
Computers and the Humanities 37: 273–291, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

273

Phonetic Alignment and Similarity

GRZEGORZ KONDRAK
Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
E-mail: kondrak@cs.ualberta.ca

Abstract. The computation of the optimal phonetic alignment and the phonetic similarity between
words is an important step in many applications in computational phonology, including dialecto-
metry. After discussing several related algorithms, I present a novel approach to the problem that
employs a scoring scheme for computing phonetic similarity between phonetic segments on the
basis of multivalued articulatory phonetic features. The scheme incorporates the key concept of
feature salience, which is necessary to properly balance the importance of various features. The
new algorithm combines several techniques developed for sequence comparison: an extended set of
edit operations, local and semiglobal modes of alignment, and the capability of retrieving a set of
near-optimal alignments. On a set of 82 cognate pairs, it performs better than comparable algorithms
reported in the literature.

Key words: cognates, dialects, features, phonetic alignment, phonetic similarity

1. Introduction

The ability to quantify the phonetic similarity between words is important in
many applications in both diachronic and synchronic phonology, including dialec-
tometry. (In most context, the notions of word similarity and word distance
are interchangeable.) A recent study Heeringa et al. (2002) confirms that word-
based methods for dialect comparison perform better than corpus-based methods
that ignore word-boundaries. Such methods usually estimate word similarity as
a (weighted) sum of the similarity between corresponding phonetic segments,
and therefore depend crucially on their correct alignment. In contrast with word
similarity, which is a rather subjective notion, we can usually establish the correct
alignment with a high degree of confidence. An objective evaluation is therefore
easier for an alignment algorithm than for a similarity algorithm.

Phonetic alignment is often an objective in itself. Usually, the strings to be
aligned represent forms that are related in some way: a pair of cognates, or the
underlying and the surface forms of a word, or the intended and the actual pronun-
ciations of a word. Alignment of phonetic strings presupposes transcription of
sounds into discrete phonetic segments, and so differs from matching of utter-
ances in speech recognition. On the other hand, it has much in common with the
alignment of proteins and DNA sequences. Many methods developed for molecular
biology can be adapted to perform accurate phonetic alignment. This is not entirely

274 GRZEGORZ KONDRAK

Table I. Comparison of phonetic alignment/similarity algorithms

Algorithm Calculation Calculation Dynamic Phonological

of alignment of distance progr. features

Covington (1996) explicit implicit no no

Somers (1998) explicit no no multivalued

Gildea and Jurafsky (1996) explicit implicit yes binary

Kessler (1995) implicit explicit yes multivalued

Nerbonne and Heeringa (1997) implicit explicit yes binary

Oakes (2000) explicit explicit yes multivalued

surprising considering that both words and molecular sequences are made of a
limited set of segments that undergo evolutionary changes and splits.

Both the word similarity and the word alignment algorithms usually contain two
main components: a metric for measuring distance between phonetic segments and
a procedure for finding the optimal alignment. The former is often calculated on the
basis of phonological features that encode certain properties of phonetic segments.
An obvious candidate for the latter is a well-known algorithm for string alignment
(Wagner and Fischer, 1974), which is based on the dynamic programming1 prin-
ciple. The algorithm simultaneously calculates the similarity between two strings
and their optimal alignment. Depending on the application, either of the results, or
both, can be used.

In this paper, I present a new approach to the alignment of phonetic strings, and
compare it to several other approaches that have been reported in the literature. The
new approach combines various techniques developed for sequence comparison
with a scoring scheme for computing phonetic similarity on the basis of multi-
valued articulatory features. An evaluation on a set of cognates demonstrates that
it performs better than comparable algorithms. The method is applicable not only
to the alignment of cognates but also to any other contexts in which it is necessary
to align phonetic strings.

2. Related Algorithms

In this section, I review several algorithms for calculating the phonetic alignment
and/or similarity that have been reported in the literature. Some properties of the
algorithms are summarized in Table I. The label explicit identifies the intended
function of the algorithm, while the label implicit marks the functionality that is
present but not overtly used.

Covington (1996) developed an algorithm for the alignment of cognates on
the basis of phonetic similarity. In a follow-up paper (1998), he extended the
algorithm to align words from more than two languages. His algorithm consists of a

PHONETIC ALIGNMENT AND SIMILARITY 275

specially designed evaluation metric and a depth-first search procedure for finding
the minimal-cost alignment. The evaluation metric is a function that specifies the
substitution cost for every pair of segments, and a context-dependent insertion/
deletion (indel) cost. The total cost of a particular alignment is calculated by
summing the costs of all substitutions and indels. I discuss Covington’s approach
in more detail in Sections 3.2 and 5.1.

Somers (1998) proposed a special algorithm for aligning children’s articulation
data with the adult model. He implemented three versions of the algorithm, which
use different methods to compute the cost of substitution: the “CAT” version based
on binary articulatory features, the “FS/P” version based on perceptual features,
and the “Lad” version based on multivalued features. There is no explicit penalty
for indels. The algorithm, which depends heavily on the alignment of stressed
vowels, is described in Somers (1999). After running “CAT” on Covington’s test
data, he concludes that, in terms of accuracy, it is as good as Covington’s algorithm.
In Section 3.1, I point out a weakness in Somers’s algorithm.

Gildea and Jurafsky (1996) align phonetic strings in their transducer induction
system. The system induces phonological rules directly from a large corpus of
corresponding underlying and surface word-forms. The authors found that a pre-
alignment of the forms greatly improves the performance of the system. Because
the surface forms are generated directly from the underlying forms by the appli-
cation of a few simple phonological rules, the pre-alignment algorithm need not
be sophisticated. The evaluation metric is based on 26 binary features. The cost of
substitutions is a straightforward Hamming distance2 between two feature vectors.
The cost of indels is set at one quarter of the maximum possible substitution cost.

Kessler (1995) tested several different approaches for computing distance
between Irish dialects. The dialects were represented by wordlists, each containing
about 50 concepts. The most sophisticated method employs twelve multivalued
phonetic features. The numeric feature values are assigned arbitrarily, and all
features are given the same weight. The distance between phonetic segments is
calculated as the difference averaged across all twelve features. The cost of indels
is not specified in the paper. Kessler found that the feature-based method performed
worse than a simpler phoneme-based method, which employed a binary identity
function between phonemes.

Nerbonne and Heeringa (1997) investigated the problem of measuring phonetic
distance between Dutch dialects. The distance between two dialects is estimated by
taking the sum of Levenshtein distances3 between two sets of corresponding words.
The cost of indels is set at half the average of all substitutions. The computed
distance is normalized by dividing its value by the length of the longer word.
The authors found that, for measuring distance between phonemes on the basis
of features, the Manhattan distance is preferable to both Euclidean distance and
Pearson correlation.

Oakes’s (2000) program JAKARTA contains a phonetically-based alignment
algorithm, whose ultimate purpose is the discovery of regular sound changes. An

276 GRZEGORZ KONDRAK

Table II. A correct and an incorrect alignment of a hypothetical cognate pair

t e w o s – – – – t e w o s

d i v u t d i v u t – – – –

impressive array of edit operations covers a number of sound-change categories.
The cost of all the above operations is uniformly set at 1, while the cost of the
standard substitution and insertion/deletion is set at 2. The phonetic characteristics
of sound are stored by means of just three features: place, manner, and voicing, of
which the first two have more than two values. However, the similarity between
phonetic segments is estimated by checking the identity of the feature values only;
there is no notion of the relative distance between various places or manners of
articulation. Distinct phonetic segments can have identical feature assignments.

3. Finding the Optimal Phonetic Alignment

Given two strings of length n and m, the basic dynamic algorithm takes O(nm)

time to calculate the minimal edit distance plus O(n + m) time to determine the
corresponding alignment. Each element of the table D of size (n+1)×(m+1) holds
the minimal distance between a pair of the initial substrings. The final element
D[n,m] contains the minimal distance between the entire input strings. The idea
is to calculate each element of D on the basis of a few neighbouring elements.
The optimal alignment can then be retrieved form D by tracing back through the
elements until the root element D[0, 0] is reached.

The dynamic algorithm is fast and seems to be optimal for the task of aligning
phonetic strings. Nevertheless, both Somers and Covington opt for other search
strategies. In this section, I argue that this is unwarranted.

3.1. GREEDY SEARCH IS NOT ENOUGH

Somers’s algorithm is unusual because the selected alignment is not necessarily
the one that minimizes the sum of distances between individual segments. Instead,
it recursively selects the most similar segments, or “anchor points”, in the strings
being compared. Such an approach has a serious flaw. Suppose that the strings to be
aligned are tewos and divut (Table II). Even though the corresponding segments are
slightly different, the alignment is straightforward. However, a greedy algorithm
that looks for the best-matching segments first, will erroneously align the two t’s.
Because of its recursive nature, the algorithm has no chance of recovering from
such an error. Regardless of the method of choosing the anchor points, an algorithm
that never backtracks is not guaranteed to find the optimal alignment.

Somers (pers. comm.) argues that his alignment algorithm works very well on
the children’s articulation data, where the stressed vowel is a reliable anchor point.
This strategy is rather risky in the context of the alignment of cognates, where

PHONETIC ALIGNMENT AND SIMILARITY 277

stress is too volatile to depend on. Even dialects of the same language may have
different stress rules. For example, stress regularly falls on the penultimate syllable
in most varieties of Polish, but on the initial syllable in the Tatra mountains dialect.
Somers (1999) nevertheless applies his algorithm to the alignment of cognates. In
Section 7, I will examine the alignments reported in that paper.

3.2. EXHAUSTIVE SEARCH IS TOO MUCH

The alignment problem is characterized by a small number of elements and a
limited number of interactions between them. Unsurprisingly, applying a depth-
first search to this problem results in the same operations being performed
repeatedly in various branches of the tree. Covington provides the following
arguments for adopting depth-first search rather than a more efficient dynamic
approach.

First, the strings being aligned are relatively short, so the efficiency of
dynamic programming on long strings is not needed. Second, dynamic
programming normally gives only one alignment for each pair of strings, but
comparative reconstruction may need the n best alternatives, or all that meet
some criterion. Third, the tree search algorithm lends itself to modification4

for special handling of metathesis or assimilation (Covington, 1996).

I am not convinced by Covington’s arguments. If the algorithm is to be of prac-
tical use, it should be able to operate on large bilingual wordlists. Most words may
be quite short, but some words happen to be rather long. For example, the vocabu-
lary lists of Algonquian languages contain many words that are longer than 20
phonemes. In such cases, the number of possible alignments exceeds 320, according
to Covington. Even with search-tree pruning, such a combinatorial explosion of the
number of nodes is likely to cause a painful slow-down. Moreover, combining the
alignment algorithm with some sort of strategy for measuring phonetic similarity
between a number of dialects is likely to require comparing thousands of words
against each other. Having a polynomially bound algorithm in the core of such
a system is crucial. In any case, since the dynamic algorithm involves neither
significantly larger overhead nor greater programming effort, there is no reason
to avoid using it even for relatively small data sets.

The dynamic algorithm is not only considerably faster than tree search but also
sufficiently flexible to accommodate the proposed modifications without compro-
mising its polynomial complexity. In the following section, I demonstrate that it is
possible to retrieve from the edit distance table D the set of k best alignments, or
the set of alignments that are within ε of the optimal solution, and that the basic set
of editing operations (substitutions and indels) can be augmented to include both
transpositions of adjacent segments (metathesis) and compressions/expansions.

278 GRZEGORZ KONDRAK

4. Extensions to the Basic Dynamic Algorithm

In this section, I describe a number of extensions to the basic dynamic algorithm,
which have been proposed primarily to address issues in DNA alignment, and I
show their applicability to phonetic alignment.

4.1. RETRIEVING A SET OF BEST ALIGNMENTS

At times, it may be desirable to find a number of alternative alignments that are
close to the optimum rather than a single best alignment. Myers (1995) describes
a modification of the basic dynamic algorithm that produces all alignments that
correspond to distances below the threshold score of d + ε, where d is the optimal
distance. The alignments are retrieved recursively from the edit distance table D,
with the current partial alignment maintained on a stack.

In order to find the k-best alignments, the edit distance table D can be viewed
as a graph with nodes corresponding to the elements in the table, and the arc
lengths set according to the edit distance function. A recently proposed algorithm
(Eppstein, 1998) discovers the k-shortest paths connecting a pair of nodes in a
directed acyclic graph in time O(e + k), where e is the number of edges in the
graph.

4.2. STRING SIMILARITY

An alternative way of evaluating the affinity of two strings is to measure their
similarity, rather than the distance between them. The similarity of two strings is
defined as the sum of the individual similarity scores between aligned segments. A
similarity scoring scheme normally assigns large positive scores to pairs of related
segments; large negative scores to pairs of dissimilar segments; and small negative
scores to indels. The optimal alignment is the one that maximizes the overall score.
The basic dynamic algorithm can be adapted to compute the similarity by simply
modifying it to select the minimum, rather than the maximum, partial score.

The similarity approach is closely related to the distance approach. In fact, it
is often possible to transform one into the other. An important advantage of the
similarity approach is the possibility of performing local alignment of strings,
which is discussed next.

4.3. LOCAL AND SEMIGLOBAL ALIGNMENT

Informally, the optimal local alignment (Smith and Waterman, 1981) of two strings
is the highest scoring alignment of their substrings. This notion is particularly
useful in applications where only certain regions of two strings exhibit high simila-
rity. For example, the local alignment of Cree āpakosı̄s and Fox wāpikonōha
“mouse” (Table III) matches the roots of the words and leaves out the unre-

PHONETIC ALIGNMENT AND SIMILARITY 279

Table III. Various kinds of alignment

global: ‖ – ā p a k o s ı̄ s – – – – ‖
‖ w ā p i k o – – – n ō h a ‖

local: ‖ ā p a k o ‖ sı̄s

w ‖ ā p i k o ‖ nōha

semiglobal: ‖ ā p a k o s ı̄ s ‖
w ‖ ā p i k o – – – ‖ nōha

half-local: ‖ – ā p a k o ‖ sı̄s

‖ w ā p i k o ‖ nōha

lated affixes. (Double bars delimit the aligned substrings.) Such an affix-stripping
behaviour is impossible to achieve with global alignment.

It should be clear why the switch from distance to similarity is not just a trivial
change of terminology. If we tried to identify corresponding substrings by minimi-
zing distance, we would almost always end up with empty or identical substrings.
This is because the distance between any substrings that are less than perfect
matches will be greater than zero. In contrast, a well-designed similarity scheme
which rewards good matches and penalizes poor matches will allow regions of
similarity to achieve meaningful lengths.

Semiglobal alignment is intermediate between local and global alignment. The
idea is to assign a similarity score of zero to any indels at the beginning or the
end of the alignment. Unlike in local alignment, the unmatched substrings that do
not contribute to the total score cannot occur simultaneously in both strings. The
practical effect for cognate alignment is that a spurious affix can be separated from
only one of the words being compared. Note that the unaligned segments do not
affect the similarity score of the two strings, which would be the case if global
alignment was used instead.

Another possible combination of local and global alignment, which I decided to
call half-local alignment, is useful in aligning cognates. It is designed to reflect the
greater relative stability of the initial segments of words in comparison with their
endings.

4.4. AFFINE GAP FUNCTIONS

A gap is a consecutive number of indels in one of the two aligned strings. In
some applications, the occurrence of a gap of length k is more probable than the
occurrence of k isolated indels. In order to take this fact into account, the penalty
for a gap can be calculated as a function of its length, rather than as a simple sum

280 GRZEGORZ KONDRAK

Table IV. An example of the compression/expansion edit operation

l a t t l a t t l a tt

l e č – l e – č l e č

of individual indels. One solution is to use an affine function of the form gap(x)
= r + sx, where r is the penalty for the introduction of a gap, and s is the penalty
for each symbol in the gap. Gotoh (1982) describes a method for incorporating
affine gap scores into the dynamic alignment algorithm. Incidentally, Covington’s
penalties for indels can be expressed by an affine gap function with r = 10 and
s = 40.

4.5. ADDITIONAL EDIT OPERATIONS

In addition to substitution and insertion/deletion, another useful edit operation is
compression/expansion, which aligns two contiguous segments of one string with a
single segments of the other string. In the context of the alignment of cognates, the
compression/expansion operation facilitates the expression of complex phoneme
correspondences. For example, in the alignment of stems of Italian latte and
Spanish leche, the rightmost alignment in Table IV is the most accurate. Note that
emulating compression as a sequence of substitution and deletion is unsatisfactory
because it cannot be distinguished from an actual sequence of substitution and
deletion.

Oommen (1995) formally defines the string alignment algorithm that incor-
porates the compression/expansion operation. The operation of transposition of
adjacent segments can also be integrated into the dynamic algorithms, much along
the same lines as in the case of compression/deletion. The details of the necessary
modifications are given in Lowrance and Wagner (1975) and Oommen and Loke
(1997).

5. Comparing Phonetic Segments

The distance/similarity function is of crucial importance in the phonetic alignment.
The numerical value assigned by the function to a pair of segments is referred to as
the substitution cost (in the context of distance), or as the substitution score (in the
context of similarity). The function can be extended to cover other edit operations,
such as insertions/deletions and compressions/expansions. The most elementary
distance function assigns a zero cost to identical segments and a unary cost to non-
identical segments. Such a function is simple to implement, but will perform poorly
on phonetic alignment. This section is concerned with the problem of designing a
better function, which would encode the knowledge about universal characteristics
of sounds.

PHONETIC ALIGNMENT AND SIMILARITY 281

Table V. The clause-by-clause comparison of Covington’s distance function and a
feature-based distance function

Clause in Covington’s Covington’s Average Rescaled

distance function penalty Hamming average

distance distance

1 “identical consonants or glides” 0 0.0 0.0

2 “identical vowels” 5 0.0 0.0

3 “vowel length difference only” 10 1.0 12.4

4 “non-identical vowels” 30 2.2 27.3

5 “non-identical consonants” 60 4.81 58.1

6 “no similarity” 100 8.29 100.0

5.1. FEATURE-BASED METRICS

Covington (1996), for his cognate alignment algorithm, constructed a special
distance function. It was developed by trial and error on a test set of 82 cognate
pairs from various related languages. The distance function is very simple; it uses
no phonological features and distinguishes only three types of segments: conson-
ants, vowels, and glides. Many important characteristics of sounds, such as place
or manner of articulation, are ignored, which implies that [m] and [h] are assumed
to be as similar as [t] and [th], and both yacht and will are treated identically as a
glide-vowel-consonant string. The function’s values for substitutions, which range
from 0 for two identical consonants to 100 for two segments with no discernible
similarity, are listed in the “penalty” column in Table V. The penalty for an indel is
40 if it is preceded by another indel, and 50 otherwise. Covington (1998) acknow-
ledges that his distance function is “just a stand-in for a more sophisticated, perhaps
feature-based, system”.

Although Covington calls his distance function an “evaluation metric”, it does
not satisfy all metric axioms. The zero property is not satisfied because the
function’s value for two identical vowels is greater than zero. Also, the triangle
inequality does not hold in all cases.

Both Gildea and Jurafsky (1996) and Nerbonne and Heeringa (1997) base their
distance functions on binary features. phonetic segments are represented by binary
vectors in which every element stands for a single articulatory feature. Such a
representation allows one to distinguish a large number of phonetic segments. The
distance between two segments can be defined as the Hamming distance between
two feature vectors, that is, the number of binary features by which the two sounds
differ. A distance function defined in such a way satisfies all metric axioms.

It is interesting to compare the values of Covington’s distance function with the
average Hamming distances produced by a feature-based metric. For the calcula-
tions, I adapted a fairly standard set of binary features from Hartman (1981), with

282 GRZEGORZ KONDRAK

the addition of two features: [tense] and [spread glottis]. Twenty-five letters of the
Latin alphabet (all but q) were taken to represent a sample set of most frequent
phonemes.

Table V shows Covington’s “penalties” juxtaposed with the average feature
distances between pairs of segments computed for every clause in Covington’s
metric. By definition, the Hamming distance between identical segments is zero.
The distance between the segments covered by clause #3 is also constant and equal
to one (the feature in question being [long] or [syllabic]). The remaining average
feature distances were calculated using the sample set of 25 phonemes. In order
to facilitate comparison, the rightmost column of Table V contains the average
distances rescaled between the minimum and the maximum value of Covington’s
metric.

The correlation between Covington’s penalties and the average Hamming
distances is very high (0.998), which demonstrates that feature-based phono-
logy provides a theoretical basis for Covington’s manually constructed distance
function.

5.2. SIMILARITY AND DISTANCE

Although all algorithms listed in Table I measure relatedness between phones by
means of a distance function, such an approach does not seem to be the best for
dealing with phonetic segments. The fact that Covington’s distance function is not
a metric is not an accidental oversight; rather, it reflects certain inherent charac-
teristics of phones. Since vowels are in general more volatile than consonants,
the preference for matching identical consonants over identical vowels is justi-
fied. This insight cannot be expressed by a metric, which, by definition, assigns
a zero distance to all identical pairs of segments. Nor is it certain that the triangle
inequality should hold for phonetic segments. A phone that has two different places
of articulation, such as labio-velar [w], can be close to two phones that are distant
from each other, such as labial [b] and velar [g].

In my approach, I employ the similarity-based approach to comparing segments
(cf. section 4.2). The similarity score for two phonetic segments indicates how
similar they are. Under the similarity approach, the score obtained by two identical
segments does not have to be constant. Another important advantage of the simila-
rity approach is the possibility of performing local alignment of phonetic strings,
which is discussed in section 4.3. In local, as opposed to global, alignment, only
similar substrings are matched, rather than entire strings. This often has the bene-
ficial effect of separating inflectional and derivational affixes from the roots. Such
affixes tend to make finding the proper alignment more difficult. It would be
unreasonable to expect affixes to be stripped before applying the algorithm to
the data, because one of the very reasons to use an automatic aligner is to avoid
analyzing every word individually.

PHONETIC ALIGNMENT AND SIMILARITY 283

5.3. MULTIVALUED FEATURES

Although binary features are elegant and widely used, they might not be optimal for
phonetic alignment. Their primary motivation is to classify phonological opposi-
tions within a language rather than to reflect universal characteristics of sounds.
In a strictly binary system, sounds that are similar often differ in a dispropor-
tionately large number of features. For instance, [y], which is the initial sound
of the word you, and [], which is the initial sound of the word Jew, have an
astounding nine contrasting feature values; yet the sounds are close enough to be
habitually confused by speakers whose first language is Spanish. It can be argued
that allowing features to have several possible values results in a more natural
and phonetically adequate system. For example, there are many possible places
of articulation, which form a near-continuum ranging from [labial] to [glottal],

Ladefoged (1975) devised a phonetically-based multivalued feature system.
This system was adapted by Connolly (1997) and implemented by Somers (1998).
It contains about twenty articulatory features, some of which, such as Place,
can take as many as ten different values, while others, such as Nasal, are basi-
cally binary oppositions. For example, the feature Voice has five possible values:
[glottal stop], [laryngealized], [voice], [murmur], and [voiceless]. Feature values
are mapped to numerical values in the [0, 1] range.

The main problem with both Somers’s and Connolly’s approaches is that they
do not differentiate the weights, or saliences, that express the relative importance of
individual features. For example, they assign the same salience to the feature Place
as to the feature Aspiration, which results in a smaller distance between [p] and
[k] than between [p] and [ph]. In my opinion, in order to avoid such incongruous
outcomes, the salience values need to be carefully differentiated; specifically, the
features Place and Manner should be assigned significantly higher saliences than
other features.

Although there is no doubt that not all features are equally important in classi-
fying sounds, the question of how to how to assign salience weights to features in a
principled manner is still open. Nerbonne and Heeringa (1997) experimented with
weighting each feature by information gain but found that it actually had a detri-
mental effect on the quality of alignments. Kessler (1995) mentions the uniform
weighting of features as one of possible reasons for the poor performance of his
feature-based similarity measure. Covington (1996) envisages “using multivariate
statistical techniques and a set of known ‘good’ alignments” for calculating the
relative importance of each feature, but provides no specific details.

In my opinion, it seems feasible to derive the saliences automatically from a
large corpus of aligned cognates by adapting methods developed for molecular
biology (Durbin et al., 1998). Unfortunately, such a representative training set
is not readily available because the task of establishing the correct alignment of
cognates by hand is very time-consuming. Moreover, any selection of the training
data would bias the similarity function towards particular languages.

284 GRZEGORZ KONDRAK

An important advantage of the feature-based metrics is a small number of para-
meters. It would be ideal to have, as stated by Kessler (1995) in his computational
analysis of Irish dialects, “data telling how likely it is for one phone to turn into the
other in the course of normal language change.” Such universal scoring schemes
exist in molecular biology under the name of Dayhoff’s matrices for amino acids
(Dayhoff et al., 1983). However, the amount of data available in dialectology is
many orders of magnitude smaller than what has already been collected in genetics.
Moreover, the number of possible sounds is greater than the number of amino
acids. The International Phonetic Alphabet, which is a standard for representing
phonetic data, contains over 80 symbols, most of which can be modified by various
diacritics. Assembling a substitution matrix of such size by deriving each indi-
vidual element is not practicable. In the absence of a universal scoring scheme
for pairs of phonetic segments, the calculation of similarity scores on the basis of
articulatory phonetic features with salience coefficients is a good working solution.

6. ALINE

ALINE is an implementation of the phonetic alignment approach advocated in this
paper. The program incorporates many of the ideas discussed in previous sections.
Similarity rather than distance is used to determine a set of best local align-
ments that fall within ε of the optimal alignment. The set of operations contains
insertions/deletions, substitutions, and expansions/compressions. but not trans-
positions, which have been judged too sporadic to justify their inclusion in the
algorithm. Multivalued features are employed to calculate similarity of phonetic
segments. Affine gap functions seem to make little difference in phonetic alignment
when local comparison is used, so the algorithm makes no distinction between
clustered and isolated indels.

ALINE is written in C++ and runs under Unix.5 It accepts a list of word
pairs from the standard input, and produces a list of alignments and their simila-
rity scores on the standard output. The behavior of the program is controlled by
command-line parameters: ε sets the threshold of acceptable near-optimal align-
ments; Cskip, Csub, and Cexp are the maximum scores for indels, substitutions, and
expansions, respectively; and Cvwl determines the relative weight of consonants and
vowels; The default values are ε = 0, Cskip = –10, Csub = 35, Cexp = 45, and Cvwl =
10. Although local comparison is the default, the program can be re-compiled to
perform global and semiglobal alignment.

ALINE employs the dynamic approach to compute the similarity table using
the σ scoring functions defined in Table VI. The best alignments are than retrieved
recursively from the similarity table. phonetic segments are encoded as vectors of
feature values. The function diff(p, q, f) returns the difference between segments
p and q for a given feature f . For a more detailed description of ALINE, see
Kondrak (2002).

PHONETIC ALIGNMENT AND SIMILARITY 285

Table VI. Scoring functions

σskip(p) = Cskip

σsub(p, q) = Csub − δ(p, q) − V (p) − V (q)

σexp(p, q1q2) = Cexp − δ(p, q1) − δ(p, q2) − V (p) − max(V (q1), V (q2))

where

V (p) =
{

0 if p is a consonant
Cvwl otherwise

δ(p, q) =
∑
f ∈R

diff(p, q, f) × salience(f)

where

R =
{

RC if p or q is a consonant
RV otherwise

Table VII. Features used in ALINE and their salience settings

Feature Salience RC RV Feature Salience RC RV

Syllabic 5 + + Place 40 + –

Voice 10 + – Nasal 10 + +

Lateral 10 + – Aspirated 5 + –

High 5 – + Back 5 – +

Manner 50 + – Retroflex 10 + +

Long 1 – + Round 5 – +

Table VII enumerates the features that are currently used by ALINE and
their salience settings. RV and RC are feature sets fully specified in Table VII:
RV contains features relevant for comparing two vowels, while RC contains
features for comparing other segments. A special feature Double, which has the
same possible values as Place, indicates the second place of articulation. When
dealing with double-articulation consonantal segments, only the nearest places of
articulation are used.

Feature values are encoded as floating-point numbers in the range [0, 1]. The
numerical values of four principal features listed in Table VIII are taken from
Ladefoged (1975), who established them on the basis of experimental measure-
ments of distances between vocal organs during speech production. The remaining
features have exactly two possible values, 0.0 and 1.0. The fact that the scheme
is based on articulatory phonetics does not necessarily imply that it is optimal
for phonetic alignment. Similar feature schemes of Connolly (1997) and Kessler
(1995) also employ discrete ordinal values scaled between 0 and 1. The former
author incorporates and expands on Ladefoged’s proposal, while the latter simply
selects the values arbitrarily.

286 GRZEGORZ KONDRAK

Table VIII. Multivalued features and their values

Place bilabial = 1.0, labiodental = 0.95, dental = 0.9, alveolar = 0.85, retroflex = 0.8,
palato-alveolar = 0.75, palatal = 0.7, velar = 0.6, uvular = 0.5, pharyngeal = 0.3,
glottal = 0.1.

Manner stop = 1.0, affricate = 0.9, fricative = 0.8, approximant = 0.6, high vowel = 0.4, mid
vowel = 0.2, low vowel = 0.0.

High high = 1.0, mid = 0.5, low = 0.0.

Back front = 1.0, central = 0.5, back = 0.0.

The salience values in Table VII and the default values of the command-line
parameters have been established by trial and error on a small set of alignments
that included the alignments of Covington (1996). By no means should they be
considered as definitive, but rather as a starting point for future refinements. It is
worth noting that assigning equal weight to all features, although superficially more
elegant, does not address the problem of unequal relevance of features.

The feature system proposed here is highly dynamic in the sense that the simila-
rity matrix can be modified by changing feature saliences or numerical values
within features. Such modifications are important as it would be unrealistic to
expect a single set of values to be optimal for all types of languages. The flexibility
of the system makes it possible to adapt the similarity matrix to the data.

7. Evaluation

For the evaluation, I adopted the set of 82 cognate pairs compiled by Covington
(1996), which contains mainly words from English, German, French, Spanish, and
Latin. In spite of some defects, Covington’s set became something of a benchmark
when Somers (1999), in order to demonstrate that his and Covington’s alignments
are of comparable quality, applied his algorithm to the set. In order to perform a
fair and consistent comparison, I refrained from making any corrections in the set
of cognates. Note that a program that performs well on aligning cognates across
distinct languages is also likely to perform well on a relatively easier task of
aligning words across dialects.

The evaluation involves the alignment algorithms of Covington (1996), Somers
(1999), and Oakes (2000), as well as ALINE and an emulation of an algorithm
based on binary features. Oakes’s program JAKARTA has been provided by the
author. I re-implemented Covington’s aligner from the description given in his
article, and verified that my version produces the same alignments. Somers’s align-
ments were reconstructed from the description of the differences between his and
Covington’s results, complemented by my understanding of the behaviour of his
algorithm. The “binary” program uses the basic dynamic algorithm and a distance
metric based on the set of binary features adapted from Hartman (1981).

PHONETIC ALIGNMENT AND SIMILARITY 287

7.1. QUALITATIVE EVALUATION

Some of the alignments produced by Covington’s algorithm give clues about the
weaknesses of his approach. In Spanish arbol and French arbre, his aligner fails
to match [r] with [l]. The reason is that it has only a binary notion of identity
or non-identity of consonants, without any gradation of similarity. This lack of
discernment also causes an occasional proliferation of alternative alignments.

The version that Somers applied to the cognate data set (CAT) employs binary,
rather than multivalued, features. Since CAT distinguishes between individual
consonants, it sometimes produces more accurate alignments than Covington’s
aligner. However, because of its unconditional alignment of the stressed vowels,
CAT is guaranteed to fail in all cases when the stress has moved in one of the
cognates.

In spite of its comprehensive set of edit operations, Oakes’s JAKARTA makes
many elementary mistakes: it frequently aligns consonants with vowels, postulates
unusual sound changes with no foundation, and has a tendency to align the shorter
words with the suffixes of the longer words.

The program based on binary features makes two types of mistakes. First, it
fails to align phonetic segments, such as [v] and [w] in English what and German
was, that are quite similar but differ with respect to many binary features (eight in
this case). Second, because of its global alignment strategy, when aligning words
of different length, it has a tendency for postulating gaps of indels inside the shorter
word.

With the exception of a few mistakes, ALINE does a good job both on closely
and remotely related language pairs. In many cases, ALINE correctly discards
inflectional affixes, posits the operation of compression/expansion to account for
the cases of diphthongization of vowels, and produces a single, correct alignment
where Covington’s aligner vacillates between alternatives.

7.2. QUANTITATIVE EVALUATION

In order to make the comparison of alignment algorithms more rigorous, I
constructed the set of true alignments (“gold standard”) for Covington’s set of
cognates to the best of my knowledge. For the comparison, I adopted a straight-
forward scoring scheme. One point is awarded for every correct unique alignment.
In the cases of k > 1 alternative alignments, the score is 1

k
if one of them is correct,

and 0 otherwise. In order to make the playing field even, complex correspondences,
such as compression/expansion, were treated as optional. The results of the manual
evaluation are given in Table IX.

ALINE is a clear winner in the comparison, achieving over 95% accuracy.
Somers’s results are almost as good as Covington’s, which, as Somers (1999) points
out, “is a good result for CAT [. . .] considering that Covington’s algorithm is aimed
at dealing with this sort of data”. The program based on binary features generates

288 GRZEGORZ KONDRAK

Table IX. Evaluation of alignment algorithms on Covington’s data set

Subset Number Score

of pairs Covington Somers Oakes Binary Kondrak

Spanish–French 20 19.0 17.0 15.0 18.8 20.0

English–German 20 18.0 18.0 16.0 18.0 18.5

English–Latin 25 18.1 19.5 9.0 13.0 24.0

Fox–Menomini 10 9.0 9.0 9.0 9.3 9.5

Other 7 4.7 3.0 4.0 5.0 6.0

Total 82 68.8 66.5 53.0 64.2 78.0

Table X. The number of shared cognates and the average phonetic cognate
similarity for four Algonquian languages (nouns only)

Languages Number of Average

cognates similarity

Fox Menomini 121 0.607

Fox Cree 130 0.616

Fox Ojibwa 136 0.626

Menomini Cree 239 0.620

Menomini Ojibwa 259 0.590

Cree Ojibwa 408 0.699

mostly accurate alignments for closely related languages, but falters on the difficult
English–Latin cognates. Oakes’s JAKARTA scores well below the rest.

8. Computing Phonetic Similarity with ALINE

Besides finding the optimal alignment, ALINE also produces an overall similarity
score, which is the sum of the individual scores between corresponding phonetic
segments. One way of normalizing the overall score returned by ALINE so that
it falls in the range [0, 1] is to divide it by the length of the longer word multi-
plied by the maximum possible similarity score between segments. The normalized
similarity score can be used as a general phonetic word similarity measure.

A possible application of ALINE is in the estimation of the relative “closeness”
between languages or dialects, Table X shows the average normalized phonetic
similarity between cognates belonging to four Algonquian languages. The data was
automatically extracted from an electronic version of an etymological dictionary
(Hewson, 1993). Interestingly, the average similarity values given in Table X imply
a different relationship between the languages than the total number of shared
cognates.

PHONETIC ALIGNMENT AND SIMILARITY 289

The results of the evaluation described in the previous section show that, overall,
ALINE produces better alignments than other algorithms. However, the evaluation
was performed on a relatively small set of cognates. In the absence of a more
comprehensive test set, a better form of evaluation would be to apply ALINE to a
task on which its performance could be easily appraised. An example of such a task
is the identification of cognates from a dictionary-type data, where a normalized
phonetic similarity between two words serves as an indicator of the likelihood of
cognation. In Kondrak (2002), I show that ALINE performs well on the cognate
identification task.

9. Conclusion

I presented a novel approach to the alignment of phonetic strings. The phonetic
similarity between phonetic segments is computed on the basis of multivalued
articulatory features, under the assumption that sounds produced in a similar way
are likely to correspond to each other. The features are weighted according to
their relative importance. The optimal alignment is calculated using the dynamic
algorithm that incorporates several enhancements including an extended set of
edit operations and the capability of retrieving a set of near-optimal alignments.
ALINE, the program that implements the new approach, is publicly available.

Apart from finding the optimal alignment, ALINE calculates an overall phonetic
similarity score, which, after normalization by word length, can serve as a phonetic
similarity measure. Thus, the similarity of any two words, not necessarily cognates,
can be quickly computed. ALINE can therefore be directly applied to dialect
classification by computing similarity between wordlists representing distinct
dialects.

Although originally developed for a specific task of cognate identification,
ALINE is grounded in general principles of articulatory phonetics. The program
has since proved its usefulness on such diverse applications as identifying easily
confusable drug names and evaluating the performance of speech recognizers.
Since the alignment of cognates representing related languages is not fundamen-
tally different from the alignment of corresponding words representing distinct
dialects, it is hoped that ALINE will turn out to be an effective tool for dialecto-
logists as well.

Acknowledgements

Thanks to Graeme Hirst, Elan Dresher, Steven Bird, Radford Neal, Suzanne
Stevenson, and Kevin Knight for their comments regarding this work. The author
was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) during his Ph.D. research at the University of Toronto.

290 GRZEGORZ KONDRAK

Notes
1 Dynamic programming is a technique of efficiently solving problems by combining previously
computed solutions to smaller sub-problems.
2 Hamming distance between two vectors is the number of elements that need to be changed to
obtain one vector from the other.
3 Levenshtein distance is the minimum number of substitutions and insertions/deletions necessary
to convert one string into another.
4 Covington does not elaborate on the nature of the modification.
5 ALINE is publicly available at http://www.cs.ualberta.ca/∼kondrak/.

References

Connolly J. H. (1997) Quantifying Target-realization Differences. Clinical Linguistics & Phonetics,
11, pp. 267–298.

Covington M. A. (1996) An Algorithm to Align Words for Historical Comparison. Computational
Linguistics, 22(4), pp. 481–496.

Covington M. A. (1998) Alignment of Multiple Languages for Historical Comparison. In Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics, pp. 275–280.

Dayhoff M. O., Baker W. C., Hunt L. T. (1983) Establishing Homologies in Protein Sequences.
Methods in Enzymology, 91, pp. 524–545.

Durbin, R., Eddy S. R., Krogh A., Mitchison G. (1998) Biological Sequence Analysis. Cambridge
University Press.

Eppstein D. (1998) Finding the k Shortest Paths. SIAM Journal on Computing, 28(2), pp. 652–673.
Gildea D., Jurafsky D. (1996) Learning Bias and Phonological-Rule Induction. Computational

Linguistics, 22(4), pp. 497–530.
Gotoh O. (1982) An Improved Algorithm for Matching Biological Sequences. Journal of Molecular

Biology, 162, pp. 705–708.
Hartman S. L. (1981) A Universal Alphabet for Experiments in Comparative Phonology. Computers

and the Humanities, 15, pp. 75–82.
Heeringa W., Nerbonne J., Kleiweg P. (2002) Validating Dialect Comparison Methods. In Gaul W.

and Ritter G. (eds.), Classification, Automation, and New Media. Proceedings of the 24th Annual
Conference of the Gesellschaft für Klassifikation e. V, pp. 445–452.

Hewson J. (1993) A Computer-Generated Dictionary of Proto-Algonquian. Canadian Museum of
Civilization, Hull, Quebec.

Kessler B. (1995) Computational Dialectology in Irish Gaelic. In Proceedings of the 6th Conference
of the European Chapter of the Association for Computational Linguistics, pp. 60–67.

Kondrak G. (2002) Algorithms for Language Reconstruction. Ph.D. thesis, University of Toronto.
Available at http://www.cs.ualberta.ca/∼kondrak.

Ladefoged P. (1975) A Course in Phonetics. Harcourt Brace Jovanovich, New York.
Lowrance R., Wagner R. A. (1975) An Extension of the String-to-String Correction Problem. Journal

of the Association for Computing Machinery, 22, pp. 177–183.
Myers E. W. (1995) Seeing Conserved Signals. In Lander E. S. and Waterman M. S. (eds.),

Calculating the Secrets of Life, National Academy Press, Washington, DC, pp. 56–89.
Nerbonne J., Heeringa W. (1997) Measuring Dialect Distance Phonetically. In Proceedings of the

3rd Meeting of the ACL Special Interest Group in Computational Phonology.
Oakes M. P. (2000) Computer Estimation of Vocabulary in Protolanguage from Word Lists in Four

Daughter Languages. Journal of Quantitative Linguistics, 7(3), pp. 233–243.
Oommen B. J. (1995) String Alignment With Substitution, Insertion, Deletion, Squashing, and

Expansion Operations. Information Sciences, 83, pp. 89–107.

PHONETIC ALIGNMENT AND SIMILARITY 291

Oommen B. J., Loke R. K. S. (1997) Pattern Recognition of Strings with Substitutions, Insertions,
Deletions and Generalized Transpositions. Pattern Recognition, 30(5), pp. 789–800.

Smith T. F., Waterman M. S. (1981) Identification of Common Molecular Sequences. Journal of
Molecular Biology, 147, pp. 195–197.

Somers H. L. (1998) Similarity Metrics for Aligning Children’s Articulation Data. In Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, pp. 1227–1231.

Somers H. L. (1999) Aligning Phonetic Segments for Children’s Articulation Assessment. Compu-
tational Linguistics, 25(2), pp. 267–275.

Wagner R. A., Fischer M. J. (1974) The String-to-String Correction Problem. Journal of the
Association for Computing Machinery, 21(1), pp. 168–173.

