNP16, BGIM19].
Various block-cipher-based modes demand multiple independent primitive instances for
their security arguments to hold, e.g., CBC-MAC [ISO99], GCM-SIV-r [IM16], or En-
crypted Davies Meyer (EDM) [MN17]. In practice, this is realized by multiple independent
keys, which implies more memory, and additional operations. While some modes have seen
follow-up proposals that could reduce the number of keys (e.g., CMAC [Dwo16] that is
MAC5 in [ISO11] for CBC-MAC or the single-permutation variant of EDM [CS18]), their
design and analysis are more sophisticated and in some cases need to maintain additional
state or operations compared to a single-primitive variant.
For such purposes, a small tweak space suffices to represent a small number of domains and
simplify the designs greatly, which benefits the time and focus of cryptanalyst. Though, it
opens new attack vectors, where the attacker can utilize relations between different tweaks,
and a strategy is needed. One such well-studied approach for incorporating a tweak into a
key schedule, Jean et al. [JNP14] proposed the TWEAKEY approach for a schedule that
treated key and tweak words in a unified manner.

Contribution. We propose Pholkos, a family of large-state tweakable block ciphers based
on the AES round function and the design strategy of two-round steps from Haraka v2
and AESQ. Thus, it can benefit greatly from the existing analysis, as well as the high
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performance of the AES on modern CPUs. The members of Pholkos possesses block sizes
of n ∈ {256, 512} bits, respectively and employ a key that matches the block length,
or a 256-bit key, in conjunction with a 128-bit tweak. In comparison with AESQ and
Haraka, our proposal adds a tweakey schedule for highly performant encryption with high
security guarantees. Moreover, our proposal targets higher security guarantees than AEGIS,
Tiaoxin346, or the proposals from [JN16].
On Intel Skylake, Pholkos can encrypt at approximately 1.5 cycles per byte, depending
on the version. For all constructions, we show their security according to their key sizes
in the standard and the related-tweak model against differential, linear, and integral
distinguishers. For the variants with 256-bit key, we claim 256-bit security also in the
related-tweakey model. Besides the most important attacks, we provide security arguments
w.r.t. zero-correlation, boomerang-type, yoyo, mixture, and meet-in-the-middle attacks.

Outline. In what remains, we briefly provide basic notations in Section 2, before we
specify Pholkos in Section 3. Section 4 will give a design rationale. Thereupon, an initial
security analysis is given in Section 5, followed by a short comment on the software
implementation of Pholkos and its performance in Section 6 and Section 7 concludes.

2 Preliminaries
General Notations. We denote by F2 the finite field of characteristic two. For positive
integer n, we denote by Fn2 the field of n-element vectors from F that can be represented
by n-bit strings. We represent functions by uppercase and indices by lowercase letters.
{0, 1}n is the set of all n-bit strings and {0, 1}∗ the set of bit strings of arbitrary length.
Let X,Y ∈ Fn2 ; we index bits as X = (Xn−1 . . . X1X0) where Xn−1 is the most significant
and X0 the least significant bit of X. For t ≤ n, msbt(X) returns the t most significant
bits, and lsbt(X) the t least significant bits of X. For a given set X , let Perm(X ) denote
the set of all permutations over X . For a bit string X, we write (X0, . . . , Xw−1) n←− X for
the unique splitting of X into n-bit parts s. t. |Xi| = n for 0 ≤ i < w − 1, |Xw−1| ≤ n,
and (X0 ‖ . . . ‖Xw−1) = X.

Brief Definition of The AES-128. We assume that the reader is already familiar with
the details of the AES, so that a brief summary in the following will suffice. Details can
be found in, e.g., [DR02, NIS01]. The AES-128 is a substitution-permutation network
(SPN) that transforms 128-bit inputs through ten rounds, consisting of SubBytes (SB),
ShiftRows (SR), MixColumns (MC), and a round-key addition (AK) with a round key Ki.
Before the first round, a whitening key K0 is XORed to the state; the final round omits
the MixColumns operation. We write Si for the state after Round i, and Si[j] for the j-th
byte, for 0 ≤ i ≤ 10 and 0 ≤ j ≤ 15. Though, we will interchangeably also use the indices
for a 4× 4-byte matrix, i.e., 0, 0 for Byte 0, and 3, 3 for Byte 15. So, the byte order is

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 .
We assume that two-dimensional indices are taken modulo four to simplify the write-up.
R[Ki] =def AK[Ki] ◦ MC ◦ SR ◦ SB denotes one application of the round function. We
denote by R̂[Ki] =def AK[Ki] ◦ SR ◦ SB the application of the round function without the
MixColumns operation and define R̂[Ki]−1 in the natural manner. Sr,SB, Sr,SR, and Sr,MC

denote the states in the r-th round directly after the application of SubBytes, ShiftRows,
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Table 2: Versions and parameters of Pholkos. Std. =
standard model, RT = related-tweak, RTK = related-
tweakey.

Sizes (bits) #Steps Security (bits)

Version n k t s Std. RT RTK

Pholkos-256-256 256 256 128 8 256 256 256
Pholkos-256-perm 256 – 128 12 256 256 256

Pholkos-512-256 512 256 128 10 512 512 256
Pholkos-512-512 512 512 128 10 512 256 –
Pholkos-512-perm 512 – 128 14 512 256 –

R[RTKi0..3] R[RTKi4..7] R[RTKi8..11] R[RTKi12..15]

R[RTKi+1
0..3] R[RTKi+1

4..7] R[RTKi+1
8..11] R[RTKi+1

12..15]

π512

Figure 1: Step of Pholkos-512.

and MixColumns, respectively. Moreover, we will use M for the MixColumns matrix. For
the AES, MixColumns interprets each input byte as element in F28 with the irreducible
polynomial p(x) = x8 + x4 + x3 + x + 1. In the remainder, we use F28 to refer to this field.

3 Specification
This section specifies the family of tweakable block ciphers Pholkos. We refer to the
instances as Pholkos-n-k, with a block size of n, a key size of k, and a tweak size of 128
bits. Moreover, to address all instances of the same block size, we will use Pholkos-n. In
particular, we consider Pholkos-256 and Pholkos-512. Furthermore, we refer to the to the
unkeyed permutations as Pholkos-n-perm.

Components. Pholkos employs a k-bit key K, a 128-bit tweak T , and an n-bit input M .
Pholkos is an SPN built using the wide-trail strategy and the same core principle as for
AESQ or Haraka. The plaintext is transformed to a ciphertext block C through s steps. We
denote the state after Round i by Xi. So, the state X0 is initialized with the plaintext M .
The n-bit state Xi is partitioned into v =def n/128 substates of 128 bits. These substates
are split again into four 32-bit words each: Xi = (Xi

0, . . . , X
i
w−1). A cell (or byte) is an

element in F28 as for the AES. We use w =def 4v for the number of words and m =def 32
for the word length in bits.

3.1 Step Function
A step transforms the substates in rs =def 2 AES rounds individually. Thereupon, a word-
wise permutation π ∈ Perm(Zw) shuffles the words across the substates. An AES round
refers to the operation sequence of R[RTKi

j ](Xi−1
j ) = ATK[RTKi

j ]⊕MC(SR(SB(Xi−1
j )))

to a substate Xi−1
j . We use R̂[RTKi

j ](Xi−1
j ) = ATK[RTKi

j ] ⊕ SR(SB(Xi−1
j )) for the

sequence with MixColumns omitted. We call the addition of the round tweakey RTKi
j

AddRoundTweakey (ATK). For Pholkos-512, this is illustrated in Figure 1.
Initially, the round tweakey RTK0 is XORed into the plaintext such that a total of
rs · s + 1 round tweakeys are required for a full encryption. We denote by RTKi =
(RTKi

0, . . . , RTK
i
w−1) the round tweakey for the end of Round i. Moreover, we denote by

s the number of steps, by rs =def 2 the number of rounds per step, and thus by r =def s · rs
the total number of rounds. Rounds are counted from 1..r; the numbers of proposed rounds
for the instances are summarized in Table 2.
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Algorithm 1 Definition of Pholkos-n-k.
11: function Encrypt T

K(M)
12: RTK ← Schedule(K,T )
13: X0 m←−M ⊕ RTK0

14: for i← 1..s− 1 do
15: Y rs·i ← Step(RTK,Xrs·(i−1))
16: Xrs·i ← PermuteWords(πn, Y rs·i)
17: Y rs·s ← Step(RTK,Xrs·(s−1))
18: Xrs·i ← Y rs·i

19: C ← (Xs0 ‖ · · · ‖X
s
w−1)

20: return C

21: function Step(RTK,Xi)
22: (RTK0, . . . , RTKr)← RTK

23: (Xi0, . . . , X
i
w−1)← Xi

24: for `← 1..rs do
25: for j ← 0..w − 1 do
26: if i + ` < r then . Words
27: Xi+`

j
← R[RTKi+`

j
](Xi+`

j
)

28: else . Words
29: Xi+`

j
← R̂[RTKi+`

j
](Xi+`

j
)

30: return Xi+rs

31: function Schedule(K,T )
32: K0 ← ϕk(K)
33: T 0 ← T
34: RTK0 ← γ(RC0, K0, T 0)
35: for i← 1..r do
36: T i ← τ(T i−1)
37: Ki ← κ(Ki−1)
38: RTKi ← γ(RCi, Ki, T i)
39: return (RTK0, . . . , RTKr)

41: function γ(RCi, Ki, T i)
42: for j ← 0..w − 1 do . Words
43: RTKi

j ← Ki
j ⊕ T

i
j mod 4

44: RTKi
0 ← RTKi

0 ⊕ RC
i

45: return (RTKi
0, . . . , RTK

i
w−1)

46: function PermuteWords(π, Y i)
47: for j ← 0..w − 1 do . Words
48: Xij ← Y iπ(j)

49: return Xi

51: function Decrypt T
K(C)

52: Xrs·s m←− C
53: RTK ← Schedule(K,T )
54: Y rs·s ← Xrs·s

55: Xrs·(s−1) ← Step−1(RTK, Y rs·s)
56: for i← s down to 1 do
57: Y rs·i ← PermuteWords(π−1

n , Xrs·i)
58: Xrs·(i−1) ← Step−1(RTK, Y rs·i)
59: M ← (X0

0 ‖ · · · ‖X
0
w−1)⊕ RTK0

60: return M

61: function Step−1(RTK, Y i)
62: (RTK0, . . . , RTKr)← RTK

63: (Xi0, . . . , X
i
w−1)← Y i

64: for `← 1..rs do
65: for j ← 0..w − 1 do
66: if i + ` < r then . Words
67: Xi−`

j
← R[RTKi+1−`

j
]−1(Xi+1−`

j
)

68: else . Words
69: Xi−`

j
← R̂[RTKi+1−`

j
]−1(Xi+1−`

j
)

70: return Xi−rs

71: function κ(π,Ki−1)
72: for j ← 0..w − 1 do
73: Ki

j ← Ki−1
π(j)

74: for j ← 0..v − 1 do . Substates
75: Ki

j ← τ(Ki
j)

76: for b← 0..15 do . Cells
77: Ki

j [b]← 2 ·Ki
j [b]

78: return (Ki
0, . . . , K

i
w−1)

81: function τ(Ki
j)

82: Lij ← Ki
j

83: for b← 0..15 do . Cells
84: Lij [b] = Ki

j [πτ (b)]
85: return Lij

86: function ϕk(K)
87: if |K| ≥ k then
88: return K
89: return msbk(K ‖MA ·K ‖MB ·K ‖MC ·K)

For the plaintext X0 and for all odd values of i, the state Xi represents the state after the
i-th round. For even values i > 0, we denote the state directly after the i-th round and
before the application of π as Y i; Xi is used to refer to the state directly after the words
of Y i have been permuted by π. So, Xr represents the ciphertext.

The Word-wise Permutation π differs between the proposed instantiations of Pholkos,
and from those used in Haraka and AESQ. We denote the word-wise permutations in
Pholkos-n as πn. Each permutation πn transfers the word at index Y iπ(j) to position j:
Xi
j ← Y iπ(j). Algorithm 1 provides the specifications of the permutation, Figure 1 and 2f

illustrate them for clarity. In the final step, the permutation is omitted and the final AES
round functions are invoked without the MixColumns operation similarly as for the AES.

3.2 Tweakey Schedule
The tweakey schedule [JNP14] generates round tweakeys from the secret key and tweak.
While the schedule of Pholkos follows the general route from the STK, our proposal keeps
the lanes for the tweak and the key separated, both of which are processed in parallel as
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Table 3: The word-wise permutations π for the individual versions.
i

Permutation 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π256 0 5 2 7 4 1 6 3
π512 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

πτ 11 12 1 2 15 0 5 6 3 4 9 10 7 8 13 14

(a) High-level view on the tweakey schedule. (b) Function ϕ. (c) Function κ.

(d) γ of Pholkos-256. (e) γ of Pholkos-512. (f) π256.

Figure 2: Components of the tweakey schedule of Pholkos.

depicted in Figure 2a.1 The schedule initializes a key state K0 ← K and a tweak state
T 0 ← T . Each tweakey schedule round applies in parallel the update function τ to obtain
T i ← τ(T i−1) from the previous tweak state and κ to compute Ki ← τ(Ki−1), where τ is
a permutation of the cells. The lanes are then combined in a function γ to derive the round
tweakey RTKi ← γ(Ki, T i, RCi), where RCi is the round constant for the i-th round.
The initial round tweakey RTK0 is derived before the first call to the update functions.
In γ, the tweak state T i is XORed to every 128-bit substate of the key state Ki; the round
constant RCi is XORed to the first substate of Ki as visible in Figure 2:

RTKi
j ←

{
Ki
j ⊕ T ij mod 4 ⊕RCi if j = 0

Ki
j ⊕ T ij mod 4 otherwise.

The tweak-update function τ is instantiated by πτ . In the key-update function κ, the round
key RKi is first permuted with the word-wise permutation πn from the step permutation.
Next, τ is applied to each substate before each cell of the round key is doubled in F28 .

Round Constants. The round constants in Pholkos are 128-bit constants to destroy
symmetries between and inside the different substates. As for Haraka v2 [KLMR16b], they
are derived from the initial digits of the number π to represent “nothing-up-my-sleeve”
numbers. For self-containment, they are listed in Table 11 in Appendix A. Each member of
Pholkos with r rounds employs the first 2r+ 1 round constants for RTK0 through RTK2r.

Key Expansion. All versions of Pholkos can be used as block cipher with a 256-bit key.
The secret key is initially expanded to the block length by a function ϕ : Fk2 → Fn2 , for

1The term lane is used as equivalent to the term word in [JNP14, Sect. 3.2].
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Pholkos-512. The leftmost 256 bits of the generated key employ the original secret key K.
All subsequent 256-bit chunks are generated from the multiplication of K with a circulant
matrix each. So, the key is interpreted as word vector K = (K0, . . . ,K7). To create up to
512 bits of key material, a binary matrix MA ∈ (F232)8×8 is used, whose entries consist of
{0, 1} and that possesses branch number of four: MA =def circ (11001000).The expanded
key words are named (K8, . . . ,K15) =def MA · (K0, . . . ,K7)>.

Security Claims. For all variants of Pholkos-n-k, we claim security of up to D · T ∈
O(2min(k,n)) for T time and D data in the standard and related-tweak model against
known attacks, which is equivalent to saying min(k, n) bits of security. As the standard
model, we mean that the adversary has control over only the plaintext or ciphertexts,
but the tweak is constant and the key random and secret. In the related-tweak model, it
can also choose the tweaks. For the permutations Pholkos-n-perm, we claim n-bit security
against structural attacks (rebound etc.) in the standard and the related-tweak model.
In the related-tweakey model, the adversary can choose all parts of the key. Here, we
claim only 256-bit security for Pholkos-256, and Pholkos-512-256. We do not claim any
related-tweakey security for Pholkos-512-512.

4 Design Rationale
This section explains our design choices for the components of Pholkos.

4.1 Step Function
The AES has been subject to a tremendous amount of cryptanalysis, which allows to derive
security bounds more efficiently. Furthermore, common off-the-shelf general-purpose
processors provide hardware instructions that boost its efficiency and allow parallel
execution of multiple instances of the AES round function [Int17, Int19].
The PAEQ designers [BK14b] built their decision on [DLP+09]: two subsequent AES
rounds (without the final MixColumns and AddRoundKey operations) can be viewed as the
application of four parallel independent Super-boxes on input diagonals of 32 bits each.
At the end of the second round, the application of ShiftRows and MixColumns mixes them.
Thus, the AES can be viewed as a five-round SPN with Super-boxes. The branch number
among active input and output columns is maximal, i.e., five. As a result, it is guaranteed
that a single active cell leads to a fully active AES state after two rounds.
This principle has been scaled up by one more iteration by AESQ. Its word permutation
ensured that exactly one out of the four words from each substate will be transferred to each
substate between the steps (as ShiftRows does for the small AES). Consequently, one can also
view four rounds in AESQ (step, word-wise permutation, step) as the parallel application
of four Mega-boxes, a term that had been coined by Daemen et al. [DLP+09]. Again, this
view also yields an SPN with a branch number of five in terms of active substates. The
designers of Haraka [KLMR16a, KLMR16b] experimented also with different permutations
in between, e.g., they employed byte-wise permutations, or blending parts of the state.
Their choice for a similar permutation was performance-driven at the end. Moreover, the
choice of rs = 2 AES rounds is natural since it allows the arguments on the differential
bounds above, plus is minimal for achieving full diffusion inside the individual substates.

4.2 The Choice of The Permutations π

For the permutation over the complete state, three approaches were considered. The first
tried to replace word-wise permutations with a SPARX-like mixing layer. Furthermore, the
effect of increasing the permutation word sizes in order to reduce the number of necessary
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instructions was investigated. 32-bit word-wise permutations promising better security
bounds than those of Haraka and AESQ were searched in order to reduce the necessary
number of steps. We found that word-wise permutations of 32-bit words yielded the best
security and were more performant than the SPARX-like mixing layer for equivalent levels
of security. 16-bit word permutations were too slow for our purpose. In the following, we
will explain why we chose the final permutations.
The permutations of both Haraka and AESQ ensure a lower bound of 150 active S-Boxes
over six steps. One goal of our work was to either find a mixing layer that would improve
this bound, or to show its optimality in the secret-key and the related-tweak model. In
order to reach full diffusion after two steps, each substate must map exactly one word
to each substate after the mixing layer. Since the words are the columns of the substate
and, as explained above, two rounds of the AES round function have a branch number
of five regarding the active columns, all such permutations yield the same lower bound
on the number of active S-Boxes. This is due to the fact, that all columns of a state are
equally probable to be active. If the permutation is changed (e.g. the first word goes
to the second substate instead of the first), the differential trail can simply chose the
word to be active, which goes to the first substate, without decreasing its probability.
The final choice of our permutation was based on the fact that it could be implemented
using the vpblendd instruction which is much faster than the punpckhdq and punpckldq
instructions necessary for other permutations. Thus, the word-wise permutations preserve
symmetries, which renders it crucial that the round constants destroy those symmetries.
Moreover, the permutation for Pholkos-512 is equivalent to the ShiftRows operation of the
AES, which simplifies the application of analysis regarding the AES to Pholkos-512.

4.3 Tweakey Schedule
For a simple description, the round-tweak generation is integrated into the key schedule in
a TWEAKEY-based [JNP14] manner. As core property, it treated key and tweak as unit,
and split both into lanes. [JNP14] proposed STK construction as possible instantiation of
the TWEAKEY schedule, that processes lanes of the block length in parallel. The words
STK0, STK1, . . . are generated by a lane-update function to the previous words, wherein
a function h′ is applied to each cell individually to prevent subsequent cancellations of cell
differences between the lanes.
Three important properties of STK are: (1) key and tweak word sizes are equal, (2) in
each schedule round, each tweak cell is XORed with the same key cell as before, and (3)
each lane is multiplied with a different factor in each round. These properties ensure
that no subsequent rounds cancel differences between the lanes. We decided to use a
tweak of size 128 bits, which suffices for many purposes of the tweak, such as e.g. domain
separation. Moreover, the key and tweak lanes apply different cell-wise permutations.
To ensure the security properties of STK for the tweakey schedule of Pholkos, we made
the following decisions: We split the key into 128-bit substates and XOR the tweak into
each of them. Then, the same cell-wise permutation is applied to all lanes individually to
preserve the position of cells across lanes. Pholkos employs the same permutation πn as in
the mixing layer. Next, the cell position substitution τ is applied to each of these subkeys
and the tweak so that each cell of the tweak gets XORed to the same cells of the key every
round. Since tweak updates are more frequent than key updates, we chose to multiply the
key-lane by two and not that of the tweak. Thus, while we use a smaller tweak than the
key, we are still able to fulfill the properties needed for the security considerations of STK.
As instantiation of πτ , the permutation by Khoo et al. [KLPS17] proved good w.r.t. to
differential and meet-in-the-middle distinguishers in our analysis.
The security analysis can be seen in Section 5. Note that we claim security under the
related-tweakey model only for Pholkos-256 and Pholkos-512-256.
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4.4 Key Expansion

In order to generate 512 bits from a 256-bit key, we chose to use different matrix multipli-
cations. The matrix ensures that the generated keyword is a different combination of the
original key. Furthermore, each state word influences the same number of output words.
Since the matrix possesses a branch number of four, it could be implemented faster than
MDS codes.

5 Preliminary Security Analysis
This section presents our analysis of Pholkos w.r.t. linear and differential cryptanalysis, as
well as bounds for the evaluation of the degrees. We extend our analysis to a preliminary
study of the resistance against boomerangs, integrals and impossible-differential attacks.
Furthermore, we consider adaptions of recent advances in AES-related attacks such as
yoyo and mixture-differential attacks and their applicability to Pholkos. Still, novel attack
vectors may offer advantages to potential adversaries. We motivate the cryptographic
community to derive more sophisticated and fine-grained analysis than we can study.

Existing Attacks on PAEQ and AESQ. Several works have analyzed AESQ, its mode
PAEQ/PPAE [BK14a], as well as Haraka v1 [KLMR16b] and Haraka v2 [KLMR16a]. Due
to the structural similarity, all distinguishers on AESQ apply in similar manner also to
Pholkos-512 when used as a permutation. Moreover, attacks in the secret-key model on
r-round AES-128 may apply – with adaptions – also to 2r-round Pholkos-512.
For PPAE/PAEQ, Saha et al. [SKMC16, SKMC17] proposed meet-in-the-middle attacks
on up to eight rounds with practical complexities. Their core observations was that a
key length of at most 128 bits preserves the knowledge of three quarters of the state bits
after almost three rounds in forward direction. While the knowledge of one fourth of
the ciphertext state preserves the knowledge about one fourth of the state through three
rounds in backward direction, allowing to match in the middle.
More works targeted the internal permutation of PAEQ, i.e., AESQ. Biryukov and Khovra-
tovich considered a CICO attack (constrained-inputs constrained-outputs) [BDPvA11] in
232 on eight rounds. Moreover, they presented a rebound against 12 rounds. Bagheri et
al. [BMS16] reconsidered the rebound attacks, reducing the complexity of the 12-round
analysis to 2128 time and memory, added time-memory trade-offs, and multi-limited-
birthday distinguishers. Most notably, they proposed an extended rebound attack on 16
rounds with 2192 computations. Saha et al. [SRP18] considered yoyo attacks that we will
consider in the corresponding subsection.

Existing Attacks on Haraka. Jean [Jea16] showed five-round collisions on Haraka-256-256
v1 and 10-round preimages on Haraka-512-256 v1 with complexity of 2192. The latter were
possible due to internal symmetries from the choice of the round constants.
The designers of Haraka revised the round constants for v2 [KLMR16b] to address those
attacks. Their security goals targeted only resistance to (second-)preimage attacks. In
[KLMR16b], they presented differential bounds and of meet-in-the-middle attacks on seven
rounds of Haraka-256-256 v2 and eight rounds of Haraka-512-256 v2.
While they disregarded collision attacks, they provided lower bounds for truncated differ-
entials, indicating that there should be no second-preimage attacks for both versions after
five steps, and no collisions for five-step Haraka-256-256 v2 and six-step Haraka-512-256 v2.
Recently, [BDG+19] improved the preimage attacks for up to five steps of Haraka v2.
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Table 4: Existing attacks on AESQ (left), and PPAE/PAEQ as well as Haraka (right). Rds.
= rounds, Mem. = memory, psucc = success probability, Ref. = reference, GaD = guess-and-
determine, Imp. = impossible, Lim. = limited, n/a = not available.

Complexity

#Rds. Type Time Mem. psucc Ref.

8 CICO 232 n/a n/a [BK14a]
8 Yoyo 1 negl. n/a [SRP18]
12 Imp. Yoyo 2126 negl. 0.84 [SRP18]
12 Rebound 2256 2256 0.61 [SRP18]
12 Rebound 2128 negl. 0.83 [BMS16]
12 TMTO 2102.4 2102.4 0.83 [BMS16]
12 TMTO 2128−x/4 2x n/a [BMS16]
16 Rebound 2192 2128 0.83 [BMS16]
16 Lim. birthday 2188 2128 0.83 [BMS16]
16 TMTO 2192+x 2128−x n/a [BMS16]
16 Imp. Yoyo 2126 negl. 0.84 [SRP18]

Complexity

Constr. #Rds. Type Time Mem. psucc Ref.

PAEQ
8 GaD 234 n/a n/a [SKMC17]
8 GaD 266 n/a n/a [SKMC17]
8 GaD 298 n/a n/a [SKMC17]

Haraka
256-256 v1 5 Collision 216 n/a n/a [Jea16]
512-256 v1 10 Preimage 2192 n/a n/a [Jea16]
256-256 v2 7 Preimage 2248 28 n/a [KLMR16b]
512-256 v2 8 Preimage 2504 28 n/a [KLMR16b]
512-256 v2 10 Preimage 2504 28 n/a [BDG+19]

5.1 Differential and Linear Cryptanalysis
Differential Cryptanalysis [BS90] studies the propagation of differences ∆X = X ⊕X ′
between inputs X,X ′ ∈ Fn2 and the difference ∆Y = Y ⊕ Y ′ of their corresponding
outputs Y, Y ′ ∈ Fn2 through a map F . A differential for F is a map ∆X F−→ ∆Y ; if
its probability differs significantly from that for a random permutation, we obtain a
distinguisher. For an r-round iterated cipher E = Rr ◦ · · · ◦ R2 ◦ R1 with round function R,
a differential characteristic is a tuple (∆0, . . . ,∆r) s.t. ∆i−1 Ri−→ ∆i and ∆i ∈ Fn2 for all i.
Let pi =def Pr[∆i−1 R−→ ∆i] for 1 ≤ i ≤ r. Under the assumption of independent uniformly
random round keys plus the Markov-cipher assumption, the probability of a differential
characteristic can be approximated by

∏r
i=1 pi. An r-round differential is a tuple (∆0,∆r)

that encompasses all characteristics with start difference ∆0 and end difference ∆r.
The resistance of AES-like ciphers against differential and linear cryptanalysis is commonly
analyzed by upper bounding the minimal number of active S-boxes for any differential
characteristic – assuming that the transform is an iterated Markov cipher. If the S-box
S possesses a maximal differential probability pmax(S), the number of active S-boxes can
then simply be multiplied with those properties to obtain upper bounds on the probability
of differential characteristics. For the AES S-box, it is well-known that pmax(S) = 2−6.

Linear Cryptanalysis [Mat93] exploits statistical biases in linear relations between input
and output bits. A linear approximation is determined by a pair of masks u, v ∈ Fn2 and
the Boolean function u ·X + v · E(X), where · is the inner product. For x, y ∈ Fn2 , let
x · y =def x · y be the scalar product

∑
i xi · yi in F2. The correlation of an approximation

(u, v) ∈ (Fn2 )2 through E is defined as cor(u, v) =def |{X ∈ Fn2 : u · X ⊕ v · E(X) =
0}| − |{X ∈ Fn2 : u · X ⊕ v · E(X) = 1}|. If E is an iterated transform over multiple
rounds, (u0, ur) represents the linear hull of approximations (u0, u1, . . . , ur−1, ur) for all
ui ∈ Fn2 and i ∈ {1, . . . , r − 1}. If the correlation exceeds cor(u, v) ≥ 2−n/2, one can build
a distinguisher with O(c−2) known plaintexts for E.
In [KLW17], Kranz et al. studied the effect of linear key schedules and tweaks on linear
cryptanalysis. They expressed the correlation as its Fourier coefficients ĉor(u, v) =def∑
X∈Fn2

(−1)u·X⊕v·E(X) = 2n ·cor(u, v). They observed that the distribution of the Fourier
coefficients when subkeys were derived from a linear key schedule follows closely the
distribution of coefficients when the round keys were independent and uniformly random.
Thus, linear key schedules are not expected to considerably enhance linear cryptanalysis.
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Table 5: Lower bounds of numbers of active S-boxes for differential characteristics.

(a) Minimal #active S-boxes for each version of
Pholkos without tweak or key differences; gray =
derived.

#Steps

Primitive 1 2 3 4 5 6 7 8 9 10

Pholkos-256 5 25 35 60 80 100 110 135 140 160
Pholkos-512 5 25 45 80 130 150 170 205 210 230

(b) Minimal #active S-boxes for each version of
Pholkos in the related-tweak model; gray = derived;
underlined = uses tweak differences.

#Steps

Primitive 1 2 3 4 5 6 7 8 9 10

Pholkos-256 2 20 35 40 55 70 75 90 105 110
Pholkos-512 4 25 45 80 84 104 125 160 164 185

(c) Minimal #active S-boxes for each version of
Pholkos in the related-tweakey model; gray = derived;
underlined = uses tweakey differences.

#Steps

Primitive 1 2 3 4 5 6 7 8 9 10

Pholkos-256 0 8 22 22 30 44 44 52 66 66
Pholkos-512 0 10 29 29 39 58 58 68 87 87

(d) Minimal #active S-boxes for Pholkos in the
related-tweakey model with 256-bit key. gray =
derived; underlined = uses tweakey differences.

#Steps

Primitive 1 2 3 4 5 6 7 8 9 10

Pholkos-256 0 8 22 22 30 44 44 52 66 66
Pholkos-512 0 24 48 48 72 96 96 120 144 144

In the same work, they found that no new linear characteristics are introduced from a linear
tweak schedule. So, the analysis of linear trails can focus on the round transformation
through the cipher [BJK+16], which contrasts differential cryptanalysis.
Our analysis benefits further from the symmetries in the AES substates among different
columns. Since the properties of ShiftRows and MixColumns are the same for linear
approximations as for differential characteristics, the lower bounds on the number of active
S-Boxes for the latter also yield lower bounds on the number of active S-boxes for the
former. To conclude, for an AES-like SPN even with a linear tweak schedule, the success
of linear distinguishers is closely connected to the maximum probability of differential
characteristics in the secret-key model. For the AES S-box, it is well-known that its
maximal correlation is given by cormax(S) = 2−3 [DR02].

MILP Model. We chose a MILP-aided approach with gurobi to determine lower bounds on
the numbers of active S-boxes for the different versions of Pholkos in the standard, related-
tweak, and related-tweakey model. With increased adversarial capabilities, the complexities
of the MILP models grow significantly in terms of both variables and constraints. As a
result, several models could be solved only for a reduced number of steps. The source code
is will be made available to the public.

Full Key Size – Standard Model. Table 5a presents the results of our MILP-aided
analysis concerning the minimal numbers of active S-boxes if only plain- or ciphertexts
can be modified. For Pholkos-256-256 with its full eight steps, the minimal number of
active S-boxes is 135, which would yield a maximum differential probability of 2−810.
Pholkos-512-512 has a minimum of 205 active S-boxes over eight steps which corresponds
to a probability at most 2−1230.

Full Key Size – Related-Tweak Model. The minimum numbers of active S-Boxes in
the related-tweak model are presented in Table 5b. Pholkos-256-256 achieves at least 90
active S-Boxes after eight steps, Pholkos-512-512 139 active S-boxes after ten steps. Thus,
all instances with n-bit keys are secure against non-truncated differential attacks in the
related-tweak model.
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Full Key Size – Related-tweakey Model. We could determine lower bounds for up to
three steps in the related-tweakey model. Lower bounds beyond three steps are derived
from those results. As a result, every third step must currently be approximated to
allow a probability-1 trail for a distinguisher, although we point out that this is a very
pessimistic lower bound and we expect higher security. Those bounds already yield that any
characteristic of Pholkos-256-256 has at least 52 active S-Boxes after eight steps. Pholkos-
512-512 achieves only 87 active S-Boxes after ten steps, corresponding to a probability of
2−522. Note that we do not claim security in the related-tweakey model for Pholkos-512-512.

256-Bit Key – Related-tweakey Model. For the instances with reduced key size, the
MILP model was adjusted to include the key expansion. While the model did not allow to
determine precise bounds for more than three steps, the desired maximal probability of
differential characteristics of 2−256 is reached after six steps for Pholkos-256-256 and after
four for Pholkos-512-256.

5.2 Boomerang Cryptanalysis
Boomerang distinguishers split the primitive E into parts E = E2 ◦ E1 ◦ E0 [Wag99] to
combine two shorter differential trails over E0 and E2, respectively; E1 represents the
(potentially empty) middle phase. Let α → β be a differential trail with probability p
through E0, and γ → δ a trail with probability q through E2. A boomerang encrypts pairs
(P, P ′) with difference α to its corresponding ciphertext pair (C,C ′). It derives a second
pair (D,D′) from adding δ to both ciphertexts and decrypts it back to (Q,Q′) and checks
if Q⊕Q′ = α. If the trails have probabilities p and q, respectively, and a probability r to
connect (β, β) to (γ, γ) through the middle layer E1, the probability of the boomerang is
O(p2q2r). If it significantly exceeds O(2−n), it yields a distinguisher for E.
In theory, resistance against boomerangs can be derived from the best differential charac-
teristics. Yet, determining the probability through the middle is sophisticated. Moreover,
truncated differentials can lead to better results than differential characteristics, e.g.,
see [BN10, Sas18], which is not provided in our tables. From the lower bounds on the
number of active S-Boxes in Tables 5a–5d, we derived the maximal number of steps. In the
standard model, there can exist boomerang distinguishers on up to two steps Pholkos-256
with probability 2−120 and on up to three steps of Pholkos-512 with probability 2−360.
Using related tweaks, boomerang distinguishers can exist on up to two steps of Pholkos-256
with probability 2−48 and on up three steps of Pholkos-512 with probability 2−348.
In the related-tweakey model, our bounds of boomerang distinguishers are derived from
the shorter precise bounds that we consider very pessimistic. Though, all instances remain
secure over their full number of steps. There may exist boomerang distinguishers on up to
four-step construction-256 with probability 2−192 and on up to six steps of Pholkos-512
with probability 2−468 Note that our analyses exclude distinguishers on half-steps. For
the instances of Pholkos with 256-bit keys, boomerangs cover only up to five steps since
the security goal is reduced to 256 bits. The related-tweakey bounds are lower since the
full key can not be chosen arbitrarily. The results covered by boomerangs under all three
security models are given in Table 6.

5.3 Integral Cryptanalysis
The square attack [DKR97] and its generalizations [BS01] employed structural approaches.
When interpreting the transform as a (vector-)Boolean function, its maximal algebraic
degree d allows to provide statements of distinguishers that iterate over 2d+1 values and
necessarily must sum to zero. Todo [Tod15] generalized integrals with the division property,
which allowed more fine-grained distinguishers. They were further refined, e.g. by [BC16]
and shown to evolve exactly as the evolution of the algebraic degree [BKP16]. Thus, the
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Table 6: Maximum number of steps covered
by boomerang distinguishers.

Model

Instance Standard RT RTK
Pholkos-256 3 3 5
Pholkos-512 4 4 7
Pholkos-512-256 3 3 3

Table 7: Maximal #rounds (not steps) cov-
ered by integral distinguishers.

#Iterated bits

Primitive 128 255 256 511

Pholkos-256 7 7 – –
Pholkos-512 7 – 7 7

number of steps after which the algebraic normal form of each component Boolean function
has full degree upper bounds the number of steps of integral distinguishers.
We studied the propagation of the division property through Pholkos. The results are
given in Table 7. Since the division property propagates as the degree, we conclude that
there exist integral distinguishers over at most seven rounds of Pholkos-256 and -512. Note
that the distinguisher on Pholkos-512 is close to the equivalent of the higher-order integral
distinguisher on four-round AES.

5.4 Impossible-differential and Zero-correlation Cryptanalysis
Those attacks exploit differentials with probability zero or linear approximations with
correlation zero, respectively. Then, subkeys in outer rounds that yield the impossible
trail or have non-zero correlation can be filtered out with sufficiently many data. Sun
et al. [SLR+15] showed that a zero-correlation distinguisher always implies an integral
distinguisher. Thus, our upper bounds on the numbers of steps for integrals also yield upper
bounds for those of zero-correlation trails. The situation differs slightly for impossible
differentials: a distinguisher for an SPN E with non-linear layer S and affine layer A
(its matrix representation over F2) implies only a zero-correlation distinguisher on E⊥

with transposed affine layer (A−1)> [SLR+15]. Though, it is unlikely to obtain longer
impossible differentials in the standard model.
For Pholkos-256, we could identify an eight-round distinguisher that starts from Round 2
to 9 in Figure 3. Our bounds for integrals always start at the beginning of a full step.
The distinguisher allows two different input and output structures each; at the input side,
the structures can be combined from pairs over four active diagonals, i.e., 2128 texts can
yield 2255 pairs. At the output side, the probability is 2 · 2−128 (two possible patterns
are possible). Thus, a structure with 264 texts should suffice to obtain one pair with the
output difference with probability of about 1− e−1.
The structural similarity of Pholkos-512 to the AES allows to adapt security arguments
from the latter. There exist no impossible-differential distinguishers over five rounds of
the AES structure [SLG+16, WJ18, WJ19]. This implies the absence for five or more full
steps of Pholkos-512 without tweak differences. With tweak differences, we can use an
argument similar as for Kiasu-BC [DEM16, DL17]: the tweak difference can be used to
cancel the state difference. While only exploited on one side of an impossible differential
for Kiasu-BC, it could potentially be used on both sides. While one step of Pholkos-512 is
similar to an AES round, the former adds tweak differences after each round. Thus, the
maximal length of impossible differentials of Pholkos-512 is at most two rounds more than
for the untweaked version, i.e., at most ten rounds.

5.5 Slide Attacks
The original slide attack was first described by Biryukov and Wagner [BW99] in 1999
and improved soon upon [BW00]. It has seen various further improvements since e.g.
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Figure 3: Impossible-differential distinguisher for eight-round Pholkos-256.

[BBDK18, DKS15, DKLS19]. At their core, slide attacks exploit that round functions
and the key schedule produce equal states after different rounds. The tweak addition will
allow to cancel the difference between states in at most one round. However, there are
no reported slide attacks on the AES. And while invariant subspace attacks have been
a threat to Haraka v1 [Jea16], the round constants of Haraka v2 - that Pholkos adopts
- have been tweaked to encompass this. We consider the round constants to effectively
prevent slide attacks and its extensions.

5.6 Yoyo Cryptanalysis
Yoyo attacks are variants of boomerangs introduced by Biham et al. [BBD+98]. Later,
Biryukov et al. [BLP15] revived them for analyzing Feistel networks. Rønjom et al.
[RBH17] proposed yoyos on SPNs, and described generic attacks on three-round SPNs.
Since two-round AES can be seen as a one-round SPN with Super-S-boxes, they described
theoretical distinguishers on six-, and a practical distinguisher on five-round AES.
Saha et al. [SRP18] adapted the yoyo game for several yoyo-based distinguishers on
the AESQ permutation. Their work viewed four-round AESQ as two SPN rounds with
Mega-S-boxes of 128-bit S-boxes. They built a three-step distinguisher plus one round
to beginning and end to obtain an eight-round deterministic yoyo distinguisher, through
rounds 2–9. Next, they extended it by up to four rounds at the end using an inside-out
approach [AM09, MRST09]: starting from a pair of intermediate states after Round r,
they played the eight-round yoyo game to the ciphertexts back to Round r, and prepended
an impossible or improbable differential to the plaintext. So, an impossible (truncated)
difference with probability p for a random permutation but zero probability for the real
cipher implied a complexity of O(p−1) initial text pairs, plus the same amount of adaptively
chosen pairs for the yoyo. For their best distinguisher on 16 rounds of AESQ (from Round 2-
17), Saha et al. added a second, mirrored yoyo game. Their distinguisher started from
Round 9, decrypted the texts, derived the mixed second plaintext pair, re-encrypted it,
applied a shuffle operation, and played a second similar yoyo game by encrypting to the
ciphertexts, mixing them, and decrypting back to Round 9. Then, they expected an
impossible difference (at least one inactive 128-bit substate) for a random permutation.
For the permutation of Pholkos, the distinguishers by Saha et al. also apply similarly.
Since Pholkos-256 and -512 possess two and four substates, the probabilities (and thus the
number of pairs) are 2127, and 2126, respectively, with negligible memory requirements.
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Figure 4: Left: Six-round mixture-differential distinguisher on the AES [BR19b]. Right:
Adapted six-step trail on Pholkos-512. Hatched bytes are active in the differences ∆Si between
the pair (P,Q) and the differences ∆S′i between the pair (P ′, Q′). The gray boxes denotes the
diagonal exchanged between P and Q to form the second pair P ′ and Q′, and its propagation.

5.7 Mixture-differential Cryptanalysis

Mixture differentials have been proposed by Grassi [Gra18] in deterministic form, and have
been extended probabilistically by follow-up works [Bar19, BR19a, BR19b, Gra19]. At
their core, they consider tuples of pairs, where the subsequent pairs are mixtures of the first
one. Let (P,Q) be a pair with P = (P0, . . . , Pw−1) and Q = (Q0, . . . , Qw−1) with words of
(F2b)w. Let ρ ∈ Fw2 be a word-activity vector, where we order its bits as ρ = (ρ0, . . . , ρw−1).
A mixture pair (P ′, Q′) consists of a mixed constellation of the words from P and Q. We
define the mixing function P ′ = mix(P,Q, ρ) that outputs P ′ = (P ′0, . . . , P ′w−1) such that
P ′j = Pj if ρj = 0 and P ′j = Qj otherwise. Similarly, we can define Q′j = Qj if ρj = 0 and
Q′j = Pj otherwise, or simply write Q′ = mix(Q,P, ρ).
Grassi [Gra18] showed deterministic mixture differentials for four-round AES. Assume,
(P,Q) map to ciphertexts (C,D) with a certain difference. If the differential is a determin-
istic differential, then, (P ′, Q′) will also lead to the same difference C ′ ⊕D′ = C ⊕D. For
instance, he showed that the exchange of two active diagonals between two texts yields the
same difference in the output anti-diagonals through almost four rounds of AES. [Gra19]
studied a probabilistic extension to five rounds.
Bardeh and Rønjom [Bar19, BR19b] studied probabilistic mixtures. More precisely, the
mixture of the plaintext can yield a mixture in a later round. Their best distinguishers on
the AES covered six rounds [Bar19], which implies a similar distinguisher on six steps of
Pholkos-512. In the following, we describe an adapted variant of their AES distinguisher
on Pholkos-512.
The distinguisher on six-round AES [BR19b] is illustrated on the left side of Figure 4. It
starts with sets of plaintexts consisting of three active diagonals. Let (P,Q) be a first
plaintext pair. Let (p0, p1, p2, p3) denote the diagonals of P and Q = (q0, q1, q2, q3) the
diagonals of Q and let p3 = q3. Let (P ′, Q′) be a mixed pair under ρ = (1, 0, 0, 0), i.e.,
P ′ = (q0, p1, p2, p3) and Q′ = (p0, q1, q2, q3). For the AES [Gra18], an exchange of diagonals
preserves the difference after four rounds with probability one. Suppose, the states of
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Table 8: Distinguishers on Pholkos. Imp. = impossible, diff. = differential, Mem. = memory,
psucc = success probability, CP/(A)CC = chosen plaintexts/(adaptively) chosen ciphertexts.

(a) Secret-key distinguishers (single-key model).

Complexity

#Rds. Type Time Mem. Data psucc

Pholkos-256
6 DS-MitM 2216 negl. 2216 CP 1
8 Imp.-diff. Yoyo 2127 negl. 2128 ACC 0.84
8 Imp.-diff. 264 negl. 264 CP 0.63

Pholkos-512
7 DS-MitM 2456 negl. 2456 CP 1
8 Imp.-diff. Yoyo 2127 negl. 2128 ACC 0.84
8 Imp.-diff. 2127 negl. 2128 ACC 0.84
10 Boomerang 2260 232 2260 ACC 0.63
12 Mixture-diff. 2394 negl. 2394 CP n/a

(b) Distinguishers on the unkeyed permutation.

Complexity

#Rds. Type Time Memory Data psucc

Pholkos-256
12 Imp.-diff. Yoyo 2127 negl. 2128 ACC 0.84
16 Imp.-diff. bi-dir. Yoyo 2127 negl. 2128 ACC 0.84

Pholkos-512
12 Imp.-diff. Yoyo 2126 negl. 2127 ACC 0.84
16 Imp.-diff. bi-dir. Yoyo 2126 negl. 2127 ACC 0.84

P and Q after almost five rounds have a single active column. The core observation by
Bardeh and Rønjom [BR19b] was that the mixture of a diagonal after Round i can be
equivalent to that after Round i+ 1, here, if the dark and bright diagonals in the difference
after the Round 1 do not interfere in any diagonal. The probability is 4 · 2(−b)5 ' 2−38 for
the AES that operates on cells of b = 8 bits. One of the four options with ∆X1[1, 2, 3, 5, 10]
zero is illustrated in Figure 4. Then, the influence of the dark and bright cells is mixed only
after the MixColumns operation of Round 3. With probability 4 · (2−32)3, the difference
has three inactive diagonals after Round 3. In this case, the difference can be propagated
to a single active anti-diagonal with probability 1 through two more rounds. Bardeh
and Rønjom extended it probabilistically by one further round from ∆X3 to ∆X4 with
probability 4 · 2−24 = 2−22. In conclusion, if this differential characteristic holds (with
probability 2−38 · 2−94 · 2−22 ' 2−154) for the first pair (P,Q), it holds with probability
2−22 also for the second pair, i.e., with probability 2−176. In contrast, the probability of
three inactive anti-diagonals is (4 · 2−96)2 ' 2−188 for a random permutation.
For Pholkos-512, an adaption would start from three active substates instead of diagonals.
We will need four instead and follow a similar trail, where the diagonals/columns of the
AES are substates in Pholkos-512. We obtain a probability of 4 · (2−128)3 = 2−382 that
their difference has three arbitrary inactive columns after five steps. Then, the probability
that it has three inactive columns after six steps is also 4 · (2−32)3 = 2−94. Given |I| = 4
active plaintext diagonals and sets with |K| = 1 inactive diagonal, the probability is

P5(|I|, |K|) def=
4∑
d=1

(
4
d

)
· P (|I|, |J |, |K|),

P (|I|, |J |, |K|) def= (2−b)4(|I|+|J |)−|K|·|J |−2·|I|·|J | .

Using b = 32 bits for Pholkos-512, the probability becomes P5(1, 1) ' 2−190, as can be
seen in the illustration: six words ∆Y 2, ∆Y 2

1,2,3,5,10,15 need be inactive, which holds with
probability (2−32)6 = 2−192. Moreover, there exist four options for the distribution of the
four active words in ∆Y 8 such that they are mapped to exactly one substate of ∆X8, which
yields a probability of 2−190 that the mixed pair also has a single active substate after four
steps. It possesses a single active column after five steps with probability 4 · (2−32)3 = 2−94.
Thus, the difference C ⊕D and C ′ ⊕D′ have only a single active column after six steps
with probability about 2−382 · 2−94 · 2−190 · 2−94 ' 2760, whereas 2−382 · 2−382 = 2−764 for
a random permutation. Given a plaintext structure from the combination of m pairwise
distinct values in each of the first three diagonals, Bardeh and Rønjom proposed that the
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number of texts necessary to obtain such a mixture tuple is given by G(m,m,m, 1) such
that G(m,m,m, 1) · 2−22−22−94 ≥ 1. The number of pairs is given by

G(m0,m1,m2,m3) def=
4∑
t=1

Lt(m0,m1,m2,m3) ·

t−1∑
j=1

c(t− 1, j) · P5(j, 4− t)

 ,

Lt(m0,m1,m2,m3) def=
∑

I⊂{0,1,2,3},wt(I)=t

∏
i∈I

(
mi

2

)
·

∏
j∈{0,1,2,3}\I

mj ,

c(n, t) def=
(
n

t

)
· 2n−1 .

We had to adapt the distinguisher by Bardeh and Rønjom due to the computation of the
number of pairs. Their six-round distinguisher on AES collected texts from structures with
only three active diagonals. When scaling up their setting to our setting of Pholkos-512,
each AES diagonal corresponds to a substate of Pholkos-512. For b = 32, G(m,m,m, 1)
yields more than 2140 texts necessary from each active substate to collect a sufficient
number of mixture pairs. Since each substate can consist of at most 2128 texts, we use
plaintext structures with four instead of three active substates.

5.8 Meet-in-the-Middle (MitM) Attacks
Demirci and Selçuk [DS08] (DS-MitM attacks, hereafter) extended a property pointed
out first by Gilbert and Minier [GM00]: given a δ-set of 28 texts that iterate over the
values of a single active byte only, the sequence of each output bytes after three rounds of
AES is determined by nine internal bytes only, and has therefore at most (28)9 possible
sequences instead of (28)256 for a random permutation. This distinguisher was extended
by a key-recovery phase before and afterwards. While the data complexity is low, those
attacks used to require a huge precomputation phase. Demirci and Selçuk extended
the concept to four rounds. The DS-MitM attacks by Derbez et al. represent still the
best key-recovery attack on seven-round AES-128 and nine-round AES-192 in terms of
complexity [DFJ13, DF13], and ten-round AES-256 [LJ16].
Dunkelman et al. [DKS10] added several ideas: (1) multisets instead of ordered sequences
for reducing the memory, (2) multiple sets from the same data, (3) data-time-memory
trade-offs, and (4) differential enumeration: using a pair that fulfills a differential in the
middle. Derbez et al. built upon their improvements [DFJ13] and proposed new trade-offs.
They were further automated later by [BDF11, DF13, SSD+18].
The core positive aspect for Pholkos-512 is its structural similarity to the AES. Hence,
any r-step distinguisher on Pholkos-512 that does not exploit tweak differences should be
similarly useful as an r-round distinguisher for the AES. Therefore, distinguishers for more
than four full subsequent steps are unlikely. Though, distinguishers that exploit tweak
cancellations could potentially cover more rounds. Preliminary distinguishers we found
are deferred to Appendix D.

6 Software Implementation
All instances of Pholkos have been implemented in C with AVX2 instructions. The source
code will be made available to the public. Table 9 presents the performance of the variants,
while Tables 10a, 10b, 10c, 10d list that of the re-tweaking and rekeying processes for en-
and decryption. All benchmarks have been recorded on an Intel(R) Core(TM) i5-6200U
CPU at 2.30 GHz (Skylake), with TurboBoost, HyperThreading, and SpeedBoost disabled.
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Table 9: Performance of Pholkos en- and decryption benchmarked in counter mode.

Size (bit)

Primitive State Block cpb

Pholkos-256 256 256 1.36
Pholkos-256x2 512 256 1.27
Pholkos-256x4 1024 256 1.05
Pholkos-512 512 512 1.91
Pholkos-512x2 1024 512 1.16

Table 10: Benchmarks for the different operations of Pholkos for en- and decryption.

(a) Retweaking for encryption.

Size (bit)

Primitive Block Key cpb

Pholkos-256 256 256 1.18
Pholkos-512 512 512 1.41

(b) Retweaking for decryption.

Size (bit)

Primitive Block Key cpb

Pholkos-256 256 256 1.20
Pholkos-512 512 512 1.41

(c) Rekeying for encryption.

Size (bit)

Primitive Block Key cpb

Pholkos-256 256 256 3.92
Pholkos-512 512 512 4.36

(d) Rekeying for decryption.

Size (bit)

Primitive Block Key cpb

Pholkos-256 256 256 4.38
Pholkos-512 512 512 5.19

7 Conclusion
This work introduced the family of tweakable block ciphers Pholkos that combines perfor-
mance, high security, and a tweak. With 256 and 512 bits, its instances provide an efficient
large-state keyed primitive that is faster than e.g. ThreeFish or Kalyna with high security
guarantees also in post-quantum applications. Its analysis benefits from existing results
on AESQ and the permutation of Haraka. Moreover, the analysis of the 512-bit instance
simplifies due its structural similarity to that of the AES. Consequently, our analysis not
only covers the most general attack vectors, but can also apply lessons learnt from very
recent results on the AES or AESQ as well as constants chosen for the absence of subspace
trails in Haraka. Nevertheless, we would like to motivate third-party cryptanalysis to shed
more light on the security of Pholkos, which would be particularly interesting since any
novel result on the tweakless variant of Pholkos-512 could also yield novel distinguishers on
the AES. We have been working actively to augment the family with a version with 1024-bit
state and key sizes for enhanced security applications and are planning to provide an
update in the close future. Moreover, a close-term goal are provide faster implementations
on upcoming Intel Ice Lake processors.
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A Round Constants

Table 11: Round constants for the variants of Pholkos. Pholkos-256 employs only the first
constants RC0 through RC16, Pholkos-512 the first constants RC0 through RC20. The remaining
constants are for the permutation version and possible extensions.

i RCi

0 0x9d7b8175 f0fec5b2 0ac020e6 4c708406
1 0x17f7082f a46b0f64 6ba0f388 e1b4668b
2 0x1491029f 609d02cf 9884f253 2dde0234
3 0x794f5bfd afbcf3bb 084f7b2e e6ead60e
4 0x447039be 1ccdee79 8b447248 cbb0cfcb
5 0x7b058a2b ed35538d b732906e eecdea7e
6 0x1bef4fda 612741e2 d07c2e5e 438fc267
7 0x3b0bc71f e2fd5f67 07cccaaf b0d92429
8 0xee65d4b9 ca8fdbec e97f86e6 f1634dab
9 0x337e03ad 4f402a5b 64cdb7d4 84bf301c

10 0x0098f68d 2e8b0269 bf231794 b90bccb2
11 0x8a2d9d5c c89eaa4a 72556fde a67804fa
12 0xd49f1229 2e4ffa0e 122a776b 2b9fb4df
13 0xee126abb ae11d632 36a249f4 4403a11e
14 0xa6eca89c c900965f 8400054b 884904af
15 0xec93e527 e3c7a278 4f9c199d d85e0221
16 0x7301d482 cd2e28b9 b7c959a7 f8aa3abf

17 0x6b7d3010 d9eff237 17b08661 0d706062
18 0xc69afcf6 5391c281 43043021 c245ca5a
19 0x3a94d136 e892af2c bb686b22 3c972392
20 0xb47110e5 58b9ba6c eb865822 3892bfd3

i RCi

21 0x8d12e124 ddfd3d93 77c6f0ae e53c86db
22 0xb11222cb e38de483 9ca0ebff 686260bb
23 0x7df72bc7 4e1ab92d 9cd1e4e2 dcd34b73
24 0x4e92b32c c415144b 431b3061 c347bb43
25 0x9968eb16 dd31b203 f6ef07e7 a875a7db
26 0x2c47ca7e 02235e8e 7759753c 4b61f36d
27 0xf91786b8 b9e51b6d 777dded6 175aa7cd
28 0x5dee46a9 9d066c9d aae9a86b f0436bec
29 0xc127f33b 591153a2 2b3357f9 50691ecb
30 0xd9d00e60 5303ede4 9c61da00 750cee2c
31 0x50a3a463 bcbabb80 ab0ce996 a1a5b1f0
32 0x39ca8d93 30de0dab 8829965e 02b13dae
33 0x42b4752e a8f31488 0ba454d5 388fbb17
34 0xf6160a36 79b7b6ae d77f425f 5b8abb34
35 0xdeafbaff 1859ce43 3854e5cb 4152f626
36 0x78c99e83 f79ccaa2 6a02f3b9 549ae94c
37 0x35129022 286ec040 bef7df1b 1aa551ae
38 0xcf59a648 0fbc73c1 2bd27eba 3c61c1a0
39 0xa19dc5e9 fdbdd64a 88822802 03cc6a75
40 0xd22a8f84 78477e36 1ed3e70d 3872f32f
41 0x8fd53bb7 35b136ee 8bbe74cf 6a5cd908

B Boomerang on Pholkos-512

Figure 5 illustrates a distinguisher on five-step Pholkos-512, derived from [Bir04]. Each
part covers five rounds, i.e., the top trail covers Rounds 1–5; the bottom trail covers
Rounds 6–10.
The forward differential starts with a single active diagonal in one chosen (arbitrary)
substate. With probability 4 · 2−24, it leads to a single active byte after the first round.
This ensures that only one substate will be active after the first step. The remaining trail
leads to a fully active state after five rounds. The bottom trail starts with a difference
δ that is active in a single substate and for which it holds that MC−1(δ) is active in a
single anti-diagonal only. With probability 4 · (2−24)2, it leads to a single active byte
after the decryption of the final step that needs the same position in both pairs. With
probability 1 both pairs will have exactly one active anti-diagonal after the decryption to
Round 5. Since 16 bytes are active, both pairs have the same difference with probability
2−128. Then, the decrypted pair has the same difference β as the encrypted pair and will
lead to a single active substate after Round 4. With probability 4 · 2−96, the decrypted
pair has only a single active column after Round 2. Then, it will lead to a single active
substate in P3⊕P4 with probability one. In total, the probability for the real construction
is 2−22 · 4 · 2−48 · 2−128 · 2−94 = 2−290, whereas it is 4 · 2−384 for a random permutation.
So, the distinguisher needs 2−227 structures of 232 texts and the same number of chosen
ciphertexts, i.e., 2260 texts and encryptions. The memory complexity is at most 232 states.
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Figure 5: Top and bottom trails for the boomerang Distinguisher on five-step Pholkos-512.
Hatched bytes are active; in backward direction, the dark bytes are truncated in the decrypted
pair.

C Yoyo Distinguishers

(a) Boomerang [Wag99]. (b) Bidirectional yoyo [SRP18].

28



∆X0

∆RT 0

R R R R

∆X1

∆RT 0

R R R R

∆Y 2

∆RT 2

π512

∆X2

R R R R

∆X3

∆RT 3

R R R R

∆Y 4

∆RT 4

π512

∆X4

R R R R

∆X5

∆RT 5

R R R R

∆Y 6

∆RT 6

π512

∆X6

R R R R

∆X7

∆RT 7

R R R R

∆Y 8

∆RT 8

π512

∆X8

Figure 7: Preliminary Demirci-Selçuk meet-in-the-middle distinguisher on Pholkos-512.

D Demirci-Selçuk Meet-in-the-Middle Distinguishers
The best suited object for comparison is probably Deoxys-BC, one of the AES-like tweakable
block ciphers by Jean et al. [JNP14]. While it unifies the treatment of key and tweak, it is
common to write Deoxys-BC-k-t to clarify that k-bits are used as secret key and t-bits as
tweak. Li and Jin [LJ19] showed two distinguishers on five rounds of Deoxys-BC-128-128
that was determined by 12 bytes and seven rounds of Deoxys-BC-256-128 determined by 28
bytes (although they wrote six). They extended those with key-recovery phases to attacks
on eight and ten rounds, respectively. At the core, their distinguishers combined (1) a
usual differential from a single active byte to few active bytes with (2) the cancellation of
the tweak difference after the first key-guessing round to cover a round for free.
While the tweak cancellation can be used in Pholkos as in Deoxys-BC, the fact that
the tweak is added to each word increases the number of dependencies in our proposal.
Moreover, while a step is structurally similar to a round in the AES, the fact that the
tweak is added to the state in each round prevents that an entire step can be skipped due
to tweak cancellation.
In the following, we sketch differentials that form the core of the off-line phase of creating
a lookup table for the outputs of a δ-set, which is the core phase of an efficient DS-MitM
attack. We follow the enumeration by [DFJ13, LJ19]. Though, the precise enumeration of
variables is not trivial; therefore, we stress that our estimations are lower bounds on the
number of variables.

Distinguishers on Pholkos-512. We sketch an exemplary distinguisher on four-step
Pholkos-512 at Figure 7 that uses tweak cancellation and the differential-enumeration
technique. It lists 57 byte dependencies from X1 to reconstruct the sequence of two bytes
of X8. When encrypting a structure of 2 · (232)4 ' 2129 texts, to δ-sets of 28 texts each,
the sequence of outputs is at least (28)57 ' 2456, which is, however, much smaller than
the (28)256 possible values. This is at least the effort of the precomputation phase. The
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Figure 8: Preliminary Demirci-Selçuk meet-in-the-middle distinguisher on Pholkos-512 without
tweak differences.

adversary can form 2120 δ-sets from a structure of 2 · 2128 texts. Since one pair among
the δ-set needs to satisfy the differential trail, which occurs with probability 2−480, the
data collection phase needs at least 2240.5 pairs. The key-recovery phase can cover the key
bytes that are necessary to obtain the active bytes before the distinguisher from X0 to X1

as well as two or three more rounds at the end to recover the first column of X8, which
would yield a 10- or 11-round attack.
Without tweak differences, the best differential characteristic over three steps of Pholkos-
512 from Table 5a yields a distinguisher with at least 45 byte variables over three steps
(see Figure 8). Thus, its offline phase would have a complexity of at least (28)45 ' 2360

operations. Table 5a lists already 80 active S-boxes for four-step Pholkos-512. We could
not find a longer distinguisher based on the best four-step differential. It seems unlikely
that such distinguishers can be extended to more than four steps for the 512-bit version.

Distinguishers on Pholkos-256. We could construct a six-round differential for Pholkos-
256, as shown in Figure 9a with 27 byte variables from ∆X1 to ∆X7. Note, that the first
round is part of the key-recovery phase. Thus, the offline phase of computing all possible
multisets of differentials is limited by 2216 computations.
Again, distinguishers that do not exploit tweak differences are limited by the maximal
number of rounds to cover 32 active S-boxes, where the active S-boxes at some middle
may not need to be taken into account since the S-boxes before and after may be sufficient
to define the trail with the differential-enumeration technique. Figure 9b illustrates almost
the best 3-step differential characteristic as a DS-MitM distinguisher, with 25 variables.
That is the offline phase needs (28)25 = 2200 operations. As Table 5a illustrates, three
steps have at least 35 and four steps at least 60 active S-boxes. We could not extend
similar distinguishers to four steps given the best differential results. It seems unlikely
that DS-MitM distinguishers would cover more than four steps.
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(a) With tweak differences.
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Figure 9: Preliminary Demirci-Selçuk meet-in-the-middle distinguishers on Pholkos-256.
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