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Kiyoaki Aikawa

NTT Human Interface Laboratories,

3-9-11 Midoricho, Musashino, 180 Japan

(Received 20 February 1992)

This paper proposes a novel neural network architecture for phoneme-based speech

recognition. The new architecture is composed of five time-warping sub-networks and

an output layer which integrates the sub-networks. Each time-warping sub-network

has a different time-warping function embedded between the input layer and the first

hidden layer. A time-warping sub-network recognizes the input speech warping the
time axis using its time-warping function. The network is called the Time-Warping

Neural Network (TWNN). The purpose of this network is to cope with the temporal

variability of acoustic-phonetic features. The TWNN demonstrates a higher phoneme

recognition accuracy than a baseline recognizer composed of time-delay neural networks

with a linear time alignment mechanism.
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1. INTRODUCTION

Handling the temporal variability of acoustic

-phonetic features is one of the most important issues

in speech recognition. The variability is caused main

-ly by factors such as the speaker, context, and utter

-ance style. A time alignment mechanism is required

to trace the acoustic-phonetic features coping with

the variability. The time alignment mechanism is

not only effective for the word level recognition but

also for phoneme level recognition.

Dynamic programming has been widely used in

template-matching speech recognizers. 1) Combining

the dynamic programming with neural networks has

been studied for handling time-warping. 2-6) In these

studies, the dynamic programming is an external

time alignment mechanism outside the neural net

-work. Hidden Markov Models are also applied for

the external time alignment mechanism used with

neural networks. 7, 8)

As for a neural network architecture for phoneme

recognition, the time-delay neural network (TDNN)

is a successful feed-forward architecture." The

tied-connected architecture is effective for the pho

-neme recognition, considering shift tolerance. An

-other advantage is that the back-propagation algo

-rithm is available for training the TDNN.") How

-ever, there is no restriction on the temporal order of

the phonetic features, while the temporal order is

important for phoneme recognition.

The time-state neural network (TSNN) has been

proposed to limit the shift-tolerant area when recog
-nizing a phoneme.") The hidden layers are temorally

divided into three or four blocks. The tied connec

-tions are limited within a block. The neural net

-work with sweeping windows (NNSW) is a varia

-tion of the time-state neural network covering a

greater scanning area at the central block in the
first hidden layer.") This network allows greater

time-shift around the center of the phoneme like the

alignment window for dynamic time warping

(DTW).
This paper investigates a feed-forward network

architecture which features an internal time align

-ment facility inside the network. An approach to

embedded non-linear time alignment has been re-
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ported as the dynamic neural network (DNN),
which has dynamic programming integration inside

the network. 13) The use of time alignment unit

(TAU) is the similar approach to the DNN. 14)
A recent report has stated the hidden Markov

models (HMMs) are powerful for phoneme recogni

-tion. 15) The HMM featuers that it allows several

hidden state sequences. This paper proposes a novel

neural network architecture which features an em

-bedded time alignment mechanism allowing several

time alignment paths. The proposed network archi

-tecture is called the time-warping neural network

(TWNN). 16, 17) The same network architecture is
used for both training and recognition. The TWNN

can integrate several possible alignment path prob

-abilities like the HMMs. The TWNN accepts

phonemes of arbitrary duration like the HMMs.

2. BASELINE RECOGNIZER

A baseline recognizer is constructed by combin

-ing the TDNN with a linear time alignment mecha

-nism. A nine-frame-input, four-layered architecture

is used. Figure 1 shows the baseline system archi

-tecture. The baseline system is the simplest design

that can accept phonemes of arbitrary duration.

The input spectrum sequence of arbitrary length is

linearly converted into a fixed number of spectra to

match the input window of the TDNN. Therefore,

the time alignment mechanism of the baseline recog

-nizer is outside the neural network.

Arcelliin the first hidden layer receives input from

Fig. 1 Baseline system architecture.

INPUT:16-channel Mel-scale log spec

-trum.

three frames of the mapped spectrum sequence, and

a cell in the second hidden layer receives signals

from five-frame window of the first hidden layer.

The connections between the input and the first

hidden layers are tied over seven columns. There

are three tied steps between the first and the second

hidden layers. The shift-invariant characteristics of

the TDNN enable the baseline recognizer to cope

with time shifts of the phonetic features. However,

there is no guarantee of extracting the phonetic

features in the correct temporal order.

3. TIME-WARPING NEURAL

NETWORK

3.1 Implementing Time-Warping

The first-hidden-layer cell of the TDNN extracts a

phonetic feature from three adjacent instantaneous
spectra. This feature extractor, formed between the

input layer and the first hidden layer, performs time-

space filtering in the tied-connected network archi

-tecture, because the same network structure is tem

-porally repeated. It is an advantage for the TDNN
that the feature extractor filter can be optimized by

training. It is desirable for the feature extraction

network to obtain the input spectral sequence di

-rectly without distorting the features by the time

alignment mechanisms built together. The phonetic

features are corrupted by the time alignment in the

baseline recognizer.

Therefore, this paper proposes a neural network

architecture in which the time-warping facility is

implemented between the feature extractor network

and the integrator network. A set of time-warping

functions are employed to provide the time-align

ment-path patterns. Figure 2 shows the proposed

time-warping neural network (TWNN) architecture.

This network comprises five time-warping sub-

networks, each of which has its own time-warping

function.

The time-warping function h(u) gives the corre

-spondence between the normalized time axis and

the actual time axis. This function must monoton

-ically increase and must satisfy the boundary con

-ditions h(0)=0 and h(1)=T. The phoneme dura

-tion T differs from token to token. This paper uses

five time-warping functions:

(1)

(2)

(3)
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Fig. 2 Time-warping neural network archi

-tecture for phoneme recognition.

T:Phoneme duration, h1:Number of cells

in a first-hidden-layer cell block, h2:

Number of cells in a second-hidden-layer

cell block,•¨:A set of neural connec

-tions, INPUT:16-channel Mel-scale log

spectrum.

where u is the normalized time and 0•…t•…T is the

time elapsed since the beginning of a phoneme.

The term 0•…ƒ¿ is the time-warping factor. The h(u)

is a monotonically increasing function, that is,

(4)

Therefore, the range of the time-warping factor ƒ¿

must be

(5)

Equation (2) represents time-warping shifting to

-ward the ending point of the phoneme when the sign

is positive, and toward the starting point when the

sign is negative. Equation (3) represents time-warp

-ing compressing toward the center of the phoneme

when the sign is positive, and expanding toward the

sides when the sign is negative. This set of functions

is called "complex time warping"(CTW). These

functions are shown in Fig. 3 (a).

(a) set CTW

(b) set STVV

Fig. 3 Time-warping functions.

(a) set CTW, (b) set STW.

Another function set is also tested by using Eqs.

(1),(2), and

(6)

Equation (6) represents less time warping than Eq.

(2). This set is composed of only nonlinear time-

shifting functions, and is called "simple time warp

-ing"(STW). These functions are shown in Fig. 3 (b).

The proposed TWNN recognizes a phoneme as a

sequence of three phonetic features like three-state

HMM. The first hidden layer in a time-warping sub-

network is composed of three cell blocks, each of

which extracts a set of phonetic features. Three

anchor points,

(7)

are set on the normalized time. Each time-warping

function maps the three anchor points onto the

actual time axis. These points are called "accessing

points." The feature extractor network accesses the
speech at the accessing points. Let AC be the number

of time-warping sub-networks, Nb be the number of

cell blocks in the first hidden layer, N. be the number

of adjacent input columns for a first-hidden-layer

cell block, and Np be the number of spectral param

-eters for a spectrum. Then, the effective number of

input cells is

(8)

397



J. Acoust. Soc. Jpn.(E) 13, 6 (1992)

In case of the TWNN in Fig. 2, Nw=5, Nb=3,

Ne=3 and Np=16.

3.2 Network Architecture

A four-layered architecture is employed for the

TWNN. The lower three layers are included in the

time-warping sub-networks. The fourth layer is the

output layer. The networks between the input layer

and the first hidden layer perform feature extrac

-tion. The network from the first hidden layers to

the output layer works as an integrator. In the first

hidden layer, a cell receives signals from three ad

-jacent input spectra centered on an accessing point.
A cell in the first hidden layer is fully connected to

the subordinate input cells.

The connections from input cells to a cell in the

first hidden layer are tied over five time-warping

sub-networks. A cell block in the first hidden layer

has several cells for extracting different phonetic

features.

The second hidden layer integrates the outputs of

the three cell blocks in the first hidden layer. The

first-hidden-layer cells are fully connected to the

cells in the second hidden layer. There is no connec

-tion between the sub-networks. A block in the

second hidden layer also has several cells for accept

-ing different phonetic-feature sequences.

The output cells integrate the outputs of the five

time-warping sub-networks. The recognition mecha

-nism is analogous to the HMM that integrates prob

-abilities over all possible hidden state sequences.

Figure 4 shows the analogy between the TWNN and

the HMM. The number of output cells is equal to

the number of phonemes to be discriminated. A DC

bias from a bias cell is supplied to every cell. The bias

is trained together with other connection weights.

The proposed neural network including five time-

warping sub-networks is trained by the error back-

propagation algorithm. The supervisor signal is 1 for
the output cell corresponding to the phoneme token

category or 0 for the other cells. The error of an out-

put cell is measured by the square distance between
the supervisor signal and the output signal. The out-

put function of the cell is the symmetrical sigmoid

defined by

(9)

(10)

(a) TWNN

(b) HMM

Fig. 4 Analogy of alignment paths between

the TWNN and the HMM.

(a) TWNN, (b) HMM.

where xi is the i-th input to the j-th cell, b ., is the bias

for the j-th cell, and wii is the connection weight

from the i-th cell to the j-th cell. For the output cell,

a standard sigmoid is used.

Phonemes are recognized using the trained

TWNN. The same net work architecture is used for

both training and recognition. The TWNN receives

a testing speech and outputs the recognition result.

The TWNN-based recognizer requires the time-

warping function set used for training.

4. EXPERIMENTS

The proposed phoneme recognizer was tested fo

-cusing on robustness against different utterance

styles, particularly where the utterance length and

speed were different from the training utterances.

The TWNNs were trained using phoneme tokens

extracted from isolated-word utterances and tested

on both isolated-word utterances and isolated

-phrase utterances spoken faster than the isolated

words. In general, the phonetic features are more

corrupted by the co-articulation in phrase utterances

than in word utterances.

The speech database used for the experiment was

spoken by a male speaker and sampled at 12kHz.

Mel-scale 16-channel log spectrum was calculated

every 10 ms from a 256-point Fast Fourier Trans

-form. Training and testing tokens were extracted

according to the phoneme labels given by hand.

The phoneme duration different from token to token.

398



K. AIKAWA:TIME-WARPING NEURAL NETWORK

Table 1 Performance comparison between

several time-warping factors for 6-conso

-nant recognition.

Network:TWNN-CTW, Number of hidden cells:

1st:12•~3•~5, 2nd:12•~5. Training:Isolated-word

utterance (5.7mora/s). Testing:Word:Isolated-

word utterance (5.7mora/s), Phrase:Isolated-phrase

utterance (7.7mora/s).

Table 2 Recognition performance as a

function of the number of time-warping
functions for 6-consonant/b, d, g, m, n, N/

recognition.

Number of hidden cells:1st:12•~3•~5, 2nd:12•~5.

Time-warping factor ƒ¿:0.3.

The number of time-warping functions and the

time-warping factor  a were optimized through pre

-liminary experiments on 6-consonant /b, d, g, m, n,

N/recognition. Table 1 compares several time warp

-ing factors. The CTW function set with five time-

warping functions was used. Table 1 shows that the

best time warping factor is 0.3 from the view point

of the robustness against different utterance styles.

Table 2 examines the number of time warping func

-tions when a is fixed to 0.3. When the number of

time-warpings is three, Eqs.(1) and (2) are used. On

the other hand, when the number of time-warpings

is one, only Eq.(1) is used. Table 2 shows that the

combination of five time-warping functions, Eq.(1)

to Eq.(3), has the best performance. The number

of hidden cells is fixed in these preliminary experi

-ments. The cell-blocks in the hidden layers contain

12 cells each. The number of time warping functions

is fixed to five and the time-warping factor is 0.3 in

the following experiments.

The phoneme recognition experiments were car

-ried out for 6-consonant recognition and for 18-

consonant recognition. Table 3 (a) compares the

proposed TWNNs and the baseline recognizers on
6-consonant recognition. In this table, TDNN3-4

specifies that the connections between the second

hidden layer and the output layer are not tied.

This table shows the superiority of the TWNN

over the baseline recognizer for both the same utter

-ance style and for a different utterance style. In the

case of the different utterance style, the phoneme

recognition rate was highest when the cell-blocks in

the first and second hidden layers contained 12 cells

each. For the same utterance style, the recognition

rate was highest when the cell-block in the first

hidden layer contained 24 cells and the cell-block in

the second hidden layer contained 4 cells. The

TWNN also achieved better cumulative top 3 recog

-nition rates than the TDNNs. Of the time-warping

functions, the CTW set performed best. This is be

-cause the CTW function set can accept various types

of time warpings.

The input window size was fixed to 9 columns in

the baseline recognizer. The best number of cells in

a column of the first hidden layer was 16. TDNN3-4

obtained a higher recognition rate than TDNN.

Table 3 (b) shows results of the perfomrance com

-parison between the TWNN with the CTW function
set and the TDNN3-4 for 18-consonant recognition.

As shown in the table, the TWNN achieved better

performance for both the same utterance style and
for the different utterance style.

Table 4 (a) shows the confusion matrix for the base

-line system. Table 4 (b) shows the confusion matrix

for the TWNN. Both tables show results with their

best parameter settings. The confusion tendency is

almost the same. More specifically, the /m/ to /b/,

/b/ to /m/, and /n/ to /N/ confusions were greatly
improved with the TWNN. However, the /n/ to /g/

and /n/ to /m/ confusions were worse with the

TWNN.

Table 5 shows cumulative recognition rates of

individual phonemes using the TWNN-CTW, in the

case of 18-consonant recognition under the different

utterance style. Some phonemes show poor recogni

-tion rates for the top candidate, however, they are

improved for the top-three cumulative recognition
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Table 3 Comparison between TWNN and the conventional method.

(a)/b, d, g, m, n, N/recognition.

(b) 18-consonant recognition.

18 consonants:/b, d, g, m, n, N, z, r, y, w, p, t, k, s, h, sh, ch, ts/, Number of hidden cells:TWNN:1st (cells in

a block)•~(blocks)•~(time-warpings), 2nd:(cells in a block)•~(time-warpings), TDNN:1st and 2nd:(cells in a

column)•~(columns).

Table 4 Confusion matrix for 6-consonant recognition.

(a) Recognition using TDNN3-4.

(b) Recognition using TWNN-CTW.

Number of hidden cells:1st:12•~3•~5, 2nd:12•~5.
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Table 5 Individual consonant recognition

rates using the TWNN for 18-consonant

recognition.

Training:Isolated-word utterance, Testing:Isolated

-phrase utterance.

Table 6 Relationship between the number

of iterations and the 18-consonant recogni

-tion rate.

Training:Isolated-word utterance.

rate.

Table 6 shows the relationship between the recog

-nition rate and the number of iterations for 18-

consonant recognition. One iteration is a cycle of

training over all training tokens. Only a small recog

-nition rate decrease due to the over-learning effect

can be seen through the long training span. This

indicates that the training of the TWNN is stable.

5. CONCLUSIONS

This paper has proposed a new time-warping neu

-ral network (TWNN) architecture to cope with ut

-terance variability. The proposed network is char

-acterized by time-warping functions embedded

inside the network. Excellent performance of the

time-warping neural network for phoneme recogni

-tion has been demonstrated. The time-warping neu

-ral network has been proven to be robust against

differences in utterance style, and has produced

better consonant recognition rates than the baseline

recognizer based on the TDNN and linear time align

-ment. The TWNN with the nonlinear function set

CTW comprising various types of time-warping

functions, including shifting, compressing and ex

-panding functions, achieved the best performance.

The TWNN is stably trained and features a small

over-learning effect.
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