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Abstract-In this paper we present a Time-Delay Neural Network 

(TDNN) approach to phoneme recognition which is characterized by 

two important properties. 1) Using a 3 layer arrangement of simple 

computing units, a hierarchy can be constructed that allows for the 

formation of arbitrary nonlinear decision surfaces. The TDNN learns 

these decision surfaces automatically using error backpropagation 111. 

2) The time-delay arrangement enables the network to discover acous- 

tic-phonetic features and the temporal relationships between them in- 

dependent of position in time and hence not blurred by temporal shifts 

in the input. 

As a recognition task, the speaker-dependent recognition of the pho- 

nemes “B,” “D,” and “G” in varying phonetic contexts was chosen. 

For comparison, several discrete Hidden Markov Models (HMM) were 

trained to perform the same task. Performance evaluation over 1946 

testing tokens from three speakers showed that the TDNN achieves a 

recognition rate of 98.5 percent correct while the rate obtained by the 

best of our HMM’s was only 93.7 percent. Closer inspection reveals 

that the network “invented” well-known acoustic-phonetic features 

(e.g., F2-rise, F2-fall, vowel-onset) as useful abstractions. It also de- 

veloped alternate internal representations to link different acoustic re- 

alizations to the same concept. 

I. INTRODUCTION 

recent years, the advent of new learning procedures I” and the availability of high speed parallel supercom- 

puters have given rise to a renewed interest in connec- 
tionist models of intelligence [ 13. Sometimes also referred 

to as artificial neural networks or parallel distributed pro- 
cessing models, these models are particularly interesting 
for cognitive tasks that require massive constraint satis- 

faction, i.e., the parallel evaluation of many clues and 

facts and their interpretation in the light of numerous in- 
terrelated constraints. Cognitive tasks, such as vision, 

speech, language processing, and motor control, are also 
characterized by a high degree of uncertainty and vari- 
ability and it has proved difficult to achieve good pei-for- 
mance for these tasks using standard serial programming 

methods. Complex networks composed of simple com- 
puting units are attractive for these tasks not only because 
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of their “brain-like’’ appeal’ but because they offer ways 

for automatically designing systems that can make use of 
multiple interacting constraints. In general, such con- 
straints are too complex to be easily programmed and re- 

quire the use of automatic learning strategies. Such learn- 
ing algorithms now exist (for an excellent review, see 

Lippman [ 2 ] )  and have been demonstrated to discover in- 

teresting internal abstractions in their attempts to solve a 
given problem [ l ] ,  [3]-[5]. Learning is most effective, 
however, when used in an architecture that is appropriate 

for the task. Indeed, applying one’s prior knowledge of a 
task domain and its properties to the design of a suitable 
neural network model might well prove to be a key ele- 

ment in the successful development of connectionist sys- 
tems. 

Naturally, these techniques will have far-reaching im- 

plications for the design of automatic speech recognition 
systems, if proven successful in comparison to already- 
existing techniques. Lippmann [6] has compared several 

kinds of neural networks to other classifiers and evaluated 

their ability to create complex decision surfaces. Other 
studies have investigated actual speech recognition tasks 

and compared them to psychological evidence in speech 
perception [7] or to existing speech recognition tech- 
niques [SI, [9]. Speech recognition experiments using 

neural nets have so far mostly been aimed at isolated word 
recognition (mostly the digit recognition task) [lo]-[ 131 
or phonetic recognition with predefined constant [ 141, [ 151 

or variable phonetic contexts [ 161, [ 141, [ 171. 

A number of these studies report very encouraging rec- 
ognition performance [ 161, but only few comparisons to 

existing recognition methods exist. Some of these com- 

parisons found performance similar to existing methods 
[9], [ l  I ] ,  but others found that networks perform worse 
than other techniques [SI. One might argue that this state 

of affairs is encouraging considering the amount of fine- 
tuning that has gone into optimizing the more popular, 
established techniques. Nevertheless, better comparative 

performance figures are needed before neural networks 
can be considered as a viable alternative for speech rec- 
ognition systems. 

‘The uninitiated reader should be cautioned not to overinterpret the now- 

popular term “neural network.” Although these networks appear to mimic 
certain properties of neural cells, no claim can be made that present ex- 
ploratory attempts simulate the complexities of the human brain. 
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One possible explanation for the mixed performance re- 

sults obtained so far may be limitations in computing re- 
sources leading to shortcuts that limit performance. An- 

other more serious limitation, however, is the inability of 

most neural network architectures to deal properly with 

the dynamic nature of speech. Two important aspects of 
this are for a network to represent temporal relationships 

between acoustic events, while at the same time providing 
for invariance under translation in time. The specific 

movement of a formant in time, for example, is an im- 
portant cue to determining the identity of a voiced stop, 

but it is irrelevant whether the same set of events occurs 
a little sooner or later in the course of time. Without trans- 
lation invariance, a neural net requires precise segmen- 
tation to align the input pattern properly. Since this is not 

always possible in practice, learned features tend to get 

blurred (in order to accommodate slight misalignments) 
and their performance deteriorates. In general, shift in- 

variance has been recognized as a critically important 
property for connectionist systems and a number of prom- 
ising models have been proposed for speech and other do- 

mains [181-[211, [14], [171, [22]. 
In the present paper, we describe a Time-Delay Neural 

Network (TDNN) which addresses both of these aspects 

of speech and demonstrate through extensive performance 
evaluation that superior recognition results can be 
achieved using this approach. In the following section, 

we begin by introducing the architecture and learning 
strategy of a TDNN aimed at phoneme recognition. Next, 

we compare the performance of our TDNN’s to one of the 

more popular current recognition techniques: Hidden 
Markov Models (HMM). In Section 111, we start by de- 
scribing an HMM, under development at ATR [23], [24]. 

Both techniques, the TDNN and the HMM, are then eval- 
uated over a testing database and we report the results. 
We show that substantially higher recognition perfor- 

mance is achieved by the TDNN than by the best of our 
HMM’s. In Section IV, we then take a closer look at the 
internal representation that the TDNN learns for this task. 

It discovers a number of interesting linguistic abstractions 

which we show by way of examples. The implications of 
these results are then discussed and summarized in the 

final section of this paper. 

11. TIME-DELAY NEURAL NETWORKS (TDNN) 

To be useful for speech recognition, a layered feedfor- 
ward neural network must have a number of properties. 
First, it should have multiple layers and sufficient inter- 

connections between units in each of these layers. This is 
to ensure that the network will have the ability to learn 

complex nonlinear decision surfaces [2], [6]. Second, the 
network should have the ability to represent relationships 

between events in time. These events could be spectral 
coefficients, but might also be the output of higher level 

feature detectors. Third, the actual features or abstrac- 
tions learned by the network should be invariant under 
translation in time. Fourth, the learning procedure should 
not require precise temporal alignment of the labels that 

are to be learned. Fifth, the number of weights in the net- 
work should be sufficiently small compared to the amount 

of training data so that the network is forced to encode 
the training data by extracting regularity. In the follow- 

ing, we describe a TDNN architecture that satisfies all of 

these criteria and is designed explicitly for the recognition 
of phonemes, in particular, the voiced stops “B,” “D,” 
and “G.”  

A. A TDNN Architecture for Phoneme Recognition 

The basic unit used in many neural networks computes 
the weighted sum of its inputs and then passes this sum 

through a nonlinear function, most commonly a threshold 
or sigmoid function [2], [ 11. In our TDNN, this basic unit 
is modified by introducing delays D ,  through D ,  as shown 

in Fig. 1. The J inputs of such a unit now will be multi- 
plied by several weights, one for each delay and one for 
the undelayed input. For N = 2, and J = 16, for example, 

48 weights will be needed to compute the weighted sum 
of the 16 inputs, with each input now measured at three 
different points in time. In this way, a TDNN unit has the 

ability to relate and compare current input to the past his- 
tory of events. The sigmoid function was chosen as the 

nonlinear output function F due to its convenient mathe- 

matical properties [ 181, [5]. 
For the recognition of phonemes, a three layer net is 

constructed.2 Its overall architecture and a typical set of 

activities in the units are shown in Fig. 2. 
At the lowest level, 16 normalized melscale spectral 

coefficients serve as input to the network. Input speech, 

sampled at 12 kHz, was Hamming windowed and a 256- 
point FFT computed every 5 ms. Melscale coefficients 
were computed from the power spectrum by computing 

log energies in each melscale energy band [25], where 
adjacent coefficients in frequency overlap by one spectral 
sample and are smoothed by reducing the shared sample 

by 50 percent [25].3 Adjacent coefficients in time were 
collapsed for further data reduction resulting in an overall 
10 ms frame rate. All coefficients of an input token (in 

this case, 15 frames of speech centered around the hand- 
labeled vowel onset) were then normalized. This was ac- 

complished by subtracting from each coefficient the aver- 

age coefficient energy computed over all 15 frames of an 
input token and then normalizing each coefficient to lie 
between - 1 and + 1. All tokens in our database were pre- 

processed in the same fashion. Fig. 2 shows the resulting 
coefficients for the speech token “BA” as input to the 

*Lipprnann [2], [6] demonstrated recently that three layers can encode 
arbitrary pattern recognition decision surfaces. We believe that complex 
nonlinear decision surfaces are necessary to properly perform classification 

in the light of considerable acoustic variability as reported in the experi- 

ments below. 
‘Naturally, a number of alternative signal representations could be used 

as input, but have not been tried in  this study. Filterbank coefficients were 

chosen as they are simple to compute and readily,interpretable in  the light 
of acoustic-phonetics. The melscale is a physiologically motivated fre- 
quency scale that provides better relative frequency resolution for lower 
frequency bands. Our implementation resulted in coefficients with a band- 
width of approximately 190 Hz up to 1400 Hz. and with increasing band- 

widths thereafter. 
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Fig. I .  A Time-Delay Neural Network (TDNN) unit. 
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Fig 2 The architecture of the TDNN 
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network, where positive values are shown as black squares 

and negative values as gray squares. 
This input layer is then fully interconnected to a layer 

of 8 time-delay hidden units, where J = 16 and N = 2 

(i.e., 16 coefficients over 3 frames with time delay 0, 1, 
and 2). An alternative way of seeing this is depicted in 

Fig. 2. It shows the inputs to these time-delay units ex- 
panded out spatially into a 3 frame window, which is 
passed over the input spectrogram. Each unit in the first 

hidden layer now receives input (via 48 weighted connec- 

tions) from the coefficients in the 3 frame window. The 
particular choice of 3 frames (30 ms) was motivated by 

earlier studies [26]-[29] that suggest that a 30 ms window 

might be sufficient to represent low level acoustic-pho- 
netic events for stop consonant recognition. It was also 

the optimal choice among a number of alternative designs 

evaluated by Lang [21] on a similar task. 
In the second hidden layer, each of 3 TDNN units looks 

at a 5 frame window of activity levels in hidden layer 1 

(i.e.,  J = 8 ,  N = 4). The choice of a larger 5 frame win- 
dow in this layer was motivated by the intuition that higher 

level units should learn to make decisions over a wider 

range in time based on more local abstractions at lower 
levels. 

Finally, the output is obtained by integrating (sum- 

ming) the evidence from each of the 3 units in hidden 
layer 2 over time and connecting it to its pertinent output 
unit (shown in Fig. 2 over 9 frames for the “B” output 

unit). In practice, this summation is implemented simply 
as another nonlinear (sigmoid function is applied here as 
well) TDNN unit which has fixed equal weights to a row 

of unit firings over time in hidden layer 2.4 

When the TDNN has learned its internal representation, 
it performs recognition by passing input speech over the 
TDNN units. In terms of the illustration of Fig. 2 ,  this is 

equivalent to passing the time-delay windows over the 

lower level units’ firing  pattern^.^ At the lowest level, 
these firing patterns simply consist of the sensory input, 

i.e., the spectral coefficients. 
Each TDNN unit outlined in this section has the ability 

to encode temporal relationships within the range of the 

N delays. Higher layers can attend to larger time spans, 
so local short duration features will be formed at the lower 

layer and more complex longer duration features at the 

higher layer. The learning procedure ensures that each of 
the units in each layer has its weights adjusted in a way 
that improves the network’s overall performance. 

B. Learning in a TDNN 

Several learning techniques exist for optimization of 
neural networks [l], [2], [30]. For the present network, 
we adopt the Backpropagation Learning Procedure [ 181, 

‘Note, however, that as  for all units in  this network (except the input 
units), the output units are also connected to a permanently active threshold 
unit. In this way. both an output unit’s one shared connection to a row in 

hidden layer 2 and its dc-bias are learned and can be adjusted for optimal 
classification. 

’Thus. 13 frames of activations in hidden layer I are generated when 
scanning the 15 frames of input speech with a 3 frame time delay window. 

Similarly, 9 frames are produced in hidden layer 2 from the 13 frames of 
activation in the layer below. 
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[5]. Mathematically, backpropagation is gradient descent 
of the mean-squared error as a function of the weights. 
The procedure performs two passes through the network. 
During the forward pass, an input pattern is applied to the 
network with its current connection strengths (initially 
small random weights). The outputs of all the units at each 
level are computed starting at the input layer and working 
forward to the output layer. The output is then compared 
to the desired output and its error calculated. During the 
backward pass, the derivative of this error is then propa- 
gated back through the network, and all the weights are 
adjusted so as to decrease the error [18], [5]. This is re- 
peated many times for all the training tokens until the net- 
work converges to producing the desired output. 

In the previous section, we described a method of ex- 
pressing temporal structure in a TDNN and contrasted this 
method to training a network on a static input pattern 
(spectrogram), which results in shift sensitive networks 
(i.e., poor performance for slightly misaligned input pat- 
terns) as well as less crisp decision making in the units of 
the network (caused by misaligned tokens during train- 
ing). 

To achieve the desired learning behavior, we need to 
ensure that the network is exposed to sequences of pat- 
terns and that it is allowed (or encouraged) to learn about 
the most powerful cues and sequences of cues among 
them. Conceptually, the backpropagation procedure is ap- 
plied to speech patterns that are stepped through in time. 
An equivalent way of achieving this result is to use a spa- 
tially expanded input pattern, i.e., a spectrogram plus 
some constraints on the weights. Each collection of 
TDNN units described above is duplicated for each one 
frame shift in time. In this way, the whole history of ac- 
tivities is available at once. Since the shifted copies of the 
TDNN units are mere duplicates and are to look for the 
same acoustic event, the weights of the corresponding 
connections in the time shifted copies must be constrained 
to be the same. To implement this, we first apply the reg- 
ular backpropagation forward and backward pass to all 
time-shifted copies as if they were separate events. This 
yields different error derivatives for corresponding (time 
shifted) connections. Rather than changing the weights on 
time-shifted connections separately, however, we ac- 
tually update each weight on corresponding connections 
by the same value, namely by the average of all corre- 
sponding time-delayed weight changes.6 Fig. 2 illustrates 
this by showing in each layer only two connections that 
are linked ,fo (constrained to have the same value as) their 
time-shifted neighbors. Of course, this applies to all con- 
nections and all time shifts. In this way, the network is 
forced to discover useful acoustic-phonetic features in the 
input, regardless of when in time they actually occurred. 
This is an important property, as it makes the network 
independent of error-prone preprocessing algorithms that 

otherwise would be needed for time alignment and/or seg- 
mentation. In Section IV-C, we will show examples of 
grossly misaligned patterns that are properly recognized 
due to this property. 

The procedure described here is computationally rather 
expensive, due to the many iterations necessary for learn- 
ing a complex multidimensional weight space and the 
number of learning samples. In our case, about 800 learn- 
ing samples were used, and between 20 000 and 50 000 
iterations of the backpropagation loop were run over all 
training samples. Two steps were taken to perform learn- 
ing within reasonable time. First, we have implemented 
our learning procedure in C and Fortran on a 4 processor 
Alliant supercomputer. The speed of learning can be im- 
proved considerably by computing the forward and back- 
ward sweeps for several different training samples in par- 
allel on different processors. Further improvements can 
be gained by vectorizing operations and possibly assem- 
bly coding the innermost loop. Our present implementa- 
tion achieves about a factor of 9 speedup over a VAX 
8600, but still leaves room for further improvements 
(Lang [2 13, for example, reports a speedup of a factor of 
120 over a VAXl1/780 for an implementation running on 
a Convex supercomputer). The second step taken toward 
improving learning time is given by a staged learning 
strategy. In this approach, we start optimizing the net- 
work based on 3 prototypical training tokens only.7 In this 
case, convergence is achieved rapidly, but the network 
will have learned a representation that generalizes poorly 
to new and different patterns. Once convergence is 
achieved, the network is presented with approximately 
twice the number of tokens and learning continues until 
convergence. 

Fig. 3 shows the progress during a typical learning run. 
The measured error is 1/2 the squared error of all the 
output units, normalized for the number of training to- 
kens. In this run, the number of training tokens used were 
3, 6, 9, 24, 99, 249, and 780. As can be seen from Fig. 
3, the error briefly jumps up every time more variability 
is introduced by way of more training data. The network 
is then forced to improve its representation to discover 
clues that generalize better and to deemphasize those that 
turn out to be merely irrelevant idiosyncracies of a limited 
sample set. Using the full training set of 780 tokens, this 
particular run was continued until iteration 35 000 (Fig. 
3 shows the learning curve only up to 15 000 iterations). 
With this full training set, small learning steps have to be 
taken and learning progresses slowly. In this case, a step 
size of 0.002 and a momentum [5] of 0.1 was used. The 
staged learning approach was found to be useful to move 
the weights of the network rapidly into the neighborhood 
of a reasonable solution, before the rather slow fine tuning 
over all training tokens begins. 

Despite these speedups, learning runs still take in the 

6Note that in the experiments reported below, these weight changes were 
actually carried out each time the error derivatives from all training sam- 
ples had been computed [ 5 ] .  

'Note that for optimal learning, the training data are presented by always 
alternating tokens for each class. Hence, we start the network off by pre- 
senting 3 tokens, one for each class. 
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Fig. 3.  TDNN output error versus number of learning iterations (increas- 
ing training set size). 

order of several days. A number of programming tricks 
1211 as well as modifications to the learning procedure 

[3 11 are not implemented yet and could yield another fac- 
tor of 10 or more in learning time reduction. It is impor- 
tant to note, however, that the amount of computation 

considered here is necessary only for learning of a TDNN 
and not for recognition. Recognition can easily be per- 
formed in better than real time on a workstation or per- 

sonal computer. The simple structure makes TDNN’s also 
well suited for standardized VLSI implementation. The 
detailed knowledge could be learned ‘‘off-line” using 

substantial computing power and then downloaded in the 
form of weights onto a real-time production network. 

111. RECOGNITION EXPERIMENTS 

We now turn to an experimental evaluation of the 
TDNN’s recognition performance. In particular, we 

would like to compare the TDNN’s performance to the 
performance of the currently most popular recognition 

method: Hidden Markov Models (HMM). For the perfor- 
mance evaluation reported here, we have chosen the best 

of a number of HMM’s developed in our laboratory. Sev- 
eral other HMM-based variations and models have been 

tried in an effort to optimize our HMM, but we make no 
claim that an exhaustive evaluation of all HMM-based 

techniques was accomplished. We should also point out 
that the experiments reported here were aimed at evalu- 

ating two different recognition philosophies. Each rec- 
ognition method was therefore implemented and optim- 
ized using its preferred representation of the speech signal, 

i.e., a representation that is well suited and most com- 

monly used for the method evaluated. Evaluation of both 
methods was of course carried out using the same speech 

input data, but we caution the reader that due to the dif- 
ferences in representation, the exact contribution to over- 
all performance of the recognition strategy as opposed to 

its signal representation is not known. It is conceivable 

that improved front end processing might lead to further 
performance improvements for either technique. In the 

following sections, we will start by introducing the best 

of our Hidden Markov Models. We then describe the ex- 
perimental conditions and the database used for perfor- 

mance evaluation and conclude with the performance re- 
sults achieved by our TDNN and HMM. 

A .  A Hidden Markov Model (HMM) for Phoneme 

Recognition 

HMM’s are currently the most successful and promis- 

ing approach 1321-[34] in speech recognition as they have 
been successfully applied to the whole range of recogni- 
tion tasks. Excellent performance was achieved at all lev- 
els from the phonemic level 1351-[38] to word recognition 

[39], [34] and to continuous speech recognition 1401. The 

success of HMM’s is partially due to their ability to cope 
with the variability in speech by means of stochastic mod- 
eling. In this section, we describe an HMM developed in 

our laboratory that was aimed at phoneme recognition, 

more specifically the voiced stops “B,” “D,” and “G.” 
The model described was the best of a number of alternate 

designs developed in our laboratory [23], 1241. 
The acoustic front end for Hidden Markov Modeling is 

typically a vector quantizer that classifies sequences of 

short-time spectra. Such a representation was chosen as it 
is highly effective for HMM-based recognizers 1401. 

Input speech was sampled at 12 kHz, preemphasized by 
( 1  - 0.97 z - ’ ) ,  and windowed using a 256-point Ham- 
ming window every 3 ms. Then a 12-order LPC analysis 

was carried out. A codebook of 256 LPC spectrum en- 
velopes was generated from 2 16 phonetically balanced 

words. The Weighted Likelihood Ratio [41], 1421 aug- 

mented with power values (PWLR) [43], 1421 was used 

as LPC distance measure for vector quantization. 
A fairly standard HMM was adopted in this paper as 

shown in Fig. 4 .  It has four states and six transitions and 

was found to be the best of a series of alternate models 
tried in our laboratory. These included models with two, 
three, four, and five states and with tied arcs and null arcs 

The HMM probability values were trained using vector 

sequences of phonemes according to the forward-back- 
ward algorithm 1321. The vector sequences for “B,” 
“D,” and “G” include a consonant part and five frames 
of the following vowel. This is to model important tran- 

sient information, such as formant movement, and has 
lead to improvements over context insensitive models 

[23], 1241. Again, variations on these parameters have 
been tried for the discrimination of these three voiced stop 

consonants. In particular, we have used 10 and 15 frames 
(i.e., 30 and 45 ms) of the following vowel in a 5 state 

HMM, but no performance improvements over the model 
described were obtained. 

The HMM was trained using about 250 phoneme to- 

kens of vector sequences per speaker and phoneme (see 
details of the training database below). Fig. 5 shows for 

a typical training run the average log probability normal- 
ized by the number of frames. Training was continued 

1231, 1241. 
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Fig. 4.  Hidden Markov Model 
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Fig. 5 .  Learning in the Hidden Markov Model. 

until the increase of the average log probability between 

iterations became less than 2 * 
Typically, about 10-20 learning iterations are required 

for 256 tokens. A training run takes about 1 h on a VAX 

8700. Floor vaiues’ were set on the output probabilities 

to avoid errors caused by zero probabilities. We have ex- 
perimented with composite models, which were trained 

using a combination of context-independent and context- 
dependent probability values as suggested by Schwartz et 

al.  [35], [36]. In our case, no significant improvements 

were attained. 

B. Experimental Conditions 

For performance evaluation, we have used a large vo- 
cabulary database of 5240 common Japanese words [44]. 

These words were uttered in isolation by three male native 
Japanese speakers (MAU, MHT, and MNM, all profes- 
sional announcers) in the order they appear in a Japanese 

dictionary. All utterances were recorded in a sound-proof 
booth and digitized at a 12 kHz sampling rate. The data- 

base was then split into a training set (the even numbered 

files as derived from the recording order) and a testing set 
(the odd numbered files). A given speaker’s training and 
testing data, therefore, consisted of 2620 utterances each, 
from which the actual phonetic tokens were extracted. 

The phoneme recognition task chosen for this experi- 
ment was the recognition of the voiced stops, i.e., the 

phonemes “B,” “D,” and “G.” The actual tokens were 
extracted from the utterances using manually selected 
acoustic-phonetic labels provided with the database [44]. 

For speaker MAU, for example, a total of 219 “B’s,” 
203 “D’s,” and 260 “G’s” were extracted from the 

“Here, once again, the optimal value out of a number of alternative 
choices was selected. 

training and 227 “B’s,” 179 “D’s,” and 252 “G’s,’’ 

from the testing data. Both recognition schemes, the 
TDNN’s and the HMM’s, were trained and tested speaker 

dependently. Thus, in both cases, separate networks were 

trained for each speaker. 
In our database, no preselection of tokens was per- 

formed. All tokens labeled as one of the three voiced stops 

were included. It is important to note that since the con- 
sonant tokens were extracted from entire utterances and 
not read in isolation, a significant amount of phonetic 

variability exists. Foremost, there is the variability intro- 
duced by the phonetic context out of which a token is 
extracted. The actual signal of a “BA” will therefore look 

significantly different from a “BI” and so on. Second, the 
position of a phonemic token within the utterance intro- 
duces additional variability. In Japanese, for example, a 

“G” is nasalized, when it occurs embedded in an utter- 

ance, but not in utterance initial position. Both of our rec- 
ognition algorithms are only given the phonemic identity 

of a token and must find their own ways of representing 
the fine variations of speech. 

C. Results 

Table I shows the results from the recognition experi- 
ments described above as obtained from the testing data. 

As can be seen, for all three speakers, the TDNN yields 
considerably higher performance than our HMM. Aver- 
aged over all three speakers, the error rate is reduced from 

6.3 to 1.5 percent-a more than fourfold reduction in er- 

ror. 
While it is particularly important here to base perfor- 

mance evaluation on testing data,’ a few observations can 
be made from recognition runs over the training data. For 
the training data set, recognition error rates were: 99.6 

percent (MAU), 99.7 percent (MHT) , and 99.7 percent 
(MNM) for the TDNN, and 96.9 percent (MAU), 99.1 
percent (MHT), and 95.7 percent (MNM) for the HMM. 
Comparison of these results to those from the testing data 

in Table I indicates that both methods achieved good gen- 
eralization from the training set to unknown data. The data 

also suggest that better classification rather than better 

generalization might be the cause of the TDNN’s better 
performance shown in Table I. 

Figs. 6- 11 show scatter plots of the recognition out- 
come for the test data for speaker MAU, using the HMM 
and the TDNN. For the HMM (see Figs. 6-8), the log 

probability of the next best matching incorrect token is 

plotted against the log probability” of the correct token, 
e.g., “B,” “D,” and “G.” In Figs. 9-11, the activation 

levels from the TDNN’s output units are plotted in the 
same fashion. Note that these plots are not easily com- 
parable, as the two recognition methods have been trained 
in quite different ways. They do, however, represent the 

’If the training data are insufficient, neural networks can in principle 
learn to memorize training patterns rather than finding generalization of 

speech. 

“Normalized by number of frames. 
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Fig. 8. Scatter plot showing log probabilities for the besl matching incor- 

rect case versus the correctly recognized “G’s” using an HMM. 
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Fig. 6. Scatter plot showing log probabilities for the best matching incor- 
rect case versus the correctly recognized “B’s” using an HMM. 
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Fig. 7. Scatter plot showing log probabilities for the best matching incor- 
rect case versus the correctly recognized “D’s” using an HMM. 

numerical values that each method’s decision rule uses to 
determine the recognition outcome. We present these plots 

here to show some interesting properties of the two tech- 

niques. The most striking observation that can be made 
from these plots is that the output units of a TDNN have 
a tendency to fire with high confidence as can be seen 

correc t  

0.0 1 .o 

Fig. 9. Scatter plot showing activation levels for the best matching incor- 
rect case versus the correctly recognized “B’s” using a TDNN. 
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Fig. IO .  Scatter plot showing activation levels for the best matching in- 

correct case versus the correctly recognized “D’s” using a TDNN. 
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Fig. 11. Scatter plot showing activation levels for the best matching in- 
correct case versus the correctly recognized “G’s” using a TDNN. 

from the cluster of dots in the lower right-hand corner of 

the scatter plots. Most output units tend to fire strongly 
for the correct phonemic class and not at all for any other, 
a property that is encouraged by the learning procedure. 

One possible consequence of this is that rejection thresh- 

olds could be introduced to improve recognition perfor- 
mance. If one were to eliminate among speaker MAU’s 
tokens all those whose highest activation level is less than 

0.5 and those which result in two or more closely com- 

peting activations (i.e., are near the diagonal in the scatter 
plots), 2.6 percent of all tokens would be rejected, while 
the remaining substitution error rate would be less than 

0.46 percent. 

IV. THE LEARNED INTERNAL REPRESENTATIONS OF A 

TDNN 

Given the encouraging performance of our TDNN’s, a 
closer look at the learned internal representation of the 

network is warranted. What are the properties or abstrac- 

tions that the network has learned that appear to yield a 
very powerful description of voiced stops? Figs. 12 and 

13 show two typical instances of a “D” out of two dif- 

ferent phonetic contexts (“DA” and “DO,” respec- 
tively). In both cases, only the correct unit, the “D-out- 

put unit,” fires strongly, despite the fact that the two input 

spectrograms differ considerably from each other. If we 
study the internal firings in these two cases, we can see 

that the network has learned to use alternate internal rep- 

resentations to link variations in the sensory input to the 
same higher level concepts. A good example is given by 
the firings of the third and fourth hidden unit in the first 
layer above the input layer. As can be seen from Fig. 13, 
the fourth hidden unit fires particularly strongly after 

vowel onset in the case of “DO,” while the third unit 
shows stronger activation after vowel onset in the case of 
“DA.” 

Fig. 14 shows the significance of these different firing 

patterns. Here the connection strengths for the eight mov- 

. ..mm 

I 
(HZ) 

Fig 12 TDNN activation patterns for “DA ” 

(nz) 

Fig. 13 TDNN activation patterns for “DO.” 

ing TDNN units are shown, where white and black blobs 

represent positive and negative weights, respectively, and 
the magnitude of a weight is indicated by the size of the 
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Fig. 14. Weights on connections from 16 coe6cients over 3 time frames 
to each of the 8 hidden units in the first layer. 

blob. In this figure, the time delays are displayed spatially 

as a 3 frame window of 16 spectral coefficients. Concep- 
tually, the weights in this window form a moving acous- 
tic-phonetic feature detector that fires when the pattern 

for which it is specialized is encountered in the input 
speech. In our example, we can see that hidden unit num- 
ber 4 (which was activated for “DO”) has learned to fire 

when a falling (or rising) second formant starting at around 
1600 Hz is found in the input (see filled arrow in Fig. 14). 
As can be seen in Fig. 13, this is the case for “DO” and 

hence the firing of hidden unit 4 after voicing onset (see 
row pointed to by the filled arrow in Fig. 13). In the case 
of “DA” (see Fig. 12), in turn, the second formant does 

not fall significantly, and hidden unit 3 (pointed to by the 
filled arrow) fires instead. From Fig. I4 we can verify that 

TDNN unit 3 has learned to look for a steady (or only 

slightly falling) second formant starting at about 1800 Hz. 
The connections in the second and third layer then link 

the different firing patterns observed in the first hidden 

layer into one and the same decision. 
Another interesting feature can be seen in the bottom 

hidden unit in hidden layer number 1 (see Figs. 12 and 

13, and compare them to the weights of hidden unit 1 
displayed in Fig. 14). This unit has learned to take on the 
role of finding the segment boundary of the voiced stop. 

It does so in reverse polarity, i .e. ,  it is always on except 

when the vowel onset of the voiced stop is encountered 

Fig. 15. TDNN activation patterns for “GA” embedded in an utterance. 

(see unfilled arrow in Figs. 13 and 12). Indeed, the higher 

layer TDNN units subsequently use this “segmenter” to 

base the final decision on the occurrence of the right lower 
features at the right point in time. 

In the previous example, we have seen that the TDNN 

can account for variations in phonetic context. Figs. 15 
and 16 show examples of variability caused by the relative 
position of a phoneme within a word. In Japanese, a “G” 

embedded in a word tends to be nasalized as seen in the 
spectrum of a “GA” in Fig. 15. Fig. 16 shows a word 
initial “GA.” Despite the striking differences between 

these two input spectrograms, the network’s internal al- 
ternate representations manage to produce in both cases 
crisp output firings for the right category. 

Figs. 17 and 18, finally, demonstrate the shift invari- 
ance of the network. They show the same token “DO” 

of Fig. 13, misaligned by +30 ms and -30 ms, respec- 

tively. Despite the gross misalignment (note that signifi- 
cant transitional information is lost by the misalignment 
in  Fig. 18), the correct result was obtained reliably. A 

close look at the internal activation patterns reveals that 
the hidden units’ feature detectors do indeed fire accord- 
ing to the events in the input speech, and are not nega- 

tively affected by the relative shift with respect to the in- 
put units. Naturally, error rates will gradually increase 
when the tokens are artificially shifted to an extent that 

important features begin to fall outside the 15 frame data 
window considered here. We have observed, for example, 
a 2.6 percent increase in error rate when all tokens from 
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Fig 17. TDNN activation patterns for “DO” misaligned by +30 ms. 

the training data were artificially shifted by 20 ms. Such 
residual time-shift sensitivities are due to the edge effects 

at the token boundaries and can probably be removed by 
training the TDNN using randomly shifted training to- 

kens.” We also consider the formation of shift-invariant 

internal features to be the important desirable property we 
observe in the TDNN. Such internal features could be in- 
corporated into larger speech recognition systems using 

more sophisticated search techniques or a syllable or word 
level TDNN, and hence could replace the simple integra- 
tion layer we have used here for training and evaluation. 

Three important properties of the TDNN’s have been 

observed. First, our TDNN was able to learn, without hu- 

man interference, meaningful linguistic abstractions such 
as formant tracking and segmentation. Second, we have 

demonstrated that it has learned to form alternate repre- 
sentations linking different acoustic events with the same 
higher level concept. In this fashion, it can implement 

trading relations between lower level acoustic events 
leading to robust recognition performance. Third, we have 

seerr that the network is shift invariant and does not rely 
on precise alignment or segmentation of the input. 

V. CONCLUSION A N D  SUMMARY 

In this paper we have presented a Time-Delay Neural 

Network (TDNN) approach to phoneme recognition. We 

“We gratefully acknowledge one of the reviewers for suggesting this 
idea. 
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have shown that this TDNN has two desirable properties 
related to the dynamic structure of speech. First, it can 

learn the temporal structure of acoustic events and the 
temporal relationships between such events. Second, it is 

translation invariant, that is, the features learned by the 
network are insensitive to shifts in time. Examples dem- 

onstrate that the network was indeed able to learn acous- 
tic-phonetic features, such as formant movements and 
segmentation, and use them effectively as internal ab- 

stractions of speech. 
The TDNN presented here has two hidden layers and 

has the ability to learn complex nonlinear decision sur- 
faces. This could be seen from the network’s ability to 
use alternate internal representations and trading relations 

among lower level acoustic-phonetic features, in order to 
arrive robustly at the correct final decision. Such alternate 
representations have been particularly useful for repre- 

senting tokens that vary considerably from each other due 
to their different phonetic environment or their position 
within the original speech utterance. 

Finally, we have evaluated the TDNN on the recogni- 

tion of three acoustically similar phonemes, the voiced 
stops “B,” “D,” and “G.” In extensive performance 
evaluation over testing data from three speakers, the 

TDNN achieved an average recognition score of 98.5 per- 
cent. For comparison, we have applied various Hidden 

Markov Models to the same task and only been able to 
recognize 93.7 percent of the tokens correctly. We would 

like to note that many variations of HMM’s have been 
attempted, and many more variations of both HMM’s and 

TDNN’s are conceivable. Some of these variations could 

potentially lead to significant improvements over the re- 
sults reported in this study. Our goal here is to present 

TDNN’s as a new and successful approach for speech rec- 
ognition. Their power lies in their ability to develop shift- 
invariant internal abstractions of speech and to use them 

in trading relations for making optimal decisions. This 

holds significant promise for speech recognition in gen- 
eral, as it could help overcome the representational weak- 

nesses of speech recognition systems faced with the un- 
certainty and variability in real-life signals. 
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