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ABSTRACT A phonocardiogram (PCG) signal represents sounds and murmurs made by vibrations caused 

during a cardiac cycle. Acoustic wave generated through the beat of the cardiac cycle propagates through the 

chest wall. It can be easily recorded by a low-cost small handheld digital device called a stethoscope. It 

provides information like heart rate, intensity, tone, quality, frequency, and location of various components 

of cardiac sound. Due to these characteristics, phonocardiogram signals can be used to detect heart status at 

an early stage in a non-invasive manner. In previous studies, the convolutional neural network (ConvNet) is 

the most studied architecture, which was fed by three main features, namely Mel frequency cepstral (MFC), 

chroma energy normalized statistics (CENS), and constant-Q transform (CQT). In this paper, the authors 

have presented a hybrid constant-Q transform (HCQT) based CNN system for heart sound beat classification. 

CQT, variable-Q transform (VQT), and HCQT are extracted from each phonocardiogram signal as the 

acoustic features, including the dominant MFCC features, feed into five-layer regularized ConvNets. After 

analyzing the literature in the same domain, it can be stated that this is the first time HCQT is being utilized 

for PCG signals. Experimental results have shown that HCQT is more effective relative to the conventional 

CQT and other investigated features. Also, the accuracies of the system proposed in this work on the 

validation datasets are 96% in multi-class classification, which outperforms the proposed work relative to 

other models significantly. The source code is available on the Github repository 

https://github.com/shamiktiwari/PCG-signal-Classification-using-Hybrid-Constant-Q-Transform to support 

the research community. 

INDEX TERMS Cardiovascular disease, Convolutional neural network, Decision support system, Deep 

learning, Multi-class classification, Phonocardiogram signal. 

I. INTRODUCTION 

As per the fact sheet available with WHO, around 17.9 

million people die annually due to CVD, and it is 31% of 

total death in a year, which makes CVD disease the number 

one cause of death. Most deaths due to CVD occur in middle 

and low-income countries where medical facilities are either 

not easily available or very costly [1]. Diagnose at an early 

stage is the only way to decrease the death rate due to CVD. 

There are many invasive and non-invasive methods to 

diagnose CVD. All Invasive techniques are costly, painful, 

and readily unavailable at all places, especially in remote 

areas. Usage of a non-invasive method to diagnose CVD at 

an early stage is less expensive and painless. ECG and PCG 

are two such non-invasive ways to diagnose CVD. But their 

analysis requires an expert doctor of this domain which is not 

readily available in remote areas [2]. When sounds and 

murmurs occur during the cardiac cycle are represented 

diagrammatically, it is called a phonocardiogram. These 

vibrations generate the wave, which propagates through the 

chest wall. A stethoscope, a low-cost handheld digital device, 

is used to record the information generated through acoustic 

waves. It gives us an estimation of parameters like heart rate, 

intensity, tone, quality, frequency, and location of various 

components of the cardiac sound, which helps in the diagnosis 

of CVD in a non-invasive manner [3]. Recent advances in 

computing have enabled researchers to design decision 

support systems that can be utilized to diagnose CVD at an 

early stage, even in the absence of an expert. Algorithms of 

https://github.com/shamiktiwari/PCG-signal-Classification-using-Hybrid-Constant-Q-Transform
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machine learning and deep learning have enabled us to design 

decision support systems that can assist doctors and be used 

by laymen in the absence of doctors [4].  

The authors have proposed a hybrid constant-Q transform-

based classification model to acquire more detailed 

information from PCG signals in this work. Acoustic features 

from the PCG signal are fetched to the ConvNet model for 

learning. The main contributions of the proposed work are as 

follows: 

 Propose hybrid constant-Q transform-based (HCQT) 

acoustic features for PCG signals. 

 Compare the performance of the HCQT features with 

other acoustic features and propose the best feature 

set for PCG signal classification. 

The structure of the paper is as follows: Discussion of 

different models found in the literature for automatic diagnosis 

of CVD from PCG is given in Section 2. Details of sound 

features used with the model for classification, classifier, an 

insight view of the proposed model, and features of the 

phonocardiogram signal dataset used for the training and 

testing of the designed model are given in Section 3. Detail of 

the simulation environment and result generated through the 

proposed model are given in Section 4. Discussion and 

analysis of results are presented in Section 5. It is ended with 

the conclusive remarks given in Section 6. 

 
II. LITERATURE REVIEW 

An overview of different types of automatic heart disease 

diagnostic models from PCG signal along with datasets used 

and accuracy level achieved by them is given below in Table 

I. 

TABLE I 

AN OVERVIEW OF PCG SIGNAL BASED HEART DISEASE DIAGNOSIS MODELS 

Important Features Classifier  Dataset Accuracy 

A. E. F. Malik et al. [5] have designed a Scalogram and CNN-based model to 

diagnose cardiovascular disease from PCG signals. They have applied the 

segmentation method [7] to convert each PCG signal from three cardiac cycles 

to one cardiac cycle. It has increased the length of the dataset. To avoid any 

loss of frequency and time in the signal, the authors have applied the 

continuous wavelet transformation in place of Fourier transformation. It has 

generated scalogram images of size 656 × 875. Through a bicubic interpolation 

algorithm, the authors have resized the images into 227 × 227 and then feed 

them to the 2D ConvNet model for final classification. Authors have found that 

with the increase of the number of the convolutional layer, there is an increase 

in the accuracy. 

 

2D-CNN The authors have used the 

heart sound data set 

collected by Yaseen et al.  

[6], and PCG Dataset has 

800 abnormal and 200 

normal heartbeat sound 

recordings 

99.40% of accuracy in 

multi-class classification. 

99.88% of accuracy in 

binary class classification 

The highest accuracy was 

achieved for five 

convolution layer 

ConvNet. Only three 

classes are considered. 

P. Upretee and M. Yuksel [7] have used time-varying spectral features with 

different classifiers to classify PCG signals in different classes 

SVM 

KNN 

Heart sound data set 

collected by Yaseen et al.  

[6]. 

96.5% of accuracy in 

multi-class classification 

with KNN  and 99.6% of 

accuracy in binary class 

classification with KNN 

 

S. Patidar et al. [8] have designed a model to detect septal defects by analyzing 

cardiac sound signals. The authors have used the TQWT based advanced signal 

processing technique to fetch cycles of the heartbeat from cardiac sound 

signals. Further authors have decomposed the segmented signals through 

TQWT and used this combination of decomposed signals to extract diagnostic 

features. It has helped them in the characterization of different types of murmur 

noise. 

 

LS-SVM Heart sound signal [9-13] 98.92% in binary 

classification 

A. Gharehbaghi et al. [14] have proposed a model to diagnose aortic stenosis 

(AS), and pulmonary stenosis (PS) among children through their PCG signal. 

SVM Recorded PCG signal of 45 

children at the medical 

center of Tehran university 

hospital. 

 

93.3% in binary 

classification 

O. Deperlioglue et al. [15] have proposed a decision support system based on 

IoHT to detect cardiovascular disease through heart sound. 

AEN Pascal [16] 

PhysioNet [17] 

100% accuracy with the 

Pascal [16] dataset while 

with the PhysioNet [17] 

dataset accuracy of 99.8% 

in binary classification. 

 

M. Banerjee and S. Manjhi [18] have discussed the significance of early 

detection of heart disease in decreasing the mortality rate. The authors have 

designed a machine learning-based model to detect heart disease from PCG 

signals. 

 

2D-CNN Pascal [16] 

 

83% in multi-class 

classification. 

S. B. Shuvo et al. [19] proposed a hybrid classifier by incorporating the 

characteristics of representation learning and sequence residual learning to 

detect CVD from PCG signals. They have used representation learning for the 

CRNN Heart sound data set 

collected by Yaseen et al.  

[6] 

99.6% in binary 

classification. 
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extraction of time-invariant features from PCG signals. For extraction of 

temporal features, they have used sequential residual learning 

 

G. Redlarski et al. [20] have designed a hybrid classifier using SVM and the 

Cuckoo search algorithm. The proposed model automatically diagnoses heart 

disease from PCG signals by using the LPC feature extraction approach. 

 

Hybrid of 

SVM & 

Cuckoo 

A public database of heart 

sound [21] 

93% in multi-class 

classification 

P. Narvaez et al. [22] have used modified EWT for preprocessing of PCG 

signal. Normalized Shannon average energy was used for segmentation in a 

single cardiac cycle.  They have used six power features for classification 

SVM 

KNN 

Random 

forest 

Pascal [16] 

 

An accuracy of 99.26% 

with KNN classifiers in 

binary classification. 

Though in the last five years, a lot of research has been 

carried out in designing of automatic heart disease diagnosis 

model from PCG signal, yet there are many more areas that 

are yet to be explored. It has motivated us for the proposed 

model given in section 3. 

III. MATERIAL AND METHODS 

This section presents a detailed overview of sound feature 

extraction methods, classification model, the dataset used, and 

proposed model utilized in this work. 

A.  Mel Frequency Cepstral Coefficients (MFCCs) 

In audio or speech processing, MFC represents the short-term 

power spectrum of sound. It is based on linear cosine 

transformation of logarithmic power spectrum over a non-

linear Mel frequency scale. Collectively MFCCs coefficients 

make up MFC. The feature extraction process of MFCC is 

composed of the following steps [23]-[24]: 

1. Pre-emphasis: It amplifies high frequencies by 

passing phonocardiogram signals from a high pass 

filter.  

2. Framing: Phonocardiogram signals are separated 

into overlapping frames. It is implemented to fetch 

local spectral properties. 

3. Windowing: It is implemented on frames for the 

minimization of discontinuities around edges. 

Hamming windowing is one such widely used 

method. 

4. Discrete Fourier Transformation: After the 3rd step, 

DFT is applied to the sound signal to achieve the 

frequency domain signal from the time domain. 

5. Mel-Frequency Warping: It is used to estimate 

energy amount occurrence in different areas of a 

frequency domain. Here Mel is a unit of the pitch. 

Pure tone at 1000Hz at 40 dB intensity above the 

listener’s threshold is called a pitch of 1000 Mels. 

This non-linear frequency outcome is calculated on 

Mel-scale, as shown in (1). 𝑀(𝑓) = 1125𝑙𝑜 𝑔 (1 + 𝑓700) (1) 

here f represents the frequency term,  and M(f) is 

the equivalent Mel-scale frequency.  

6. Log Compression and Discrete Cosine 

Transforming: In this step, the logarithmic function 

IFFT is applied on filtered bank energies received in 

step 5. The DCT follows it. Finally, MFCC(n) is 

computed as shown in (2). 

            𝑀𝐹𝐶𝐶(𝑛) = 1𝑇 ∑ 𝑙𝑜𝑔[𝑀𝐹(𝑡)] 𝑐𝑜𝑠 [2𝜋𝑇 (𝑟 + 12) 𝑛]𝑅𝑟=1
 (2) 

where MFCC(n) is the nth  MFCC coefficient 

calculated from specific audio sections via T 

triangular filters, and MF(t) is the Mel-spectrum of 

the t-th filter. The heartbeat spectrogram obtained by 

MFCC is shown in Fig. 1. 

 

FIGURE 1.  (a): A sample waveform for normal phonocardiogram signal, (b): heat map visualization for MFCC of a PCG signal segment. Sliding 
windows, x, and filter-bank frequencies, y, are represented on the horizontal and vertical axes. MFCC energy information, Ex,y, is represented by pixel 
color in the heat map. The MFCC is generated with the number of frequency bins =84 and hop length = 51
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B.  Constant-Q Transform (CQT), Variable-Q Transform 
and Hybrid Constant-Q Transform (HCQT) 

J.C. Brown, in 1988 has introduced CQT. It refers to a 

technique that transforms a signal from time to frequency 

domain. However, it is different from Fourier transformation 

as central frequencies are geometrically spaced, and 

corresponding Q-factors are equal. CQT is defined as a 1/24 

octave filter bank, but it is not restricted to 24 only; it can be 

varied to 12, 36, or 48 bins per octave also. Unlike DFT, 

central frequencies of analysis are not uniformly distributed 

but aligned with equally tempered scale notes; this makes 

CQT suitable for the processing of sound [25]-[26]. 

Furthermore, the frequency resolution of CQT has a constant 

Q-factor, which effectively improves resolution accuracy in 

low-frequency regions. The frequency component of the K-th 

semitone under the N-th frame of CQT can be expressed in 

(3). 𝑋𝑛𝑐𝑞𝑡(𝑘) = 1𝑁 ∑ 𝑥(𝑚)𝑤𝑁𝑘(𝑚)𝑒−𝑗2𝜋𝑚𝑄/𝑁𝑘𝑁𝑘−1𝑚=0  (3) 

where Q is a constant whose value depends on the number 

of spectral lines of a single octave (β) 𝑄 = 121/𝛽 − 1 

The key benefit of the constant-Q transform is its capacity 

to deliver equal frequency support to all semitones and a 

variable number of bins among them. However, this also has 

its shortcomings, one being the lack of solid time resolution at 

lower frequencies. This trade-off can be alleviated by 

introducing variants of CQT i.e., VQT and HCQT. A VQT 

transformation provides increased temporal resolution at 

lower frequencies compared to the CQT transformation. An 

additional parameter γ is presented to permit an even reduction 

of the Q-factors of the bins towards low frequencies [27]-[28]. 𝐵𝑘 = 𝛼𝑓𝑘 + 𝛾 

In the constant-Q case, the Q-factor, α is a constant when γ 
= 0. The additional parameter γ can be interpreted as an offset 
in Hertz and is usually preferred to be relatively low, i.e., no 

greater than around 30 Hz. Instinctively, γ has a greater 
relative effect at lower frequencies where the bandwidth is too 

low, but the fading effect at higher frequencies. Hybrid CQT 

on the other hand, consists of two variants of CQT. It is 

considered that the frameshift contains L samples in the time 

domain. Then, select the kc-th filter that fulfills the condition 𝑁[𝑘𝑐] = 2𝐿 [29]-[30]. 

The frequencies higher than f_kc are considered as high 

frequencies, and the frequencies lower than f_kc  are 

considered as low frequencies. The high-frequency part of 

hybrid CQT filters the short-term Fourier transform-based 

spectrogram by the filter bank of the high-frequency part of 

CQT. For the low-frequency part of HCQT, it utilizes the 

standard CQT directly. HCQT is more computationally 

proficient in comparison to CQT. A visualized comparison of 

the CQT, VQT, and HCQT is presented in Fig. 2. 

 

FIGURE 2.  (a): A sample waveform fo murmur phonocardiogram signal, (b-d): heat map visualization for CQT, VQT, and HCQT base spectrograms, 
respectively. Sliding windows, x, and filter-bank frequencies, y, are represented on the horizontal and vertical axes. MFCC energy information, Ex,y is 
represented by pixel color in the heat map. The MFCC is generated with the number of frequency bins =84 and hop length = 512. 
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C.  Convolutional Neural Network (ConvNet) 

CNN has brought the revolution in the domain of computer 

vision. It has remarkably achieved better results than the 

traditional classification algorithms. Deep learning is a sub-

class of machine learning which is based on Deep Neural 

Networks (DNNs). Word deep indicates the presence of 

greater than one hidden later in neural network architecture. 

CNN is one such type of deep neural network, which is also 

known as the ConvNet model. It mainly comprises three 

layers, namely (1) convolution layer, (2) pooling layer, and (3) 

dense layer (fully connected layer) [31]-[32]. The first layer 

i.e., the convolutional layer, is an essential building block of 

ConvNet. The mathematical operation convolution is 

achieved in this layer. The convolution of two functions f and 

g in a continuous domain is expressed as in (4): (𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)∞−∞ 𝑑𝜏 = ∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)∞−∞ 𝑑𝜏 

 (4) 

In the discrete case, the same is expressed as in (5): (𝑓 ∗ 𝑔)(𝑛) = ∑ 𝑓(𝑚)𝑔(𝑛 − 𝑚)∞𝑚=−∞   (5) 

2-D convolution for a digital image can be extended as in 

(6): (𝑓 ∗ 𝑔)(𝑥, 𝑦) = ∑ ∑ 𝑓(𝑥 − 𝑛, 𝑦 − 𝑚)𝑔(𝑛, 𝑚)𝑁𝑛=−𝑁𝑀𝑚=−𝑀  

 (6) 

Here the function g is representing a filter that is applied to 

input image f.  

The idea behind 2D convolution is to pass the convolution 

filter over the input image. The filter passes over several 

pixels, which is called a stride. At each spatial location, the 

convolution between the part of the image and filter is 

attained.  The outcome is a 2-D array which is called a feature 

map. This feature map is passed through a non-linear 

activation layer like softmax, Rectified Linear Unit (ReLU), 

Randomized Leaky ReLU, etc.  

The pooling layer, also known as the subsampling layer, is 

another major component of ConvNet. Its functionality is to 

reduce the spatial size of the activation map to minimize the 

parameters required for further computation. It applies to 

every feature map autonomously. Max pooling is the most 

effective method for the implementation of pooling.  

At last, the result of the last pooling layer is received by a 

fully connected layer and utilized to categorize images into 

labels. It is the component of ConvNet where discriminative 

learning is performed. It behaves like a multi-layer perceptron 

model which can learn weights & identify image classes. 

D.  Proposed PCG Signal Classification Model using 
Acoustic Features 

The proposed approach for phonocardiogram signal 

classification using ConvNet is depicted in Fig. 3. The raw 

data provided is in Waveform Audio File Format (WAV) 

format, encoding phonocardiogram signals. To pass these 

sound waves to ConvNet model, these phonocardiogram 

signals are converted into an image, i.e. 2-D spectrogram. 

Spectrograms are convenient for representing these heartbeat 

recordings because they capture the intensity of the 

frequencies throughout a given sound. Thus, these 

spectrograms are effective representations of an audio 

recording. In this work, the authors have proposed the use 

MFCC, CQT, VQT, and HCQT based spectrograms for 

phonocardiogram signal classification. 

 

FIGURE 3.  The architecture of convolution neural network and spectrogram-based phonocardiogram signal classification model. Inputs are the 
spectrograms generated through MFCC, CQT, VQT, and HCQT, and output is one of the five classes i.e., artifact, extrahls, extra-systole, murmur, and 
normal.

E.  Phonocardiogram Signal Database 

The authors have used the freely available open access dataset 

on Kaggle [33], originating through the PASCAL heart sounds 

classification challenge. Two datasets named A & B were 

generated through the PASCAL heart sound classification 

challenge [16]. Dataset A contains the variable-length 

(varying from 1 to 30 seconds) sounds recorded through a 

digital stethoscope in a real-time situation having background 

noise. Dataset A was partitioned into four classes named 

normal, extra heart sound, murmur, and artifact, while dataset 

B was partitioned into three classes: normal, extra-systole, and 
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murmur. The authors have merged both datasets into a single 

dataset consisting of all five classes in this work. 

The number of phonocardiogram signals in normal, 

murmur, artifact, extra-systole, and extrahls classes are 255, 

114, 40, 37, and 16.  Since the number of heartbeat signals in 

each class is very low, audio augmentation is performed over 

raw audio signals. We have applied noise injection, shifting 

time, varying pitch, and speed to generate augmented data for 

phonocardiogram signals. After audio augmentation, the 

number of phonocardiogram signals in normal, murmur, 

artifact, extra-systole, and extrahls classes are 2555, 1146, 

400, 378, and 158, respectively.    The augmented dataset is 

partitioned into training and testing datasets with an 80:20 

ratio. A spectrogram represents the PCG signal waves, as 

shown in Fig. (4-8), that presents five types of HCQT 

spectrograms for the artifact, extrahls, extra-systole, murmur, 

and normal in that order. Red shades described the amplitude 

of a PCG signal in a spectrogram. The spectrogram of a 

normal PCG signal is a strong sequence of amplitude, i.e., lub 

dub. It displays a noise sequence of amplitude in the murmur 

PCG signal greater than normal and extra-systole PCG signals. 

The amplitude of a PCG signal is greater than the normal PCG 

signal but lesser than the murmur PCG signal in the extra-

systole PCG signal. 

 

FIGURE 4.  (a): A sample waveform for artifact phonocardiogram signal and (b): heat map plot of HCQT power spectrogram for artifact 
phonocardiogram signal. The spectrogram is generated with the number of frequency bins =84 and hop length = 512 

 

FIGURE 5.  (a): A sample waveform for extrahls phonocardiogram signal, (b) heat map plot of HCQT power spectrogram for extrahls phonocardiogram 
signal. The spectrogram is generated with the number of frequency bins =84 and hop length = 512 

 

FIGURE 6.  (a): A sample waveform for extra systole phonocardiogram signal and (b): heat map plot of HCQT power spectrogram for extra-systole 
phonocardiogram signal. The spectrogram is generated with the number of frequency bins =84 and hop length = 512. 
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FIGURE 7. (a) A sample waveform for murmur phonocardiogram signal and (b): heat map plot of HCQT power spectrogram for murmur 

phonocardiogram signal. The spectrogram is generated with the number of frequency bins =84 and hop length = 512. 

 

FIGURE 8. (a) A sample waveform for normal phonocardiogram signal and (b): heat map plot of HCQT power spectrogram for normal 
phonocardiogram signal. The spectrogram is generated with the number of frequency bins =84 and hop length = 512.

IV. EXPERIMENT & RESULTS 

Four separate ConvNet models termed ConvNet-MFCC, 

ConvNet-CQT, ConvNet-VQT, and ConvNet-HCQT are 

designed with MFCC, CQT, VQT, and HCQT spectrograms, 

respectively. To build the proposed ConvNet models, Keras, 

an open-source Python library, has been used that can run on 

top of different machine learning libraries like TensorFlow. In 

addition, the Librosa library in Python is used for generating 

MFCC, CQT, VQT, and HCQT spectrograms. 

ConvNet models used in this phonocardiogram signal 

classification model using these spectrograms have four 

convolutional layers. The size of the first convolution layer is 

32-5 ×5, the 2nd  convolution layer has size 64 -5 × 5, the third 

convolution layer has size 64-5× 5, and the last layer has size 

32-5× 5, respectively.  A subsampling layer using max-

pooling follows the first two convolution layers. The size of 

these max-pooling layers is 2 ×2 with a stride of size 2 ×2. The 

final layer of the ConvNet model is a dense layer with a 

softmax non-linear activation function with five units. These 

five units in the last layer are essential for this five-class 

phonocardiogram signal classification problem. 

Additionally, two dropout layers are also used to avoid 

overfitting with a 0.4 drop rate. The size of the MFCC 

spectrogram images is 128 ×130. The model is compiled after 

design.  The optimizer is the gradient descent algorithm based 

on ‘Adam' optimizer and cross-entropy loss to calculate the 

prediction error rate. The values 0.0001 are used as the 

learning rate. This optimizer uses backpropagation to update 

the weights of the neurons. It computes the derivative of the 

loss function regarding each weight and deducts it from the 

weight. A categorical cross-entropy loss function is utilized 

due to the multi-class nature of the problem, which has the 

form given by (7): 𝐿𝐶𝐸 = − 1𝑁 ∑ 𝑙𝑜𝑔 𝑒𝑊𝑦𝑖𝑇 𝑥𝑖+𝑏𝑦𝑖∑ 𝑒𝑊𝑗𝑇𝑥𝑖+𝑏𝑗𝑛𝑗=1𝑁𝑖=1   (7) 

W = weight matrix, b= bias term, xi= ith training sample, yi= 

class label for the ith training sample, N = sample count, Wj 

and Wyi  are the jth and yi
th column of W. 300 epochs with batch 

size 128 are used for training. Fig. (9-12) shows the 

classification accuracy and loss curves in train and test set 

during the training of ConvNet models. The shape and 

dynamics of these learning curves are studied to diagnose the 

behavior of a ConvNet model. Three common dynamics 

observed in these learning curves are under-fitting, overfitting, 

and optimal fitting. From these plots, it can be verified that the 

ConvNet-HCQT model has offered optimal fit in comparison 

to other models. 

Fig. 13 offers the results for these experiments in terms of 

the confusion matrix. Confusion Matrix is a 𝑁 𝑥 𝑁 matrix, in 

which rows represent the true categories and the columns 

represent the classified category by the model. The number 𝑛𝑖,𝑗 at the intersection of 𝑖-th row and 𝑗-th column is identical 

to the number of cases from the 𝑖-th phonocardiogram signal 

class which have been categorized as belonging to the 𝑗-th 

phonocardiogram signal class. It is extremely useful for 

measuring precision, recall, F-score, accuracy, and most 

importantly AUC-ROC curve. All these performance metrics 

are computed and presented in the next section to compare all 

four models. 
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FIGURE 9.  (a): Evolution of classification accuracy with the training & validation set during training of ConvNet-MFCC model. Accuracy increases 
abruptly during the first 200 repetitions & stabilizes after 250 repetitions. (b): Evolution of classification loss with the training & validation set during 
the training of ConvNet-MFCC model. Loss decreases abruptly during the first 200 repetitions and stabilizes after 250 repetitions. 

 

FIGURE 10.  (a): Evolution of classification accuracy with training and validation set during the training of ConvNet-CQT model. Accuracy increases 
abruptly during the first 200 repetitions and stabilizes after 250 repetitions. (b): Evolution of classification loss with training and validation set during 
the training of ConvNet-CQT model. Loss decreases abruptly during the first 200 repetitions and stabilizes after 250 repetitions. 

 

FIGURE 11.  (a): Evolution of classification accuracy with training and validation set during the training of ConvNet-VQT model. Accuracy increases 
abruptly during the first 200 repetitions and stabilizes after 250 repetitions. (b): Evolution of classification loss with training and validation set during 
the training of ConvNet-VQT model. Loss decreases abruptly during the first 200 repetitions and stabilizes after 250 repetitions. 
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FIGURE 12.  (a): Evolution of classification accuracy with training and validation set during the training of ConvNet-HCQT model. Accuracy increases 
abruptly during the first 200 repetitions and stabilizes after 250 repetitions. (b): Evolution of classification loss with training and validation set during 
the training of ConvNet-HCQT model. Loss decreases abruptly during the first 200 repetitions and stabilizes after 250 repetitions. 

 

FIGURE 13.  Confusion matrix of ConvNet models on the test subset (a) ConvNet-mfcc model, (b) ConvNet-CQT model, (c) ConvNet-VQT model and 
(d) ConvNet-HCQT model 
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V.  RESULT ANALYSIS AND DISCUSSION 

Statistical performance measures, namely precision, F-score, 

sensitivity, and accuracy, are computed from the confusion 

matrix as given in Section 4 to evaluate the performance of all 

four models, i.e., ConvNet-MFCC, ConvNet-CQT, ConvNet-

VQT, and ConvNet-HCQT.  These measures are defined in 

(8-11) [34]. Precision (P) = T+(T++F+)                             (8) Sensitivity (S) = T+(T++F−)                             (9) F − Score = (2∗P∗S)(P+S)                                                      (10) Accuracy =  (T++T−)(T++T−+F−+F+)                                       (11) 

Where T+, T-, F+ and F- are the truly projected positive, truly 

negative cases, false-positive cases, and false-negative cases, 

respectively. The results in terms of the above performance 

measures are offered in Table II. It is evident from the results 

that ConvNet-HCQT outperforms other models. The average 

accuracies achieved using HCQT is 96%, whereas it is 93%, 

94%, and 94%, respectively, for ConvNet-MFCC, ConvNet-

CQT, and CovNet-VQT models. The performance of 

ConvNet-CQT and CovNet-VQT models is the same but 

superior to ConvNet-MFCC. MFCC features are widely used 

features in the past for heartbeat sound classification.  The 

experimental results indicate that the proposed method has 

gained good results relative to the previous work. The 

outcomes from the proposed method outperform the reported 

best accuracy as 0.86 for normal/abnormal binary 

classification released by PhysioNet/Computing in 

Cardiology Challenge2016. Table III provides the overall 

accuracies for the best models presented in PhysioNet 

Computing Cardiology challenge [35]. Accuracies provided 

by these models are very much inferior to the proposed multi-

class classification model using HCQT. 
 

TABLE II 

PERFORMANCE MEASURES FOR PHONOCARDIOGRAM SIGNAL CLASSIFICATION USING MFCC, CQT, VQT, AND HCQT FEATURES IN TERMS OF PRECISION, 

SENSITIVITY, F-SCORE, MACRO, WEIGHTED AND AVERAGE ACCURACY 

 

Class/metric 

ConvNet-MFCC ConvNet-CQT ConvNet-VQT ConvNet-HCQT 
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Artifact 1 1 1 1 0.98 0.99 1 1 1 1 1 1 

Extrahls 0.96 0.93 0.94 0.85 0.92 0.88 0.92 0.83 0.87 0.92 0.96 0.94 

Extrasystole 0.68 0.84 0.75 0.68 0.98 0.8 0.63 0.83 0.72 0.81 0.94 0.87 

Murmur 0.94 0.96 0.95 0.93 0.97 0.95 0.95 0.95 0.95 0.96 0.97 0.96 

Mormal 0.96 0.93 0.95 0.99 0.93 0.96 0.96 0.94 0.95 0.98 0.96 0.97 

Macro Average 0.91 0.93 0.92 0.89 0.96 0.89 0.91 0.89 0.91 0.93 0.97 0.95 

Weighted Average 0.93 0.94 0.94 0.95 0.94 0.95 0.94 0.94 0.94 0.96 0.96 0.96 

Average Accuracy 0.93 0.94 0.94 0.96 

TABLE III 

SELECTED RESULTS FROM THE 2016 PHYSIONET COMPUTING IN 

CARDIOLOGY CHALLENGE [35] 

 

Rank  Overall Accuracy  Description 

1 0.8602 AdaBoost & CNN 

2 0.859 Ensemble of SVMs 

3 0.852 Regularized Neural Networks 

4 0.8454 MFCCs, Wavelets, Tensors 

5 0.8448 KNN Random Forest + LogitBoost 

6 0.8415 Unofficial entry 

7 0.8411 Probability-distribution based 

8 0.8399 Heatmaps+CNN 

9 0.8282 Approach Unknown 

10 0.8263 Approach Unknown 

To further confirm the robustness of these 

phonocardiogram signal classification models, ROC curves 

are also plotted in Fig. 14. ROC curves are drawn between the 

false positive rate on the x-axis and the true positive rate on 

the y-axis. This implies that the top left corner of the plot is the 

"perfect" point where a true positive rate of one and a false 

positive rate of zero. It means that a larger AUC is generally 

superior [36]. It is evident from the ROC curves that the 

ConvNet-HCQT model performs better than other models, 

which the AUC of these ROC plots confirms. The micro-

average area and macro-average area for MFCC based 

ConvNet model are 1.00 and 0.99, respectively. The metric 

macro-average area is slightly improved with HCQT based 

ConvNet model, which is 1.00. The area under the curve for 

the artifact, extrahls, extra-systole, murmur, and normal 

classes are 1.00, 1.00, 0.99, 1.00, and 0.99. It can be noticed 

that AUC is slightly improved for these classes with HCQT 

based features in comparison to other features.  
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Commonly used time-frequency transformations and 

features such as DFT, DWT, and MFCC have extensively 

supported various acoustic recognition systems. Though they 

are appreciated for most acoustic analyses, they are still not 

customized to any particular problem. So, it may be valuable 

to investigate features from other time-frequency 

transformations such as CQT, VQT, and HCQT. CQT is a 

dominant feature in acoustic signal processing analysis. CQT 

transforms a series of time-domain signals to the frequency 

domain signal. It is similar to the Short Term Fourier 

Transform (STFT) and almost identical to the complex Morlet 

wavelet transform. Hybrid CQT is a more computationally 

efficient version of CQT. It utilizes the pseudo-CQT for 

higher-order frequencies where the hop length is larger than 

half the filter size and full CQT for the lower frequencies. 

Experimental results demonstrate that HCQT is more effective 

than the conventional CQT and variable CQT. 

In this study, an effort is made to suggest the best acoustic 

features for phonocardiogram signal classification. Fig. 15 

presents the comparison of the HCQT-based ConvNet model 

with others. Results have proved that HCQT outperforms 

other acoustic features of the time-frequency domain. In the 

future, it would be interesting to analyze an augmented 

amount of architectural configurations and filter-bank, as well 

as hyper parameter sets. 

 

FIGURE 14.  ROC curve obtained using acoustic features demonstrating AUC for the artifact, extrahls, extra-systole, murmur and normal classes 
separately, micro average and macro average performance measures (a) ConvNet-MFCC model, (b) ConvNet-CQT model, (c) ConvNet-VQT model, and 
(d) ConvNet-HCQT model. 
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FIGURE 15.  Performance comparison in terms of precision, recall, F-score, and accuracy of the HCQT-based ConvNet model with others

VI. CONCLUSION 

Diagnose at an early stage is the only way to decrease the 

mortality rate occurring due to CVD. However, due to a lack 

of awareness for routine health checkups and unavailability of 

all resources at low cost, there are major hurdles in the early 

diagnosis of CVD. The situation worsens in developing 

countries where population density is high, and a doctor is not 

available in remote locations. To target these issues, the 

authors have offered a design of a decision support system that 

utilizes the PCG signals for the early diagnosis of CVD. PCG 

signals can be captured by a small, low-cost handheld device 

called a stethoscope. In this work, a multi-class 

phonocardiogram signal database with five classes, namely, 

extra heart sound, artifact, extra-systole, murmur, and normal 

heartbeat, was used to design the phonocardiogram signal, 

classification model. The authors have designed a PCG signal 

classification model with a new acoustic feature HCQT. 

HCQT has been formed by combining two CQTs consisting 

of dissimilar resolutions for treating the high-frequency bins 

of the conventional CQT.  Analysis of results has proved that 

HCQT is a superior feature that generally applies acoustic 

features like MFCC, CQT, and VQT. Through the proposed 

work, the authors have achieved an accuracy of 96% in the 

multi-class classification of PCG signals.  

In future work, authors have planned to ensemble multiple 

spectrograms to get more discriminative stacked features. 

Also, classification accuracy may further be improved by 

using other deep learning architecture like Recurrent Neural 

Network (RNN). Moreover, the authors have also planned to 

use an ECG signal with the PCG signal to design the 

multimodality model using these acoustic features. 
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