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Abstract

We compare the performance of a recurrent neural network with the best results
published so far on phoneme recognition in the TIMIT database. These published results
have been obtained with a combination of classifiers. However, in this paper we apply a
single recurrent neural network to the same task. Our recurrent neural network attains
an error rate of 24.6%. This result is not significantly different from that obtained by the
other best methods, but they rely on a combination of classifiers for achieving comparable
performance.

1 Introduction

Spontaneous speech production is a continuous and dynamic process. This continuity is
reflected in the acoustics of speech sounds and, in particular, in the transitions from one speech
sound to another. As a consequence, the boundaries between speech sounds are not clearly
defined. This fact significantly contributes to making segmentation and labelling of speech
data interrelated tasks. Because of this interrelation, automatic speech recognition is best
performed with methods such as hidden Markov models (HMM) that do not require segmented
data for development. On the contrary, developing neural networks has traditionally relied
on segmented data. The objective functions require a network output target value at every
or specific time-steps in the data sequence. Connectionist temporal classification (CTC)
overcomes this limitation. CTC allows developing neural network classifiers using a sequence
of labels as the desired output target [5]. Labels correspond to events occurring in the input
data sequence, such as phones in a speech data stream. The number of labels in a target
labelling is, therefore, typically much shorter than the number of time-steps in the input data
sequence. Also, there is not timing information in a target labelling, except for labels being
in the same order in which events occur in the input data sequence.

Recurrent neural networks are an interesting alternative to HMMs for speech recognition.
Their continuous internal state is naturally well suited for modelling speech dynamics. More-
over, their capability to model data dependencies has potential for modelling coarticulatory

∗Santiago Fernández and Jürgen Schmidhuber are with IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzer-
land (email: [santiago, juergen]@idsia.ch). Alex Graves and Jürgen Schmidhuber are with TU Munich, Boltz-
mannstr. 3, D-85748 Garching, Münich, Germany (email: [graves,juergen.schmidhuber]@in.tum.de).



Technical Report No. IDSIA-04-08 2

effects in speech. In contrast, HMMs are built on a number of independence assumptions
about the data.

We showed in [5] that CTC-based recurrent neural networks outperform state-of-the-art
algorithms on phoneme recognition in the TIMIT database. In contrast with the algorithms
compared in [5], which rely on a single type of classifier to perform the task, Glass’ uses a
committee-based classifier [4], whereas Deng et al.’s combines the scores from two related
algorithms [1]. These two systems achieved the best phoneme recognition rates published so
far for TIMIT. In this paper, we compare the performance of a single CTC-based recurrent
neural network with that of Glass’ and Deng et al.’s systems. The main differences with
respect to the experimental setup used in [5] are: first, the data are divided into training,
validation and test sets as described in [8], and second, a standard set of 39 phonetic categories,
instead of 61, is used [10]. This new experimental setup allows a direct comparison of the
three systems.

2 Materials

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT) contains record-
ings of prompted English speech accompanied by manually segmented phonetic transcripts [2].
TIMIT contains a total of 6300 sentences, 10 sentences spoken by each of 630 speakers from
8 major dialect regions of the United States.

For the experiments, the SA sentences were discarded and the remaining data were split
into a training set, a validation set and a test set according to [8]. The training set contains
3696 sentences (462 speakers), the validation set contains 400 sentences (50 speakers) and the
test set contains 192 sentences (24 speakers).

TIMIT transcriptions are based on 61 phones. Typically, 48 phones are selected for mod-
elling. Confusions among a number of these 48 phones are not counted as errors. Therefore,
results are presented for 39 phonetic categories. We decided to train the network on tran-
scriptions based on this lexicon of 39 phones. The 61 categories were folded onto 39 categories
as described by Lee and Hon [10]. This is shown in table 1.

Speech data was transformed into Mel frequency cepstral coefficients (MFCC) with the
HTK software package [11]. Spectral analysis was carried out with a 40 channel Mel filter
bank from 64 Hz to 8 kHz. A pre-emphasis coefficient of 0.97 was used to correct spectral tilt.
Twelve MFCC plus the 0th order coefficient were computed on Hamming windows 25 ms long,
every 10 ms. Delta and Acceleration coefficients were added giving a vector of 39 coefficients
in total. For the network, the coefficients were normalised to have mean zero and standard
deviation one over the training set.

The division of TIMIT into the three aforementioned data sets and the presentation of
results for 39 phones, was also adopted in [4, 1]. As acoustic features, Deng et al. used
frequency-warped LPC cepstra [1], instead of MFCC. For his part, Glass tried a number
of variations and combinations of MFCC, perceptual linear prediction (PLP) cepstral coef-
ficients, energy and duration [8, 4]. Glass’ system built 61 models, one for each of the 61
phones in TIMIT, and results were tabulated using the standard set of 39 phones.
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aa aa, ao
ah ah, ax, ax-h
er er, axr
hh hh, hv
ih ih, ix
l l, el
m m, em
n n, en, nx
ng ng, eng
sh sh, zh
sil pcl, tcl, kcl, bcl, dcl, gcl, h#, pau, epi
uw uw, ux
— q

Table 1: Folding the 61 categories in TIMIT onto 39 categories (from [10]). The phones in
the right column are folded onto their corresponding category in the left column (the phone
’q’ is discarded). All other TIMIT phones are left intact.

3 Method

The method employed is the same described in [5]. Briefly, phoneme recognition is performed
with a recurrent neural network. The long short-term memory recurrent neural network
(LSTM) was used because of its ability to bridge long time delays [9, 3]. The hidden units in
an LSTM network are called memory blocks. Each memory block has one or more memory
cells controlled by an input, an output and a forget gate. When the input gate is open
incoming data is stored in the memory cell, and when the output gate is open data stored in
the memory cell is sent to the output layer. The forget gate resets the memory cell. Gates can
optionally have access to the data stored in the memory cell (peephole connections). Gates
and the memory block input are typically connected to the same units in the network. These
connections are trainable, thus the behaviour of the gates is not pre-determined, but rather
learned during training.

For phoneme recognition, where both anticipatory and carry-over coarticulatory effects are
important, a bi-directional neural network is suitable. The bi-directional LSTM (BLSTM) [7,
6] has two separate recurrent hidden layers, both of them connected to the same input and
output layers. The forward recurrent network is presented with sequential data forward in
time, from the beginning of the data sequence to time-step t. The backward recurrent network
is presented with sequential data backwards in time, from the end of the data sequence to
time-step t. At any time-step t, the network has access to all information in the data sequence.

The BLSTM recurrent neural network was trained with the CTC algorithm using the
list of phones in the speech utterances as target labellings [5]. Once the network has been
trained, the predicted labelling for a new speech utterance can be directly read from its
outputs. This method (best path decoding) is, however, not guaranteed to find the most
probable labelling. A second method (prefix search decoding) consists in calculating the
probabilities of successive extensions of labelling prefixes, which can then be used to find the
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most probable labelling. However, because this procedure is computationally intensive, it
was separately calculated for sections of the output sequence. As a consequence, prefix search
decoding is not guaranteed to find the most probable labelling but, in practice, it generally
outperforms best path decoding [5].

In the experiments reported in this paper, the BLSTM-CTC network had an input layer
of size 39, the forward and backward hidden layers had 128 blocks each, and the output layer
was size 40 (39 phones plus blank). The gates used a logistic sigmoid function in the range
[0, 1]. The input layer was fully connected to the hidden layer and the hidden layer was fully
connected to itself and the output layer. The total number of weights was 183,080.

Training of the BLSTM-CTC network was done by gradient descent with weight updates
after every training example. In all cases, the learning rate was 10−4, momentum was 0.9,
weights were initialized randomly in the range [−0.1, 0.1] and, during training, Gaussian noise
with a standard deviation of 0.6 was added to the inputs to improve generalisation. For prefix
search decoding, an activation threshold of 0.9999 was used (see [5] for a description of this
parameter).

Performance was measured as the normalised edit distance (label error rate; LER) between
the target label sequence and the output label sequence given by the system.

Deng et al.’s hidden trajectory models (HTM) are a type of probabilistic generative model
aimed at modelling speech dynamics and adding long-contextual-span capabilities that are
missing in hidden Markov models (HMM) [1]. A thorough description of this system is avail-
able in [12]. HTM uses a bi-directional filter to estimate probabilistic speech data trajectories
given a hypothesized phone sequence. This estimate is then used to compute the model likeli-
hood score for the observed speech data. The search for the phone sequence with the highest
likelihood is performed with an A* based lattice search and rescoring algorithm specifically
developed for HTM.

Glass’s system is a segment-based speech recogniser (as opposed to frame-based recog-
nisers) based on the detection of landmarks in the speech signal [4]. Acoustic features are
computed over hypothesized segments and at their boundaries. The standard decoding frame-
work is modified and extended to deal with this paradigm shift.

4 Results

Results are shown in table 2. Error rates include errors due to substitutions, insertions
and deletions with respect to the reference transcription. Deng et al.’s best result was
achieved with a lattice-constrained A* search with weighted HTM, HMM, and language model
scores [1]. Glass’s best results were achieved with many heterogeneous information sources
and classifier combinations [4]. A single BLSTM-CTC recurrent neural network attains an
error rate of 24.6%, which is not significantly different from Deng et al.’s or Glass’s best re-
sults. It is likely that BLSTM-CTC can achieve improved performance when more sources of
information are added and when they are combined with other classifiers. The results shown
in table 2 are the best results reported in the literature on phoneme recognition in TIMIT.
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28.57% Deng et al.’s baseline HMM [1]

25.17%, s.e. 0.20% BLSTM-CTC (best path decoding)
24.93% Deng et al.’s HTM-HMM [1]

24.93% Deng et al.’s HTM-HMM [1]
24.58%, s.e. 0.20% BLSTM-CTC (prefix search decoding)
24.4% Glass’s committee-based classifier [4]

Table 2: Error rates on TIMIT. Results for BLSTM-CTC are the average and standard error
(s.e.) over 10 runs. On average, the networks were trained for 112.5 epochs (s.e. = 6.4). The
horizontal lines divide the list of systems into groups performing significantly different than
the networks. BLSTM-CTC with best path decoding is significantly different from Deng et
al.’s baseline HMM (two-sided t-test, p < 3 · 10−8), from BLSTM-CTC with prefix search
decoding (p < 0.05) and from Glass’s classifier (p < 0.004). BLSTM-CTC with prefix search
decoding is not significantly different from either Deng et al.’s HTM-HMM or Glass’s classifier.

5 Conclusions

We have provided results for phoneme recognition with BLSTM-CTC using the TIMIT
database. The experiments use the same standard data sets and phonetic inventory em-
ployed by the systems reportedly having the best performance to date. Finally, we have com-
pared BLSTM-CTC’s performance to that achieved by these systems [4, 1]. BLSTM-CTC
achieves comparable performance without relying on a combination of multiple classifiers.
Also, BLSTM-CTC makes fewer assumptions about the task domain.
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