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Abstract

Deep convolutional neural networks (CNNs) have recently been shown to outperform fully connected deep neural

networks (DNNs) both on low-resource and on large-scale speech tasks. Experiments indicate that convolutional

networks can attain a 10–15 % relative improvement in the word error rate of large vocabulary recognition tasks over

fully connected deep networks. Here, we explore some refinements to CNNs that have not been pursued by other

authors. First, the CNN papers published up till now used sigmoid or rectified linear (ReLU) neurons. We will experiment

with the maxout activation function proposed recently, which has been shown to outperform the rectifier activation

function in fully connected DNNs. We will show that the pooling operation of CNNs and the maxout function are

closely related, and so the two technologies can be readily combined to build convolutional maxout networks.

Second, we propose to turn the CNN into a hierarchical model. The origins of this approach go back to the era of

shallow nets, where the idea of stacking two networks on each other was relatively well known. We will extend this

method by fusing the two networks into one joint deep model with many hidden layers and a special structure. We

will show that with the hierarchical modelling approach, we can reduce the error rate of the network on an expanded

context of input. In the experiments on the Texas Instruments Massachusetts Institute of Technology (TIMIT) phone

recognition task, we find that a CNN built frommaxout units yields a relative phone error rate reduction of about 4.3 %

over ReLU CNNs. Applying the hierarchical modelling scheme to this CNN results in a further relative phone error rate

reduction of 5.5 %. Using dropout training, the lowest error rate we get on TIMIT is 16.5 %, which is currently the best

result. Besides experimenting on TIMIT, we also evaluate our best models on a low-resource large vocabulary task, and

we find that all the proposed modelling improvements give consistently better results for this larger database as well.
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1 Introduction

In a general machine learning application, the devel-

oper just receives a large set of features, with little or

no information about how the features relate to each

other or even how they were obtained. In this case, a

neural network expert would apply a fully connected net-

work, which attributes no importance to the order of

the features. However, the situation is quite different in

the case of image recognition, where the topology of the

input is clearly of crucial importance. The same holds for

the spectro-temporal representation of speech signals. A

speech spectrogram contains local “events”—like formant

transitions and energy bursts—and then the actual posi-

tion and relation between these events together define
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what phone we hear. Neurophysiological studies found

structures in the brain that respond to local spectro-

temporal modulations [1], suggesting that the approach

described above might indeed by a reasonable model of

speech perception.

Convolutional neural networks (CNNs) are a type of

artificial neural network (ANN) that were developed for

exactly those cases where the input features show local

spatial correlations. Besides this, they can also handle the

local translational variance of their input, which makes

the network more tolerant to slight position shifts. In fact,

CNNs have been successfully used in image processing for

a long time (including early efforts at modelling speech

[2]), but their applicability to speech recognition had not

thoroughly been explored before the current renaissance

of artificial neural networks. With the invention of deep
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neural nets (DNNs), we learned that deep structures are

very good at handling the intricate complexity presented

by the acoustic modeling task [3]. After various refine-

ments to DNNs and their training algorithms, we can now

efficiently train deep networks on the huge data sets typ-

ical in speech recognition, and now HMM/DNN systems

outperform conventional HMM/GMM systems on a wide

variety of large vocabulary recognition tasks [4–6]. These

investigations also opened up the road for convolutional

networks.

Similar to DNNs, the early attempts of applying

CNNs to speech recognition used the Texas Instruments

Massachusetts Institute of Technology (TIMIT) dataset

[7]. In contrast to image processing, in speech recogni-

tion, the two axes of a spectro-temporal representation

have different roles and should be handled differently.

The earliest papers applied the convolution only along

the frequency axis, arguing that small time domain shifts

are automatically handled by HMMs [7–9]. The supposed

benefit of frequency domain convolution is that it makes

the acoustic models more robust to speaker and speak-

ing style variations. Indeed, all the studies that experi-

mented with frequency domain convolution found that

CNNs consistently outperform fully connected DNNs

on the same task [7–10]. Later studies experimented

with various parameter settings, network structures, and

pooling strategies, including time domain convolution

[8, 11–13]. Also, the experimentation has been extended

to large vocabulary recognition (LVCSR) tasks, and the

latest results show that CNNs can bring a 12–14 % relative

improvement in the word error rate over DNNs trained on

the same LVCSR dataset [14].

Here, we will explore refinement options of CNNs

that have not been pursued by other authors. First, all

the abovementioned studies built the convolutional net-

works out of sigmoid neurons [7, 9] or rectified lin-

ear units (ReLUs) [12, 14]. However, a novel type of

neural activation function called the maxout activation

has been recently proposed [15]. This activation func-

tion can be regarded as a generalization of the recti-

fier function [16], and so far, only a few studies have

attempted to apply maxout networks to speech recog-

nition tasks. These all found that maxout nets slightly

outperformed ReLU networks, in particular under low-

resource conditions [17–19]. Here, we show that the

pooling procedure applied in CNNs and the pooling

step of the maxout function are practically the same,

and hence, it is trivial to combine the two techniques

and construct convolutional networks out of maxout

neurons.

Furthermore, a generalization to the maxout function

has recently been suggested, which we will also evaluate

here [20]. In the first part of the paper, we compare the

various models on the TIMIT phone recognition task, as

it allows quick experimenting. We find that the convo-

lutional maxout network always performs slightly better

than its ReLU counterpart and that the p-norm general-

ization proposed by Zhang et al. helps reduce overfitting.

By switching from ReLU to maxout units, we present a

relative phone error rate reduction of 4.3 % on TIMIT.

The second improvement that we apply here is the hier-

archical structure best described by Veselý et al. [21]. The

origins of this technology go back to the era of shallow

networks, which—just as DNNs—were trained on a block

of consecutive input vectors. Some authors observed that

the posterior estimates obtained can be “enhanced” by

training yet another network—but this time on a sequence

of output vectors coming from the first network [22].

Other authors refer to this approach as the “hierarchi-

cal modeling” [23–25] or the “stacked modeling” method

[26]. Two trivial improvements to this approach are when

the upper net downsamples the output of the lower one

[24, 27] and/or when it uses the output of some bot-

tleneck layer instead of the uppermost softmax layer

[25, 26]. Veselý’s proposal was to treat this hierarchical

construct as one joint model, and he also explained why

the compound structure can be interpreted as a deep con-

volutional network [21]. Here, we experiment with his

approach, but we prefer the name “hierarchical modeling”

in order to avoid confusion with the more widely accepted

interpretation of convolution described earlier. The tests

on TIMIT will show that our convolutional maxout net-

works can be efficiently combined with the hierarchical

modeling scheme, yielding a phone error rate reduction of

about 5.5 %.

Finally, we will improve the performance of our best

model by applying dropout training. The dropout method

was shown to improve the generalization ability of neu-

ral networks by preventing the co-adaptation of units [28].

Dropout is now routinely used in the training of DNNs

for speech recognition, and some researchers have already

reported that it works nicely with maxout units as well

[19, 29]. We also find it to yield a significant perfor-

mance gain. Our final, best model achieves a phone error

rate of 16.5 % on the TIMIT core test set, which, to our

knowledge, is currently the best result on TIMIT.

Although TIMIT is suitable for the quick evaluation of a

newmodelling idea, it is extremely small by current devel-

opment standards. Thus, in the final section of the paper,

we repeat the evaluation of the best models on a LVCSR

task with broadcast news recordings of 28 h. Although

this corpus is still small, there are many low-resource lan-

guages for which only this amount of data is available.

The evaluation on this LVCSR task shows that—albeit

with smaller gain—the proposed refinements improve the

recognition performance on this larger database as well.

The rest of this paper is organized as follows. First,

we introduce convolutional neural networks in Section 2,
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and then we apply them on TIMIT to present baseline

results in Section 2.1. We present and evaluate our first

proposed refinement to the baseline in the form of the

maxout activation in Section 3. The hierarchical mod-

elling approach is explained and evaluated in Section 4.

The best results achieved on TIMIT by using the dropout

training method are presented in Section 5. Section 6

presents the experiments on the low-resource LVCSR

task, and our findings are summarized in Section 7.

2 Convolutional neural networks

Figure 1 shows the structure of the convolutional neural

networks applied in this study, with the circle magnifying

the operation of just one convolutional neuron. The oper-

ation of these neurons differs from standard neural units

in three key ways, which can be summed up by the words

“locality,” “weight sharing,” and “pooling” [7]. Firstly, local-

ity means that each convolutional neuron processes only a

small, localized portion of the full input space. This local-

ity makes sense only if the input space has some inherent

topology and if the feature set extracted preserves this

topology. Because of this requirement, CNNs are trained

on a time-frequency representation instead of the classic

MFCC features. Fortunately, fully connected DNNs have

also been shown to perform better on spectro-temporal

representations like the energy levels obtained from mel

filter banks [3]. This way, we can use the same input fea-

tures for both DNNs and CNNs, which will allow a direct

comparison of their results. In our case, the input to the

network consists of the energy levels of 40 mel filter bank

channels, and locality will mean that these 40 mel chan-

nels are divided into wider frequency bands that each

cover several mel channels. The optimal size and num-

ber of frequency bands will be found experimentally but,

just to give an example here, our baseline system will

process the input in 17-frame blocks along the time axis,

and each convolutional neuron will operate on a 17 × 7

spectro-temporal window.

Secondly, the convolutional units are evaluated at sev-

eral, slightly shifted positions. These shifted input blocks

are processed using the same weights, which property is

referred to as “weight sharing” (symbolized by the dotted

lines on the right hand side of Fig. 1). The interpretation

is that each convolutional neuron “scans” its neighbor-

hood for the presence of some phenomenon like a formant

transition. In speech recognition experiments, the shift-

ing is normally applied only along the frequency axis to

help account for formant shifts caused by speaker vari-

ations or speaking style [7]. In our implementation, the

amount of shifting will be measured in mel channels.

For example, a pooling size r will mean that the convo-

lutional units process r versions of their input window

shifted by 0, 1, · · · , r − 1 mel banks. Extending the shift-

ing to the time axis seems unnecessary, as hidden Markov

models inherently handle time shifts. Recently, both

Abdel-Hamid et al. and Sainath et al. experimented with

convolution along time, and the improvements indeed

proved negligible [11, 12].

Thirdly, the neural activations got at the various posi-

tions are turned into one value in the “pooling” step.

Several strategies exist for this, the classic one being max-

pooling [7], but other, more sophisticated pooling formu-

las have also been proposed. For example, Abdel-Hamid

et al. investigated weighted softmax pooling [11], while

Fig. 1 A schematic diagram of the CNN network structure applied here. The circle on the right magnifies the operation of one convolutional neuron
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Sainath et al. studied p-norm pooling and stochastic pool-

ing [12]. However, none of these proved significantly

better than simple max-pooling. Here, we will first apply

max-pooling, but later, we will also experiment with p-

norm pooling.

Having discussed the operation of convolutional neu-

rons, let us describe the structure of the whole network.

There are two strategies for combining the information

got from the neurons assigned to different spectral bands.

Abdel-Hamid et al. argue that the spectral phenomena

occurring in different spectral regions are different, so

each band should have a separate set of convolutional neu-

rons. This scenario is known as the limited weight sharing

(LWS) strategy [7]. In the full weight sharing scheme

(FWS), all neurons are applied across all spectral regions,

so the neurons encounter a more elaborate learning task.

However, Sainath et al. argue that with a large enough

number of hidden units, FWS can attain the same perfor-

mance as LWS, while it is technically simpler and allows

the stacking of convolutional layers [12]. In this study, we

applied limited weight sharing, which is shown in Fig. 1

by the division of the convolutional layer into smaller

blocks.

In our network, the outputs of the convolutional filters

are concatenated and processed further by three addi-

tional, fully connected layers. However, we should men-

tion here that more elaborate network structures are also

possible. For example, Sainath et al. achieved the best per-

formance by stacking two convolutional layers plus four

fully connected layers [12]. The same team also experi-

mented with combining convolutional and nonconvolu-

tional layers within the same network [13]. Abdel-Hamid

et al. improved their results by combining various pooling

sizes within the same system [8].

2.1 Baseline results on TIMIT

We evaluated all the proposed algorithms via phone

recognition tests on the well-known TIMIT database. We

used the standard 3696 “si” and “sx” sentences as the

training set, while the testing was performed on the core

test set of 192 sentences. A randomly selected 10 % of

the training set was held out as the development set for

the neural network training process. The same set of

sentences was used for tuning the meta-parameters of

the various network configurations. All the experiments

used a phone bigram language model estimated from the

training data. While the decoder operated with 61 phone

labels, during evaluation, these were mapped to the set of

39 labels proposed by Lee and Hon [30]. During decod-

ing, no attempt was made to fine-tune the language model

weight and the phone insertion penalty parameters; they

were just set to 1.0 and 0.0, respectively. We made this

decision in order to keep the results comparable with

those of some earlier studies (e.g., [3]).

Creating context-dependent (CD) phone models is vital

for getting a good performance with standard HMMs,

and now, it is widely accepted that CD modelling is

also beneficial for HMM/DNN hybrids trained on large

vocabulary tasks [4, 5]. We found earlier that applying

CD states as the network training targets is useful even

for such a small corpus as TIMIT [25]. Hence, in all

the experiments reported here, we used a tied state set

that was obtained by training a conventional CD-HMM

(using HTK). The decision tree-based state clustering tool

of HTK produced 858 tied states, and evaluating the

phonemodels in forced alignment mode yielded the train-

ing targets for each frame of speech. The tied state set

we applied here is the same as that used in our earlier

study [25].

As explained earlier, CNNs require a representation

that preserves the time-frequency topology of the orig-

inal input, so they cannot operate with MFCC features.

Here, we worked with a mel-scaled time-frequency repre-

sentation which was extracted using the “FBANK” feature

set of the HTK toolkit. We had the opportunity to work

with exactly the same features as those used in [3], as

the authors kindly provided us with the corresponding

HTK config file. This preprocessing method extracted the

output of 40 mel-scaled filters and the overall energy,

along with their � and �� values, altogether yielding 123

features per frame.

The input vector to a convolutional neuron is con-

structed as follows. Let us assume that the input window

of the neuron is 17 frames times 7 mel bands. This input

is extended with the global energy of the frame as the 8th

“band”, which gives 17x8 = 136 features. For all these,

the corresponding � and �� values are also included,

altogether resulting in a feature vector of 408 features.

In each case, the neural networks were trained with

standard backpropagation, with 100 data vectors per

mini-batch. The weights were initialized following the

scheme proposed by Glorot et al. [31], and no form of

pre-training was applied. As the initial learn rate, we

always used the largest possible value that gave numeri-

cally meaningful error rates. The initial learn rate was held

fixed while the error rate on the development set kept

decreasing. Afterwards, it was halved after each iteration,

and the training was halted when the decrease in the error

rate dropped below 0.1 %. We found that our maxout net-

works gave good results only when a large momentum

value of 0.9 was used.

In order to prevent an unbounded growth of the net-

work weights, we scaled down the weights after each

epoch so that the L1 norm of each layer remained the

same as it was after initialization. The error function we

optimized was the usual frame-level cross entropy cost,

though sequence-level training criteria—which are rou-

tinely used with HMM/GMMs—are now becoming more
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popular with HMM/DNN hybrids as well [32, 33]. During

decoding, the DNN outputs are used as state observation

probability estimates of an HMM, following the scheme

of hybrid HMM/ANN systems [34]. Though formally the

DNN posterior estimates should be divided by the prior

probability values, we omitted this division step, as this

way we got consistently better phone recognition results

on TIMIT. As the HMM decoder, we applied a modified

version of the HVite tool of HTK.

To have a baseline result with a fully connected net-

work, we trained a fully connected DNN with 4 hidden

layers and 2000 hidden units per layer. The input to the

network consisted of 17 consecutive frames of the 123

FBANK features described earlier. Apart from the soft-

max output layers, all hidden neurons were ReLUs [16]. In

an earlier study, we showed that DNNs of rectifier units

can attain the same accuracy as a sigmoid network, but

without pre-training [35]. Other authors reached the same

conclusions, but using much larger datasets [36–38]. Our

fully connected ReLU DNN got an error rate of 20.6 % on

the TIMIT core test set.

In the next step, we replaced the lowest layer of the

above network with convolutional ReLU units. Here, we

had to decide on the number and size of weight sharing

spectral bands. The other meta-parameter we had to tune

was the pooling size r. We experimented with the num-

ber of LWS bands running from 4 to 8, with the height

of the filters being chosen accordingly, allowing a slight

overlap between the filters. The number of neurons was

always chosen so that the global number of parameters

remained the same as that for the baseline fully con-

nected DNN. Table 1 shows the error rates we obtained

on the development set by varying the size of the fil-

ters. The pooling size in these experiments was set to

r = 3. All the configurations we evaluated gave practi-

cally the same result, with no significant difference. For

the subsequent experiments, we chose the 7 × 7 con-

figuration, as the frame error rate was the lowest in this

case. By comparison, while our filters are 7 mel channels

wide, Abdel-Hamid et al. used a filter size of 8 chan-

nels [7], and Sainath et al. preferred a filter size of 9

channels [9].

Table 1 Phone error rates of the convolutional ReLU network as

a function of the number and width of the frequency bands

Number of Width of Number of units Error on

LWS bands filters per band development set (%)

4 12 768 16.6

5 10 638 16.6

6 8 554 16.9

7 7 485 16.6

8 6 433 16.5

Next, we varied the pooling size r between 1 and 6. As

shown in Fig. 2, a pooling size of 5 gave the best result

on the development set, though the scores on the test set

do not seem to be significantly different for any r val-

ues between 2 and 6. In comparison, Abdel-Hamid found

r = 6 to be optimal for TIMIT [7], while Sainath et al.

reported that r = 3 performed best on other databases

[9]. We think that the optimal value may depend both on

the database used and the filter size. We note that it also

makes sense to combine various pooling sizes within the

same model [8]. A very interesting further observation is

the good performance of pooling size r = 1. In this con-

figuration, no shifting and pooling occurs, so its large gain

simply comes from dividing and processing the input in

smaller frequency bands.

Lastly, we attempted to vary the size of the filters along

the time axis. As regards fully connected DNNs, a sim-

ilar experiment was performed by Mohamed et al. They

found that increasing the context size from 9 to 17 or

even 27 frames improves the results, but beyond this, the

error rate starts to rise [3]. One might expect that CNNs

can perhaps handle longer time contexts, as their input

is divided into frequency bands, so the number of inputs

per neuron is fewer. However, as Fig. 3 shows, we got

very similar results. While there is a small improvement

by changing from 9 to 17 frames, the scores saturate at 33

frames and even start to deteriorate at 49 frames. Thus,

we decided to use 17 frames in the subsequent experi-

ments. By comparison, Abdel-Hamid et al. used 15 frames

[7], while Sainath et al. preferred to work with just 9

frames [14].

In summary, in this section, we built a deep CNN out

of ReLU units, and we found that the best convolutional

model reduced the error on the core test set by almost

2 % absolute (9 % relative), compared to a fully connected

DNN. In Section 3, we propose several modifications to

the convolutional model, improving its performance even

further.

2.2 Comparing the speaker invariance of DNNs and CNNs

The position of formants for the same phone may vary

slightly between different speakers [7] or with different

speaking styles [2]. The pooling operation theoretically

makes the CNNs more tolerant to these small shifts in

formant frequencies. Consequently, CNNs should have a

smaller performance drop for test speakers whose voice

is different from that of the training speakers. To validate

this assumption empirically, we examined the per-speaker

scatter of the DNN and CNN recognition scores. Fortu-

nately, TIMIT allows such an evaluation, as it contains

samples taken from 630 speakers, and all sentences are

speaker-annotated. We calculated the recognition accura-

cies for each 24 speakers of the test set, for the baseline

fully connected DNN, and for the CNN with pooling size
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Fig. 2 Phone error rate as a function of the pooling size. The baseline score was obtained by using a fully connected DNN

r = 5. Analyzing the results, we found that switching

from the DNN to the CNN not only increased the mean of

the per-speaker recognition accuracies but also decreased

their variance by about 5.7 %. This justifies our assump-

tion that the CNN is more successful in handling speakers

not seen during training.

Clearly, several other factors also contribute to the supe-

riority of the CNN. Looking at Fig. 2, we see that the CNN

already outperforms the DNNwith a pooling parameter of

r = 1. In this case, no actual shifting and pooling occurs,

so the increased shift tolerance cannot account for the

performance gain. CNNs were recently shown to outper-

form DNNs under channel-mismatched conditions [39],

which may be the source of improvement at r = 1. As,

unfortunately, TIMIT has no annotation of the recording

conditions, which would allow us to test this hypothe-

sis empirically. Lastly, we mention that Huang et al. also

found CNNs to be more robust against background noise

and to perform better in distant speech recognition [39].

3 Maxout neural networks

For decades, the sigmoid function was considered to be

the ideal activation function for the hidden neurons of

neural networks. However, with the invention of DNNs,

the quest for alternative activation functions has also

Fig. 3 Phone error rate as a function of the input context size. The

context size is given in terms of frames

revived. A good example is the success of the rectifier

function, which seems to be a better choice than sigmoid

when building deep nets, and it is growing more popular

in the speech community [35–38]. Recently, Goodfellow

et al. suggested a generalization of the rectifier function

where the maximum is taken over the linear activation

of several neurons [15]. Stated formally, let us define the

output of a neuron as

o = φ(z), z = �w · �x + b .

That is, first, the linear activation z of the neuron is

calculated from the input vector �x , the weight vector �w,

and the bias term b, and then z gets transformed by the

nonlinear activation function φ. Conventionally, the sig-

moid function is used as φ, while the rectifier function is

defined as max(z, 0) [16]. The maxout function proposed

by Goodfellow et al. divides theN neurons of a given layer

into L groups of size K (N = K · L) and the output of the

lth group is calculated as

ol =
K−1
max
k=0

zlK+k , l = 0, ..., L − 1 .

When compared with the rectifier function, we see that

the rectifier activation is a piecewise linear function con-

sisting of two pieces, with one of them being fixed. The

maxout function extends this to K pieces, all of them

being parametric. This increased flexibility was shown to

result in an increased performance on image recognition

tasks [15].

Several studies have already investigated the perfor-

mance of deep maxout networks in speech recognition.

All these studies found that maxout networks perform

better or at least no worse than ReLU networks, and the

biggest gains were reported under low-resource condi-

tions [17–19]. Although some of these studies involved

experiments with CNNs as well, these applied the maxout

activation only in the fully connected layers [40]. To our

knowledge, the only exceptions where the maxout activa-

tion was extended to the convolutional neurons as well are

the studies of Cai et al. [41] and Renals and Swietojanski

[42]. Below, we will explain how convolutional and max-

out neurons are related, and we will present our solution

for the swift evaluation of convolutional maxout units.
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3.1 Applying themaxout activation to convolutional units

The maximization performed by the maxout function is

technically the same as the max-pooling step applied in

convolutional networks. In CNNs, the pooling is per-

formed over neurons that process different input vectors

using the same weights. In maxout networks, it is applied

over different neurons that process the same input. How-

ever, as depicted on the left hand side of Fig. 4, the result in

both cases is just a set of neural activations that have to be

pooled, and the pooling operator does not need to know

how the actual values were obtained. Hence, exploiting the

associativity of the max operator, we can perform the two

types of pooling operations in one go, as illustrated on the

right hand side of Fig. 4. This is how we implemented the

convolutional maxout units of our network, and in the fol-

lowing, we shall investigate how this technology works in

practice.

3.2 Improvements to maxout

Several authors reported that max-pooling CNNs are

inclined to overfit the training data [43]. A similar behav-

ior was observed with maxout networks as well [29]. In

both cases, the reason is that during training, the max

function propagates the gradient only to the unit that

gave the largest activation, so the remaining units do

not get updated. As a remedy, Zeiler et al. proposed to

apply stochastic pooling, whose method chooses its out-

put (and hence the backpropagation path) randomly, with

a probability proportional to the value of the correspond-

ing activation [43]. While they obtained good results with

stochastic pooling CNNs on image recognition tasks, the

experiments by Sainath et al. did not justify its usefulness

in speech recognition. They conjectured that perhaps the

much larger amount of data typical in speech recogni-

tion already alleviates the problem of overfitting, so that

the benefits of stochastic pooling are not observed [12].

Meanwhile, Cai et al. also evaluated stochastic pooling,

but within the framework of maxout networks. In their

tests, stochastic pooling significantly outperformed stan-

dard max pooling in all cases [29]. These contradictory

Fig. 4 The implementation of convolutional maxout neurons. The

maximization over convolutional positions and maxout groups can

be performed in one go

results suggest that the stochastic pooling technique will

require more evaluations in the speech domain. Zhang

et al. experimented with applying the p-norm function

instead of max pooling [20]. Using the earlier notation,

p-norm defines the output of the lth group as

ol =

(

K−1
∑

k=0

|zlK+k|
p

)1/p

.

Intuitively, the p-norm acts as a smoothed version of

max-pooling, where the pooled units contribute to the

result proportional to their absolute value. It also behaves

similarly during training: all grouped units get updated,

with the error being proportional to the corresponding

activation value. Hence, one can expect p-norm pooling to

decrease overfitting in a way that is similar to the effect of

stochastic pooling. However, the experimental results on

speech data are again contradictory: Sainath et al. found

that p-norm pooling brought about no improvement to

their CNN [12]. In the framework of maxout networks,

Zhang et al. got better results with p-norm than with max

pooling. They obtained the best scores with p = 2 and

with a group size of K = 10 [20].

In our experiments with p-norm pooling, we set p to 2,

following Zhang et al, but in our first tests, the group size

was set to 2, which was found to be optimal for maxout

networks [17–19]. Our tests quickly revealed that our p-

norm implementation faces difficulties with propagating

the error back to lower layers. Zhang et al. applied dis-

criminative pre-training (DPT) in their study, which is a

layer-by-layer building strategy for deep networks [5]. We

added DPT to our code, and the results improved dramat-

ically, but the error rates we obtained still fell short, in

favor of max pooling (the corresponding results are shown

in rows 2 and 4 of Table 2). For comparison, we also tried

DPT with maxout, and for this pooling function, DPT

made no difference (see row 3 of Table 2). In general, we

think that p-norm pooling requires a careful normaliza-

tion of the weights/derivatives during training, for which

we have not yet found the proper strategy.

Looking for a way to combine the efficient learning

property of the max function with the smoothing behav-

ior of p-norm, we came up with the following solution.

During pre-training, for each presentation of each train-

ing sample, the network was randomly considered to

be a maxout network of a p-norm network. This way,

within a batch, the p-norm error update rule was evalu-

ated for q percent of the input vectors, while the standard

maxout rule was applied to the remaining ones. As the

weights are updated following the average of the error

within the batch, we hoped that this stochastic mixing of

the two error functions would help the maxout network

avoid local minima. The best results were obtained with

q = 0.2, and Fig. 5 shows an example of how this “hybrid”
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Table 2 Phone error rates of the CNN for various types of pooling functions

Network type and training method Frame error on developmental set (%) Phone error

Developmental set (%) Core test (%)

ReLU 34.7 16.0 18.8

Maxout 34.3 15.7 18.3

Maxout, DPT 34.2 15.8 18.1

2-norm, DPT 35.5 16.3 18.9

Maxout, hybrid DPT 33.4 15.6 18.0

training method influences the error curves during train-

ing. Clearly, although the learning becomes slower and

requires two more iterations, the final error rate is much

lower on the train set and slightly smaller on the devel-

opment set. We applied this training method only during

pre-training, so after the addition of the last hidden layer,

the network was trained as a normal maxout net. After

this training step, as Table 2 shows, our CNN attained a

frame error rate that was 0.8 % better than with the con-

ventional training process. Unfortunately, for the actual

example, this improved frame error rate is not reflected

by the phone error rates. In spite of this, we applied this

hybrid pre-training method in all the remaining experi-

ments.

In the last parameter tuning experiment, we looked for

the optimal group size K. Similar to the case of compar-

ing the ReLU net with the maxout net, we took care to

choose the number of units so that the global number of

weights remained about the same. As maxout units have

one output per group, this means that by increasing the

group size, we can increase the number of neurons as well.

As shown in Table 3, varying the group size from 2 to 5 did

not change the recognition accuracy scores. This accords

with the findings of other authors working with maxout

[17, 19]. In all the remaining experiments, we used a group

size of K = 2.

3.3 Comparing ReLU andmaxout CNNs on TIMIT

We evaluated our maxout CNN on TIMIT, using the

results got with the ReLU CNN (cf. Fig. 2) as a base of

comparison. This time, we did not vary the number of the

frequency bands because previously, the system seemed

unaffected by this parameter value. However, as the con-

volutional and the maxout pooling steps are done jointly

in our maxout CNN network, we repeated the experiment

that looked for the optimal pooling size r. Figure 6 com-

pares the performance of the ReLU and the maxout CNN

with various pooling sizes. As can be seen, the maxout

CNN outperformed the ReLU CNN for all r values, for

both the development and the test set. The error rates

have a similar trend for both networks and take their min-

imum at r = 5, suggesting that the joint pooling operation

Fig. 5 The progress of phone error rates during training. The curves are shown for the maxout and the hybrid methods, for the train and the

development sets
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Table 3 The effect of the group size on the performance of the

maxout CNN

Group Layer size Development Test

size Full Convolutional error (%) error (%)

2 2714 756 15.6 18.0

3 3204 960 15.5 18.0

4 3584 1160 16.0 18.1

5 3890 1340 16.0 18.2

works alright. Compared to its ReLU counterpart, the

maxout CNN at r = 5 attained a 2.5 % relative error rate

reduction on the development set and 4.3 % on the test set.

4 Hierarchical modelling

In the so-called tandem model, the ANN outputs are

used as features of a conventional HMM, virtually stack-

ing a GMM on top of the ANN [44]. Perhaps the success

of this model motivated the idea of stacking two neural

networks on each other. In this hierarchical model, both

ANNs use several frames of input context—corresponding

to a context of acoustic features for the lower network

and a context of state posterior estimates for the upper

one. Ketabdar et al. observed that with this method, the

ANN posterior estimates can be significantly “enhanced”

[22]. Pinto et al. gave a detailed analysis of how this hier-

archical model exploits the information in the temporal

trajectories of the posterior feature space [23]. In conven-

tional HMM/ANN training, the number of ANN outputs

is the same as the number of HMM states. Concatenat-

ing several of these output vectors may result in a feature

set that is prohibitively large for training the second net-

work of the hierarchy. This can be overcome by discarding

the uppermost layer(s) of the first network and using the

activation values of some hidden layer as the input to the

second network. The size of this hidden layer is flexible

and is usually made smaller than the output layer. Hence,

this technology is known as the “bottleneck” method [45].

With the bottleneck approach, we successfully trained

a hierarchical system with context-dependent state

targets [25].

Another possible way of improving hierarchical systems

is to downsample the output of the lower network [46].

This expands the time span of the model without increas-

ing the number of input features to the upper net. In our

earlier study, we experimentally found the optimal down-

sampling rate to be 5 [27], and other authors also prefer

this value [21, 26].

It is very convenient to train the two networks of the

hierarchy in two separate steps, as it requires no modi-

fication to the ANN code. However, Veselý showed that

better results can be obtained if the two networks are

trained as one unit. In his model, during the training of

the upper network, the error is propagated back to the

lower network as well, so the weights of the lower net

are also updated [21]. We successfully applied this solu-

tion to DNNs [27], and here, we extend it to convolutional

networks as well.

Figure 7 shows the structure of the hierarchical model.

Though with the introduction of joint training we no

longer have two networks, but just one network with a

special structure, for ease of understanding, we will still

talk about “upper” and “lower” networks. The lower net-

work operates on a context of several input frames, which

in our case will consist of nine consecutive feature vec-

tors [27]. This lower part of the network is evaluated at

each frame position of the input data set. However, the

upper network uses just every fifth of the resulting vec-

tors. That is, it operates on five vectors coming from the

lower part, which are positioned at the {0th,±5th,±10th}

frame indices of the original input space (the example of

Fig. 7 uses only three frames at {0,±2}). Both the lower

and upper network parts may consist of several layers,

though experience shows that the upper part requires

fewer and smaller layers [23]. Veselý et al. argued that

the hierarchical model can be viewed as a convolutional

model that performs convolution along time, as it fulfills

Fig. 6 A comparison of the performance of the ReLU and the maxout CNNs. The phone error rates are shown as a function of the pooling size
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Fig. 7 Schematic diagram of the hierarchical CNN network structure.

For clarity, full connections between layers are represented by single

lines

the three requirements mentioned in Section 2. Firstly, the

lower network part processes only a subset of the input to

the whole, joint structure, so the requirement of locality

is satisfied. Secondly, it processes several, shifted versions

of the local input window using the same sub-network,

so weight sharing is also present. Lastly, the output of

these local network parts is downsampled before being

combined by the higher-level layers. Hence, this model

can indeed be called convolutional if we regard down-

sampling as a special kind of pooling function. Accepting

this argumentation, we referred to this sort of architec-

ture as a convolutional model in our earlier paper [27].

However, now we consider this to be slightly misleading,

since Veselý’s model contains no actual pooling proce-

dure, which is a vital component of all other studies on

CNNs—including this one. Thus, in this paper, we prefer

to interpret and refer to Veselý’s technology as a refined

hierarchical model rather than a convolutional model.

The technical details of our implementation of the hier-

archical model are as follows. The lower network part

consisted of the convolutional network described in ear-

lier sections with two modifications. First, the size of the

input layer was decreased from 17 frames to just 9 frames.

This input size seems to be sufficient [27] because of the

overlap of the local input blocks (see Fig. 7). Thus, the

hierarchical model covers 29 frames of input vectors via

its 5 local input blocks of 9-9 frames, which overlap by

5 frames. The second modification is that the size of the

uppermost hidden layer was reduced to its fifth to form

a bottleneck layer. This way, the input to the upper net-

work part (consisting of five vectors from the lower part)

was just of the same size as that for all the other layers.

The network was the same CNN as that used earlier in all

other respects, that is, it consisted of one convolutional

layer and three hidden layers of maxout units, with the

layer sizes given earlier.

The network was trained by adding one hidden layer

after another, using the DPT procedure described earlier.

However, after the addition of the bottleneck layer, the

training procedure continued by adding the layers of the

upper network part. This consisted of two more hidden

layers, with 2714 maxout units in each layer. That is, the

final hierarchical model contained 4 + 2 hidden layers.

Table 4 shows that, compared to the four hidden layer

CNN, the hierarchical model attains a relative error rate

reduction of about 10 % on the development set and 5.5 %

on the core test set. One may argue that the comparison is

not fair, as the hierarchical model contains two more hid-

den layers with about 30 % more parameters. Moreover,

the input of the CNN consisted of 17 frames of data, while

the five local input blocks of the hierarchical model alto-

gether cover 29 frames. The experiments in Section 2.1

revealed that the larger input context cannot explain the

improvement in itself (cf. Fig. 3). To prove that the two

additional layers cannot explain the better performance

either, we trained a six-hidden layer CNN with 29 frames

of input. As shown in Table 4, this network performed no

better than the four-layer network on the development set

and was only slightly better on the test set. This exper-

iment demonstrates that the good performance of the

hierarchical model is due to its special structure; that is,

the fact that it processes the long context of input in local

portions and then combines the results in a hierarchical

manner.

5 Dropout

In accordance with the experimental results of other

authors, we found that max-pooling CNNs and max-

out networks are inclined to overfit the training data set

[29, 43]. We already gave an intuitive explanation of this

Table 4 The reduction of the phone error rate using more

hidden layers or using the hierarchical modelling scheme

Network type Development set (%) Core test set (%)

CNN (4 hidden layers) 15.6 18.0

CNN (6 hidden layers) 15.7 17.7

Hierarchical CNN 14.0 17.0
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in Section 3.2. This overfitting behavior was quite strong

in the case of the hierarchical model, where we observed

a huge gap between the train and development set frame

error rates. A technically very simple approach to allevi-

ate overfitting is to use the dropout training technique.

During network training, dropout omits each hidden neu-

ron randomly with probability p. This prevents the co-

adaptation of neurons, as they cannot directly rely on the

activity of other specific neurons [28]. In speech recogni-

tion tests, dropout was shown to give significant improve-

ments both in the case of pre-trained sigmoid networks

[28] and ReLU networks [36], and now, it is a widely

accepted tool in the training of DNNs for speech recog-

nition. Recently, dropout was shown to work nicely in the

training of maxout networks as well [18, 19, 29].

Here, we applied dropout during the training of our

hierarchical CNN network as follows. First, we used

the same dropout rate for each layer, though there

exist sophisticated optimization methods for tuning the

dropout rate for each layer separately [36]. We varied

the dropout rate with a step size of 0.05, and the best

result on the development set was obtained with 0.25. We

note here that the original paper used a dropout rate of

0.5, but by allowing an extremely large number of train-

ing epochs [28]. Most other authors reported the best

results with smaller dropout rates between 0.1 and 0.3

[8, 19, 29] perhaps because they used fewer training iter-

ations. For dropout training, we modified our code so

that one “epoch” consisted of five sweeps through the data

instead of just one. We found that this fivefold increase in

the training time was necessary to get good results with

dropout.

The effect of dropout training on the performance of

the hierarchical maxout CNN is shown in Table 5. The

improvement due to dropout is about 5 % on the develop-

ment set and 3 % on the core test set.

Table 6 compares our result with the best previously

reported scores on the TIMIT core test set. Unfortu-

nately, only a few authors used CD phone models like us

(indicated by a (CD) remark in the table), so the results

are not fully comparable. Still, some main tendencies can

be observed. First, all the best results are achieved by

special neural structures like CNNs, recurrent nets, and

the hierarchical model. Second, systems that use some

sophisticated feature set (including speaker adaptation)

and context-dependent training targets perform better.

We think that the superiority of our solution is due to the

Table 5 The effect of dropout training on the phone error rates

Network type Development set (%) Core test set (%)

Hierarchical maxout CNN 14.0 17.0

Hierarchical maxout CNN 13.3 16.5

+ dropout

Table 6 The best reported phone error rates (PER) on the TIMIT

core test set

Method PER (%)

Hierachical shallow ANN (CD) [25] 21.2

DNN with softmax units [3] 20.7

DNN with ReLU units [35] 20.8

DNN with ReLU units (CD) [35] 19.8

DNN with dropout [28] 19.7

DNN with BMMI features (CD) [50] 19.1

CNN with speaker adaptation [51] 18.9

DNN + RNN [49] 18.8

CNN with heterogeneous pooling [8] 18.7

LSTM RNN [52] 17.7

CNN with scatter features (CD) [53] 17.4

Hierarchical CNN (CD) [this paper] 16.5

CD training targets, the maxout activation function, and

the application of the hierarchical structure. Our scores

could presumably be improved further by using a refined

feature set and/or speaker adaptation.

6 Evaluation on a low-resource LVCSR task

The TIMIT corpus is still very useful for quickly test-

ing new ideas in acoustic modelling, as it is a carefully

designed corpus with a lot of results available for compar-

ison. However, it is unrealistically small by today’s stan-

dards, even for research purposes. Hence, we evaluated

our best models on a large vocabulary recognition task.

The “Szeged”Hungarian Broadcast News Corpus contains

28 h of recordings from eight Hungarian TV channels.

Twenty-two hours of data were selected for the training

set, 2 h for the development set, and 4 h for the test set.

The language model was created using HTK from texts

taken from a news portal, and the recognition dictionary

consisted of 486,982 words. More details on the corpus

and the train/test settings can be found in our earlier

paper [47]. We created context-dependent HMM/DNN

phone models using a Kullback-Leibler divergence-based

state clustering algorithm [48]. This algorithm resulted in

1233 training targets for the neural network. Apart from

adjusting the size of the output layer accordingly, all other

parameters of the DNNs and CNNs applied were the same

as in the TIMIT experiments. As regards convolutional

filter size and pooling size, our findings on TIMIT indi-

cated that the CNN is not particularly sensitive to the

actual choice of these parameters, so we used the same

parameter values that were found to be optimal for TIMIT.

The word error rates attained by the various types of

DNN and CNN models are listed in Table 7. As can be

seen, themaxout DNNoutperformed the ReLUDNN, giv-

ing a WER reduction of 2.4 % when trained in one go
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Table 7 Word error rates of the DNN and CNN models on the

Hungarian LVCSR task

Network type Development set (%) Test set (%)

DNN, ReLU 17.7 17.0

DNN, maxout 17.4 16.6

DNN, maxout, hybrid DPT 17.2 16.5

CNN 16.5 15.9

Hierarchical CNN 16.1 15.5

and about 3 % when trained with our “hybrid” discrimina-

tive pre-training method. Our results are in accord with

the findings of Cai et al., who got an 1–5 % drop in WER

using maxout units instead of ReLUs on the Switchboard

corpus [17].

Next, we trained a CNN with maxout units, using the

pre-training method mentioned above. Compared to the

best-performing DNN, the CNN attained a relative WER

reduction of about 3.6 %. This result is consistent with the

findings of Sainath et al., who reported a 3 % improvement

by switching from DNNs to CNNs on a 50-h broadcast

news task [14]. Next, we extended the CNN with two

more layers to get the hierarchical model described in

Section 4. Interestingly, while this model attained a huge

drop in the frame error rate (about 17 %), the word the

error rate decreased only by 2.5 %. The probable expla-

nation is that the hierarchical scheme can correct the

frame errors at positions where the neighboring frames

have been recognized correctly. While this is beneficial

in pure phone recognition, in word-based recognition,

most of these errors can be corrected by the dictionary as

well.

7 Conclusions

CNNs seem to be more powerful than fully connected

DNNs in cases where the special topology of the input

space can be exploited. When applied in speech recogni-

tion, CNNs can detect features that are local in frequency,

also tolerating small shifts in their positions. Here, we

turned the CNN into a hierarchical model, which extends

the locality to the time axis as well. We showed that the

performance gain provided by this model is indeed due

to its special structure and not simply because of the

larger input context and the use of more layers. We also

experimented with the maxout activation function and

showed how it can be readily combined with the pooling

function of convolutional neurons. As maxout CNNs out-

performed their ReLU counterpart in all the experiments,

we plan to use themmore frequently in the future.We also

think that the p-norm function could yield larger gains,

if we could find the best way of using it. Furthermore,

the literature suggests that recurrent networks and con-

volutional networks are currently the two most promising

technologies for speech recognition. We are studying the

options of combining these two approaches, for example,

by the simple methodology employed by Deng et al. [49].
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